(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2003268611 B2

(54) Title
Method for streaming data between a server and a client
(51)2 International Patent Classification(s)
GO6F 17,00 (2006.01)20060101ALI2006010
HO04L 12,54 (2006.01) 1BMER HO4L
HO04L 12,58 (2006.01) 1258
HO04L 29-06 (2006.01) 20060101ALT2005100
GOGF 1700 8BMEP HO4L
200601014F12005061 23/06
OEMRU Ho4L 20060101ALT 2005100
12-54 8BMEP
(21) Application No: 2003268611 (22) Application Date: 2003 12 11
(30) Priority Data
(31) Number (32) Date (33) Country
10367161 2003 02 14 s
60437869 2003 0103 s
(43) Publication Date : 2004 07 22
(43) Publication Journal Date : ;gg4 g7 22
(1) Applicant(s)
Microsoft Corporation
(72) Inventor(s)
Froelich, Karl. Zhong, Min, Novitskey, Robert R, Goddard, Steven F, Gray, Ronald Eric;
Warren, Joseph R, Bonilla, Nicole A, Dun, Alec, Hartwell, Aaron
(74) Agent/Attorney
Davies Collison Cave, 1 Nicholson Street, Melbourne, VIC, 3000
(56) Related Art
MYERS et al: "RFC 1939: Post Office Protocol Version 3" Network Group Request for
Comments , published May 1996, pages 1-20

ABSTRACT

A system and method for improved client and server communications, more
particularly, an improved protocol that may be used for communication between a client and a
server, such as in an email environment. Many features are provided for improved
communications. An email server may provide the best message body available for an email
message, may transfer an entire data object if requested property or properties are not well
defined within the data object, may provide progress data for use in tracking download
progress, and may send error information for a data object having an error. Email changes may
be optimized at an email server component, even if the email changes occurred at another email
server component. An email server may maintain a table of changes that occur to folders at an
associated data store, and may notify a subscribed email client component of changes that
occur in the table.

1/23

oL

oL ////f

J9)ndwon

0l

///;.hoiaeoo Aﬂuuunuuuuuﬁv

0l

// Jendwon

IE

soindwo)

ot

/ Jaindwo)

oL

/ Jaindwog

AUSTRALIA
PATENTS ACT 1990
COMPLETE SPECIFICATION

NAME OF APPLICANT(S)::

Microsoft Corporation

ADDRESS FOR SERVICE:
DAVIES COLLISON CAVE

Patent Attorneys
1 Nicholson Street, Melbourne, 3000, Australia

INVENTION TITLE:

Method for streaming data between a server and a client

The following statement is a full description of this invention, including the best method ofperforming it

known to me/us:-

5102

02 Jun 2009

2003268611

20

25

30

P pages It spad

FIELD OF THE INVENTION

[0002] This invention pertains generally to computer networks, and more
particularly, to methods for communicating between client and server applications such as

email applications.

BACKGROUND OF THE INVENTION

[0003] Email has become an important method for communicating. Email systems
typically include a server component (e.g., Microsoft Exchange Server) and a client
component (e.g., Microsoft Outlook or Microsoft Qutlook Express). These components are
typically software applications that are configured to execute on computing devices (e.g.,
servers, PCs, laptops, and PDAs).

[0004] Often, in order to facilitate communications, a client and server, such as
client component and a server component of an email system, agree on a communications
protocol. The protocol sets out the rules defining the expected behavior of each party
during communications, for example, the expected sequence of request and response.
Sophisticated protocols have rules for handling unexpected behavior.

[0005) As client and server components are improved, the improved versions are
distributed to end users. In order to 1ake advantage of new component features and network
features, it is often the case that a new communications protocol is invented. Where the
installed base of server components is significant, a client component may have the ability
to communicate, via a set of protocols, with selected previous versions of server
components.

[0006] It is sometimes the case that later protocols build upon earlier protocols
rather than replacing them wholesale. In such a case, a later protocol may be built of
protocol elements which can be enabled or disabled in order to simulate earlier protocols.
Likewise, where the installed base of client components is significant, a server component
may have the ability to communicate, via a protocol, with selected previous versions of
client components.

[0007) The invention provides such a system and method. These and other

02 Jun 2009

2003268611

20

25

30

POl poges 11

advantages of the invention, as well as additional inventive features, will be apparent from

the description of the invention provided herein.

SUMMARY OF THE INVENTION

[0007a] According to the present invention, there is provided a data packet
embodied on a computer readable medium comprising:

a first data field identifying an email client component;

a second data field including a request for a plurality of email data objects; and

characterized in that it comprises a third data field including an indication that the
email client component is capable of handling progress mode data sent along with the
plurality of requested email data objects wherein the progress mode data includes a total
size of the plurality of email data objects, a total number of email messages in the plurality
of email data objects, and a size of each of the email data objects.
[0007b] The present invention also provides a computer-readable medium having
computer-executable instructions, the instructions comprising:

receiving, from an email client component, a request for a plurality of email data
objects and an indication that the email client component is capable of handling progress
mode data;

in response to the request and the indication, retrieving the plurality of email data
objects; and

providing progress mode data to the email client component along with the
plurality of email data objects, the progress mode data comprising a size of each of the
email data objects, a total size of the plurality of email data objects, and a total number of
email messages in the plurality of email data objects.
[0007¢] The present invention further provides a computer-implemented method,
comprising the steps of:

sending, from an email client component, a request for a plurality of email data
objects and an indication that the email client component is capable of handling progress
mode data sent along with the plurality of requested email data objects the progress mode

data comprising a size of each of the email data objects, a total size of the plurality of

02 Jun 2009

2003268611

20

25

30

poges 151 $pock £l

email data objects, and a total number of email messages in the plurality of email data
objects; at an email server component, in response to the request and the indication,
retrieving the plurality of email data objects and progress mode data for the plurality of
email data objects; and

at the email client component, receiving the progress mode data sent along with the
plurality of requested email data objects and utilizing the progress mode data to monitor
transmission progress of the plurality of email data objects to the email client component.
[0008] Embodiments of the present invention provide a system and method for
improved client and server communications. More particularly, embodiments of the
invention are directed to an improved protocol that may be used for communication
between a client and a server. Embodiments of the invention have particular relevance to
an email server environment, but the features described herein may be utilized in other
client and server networks.
[0009] In accordance with an embodiment of the present invention, an email server
component may submit error information for a data object having an error instead of
failing an entire set of responses because of an error in one. The email server component
may receive, from an email client component, a request for a plurality of email data objects
and an indication that the email client component is capable of handling an email data
object having an error. In response to the request and the indication, the email server
component may retrieve the plurality of email data objects, and, for each of the email data
objects, if no error oceurs in opening the email data object, transmit the email data object
to the email client component, If, however, an error occurs in opening the email data
object, the email server component transmits an error message to the email client
component.
[0010] In accordance with another embodiment of the present invention, an email
server component may provide progress data to an email client component so that the
email client component may track the progress of a download from the email server
component. The email client component sends a request for a plurality of email data
objects and an indication that the email client component is capable of handling progress
mode data. In response to the request and the indication, the email server component

retrieves the plurality of email data objects, and provides progress mode data to the email

02 Jun 2009

2003268611

20

25

client component along with the plurality of data objects. The progress mode data may
include a size of the plurality of the email data objects, the size of each of the objects, the
number of the objects, whether the objects are folder associated information, additional
information, or any combination of these items.

[0011] In accordance with still another embodiment of the present invention, a
request sent by an email client component may indicate no limit for the size of a response
to the request, allowing an email server component to fill a buffer, if needed. The email
client component sends a plurality of subrequests within a request, each of the subrequests
requesting an operation at an email server component and including size information. In
response to each subrequest, if the size information includes a size limit inside a range
expected by the email server component, then the email server component limits a
response to the size limit. If the size information includes a size limit outside a range
expected by the cmail server component, then the email server component looks for a new
size limit in the size information. The new size limit may be arbitrary, such as "fill the

available buffer."
BRIEF DESCRIPTION OF THE DRAWINGS

[0011a] Embodiments of the present invention are hereinafter described, by way of
example only, with reference to the accompanying drawings, wherein:

[0012] FIG. | is a schematic diagram of computers connected by a network.
[0013] FIG. 2 is a schematic diagram illustrating an exemplary computer system
usable to implement an embodiment of the invention.

|0014] FIG. 3 is a schematic diagram depicting an environment with multiple
versions of both email client components and email server components.

[0015] FIG. 4 is a protocol diagram showing an example of a protocol negotiation
procedure between an email client component and an email server component.

[0016] FIG. 5 is a schematic diagram showing an example email network in which
email client components and email server components have fixed size communication

buffers.

02 Jun 2009

2003268611

15

3b

[0017) FIG. 6A is a protocol diagram showing an example protocol requiring two
request-response cycles to complete a fast transfer operation.

[0018) FIG. 6B is a protocol diagram showing an example protocol requiring a
single request-response cycle to complete a fast transfer operation.

[0019] FIG. 7A is a flowchart depicting an example procedure for sending an email
message body to an email client component.

[0020] FIG. 7B is a flowchart depicting a procedure for sending an email message

body to an email client component in accordance with an aspect of the present invention.

[0021) FIG. 8A is a sequence diagram illustrating a full item transfer mode.

[0022] FIG. 8B is a sequence diagram illustrating a headers first transfer mode.
10023] FIG. 8C is a sequence diagram illustrating a headers only transfer mode.
[0024] FIG. 8D is a sequence diagram illustrating an exception to a headers first or

a headers only transfer mode.
[0025] FIG. 9 is a schematic diagram showing an email client component's home

email server component being changed over time.

[0026] FIG. 10 is a protocol diagram showing an example protocol for synchronizing email
folders between an email client component and an email server component.

[0027) FIG. 11A is a flowchart depicting an example procedure for optimizing part of a
stateblob.

[0028] FIG. 11B is a flowchart depicting a procedure for optimizing part of a stateblob in
accordance with the present invention.

[0029] FIG. 12 is a schematic diagram illustrating an email folder hierarchy.

[0030} FIG. 13 is a protocol diagram showing an example protocol for synchronizing and
maintaining synchronization of an email message store in accordance with an aspect of the
present invention.

[0031] FIG. 14A is a protocol diagram showing an example protocol for communicating
error information at the ROP level.

[0032] FIG. 14B is a protocol diagram showing an example protocol for communicating
error information on a per message basis in accordance with an aspect of the present invention.
[0033] FIG. 15A is a flowchart depicting a procedure for generating error information at
the ROP level.

[0034] FIG. 15B is a flowchart depicting a procedure for generating error information on a
per message basis in accordance with an aspect of the present invention.

[0035] FIG. 16A is a protocol diagram showing an example protocol for carrying out a fast
transfer operation.

[0036] FIG. 16B is a protocol diagram showing an example protocol for providing progress
information while carrying out a fast transfer operation in accordance with an aspect of the
present invention.

[0037] FIG. 17A is a flowchart depicting a procedure for streaming out a set of messages.
[0038] FIG. 17B is a flowchart depicting a procedure for streaming out a set of messages
along with progress information in accordance with an aspect of the present invention.

[0039} - FIG. 18 is a schematic diagram of multiple email client components being notified
as the result of a change to the same data object at an email server component.

[0040) FIG. 19A is a flowchart depicting a procedure for notifying multiple subscribers.
[0041] FIG. 19B is a flowchart depicting a procedure for notifying multiple subscribers in
accordance with an aspect of the present invention.

[0042] FIG. 20 s a flowchart depicting a procedure for providing an email message that
uses a desired code page in accordance with an aspect of the present invention.

-10-

DETAILED DESCRIPTION OF THE INVENTION

[0043] Prior to proceeding with a description of the various embodiments of the invention,
a description of the computer and networking environment in which the various embodiments
of the invention may be practiced will now be provided. Although it is not required, the
present invention may be implemented by programs that are executed by a computer.
Generally, programs include routines, objects, components, data structures and the like that
perform paniéular tasks or implement particular abstract data types. The term “program” as
used herein may connote a single program module or multiple program modules acting in
concert. The t’en-n “computer” as used herein includes any device that electronically executes
one or more programs, such as personal computers (PCs), hand-held devices, multi-processor
systems, microprocessor-based programmable consumer electronics, network PCs,
minicomputers, tablet PCs, mainframe computers, consumer appliances having a
microprocessor or microcontroller, routers, gateways, hubs and the like. The invention may
also be employed in distributed computing environments, where tasks are performed by remote
processing devices that are linked through a communications network. In a distributed
computing environment, programs may be located in both local and remote memory storage
devices.

[0044] An example of a networked environment in which the invention may be used will
now be described with reference to F IG. 1. The example network includes several computers
10 communicating with one another over a network 11, represented by a cloud. Network 11
may include many well-known components, such as routers, gateways, hubs, etc. and allows
the computers 10 to communicate via wired and/or wireless media, When interacting with one
another over the network 11, one or more of the computers may act as clients, servers or peers
with respect to other computers. Accordingly, the various embodiments of the invention may
be practiced on clients, servers, peers or combinations thereof, even though specific examples
contained herein do not refer to all of these types of computers.

[0045]) Referring to FIG. 2, an example of a basic configuration for a computer on which all
or parts of the invention described herein may be implemented is shown. In its most basic
configuration, the computer 10 typically includes at least one processing unit 14 and memory
16. The processing unit 14 executes instructions to carry out tasks in accordance with various
embodiments of the invention. In carrying out such tasks, the processing unit 14 may transmit
electronic signals to other parts of the computer 10 and to devices outside of the computer 10 to
cause some result. Depending on the exact configuration and type of the computer 10, the
memory 16 may be volatile (such as RAM), non-volatile (such as ROM or flash memory) or

11-

some combination of the two. This most basic configuration is illustrated in FIG. 2 by dashed
line 18. Additionally, the computer may also have additional features/functionality. For
example, computer 10 may also include additional storage (removable 201 and/or non-
removable 20:2) including, but not limited to, magnetic or optical disks or tape. Computer
storage media includes volatile and non-volatile, removable and non-removable media
implemented in any method or technology for storage of information, including computer-
executable instructions, data structures, program modules, or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EEPROM, flash memory, CD-ROM, digital
versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which can be used to stored the
desired information and which can be accessed by the computer 10. Any such computer
storage media may be part of computer 10.

[0046) Computer 10 preferably also contains communications connections 205 that allow
the device to communicate with other devices. A communication connection is an example of
a communication medium. Communication media typically embody computer readable
instructions, data structures, program modules or other data in a modulated data signal such as
a carrier wave or other transport mechanism and includes any information delivery media. By
way of example, and not limitation, the term “communication media” includes wired media
such as a wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. The term “computer-readable medium” as used herein
includes both computer storage media and communication media.

[0047) Computer 10 may also have input devices 204 such as a keyboard, mouse, pen,
voice input device, touch input device, etc. Output devices 203 such as a display 20, speakers,
a printer, etc. may also be included. All these devices are well known in the art and need not be
discussed at length here.

[0048] The present invention is directed to a system and method for improved client and
server communications, and more particularly is directed to an improved protocol that may be

‘used for communication between a client and a server. The invention has particular relevance

to an email server environment, but the features described herein may be utilized in other client
and server networks, For ease of description, however, the invention is described with
reference to a client/server email environment.

[0049] The present invention may be implemented in a client/server environment having
two or more versions of client applications or components, and/or two or more versions of
server applications or components. To this end, FIG. 3 illustrates a block diagram showing
multiple versions of both client and server components in a network email environment, In

-12-

general, the client and server components are configured so that they are backwardly
compatible. That is, a client component is capable of communicating with recent and legacy
versions of server components, and vice versa. A set of protocols are established to
communicate between the multiple versions. The set of protocols may constitute several
different protocols, each being self-contained. Alternatively, a set of protocol components may
be available, and particular components are used to configure particular protocols within the
protocol set.

[0050] In any event, in the network email environment shown in FIG. 3, 2 most recent
version email client component 303 communicates best with a most recent version email server
component 306 using a protocol 307, However, the most recent email server component 306 is
also capable of communicating with selected previous version email client components, for
example, email client component 302 and email client component 301, using other protocols
(e.g., protocols 308 and 309 in FIG. 3) in a protocol set. Email client component 303 is also
able to communicate with selected previous version email server components, for example,
email server component 305 and email server component 304, using protocols such as the
protocols 310 and 311.

[0051] Generally, as used herein, for the purposes of describing the protocol of the present
invention, a “most recent” email (server or client) component, or a most recent version of an
email (server or client) component, is a server or client component that is aware of the new
feature or features being described, and can utilize, implement, and/or act on those features.
Although the terms are used throughout this document to describe client and server components
that are aware of the various aspects of the protocol of the present invention, the terms also
include components that are aware of only the particular aspect being described, or more than
one aspect being described. Likewise, a “previous” email component or previous version of an
email component is a component that is not aware of, and cannot act upon the aspects of the
protocol of the present invention.

[0052] A protocol negotiation procedure is often used to establish a protocol between a
client and a server (e.g., the most recent version email server component 306 and the most
recent version email client component 303). Although such protocol negotiations are known, a
brief description of a protocol negotiation procedure between email client component 401 (FIG.
4) and email server component 402 (also FIG. 4) is provided for the benefit of the reader. Early
in a communication session between emai] client component 401 and email server component
402, email client component 401 sends email server component 402 a message 403 that
includes client version information, for example, in the form of a client component version

13-

stamp. Email server component 402 responds to message 403 with message 404 that includes
server version information, for example, in the form of a server component version stamp.
[0053] The client and server version information may be used in a variety of ways to
attempt to establish communication between the email client component 401 and the email
server component 402. For example, version information may be used to select a suitable
protocol for continued communications, or to determine if further communications are even
possible. In establishing a protocol, version information may be used to enable and/or disable
specific available protocol aspects or components, for example.

[0054] An email server component may receive and process requests from multiple email
client componénts in parallel. Where a single client is shown, unless explicitly stated
otherwise, it is merely to simplify the figures and accompanying explanation.

[0055) The email network of the present invention utilizes request and response exchanges
to pass queries and data between client and server components in the network. In practice, the
performance of a protocol may be effected by the underlying communications network
transport mechanism used to implement communications between clients and servers in an
email network. For example, in an email network that uses remote procedure calls (RPCs) as
the underlying communications network transport mechanism, it may be much more efficient
to make a singlé remote procedure call of larger size (e.g., 32KB) than to make several remote
procedure calls of smaller size (e.g., 2KB). One way known to improve performance in'such
an email network is to buffer multiple requests and/or responses for transmission in a single
remote procedure call.

[0056] As an example, FIG. 5 shows a request and response exchange between an email
client component 501 and an email server component 502. The email client component 501
and the email server component 502 each have fixed sized communication buffers 503, 504,
505 and 506. The buffers 503, 504, 505 and S06 are reserved areas of memory for temporarily
holding data. Email client component 501 begins a request-response cycle by filling buffer 503
with one or more sub-requests or remote operations (ROPs) before transmitting the contents of
the buffer 503 to buffer 504.

[0057] Afer being received in the buffer 504, each ROP is processed in order by email
server component 502 and the corresponding result written to buffer 505. Each ROP does
produce some result. The result may include data requested by email client component 501, for
example, a particular set of email messages. Email server component 502 monitors buffer 505
and when it is nearly full (e.g., less than 8KB remaining), email server component 502 writes
any unprocessed ROPs to the end of buffer 505 and transmits buffer 505 to buffer 506. Email
client component 501 then begins a new request-response cycle by writing unprocessed ROPs

-14-

9

to buffer 503 for resubmission to email server component 502 when buffer 503 becomes full
again, '

[0058] The size of a response is typically larger on average than the size of a request. For
this reason, the size of response buffers 505 and 506 are typically configured to be larger than
the size of reduest buffers 503 and 504. In one embodiment of the invention, the optimal size
of the response buffers 505 and 506 was determined to be 96KB for a size of 32KB for request
buffers 503 and 504, aratio of 3t0 1. In one embodiment, the email client component is
capable of configuring the size of any of the buffers 503, 504, 505 and 506, .
[0059] Some email networks that utilize buffers, for example the email network shown in
FIG. 5, may employ a fast transfer mode between an email client component and an email
server component. Fast transfer mode includes requests, such as ROPs, by a client that are
divided into at least two kinds: requests that result in an initialization of a fast transfer data
source at the sérver, and requests that result in the efficient transfer of data from the fast
transfer data source to the client, The fast transfer data source may be, for example, a database
table. The fast transfer data source serves as a ready temporary store of data that enables later
requests for the data to be serviced with less delay than would otherwise be possible.
Sometimes the second kind of fast transfer mode request seeks to achieve efficient transfer of
data by explicitly specifying the size of the response, for example, the size of the response may
be set to the size of the entire client receive buffer less response overhead,

[0660] FIG. 6A shows a fast transfer operation having at least rwo request-response cycles.
In a first request 601 a ROP (e.8., FXPrepare) initializes a fast transfer data source on server
502. At the server, only FXPrepare is processed (i.e., the fast transfer data source s initialized)
and its result is retumned in a first response 602. In a second request 603 a ROP (eg.,
FXGetBuffer) requests the server to fill the buffer 505 from the fast data source. The server
empties the fast data source into the buffer, and returns the result in a second response 604, If
the output buffer 505 for the email server component fills before the fast data source is
emptied, additional FXGetBuffer ROPs may be required.

[0061] FIG. 6B shows a fast transfer operation having only a single request-response cycle.
In a first request 605, both FXPrepare and FXGetBuffer are processed by email server
component 502 and the results of both operations are returned in first response 606. The result
of FXPrepare is available to FXGetBuffer at email server component 502 because part of each
buffer 503, 504, 505 and 506 is explicitly defined as a shared data table. It is desirable to
reduce the number of request-response cycles because it results in a more efficient transfer of
data. A fast transfer operation having more than only a single request-response cycle may
occur when buffer 505 is too full to hold the result of an FXGetBuffer ROP,

-15-

10

[0062] It will be appreciated that the ROPs of FIGS. 6A and 6B and like figures throughout
this application are schematic in that they may be implemented in practice by a series of ROPs,
unless specifically stated otherwise.

[0063] Typically, the size of a ROP result is different from the size of a ROP request. It is
not always possible to predict the size of a ROP result. When data compression techniques are
used to reduce the size of a ROP result, it is even more difficult to predict the size of a ROP
result. Not being able to predict the size of 2 ROP result can prevent manual tuning of a
protocol to minimize the number of request-response cycles required to complete particular
client operations, for example, to ensure that all new messages are downloaded to the client in a
single request-response cycle. Manual tuning of a protocol includes manually configuring the
sequence and/or size of protocol requests, responses and/or ROPs.

[0064] In accordance with one aspect of the present invention, the number of request-
response cycles is automatically minimized by specifying that key ROPs (e.g., FXGetBuffer)
are free from the requirement to predict the size of their result. Instead, such ROPs are
processed by email server component 502 until the limit of buffer 505 (which is the same as
buffer 506) is reached.

[0065] As an example, in an environment that includes multiple versions of email server
components, separate ROPs may be defined for previous version server components and recent
version server components. The recent versions are free from the requirement to predict the
size of their result. The characteristics for these ROPs are set forth in the following table:

ROP that may be used by 2 | ROP that may be used by a

protocol for protocol for
commuaicating with communicating with most
previous version servers recent version servers
ROPID FXGetBuffer FXGetBuffer
Parameters used in Required size: the size that | Required size: is set to a
multiple modes the server must reserve in its | value beyond the maximum
output buffer. expected by the previous

version, for example, to a
value greater than 32KB.
This signals the server to
look for the new size limit

-16-

<

11

ROP that may be used by a | ROP that may be used by a

protocol for protocol for
commuunicating with communicating with most
previous version servers recent version servers
parameter.
New parameters n/a Size limit: informs the server

of the limit up to which the
‘server may fill its output
buffer.

[0066] The ROPs for previous version server components are similar in construction to
existing, prior art ROPs. That is, the ROPs predict and dictate a size in the output buffer (e.g.,
send buffer 505) that must be reserved for holding a response. In contrast, the dictated size for
the output buffer for a most recent version of 2 server component is not predicted, but instead is
set to a value beyond the maximum expected by the previous version server components, for
example, (o a value greater than 32KB. The fact that the size of the output buffer is defined
beyond a value expected by the server component signals the server component to look for a
new size limit parameter, which may be, for example, a filling of the output buffer for the
server component. These characteristics automatically minimize the number of request-
response cycles, with only a small increase in the complexity of an email server component that
processes the ROPs

[0067] Note that the order of parameters shown in the table above and in like tables
throughout this application do not necessarily correlate with the order that, for example, the
parameters are transmitted over the network or stored in memory by either an email client
component or an email server component, unless accompanied by an explicit statement to the
contrary. In adciition. unchanged parameters may be omitted for the sake of clarity.

[0068] Inan email network, one of the typical duties of a protocol is to achieve the transfer
of data objects, for example, email messages, between email client components and email
server componeits. Further examples of such data objects include email folders which may
contain email messages and other data objects, and folder associated information (FAI) data
objects which may, for example, contain rules for processing email mcssages, or define how
the data objects contained by a folder will be displayed. Data objects may be opaque to an

email client component; that is, an email client component may have no means of interpreting

17-

«<

12

. the contents of the data object. Alternatively, data objects may be composed of named

properties, for example, an email message may comprise properties named “to,” “from,"
“subject,” “importance,” “body 1,” “body 2,” “body 3,” “attachment 1,” “attachment 2,” and so
on.

[0069] One advantage of email networks where data objects may be composed of named
properties over email networks where data objects are opaque is the potential to improve
protocol performance because of the ability of a protocol to transfer onty part of a data object.
Having named properties permits particular properties of the data object to be transmitted
without transmitting the entire data object.

[0070] For example, an email message may be composed of a set of header properties and a
set of body properties. The needs of an email client component may be such that a protocol
may transfer the header properties first and then the body properties later or not at all. This
feature permits a user to view the header information for several messages prior to the entirety
of all the mcséagm being downloaded. Using this feature, a more fine-grained control over
bandwidth utilization may be obtained by the client component, which may positively effect
protocol performance. In addition, a client component may use this feature to result in lower
bandwidth utilization (for example, bodies may be downloaded for only selected headers),
which is particularly desirable in low bandwidth environments.

[0071] The performance of the protocol does not necessarily increase if the server
component is configured to send body and header properties in two separate request-response
cycles (i.e., one each for the header and the body). For example, if the needs of the email client
component were such that it required both header and body properties at the same time, then
the performance of the protocol might be decreased verses 2 situation where a single request-
response cycle could retrieve both the header and the body. Thus, the simple act of enabling
data objects to be composed of named properties is not itself enough to automatically result in
improved protocol performance. Achieving improved protocol performance does depend on
the choice of properties that may make up a data object and how they may be used by a
protocol. That choice may depend on a number of factors including the needs of most recent
and previous version email client components, and the needs of most recent and previous
version email‘server components. Examples of email client component needs include
satisfying different levels of urgency for the display of different information and complying
with preferences set by an email client component user. Examples of email server component
needs include efficient storage and retrieval of data and efficient processing of protocol
requests.

18-

-y

13

{0072] Conventional prior art email environments utilize data objects that may be
composed of named properties, for example, an email message that may include a header set
and a body set of named properties so that the two sets may be requested and/or processed
separately. Another prior art example is an email message where the body sel of named
properties includes multiple versions of the email message body, for example, in multiple email
message formats such as plain text, hypertext mark-up language (HTML), rich text format
(RTF) and so on. In this situation, prior art email server components may respond to a protocol
request for the body of the email message in a number of ways. The lowest complexity
response may be to send all versions of the email message body but this response may result in
increased bandwidth utilization.

[0073} FIG. 7A depicts part of a procedure that a previous (prior art) version email server
component does use to respond in this situation. In step 701, the email server component
examines the format of each email message body. If one of the formats is a predetermined
standard format (e.g., RTF), then the procedure moves to step 703 and the standard format
email message body is sent to the requesting email client component. If none of the formats is
a predeterminéd standard format, then step 701 branches to step 702 where one of the email
message body versions is converted to the standard format. The subprocedure depicted by FIG.
7A may also be used when there is only a single version of an email message body but the
email message body may not be in a standard format that is required by a protocol.

[0074) FIG. 7B depicts part of a procedure used by a most recent version email server
component in ‘accordance with the present invention. In step 704, a protocol request that results
in this subprocedure being used by an email server component is examined for a BEST_BODY
flag. The flag in this example arid the other flags used herein are used to the email server
component that the email client component is a most recent version and desires to implement
the function associated with the flag. Other indications may be used. For example, the
function may be implemented by default if a most recent email client component is detected.
[0075] In é.ny event, if the BEST_BODY flag is not found, then step 704 branches to step
701, and continues as described with reference to FIG. 7A.

{0076] If the flag is found, the procedure moves to step 705, where the best email message
body is selected for sending to the requesting email client component. If there is only a single
email message body associated with the requested email message, then it is the best. If there
are several email message bodies available, for example, with different formats, then the email
server component chooses the best from among them according to, for example, a
predetermined ranking of email message body formats (e.g., RTF, HTML, plain text). The
process then proceeds to step 703, where the chosen email message body is sent to the email

-19-

-

14

client component. In this embodiment, the email client component may be capable of
displaying mlil(iple email message body formats thus freeing the email server component from
the requirement to convert email message bodies to a standard format. In addition, the email
client componient may convert the best email message body to a different format, if desired.
[0077] Because the email server component is relieved of the task of converting email
message bodies, the present invention provides improved performance. In addition, a most
recent version email server component may respond to protocol requests from a previous
version email client component with only a moderate increase in complexity.

[0078] RdPs may be used to achieve the replication of an email folder between an email
server component and an email client component, A request to synchronize a folder may be
made, for example, by a SynchFolder ROP., Where an email client component is capable of
displaying non-standard email message body formats, it may set the BEST_BODY flag in the
SynchFolder ROP to indicate that the email server component may select the best format from
amonyg the available email message bodies, rather than requiring the server to retumn an email
message body in a standard format. An email server component may properly process ROPs
both with and without the BEST_BODY flag with only a moderate increase in complexity.
ROPs for communicating with previous version and most recent version servers may include,
for example, the characteristics set out in the table below:

,;OP that may be used by a | ROP that may be used by a-I
protocol for protocol for
communicating with communicating with most
previous version servers recent version servers
ROP ID SynchFolder SynchFolder
New parameters n/a BEST BODY flag: if set,
the email server component
chooses the best email

message body to send to the
email client component.
Conversion of the email
message body to a

predetermined standard

format is unnecessary.

-20-

-

[Nt

[0079) FIGS. 8A-8C show several different existing modes of transferring a set of email
messages between an email server component and an email client component. For each mode,
each email message has named properties including a header set and a body set, and several
email message‘s are contained in a folder. FIG. 8A illustrates a full item transfer mode. The
illustration shows a first email message header 801 being transferred and then a first email
message body 802 before a second email message header 803 and then a second email message
body 804 and so on until the set of email messages has been transferred. FIG. 8B illustrates a
headers first transfer mode. In this mode, a first email message header 805 is transferred and
then a second eémail message header 806 and so on until all the email message headers have
been transferred and only then is a first email message body 807 transferred and then a second
email message body 808 and so on until the set of email messages has been transferred. FIG.
8C illustrates a headers only transfer mode. As the name suggests, only the email message
headers 809 are transferred in response to a request to transfer a set of email messages. Email
message bodies 810 will only be transferred in response to an additional explicit request. In
any of these modes, the transfer sequence may be temporarily interrupted by a higher priority
email client component request, for example, for a particular email message body.

[0080] An email folder is an example of a target for a request to transfer a set of email
messages. However, an email folder may contain data objects other than email messages. As
discussed abové, transfer modes are often defined with reference to email message headers and
email message bodies, such as the headers first and headers only transfer modes. In such
transfer modes, an attempt to transfer data objects for which a header set of named properties
and/or a body set of named properties may not be well defined may result in protocol failure.
One aspect of the invention avoids this situation by providing that data objects for which a
header and/or body set of named properties is not well defined, may always be transferred in
whole rather than in part. This embodiment may be illustrated by example with FIG. 8D. In
this example, transferal between an email server component and an emait client component
may be occurring in a headers only mode. Accordingly, a first email message header 811 is
transferred and then data object 812 becomes a next candidate for transferal, The header set of
named properties is not well defined for a data object 812, such as FAI, so the entire data object
is transferred. A next candidate for transferal does have a well defined header set of named
properties (i.e., the candidate data object does possess all the named properties explicitly
defined by the email client component as belonging to the header set of named properties) and
so only an email message header 813 is transferred.

-21-

16

[0081] Anexample of one way to implement this aspect of the present invention is by using
a flag, such as IGNORE_MODE_ON_FAL, that may be included in a synchronization ROP,
such as SynchFolder ROP described above. An email server component may properly process
ROPs both with and without a IGNORE_MODE_ON_FAI flag with only a moderate increase
in complexity. ROPs may include the characteristics set out in the table below to achieve the
replication of an email folder between an email server component and an email client

component:
ROP that may be used by a | ROP that may be used by a
protocol for protocol for
communicating with communicating with most
previous version servers recent version servers

ROPID SynchFolder SynchFolder

New parameters n/a IGNORE MODE_ON_FAI

flag: if set, then for data

objects, such as FAI, that do
not have a well defined set
of header and/or body
named properties, the email
server component may
respond to a transfer request
with the entire data object
regardless of the prevailing
transfer mode.

[0082] Email messages are typically addressed to one or more email network users, An
email message may be considered delivered if it is accepted by an email server component for
storage. An email network may have several email server components. Typically, an email
network protocol has some strategy for limiting the number of email server components that an
email network user must check for new messages. A common example is the home server
strategy which provides that email messages addressed to a particular email network user will
only be accepted by one particular email server component, called the user’s home server. In
such a case, an email client component may be configured to consider only the home server

22-

17

when, for example, periodically checking for new email messages or registering for notification
of new email messages.

[0083] FIG. 9 shows that even a simple home server strategy example may have
complications. In the example illustrated by FIG. 9, a particular email server component 901 is
first designated as the home server for a particular email network user. Over time, the
designated home server for the user is changed to different email server components 903 and
905, typically for administrative reasons. The email server components 901, 903 and 905 may,
for example, be physically different, or logicaily different, or be different versions. Email
client component 902 may communicate only with email server component 901 from time T,
until time T\, then email client component 904 may communicate only with email server
component 903 until time T, and then email ctient component 906 may communicate only
with email server component 905. The email client components 902, 904 and 906 may be the
same or different. Email server components 901 and 903 may or may not exist after time T5.
These complications are particularly relevant to email message store replication which is
discussed next.

[0084]) Email messages may be stored by an email server component in an explicit email
message store which may, for example, be implemented using well known database
technologies. An email server component may have one or more such message stores. An
email network user may have a home message store. Changing home message stores may have
the same effects as described for changing home servers.

[0085] Some email network protocols include an ability to replicate parts of an email
message store to a storage facility local to an email client component. Replication of parts of a
remote email message store to a local email storage facility may improve protocol performance
and/or perceived protocol performance by, for example, replicating all new email messages to
the local email storage facility in advance of an explicit email network user request to view
them. Such replication may also provide additional email client component functionality, for
example, enabling an email network user to view an email message during network
connectivity interruptions.

[0086] In an email network environment, simple replication may quickly become
inefficient. For example, if an email server component has one email message associated with
a particular email network user and that message has already been replicated at the client
component for the network user, and a new email message arrives for that email network user,
then it is still required that two email messages must be sent in response to a simple replication
request. If another new email message arrives after replication of the two email messages, then
it is still required that three email messages must now be sent in response to a simple

-23-

18

replication request and so on. Some email network protocols have provided for an incremental
replication of email message stores to alleviate this problem. In an incremental replication,
only changes to an email message store that occurred after a previous successful incremental
replication must be sent in response to a replication request, for example, where the only
change since the last successful incremental replication is the arrival of a new email message,
then only the new email message need be sent in response to an incremental replication request.
[0087) FIG. 10 shows a more detailed example of a protocol that provides for incremental
replication. An email message store may be subdivided into email folders. Each email folder
may be replicated independently of the others, providing for a more fine-grained control over
the replication process. In this example, the incremental replication process is termed
synchronization because it includes the propagation of changes from email client component
501 to email server component 502 as well as from email server component 502 to email client
component 501. Following a synchronization request 1001, a SynchFolder ROP is processed
by email server component 502. The ROP includes a folderID parameter (not shown) and a
statebloby parameter. The folderID parameter identifies an email folder that is the target of the
synchronizatiqn request 1001. The statebloby parameter contains information that allows email
server component 502 to determine what changes, if any, have occurred to the email folder
since it was last synchronized. If request 1001 represents the first ever synchronization request
for the target folder by email client component 501, then email server component 502
determines if the target email folder in the email message store has changed in comparison to
an empty folder. In response 1002 to request 1001, email server component 502 sends any
changes to email client component 501 including any email messages and/or other data objects
that have been added to the target folder and a list of any email messages and/or other data
objects that have been deleted from the target folder. The email server component 502 also
Creates a new stateblob, representing the state of the target folder as it will be on email client
component 501 immediately following the synchronization and also sends that stateblob; in
response 1002, When email client component 501 sends the next synchronization request 1003
for the same folder as in request 1001, then request 1003 will include as a parameter the same
stateblob, that was returned with response 1002. As before, email server component 502 will
use the information contained in stateblob, to determine what changes, if any, have occurred in
the target folder and send those changes along with a newly created stateblob; back to email
client component 501 in response 1004.

{0088) Ifa Statcblob data object is large in size, it may adversely effect protocol
performance bécause it is sent to and from an email server component with, for example, every
email folder synchronization request. In some email network protocols that provide for email

-24-

19

folder synchronization, the stateblob may, in large part, be made up of a set of message
changelD data objects that identify changes to email messages that have been seen by an email
client component. An email message change may be said to have been seen by an email client
and/or server component when the changed email message is transferred to that component.
{0089] One goal of a message changelID data object may be to uniquely identify a change
to an email méssage in the context of an entire email network. In an email network that
employs a home server strategy, a user’s home server may be responsible for associating a
message changelD data object with a previously unseen email message change. For example, a
home server rriay employ message changeID data objects comprising a serverID data object
and a serial number. A serverID data object may uniquely identify an email server component
in the context of an entire email network using well known techniques such as globally unique
identifiers. Where such identifiers are themselves large in size, the serverID data object may
instead be an index into an identifier lookup table maintained by the email server component.
The serial number may be provided by a counter, for example, six bytes in width, local to an
email server component, that is incremented whenever the email server component accepts a
previously unseen email message for storage.

[0090) For discussion purposes, a message changelD data object may be represented by, for
example, “S:1" where ‘S’ represents the serverID data object for a first email server
component and ‘1’ represents a serial number. A set of message changelD data objects may be
represented by, for example, “S;:1, S;:2, $;:3” where “S;:1”, “S,:2” and “S,:3" are consecutive
message changelD data objects employed by an email server component with serverID S,.
[0091] Where a stateblob is made up, in large part, of a set of message changelD data
objects representing email message changes seen by an email client component (a ‘“Message
Changes Seen” set), some techniques have been developed fo encode the set in order to reduce
its size, for example, the set “Sy:1, S:2, §,:3, $;:4” may be encoded as “S;:1-4”. In addition,
an email server component may ensure that the serial numbers it uses are always increasing. In
that case a non-contiguous Message Changes Seen set, for example, “S;:1, §;:3, §,:5, §,:77,
may be encodéd as “Sy:1-7", that is, as a range including the minimum and maximum serial
numbers, without loss of functionality.

(0092] In ascenario depicted by FIG. 9, a Message Changes Seen set may include message
changelD data objects that were created by email server components (e. g., Si, S2) other than the
current home server (e.g., Sy). A message changelD data object created by the current home
server may be termed a native message changelD, a message changelD data object created by
other email server components may be termed a foreign message changeID. Email network
protocols for communicating with previous version email server components have not provided

-25-

20

for the optimization of non-contiguous foreign message changelD sequences as a range

including the minimum and maximum serial numbers on a per email server component basis,

The following table illustrates a benefit of including such optimization in an embodiment of the

present invention:

Optimization used by a
previous version server
(current home server S;)

Optimization used by a
most recent version server
(current home server S;)

Message Changes Seen set
before optimization

Si:1, 8::3, 8135, 8117
Szil, 5213, Sz:5, 5227
S;Zl, 5323, 5325, S;I7

Message Changes Seen set

S(Zl,S[i3.S|:S,S|Z7 5121-7
after optimization S2.1, 82:3, 825, 8.7 Sy 1-7
Sy1-7 S3:1.7
[0093) One embodiment of the present invention uses ROPs that include the characteristics

set out in the table below to achieve the synchronization of an email folder between an email

server component and an email client component. An email server component may implement
the improved stateblob encoding technique with only a moderate increase in complexity.

ROP result that may be
used by a protocol when
communicating with

previous version servers

ROP result that may be
used by a protocol when
communicating with most
recent version servers

ROPID

SynchFolder

SynchFolder

Unchanged parameters
used in a new mode

stateblob: optimization not
including non-contiguous
sets of foreign message
changelD data objects.

stateblob: improved
optimization including non-
contiguous sets of foreign
message changelD data
objects.

-26-

21

[0094] FIG. 11A and FIG. 11B depict a difference between a subprocedure that may be
used by a previous version server and a most recent version server, respectively, to respond to a
SynchFolder ROP. FIG. 11A shows steps 1101, 1102 and 1103. At step 1101, an initial
Message Changes Seen set is constructed. At step 1102, members of the Message Changes
Seen set that are native message changelD data objects are optimized. At step 1103, the
optimized Message Changes Seen set is added to the stateblob data object that may be sent with
aresponse to an email client component that requested the synchronization. FIG. 11B includes
additional steb 1104 which shows members of the Message Changes Seen set that are foreign
message chanfgeID data objects also being optimized before the Message Changes Seen set,
now with improved optimization, is added to a stateblob data object in step 1103,

[0095] While subdividing an email message store into email folders does provide for a
more fine-grained control over the synchronization process, it does not automatically provide
for an improvement in protocol performance and it may result in a degradation in protocol
performance. For example, some protocols require that each message store folder be
synchronized separately. Each synchronization operation typically has some overhead and that
overhead may be significant. Synchronizations operations that utilize stateblob data objects are
an example of operations that may have significant overhead. In the case of synchronizing an
entire message store, protocols that require each message store folder to be synchronized
separately may be at a disadvantage compared to protocols that require fewer synchronization
operations.

[0096] Synchronizing an entire message store and maintaining synchronization is a
desirable goal for an email client component. Conventional prior art email client components
have sought to achieve this goal even when it resulted in significant adverse impact on protocol
performance. An aspect of the present invention is that it is able to minimize adverse protocol
impact while achieving this goal by utilizing a deep hierarchy table. Conventional prior art
email server cdmponents have not been able to provide a deep hierarchy table.

[0097] Where email message stores are subdivided into email folders, those email folders
may be organized into hierarchies. FIG. 12 shows an example of an email folder hierarchy. In
FIG. 12, folder 1204 is a subfolder of folder 1203. Folder 1203 is, in turn, a subfolder of folder
1202. Folder 1201 is a root folder. A root folder is not a subfolder of any other folder. All
other folders are members of the folder hierarchy rooted at folder 1201. Typically, each folder
in a folder hierarchy does not have direct reference to every other folder. A folder may only
have direct reference to its subfolders. A folder may also have direct reference to any folders
of which it is a subfolder. In many cases, it may be that the only folder for which every folder
has a direct reference is the root folder of the hierarchy,

27-

22

[0098] A deep hierarchy table may contain information about every folder in a folder
hierarchy. Each folder may have a row in the deep hierarchy table. The information in the
deep hierarchy table is such that it may be used to determine if the contents of an email folder
has changed during a particular time period. The determination of change to an email folder
during a particular time period may be implemented using a simple comparison of a copy of a
folder’s row taken at the beginning of the time period, to a copy of that folder’s row taken at
the end of the time period. In one embodiment, each row of the deep hierarchy table includes

the following attributes:

Attribute Name Attribute Type | Notes

Folder ID FID The FID type comprises a
global unique identifier
(GUID) and a six byte serial

number. This value may be
used to uniquely identify an
email folder in the context of
an email network.

PR_LOCAL_COMMIT_TIME_MAX | Timestamp This timestamp is updated
anytime the contents of the
folder is modified.

PR_DELETED_COUNT_TOTAL QWORD This value is a count of the
total number of items ever
deleted from the folder.

[0099] Attributes of an email folder’s raw in a deep hierarchy table may be updated
whenever a change is made to the contents of a folder. For efficient implementation of a deep
hierarchy table update, applicants have found that it is helpful to have quick and direct
reference to the deep hierarchy table. At a minimum, applicants have found that there should
be a small and predictable number of levels of indirection when trying to access the deep
hierarchy table. For example, positioning a deep hierarchy table at an arbitrary level in a folder
hierarchy would not provide for a predictable number of levels of indirection. In one

-28-

23

embodiment of the present invention, a deep hierarchy table may be associated with the root
folder of an email network user’s email message store folder hierarchy for this reason.

[0100] Communications between an email client component and an email server
component may be divided into communication sessions. Loss of email message store
synchronization may occur between sessions, for example, during a network connectivity
interruption. In order to re-establish email message store synchronization at the beginning of a
communicatiohs session, some protocols for communicating with previous version email server
components employed a SynchFolder ROP for each folder in the folder hierarchy. Typically,
the contents of some of the folders will not have changed between sessions. A SynchFolder
ROP with an unchanged folder as its target results in a “null synch.” Although a “nult synch”
does not result in any folder changes being transferred to an email client component, it does
still have an overhead associated with it, for example, a stateblob data object, which may be
significant,

{0101) FIG. 13 illustrates an embodiment of the invention that avoids such “null synch”
results by utilizing a deep hierarch'y table. In a first request 1301, email client component 501
sendsaROP (é.g., GetHierarchyTable) requesting a deep hierarchy table to email server
component 502. In a first response 1302, a copy of the deep hierarchy table is provided to
email client component 501, Typically, email client component 501 will have a previous copy
of the deep hierarchy table. Email client component 501 may determine quickly which folders
in user’s email message store on email server component 502 have changed by utilizing a row
by row comparison of the two copies. Next, ROPs (e.g., SynchF older) are employed to
synchronize only those folders that have changed. Request 1303 and response 1304 may be
repeated as necessary to synchronize the changed folders. Following successful
synchronization, the email client component’s copy of the deep hierarchy table may be updated
to match the latest copy that was sent in response 1302. If email client component 501 does not
have a previous copy of the deep hierarchy table, then all folders that have a row in the latest
copy may be synchronized.

[0102] Once synchronization of a user’s email message store has been established,
synchronizatiori may be maintained by periodically repeating the start of session steps
described above (i.e., polling the email server component), but this scheme has disadvantages.
For example, the polling period may be much shorter than a period between changes to a user’s
email message store. In that case, relatively many of the deep hierarchy table comparisons will
indicate that no folders have changed. Such comparisons are, in effect, wasted effort, so a
protocol that can avoid them may be more efficient.

-29-

24

[0103) Some email networks include a facility for an email client component to
subscribe to be notified by an email server component when, for example, the contents of a
particular email folder changes. Some previous version email client components do use such a
facility to maintain synchronization of a user’s email message store by creating a separate
subscription for change notifications associated with each folder in a user’s folder hierarchy. In
an embodiment of the present invention, an email client component may create only a single
subscription for change notifications associated with the deep hierarchy table. A single
subscription is more efficient because fewer ROPs are required to establish it and less server-
side resources are consumed.
[0104] With further reference to FIG. 13, when a most recent version email client
component 501, in accordance with an aspect of the present invention, employs a
GetHierarchyTable ROP in a first request 1301 at the beginning of a communications session
with an email server component 502, the email client component 501 is automatically
subscribed to change notifications associated with the deep hierarchy table that is returned in
response 1302. When a change occurs to an email folder in a user’s email message store at the
email client component, for example, an email message is added to the folder, the deep
hierarchy table is also updated as previously described. The change to the deep hierarchy table
triggers a notification alert 1305 to email client component 501. While the notification alert is
in response to the subscription placed by request 1301, it is not part of an explicit request-
respouse cycle. Thus, use of the notification system as provided by the present invention
results in much less overhead for the email network.
[0105} A single subscription may result in many notifications. In one embodiment, the
alert is delivered using a connectionless network transport mechanism, for example, User
Datagram Protocol/Internet Protocol (UDP/IP), but any suitable network transport mechanism
may be used. In response to the alert, email client component 501 sends a request 1306
containing a ROP (e.g., GetNotification) to email server component 502. In response 1307,
any changed rows of the deep hierarchy table (i.c., rows corresponding to a changed folder that
triggered the notification) are sent to email client component 501. Email client component 501
then employs ROPs (e.g., SynchFolder) to synchronize only the folders that have changed.
[0106] Multiple email client components may be subscribed for change notifications
associated with the same data object (e.g., the same email folder), for example, to provide
collaborative functionality. As illustrated by FIG. 18, email client components 1801, 1802 and
1803 are subscribed for change notifications associated with the same data object (not shown)
“located on email server component 1804. Email client component 1803 sends a ROP 1805 to
email server component 1804 that results in a change to the data object. As a result of the

-30-

25

change, email server component 1804 sends out change notifications 1806, 1807 and 1808 to
email client components 1801, 1802 and 1803. Change notifications may carry little
information beyond identifying the data object that has changed so that, for example, there may
be no way for an email client component to determine that it was the cause of a particular
change. If the data object is, for example, an email folder, change notifications 1806, 1807 and
1808 may result in each email client component 1801, 1802 and 1803 initiating synchronization
for the changed folder. Since email client component 1803 was, in this example, responsible
for the change, the result will be a “nult synch.”

[0107] For reasons previously discussed it may be desirable to eliminate
synchronizatiqns that result in a “null synch.” However, the notification behavior described
may not always be undesirable and some email client components may depend upon it. An
aspect of the present invention is to provide for the ability of an email client component to
configure a notification behavior of most recent version email server components in order to
improve protocol performance while at the same time providing previous version email client
components with unchanged notification behavior.

[0108] FIG. 19A depicts notification behavior that may be provided by previous version
email server components. FIG. 19B depicts configurable notification behavior in accordance
with an aspect of the present invention. If desired, a most recent email client component may
indicate to an email server component that it is capable of the notification behavior in FIG.

19B, for example by supplying a flag with a request, in the example shown in FIG. 19B, an
IGNORE_OWN flag.

[0109] Al step 1901, the next candidate from the set of subscribers to be notified is
selected. At step 1904, the subscription is examined for the IGNORE_OWN flag. Ifthe flagis
not present, step 1904 branches to step 1902, where a notification is sent to the candidate
subscriber. If the flag is found, step 1904 branches to step 1905, where the subscription is
examined again to determine if the subscriber triggered this notification. This determination
may be made, for example, by examining a communications session identifier (“session ID") of
the session that was used to place the subscription. A session ID, for example, may comprise a
global unique identifier and a six byte serial number. The notification is also examined for the
session ID associated with its cause. If the two match, then the notification is suppressed. A
result is that an email client component that caused a notification will not also receive that
notification. The subprocedure then proceeds to step 1903, described below.

[0110} If the subscriber did not trigger the notification, then the session ID associated
with the subscription is not the same as the session ID associated with the cause of the
notification, and step 1905 braches to step 1902, where the notification is sent. The process

-31-

26

then proceeds to step 1903, where a determination is made whether there are more subscribers
to be notified. If there are, the subprocedure returns to step 1901, otherwise this subprocedure
is finished.

[0111) As stated above, an email client component utilizing cache storage of email
messages may request, for example via a ROP, synchronization of messages or other data
objects between a local client data store and the data store available at the email server
component. The email client component may similarly request messages to be copied from the
server store to the client store. In either event, the request may be made using a fast transfer
mode.

[0112) Typically, when messages or other data such as files are requested for
synchronization or copying, the request (¢.g., ROP) includes an indication of all the messages
for which synéhronization is desired. This list may be automatically constructed by an email
server component by, for example, utilizing the stateblob feature described above. For
previous version (prior art) email server components, an error in one message or data object in
a ROP request would cause a failure of all items in the request. This process is shown in

FIG. 14A, where a request containing a ROP (e.g., FXPrepare) is transmitted at step 1401 with
a messagelD set designated for copying or synchronization. A fast transfer mechanism is set
up at the email server component 502, and a fast transfer ID is transmitted to the email client
component 501 at step 1402. The email client component 501 then requests copying or
synchronization of the data objects through a request containing, for example, an FXGetBuffer
ROP (step 1403). An error occurs with one or more of the messages or other data objects when
the email server component 502 attempts to open the requested messages. Examples of errors
include a message or a data object being corrupt, server failure, the email server

component 502 being out of memory, or a virus being detected for the data object.

[0113} After the error, the email server component 502 sends a fatal ROP error in the
data streamed to the email client component 501 at step 1404. As such, the synchronization
fails, the messages within the messagelD set are not synchronized or copied, and the stateblob
or similar update information is not received by the email client component 501. The email
client component 501 then has to request the synchronization or copying of the data objects at
another time. It is possible that, if an error is not fixed at the email server component 502, error
messages may continue to be sent, and the messages within the messagelD set may never be
synchronized or copied.

[0114) In accordance with one aspect of the present invention, instead of a fatal ROP
€rror, & most recent email server component may send error information regarding the
particular data object (e.g., an email message) so that synchronization for only that data object

-32-

27

fails. This feature permits messages or other data objects within a ROP or other request to be
transmitted and synchronized or copied even if a message or other data object having an error is
included within the response.

[0115] As one example of how to handle an object-specific error, a most recent email
server component may send an error message in a data stream for the data object having an
object error. In this example, for ease of reference, the error is referred to as FXErrorlnfo. If
desired, as further described below, FXErrorInfo may include information such as the message
ID for the data object having the error, and additional information regarding why the message
failed.

[0116] FIG. 14B shows a synchronization in which an €ITOr OCCUrs in a message M.
The error results in a FXGetBuffer response 1405 including message M, and message M;,
followed by FXErmorinfo, and then message Ms. The FXErrorInfo information permits the
email client component 501 to know which message had an error, and to synchronize all other
messages within the response. If the error message FXErrorInfo includes information about the
reason for the error, the information may be acted upon accordingly by the client component,
for example, by displaying an error message to a user.

{0117) The following table shows an example of the format that the FXErrorInfo may
take:
FXErrorInfo ' T
Attribute Name Attribute Type Notes
Version WORD The version of this structure.
Error code DWORD
Message ID MID The MID type comprises a

global unique identifier
(GUID) and a six byte serial
number. This is the message
ID of the message that
caused the error.

Zero or more attributes may
be added here.

-33-

28

FXErrorlnfo
Attribute Name Attribute Type Notes
Auxiliary Field Size ULONG The size of the array to
follow.
Auxiliary Field BYTE array An unstructured array for
communicating error details.
[0118) As can be seen, the example format includes a version attribute, an error code,

and a messagelD. In addition, if desired, onc or attributes may be added. Further, as stated
above, an auxiliary field may be defined for communicating error details. As such, an attribute
may be defined for dictating the field size of the error details (e.g., an array), and a field may be
provided, which may be, for example, an unstructured array for communicating the error
details. As stated above, the error details may be handled as desired by the email client
component 501.

[0119) The FXErrorinfo permits the synchronization of the first response to be
complete, for example resulting in a stateblob or other information being provided to email
client component 501. Because the email client component is now synchronized through
message Ms, the next request 1406 for synchronization may result in a response 1407 having
the messages after M, (e.g., Ms and M).

[0120) To indicate that an email client component 501 is a most recent version, and
thus is capable of handling the FXErrorinfo message, a flag may be defined, for example,
FXRecoverMode, that may be transmitted with a ROP requesting synchronization or copying.
Other indications may be used for the email client component 501 to communicate to the email
server component 502 that it is capable of handling the FXErrorInfo message.

[0121] When the email server component 502 sends one or more messages or other data
objects to the email client component 501, the data stream to the email client component may
be separated or defined by property tags (e.g., ptags). For example, a list of messages may
include for each message a start message ptag and an end message ptag. Between the start and
end ptags may be a property list ptag and a subject ptag, which may have the property of a
string. The subject ptag may be followed by the subject itself. Other property tags may be
included.

-34-

29

[0122) In the case where an error occurs in transmitting a message, the FXErrorinfo
may be provided as a ptag, and may have binary properties, such as is defined by the table
above. An example of a data stream follows having both a successful message and a message
in which an error occurs. In the case where the error occurs, the end message ptag is not used
for that particular message and the ptag FXErrorlnfo is the last ptag for that message.

ptagMessageListStart
ptagMessageStart
ptagPropList
ptagSubject [PT_STRING]

“Re: Your emai.”

ptagMessageEnd
ptagMessageStart

ptagFXErrorInfo [PT BINARY]
[Contents as described by table)
ptagMessageStart

ptagMessageEnd
ptagMessageListEnd

{0123] FIG. 15A shows steps that an email server component 502 may utilize to
transfer messages to a previous version email client component 501. Beginning at step 1501,
the message set is prepared, for example by placing the message set in the fast transfer data
store. Atstep 1502, the message begins streaming out, for example immediately after being
placed in the send buffer of the email server component 502. If an error occurs when streaming
out the message, then a fatal ROP error is streamed out to the email client component 501 in
step 1504. The subprocedure then ends. If, when streaming the message, an error does not

-35-

30

occur, then at step 1503 a determination is made whether more messages are in the set. If so,
the process loops back to step 1502, where the next message is streamed out. If not, then the
subprocedure énds.

[0124) FIG. 15B shows a procedure for handling a message set by a most recent version
of an email server component 502. The steps taken are different depending upon whether the
email client component is a most recent version or a previous version. Steps 1501-1504 are
steps taken with a previous version email client compornent, and are the same as the steps
having the same reference numerals in the preceding paragraph.

[0125] If, at step 1502, an error is found in streaming the message, then a determination
is made at step 1505 whether the request includes a flag, such as FXRecoverMode. If the
request contains the flag, then the email client component 501 is a most recent version, and step
1505 branches to step 1506, where the FXErrorInfo is streamed out to the email client
component 501. The process may then continue to step 1503. If the request does not include
the flag, then step 1505 branches to step 1504, where a fatal ROP error is streamed out. The
subprocedure then ends.

[0126] As can be seen, the presence of the flag in the request permits the streaming
process to continue by allowing a streaming out of the FXE:rorInfo instead of failing and
sending a fatal ROP error. The flag is sent by a most recent version of an email client
component 501. Previous versions of email client components do not include the flag, and
thus an error results in streaming out a fatal ROP error, as described above.

[0127) If desired, in an alternative embodiment, the error message (e.g., FXErrorInfo)
may be sent out for particular properties of a message or other data object, instead of for an
entire message. For example, FXErrorlnfo may be sent out for the body of a message, or for an
attachment to a message. The email client component 501 may then synchronize or copy
properties that are successfully sent without an error, and only the properties having errors are
not synchronized or copied.

[0128] Sometimes, a message or other data object may be of sufficient size that it spans
multiple FXGetBuffer responses. To handle such messages, the email client component 501
may include rollback logic so that it may dispose of any partially received message and then
proceed to properly receive further messages after receiving an error message.

[0129] At times, it may be desirable for an email client component to be provided
feedback regarding the progress of the copying or synchronization of data objects such as email
messages. In accordance with one aspect of the present invention, a most recent version of an
email client component 501 may indicate that it is capable of handling progress modes, for
example by sending a flag, such as PROGRESS_MODE to an email server component 502

-36-

31

when requesting synchronization or copying of data objects. In response, a most recent version
of an email server component 502 may send a variety of information along with messages, such
as the total size of all of the messages, the total number of messages, and total size of each
messages, or any one or combination of these.

[0130] For example, as shown in FIG. 164, fora previous version email client
component 501, in response to a fast transfer request (1601 and 1603) for a set of messages, the
email client component 501 receives the messages. In FIG. 16A, messages are received in two
responses 1604 and 1606. In previous version email client components 501 that use a fast
transfer mechanism, a progress indication of the messages being streamed to the client was not
provided.

[0131) However, as shown in FIG. 16B, is a response 1607 to a request for a message
set by the email client component, the email server component 502 may provide a total number
of data objects to be transferred, and the total size of all data objects to be transferred. This
information is represented by “Pay” in FIG. 16B. A most recent version of an email server
component 502 may also supply the size of each message, indicated by “Py, Py, Ps, ...”" in FIG.
16B. In addition, if desired, the information associated with each message and with the entire
group of the messages may include additional information regarding whether each message is
FAI or an actual email message. In one cmbodiment, the information represented by “P,;"” in
FIG. 16B is always sent in response to a fast transfer request, even if zero data objects are
transferred, in order to simplify processing of the data stream. '

[0132] An example of a format for the size and number of al] data objects being
transferred is shown in the following table.

IncrSyncProgressMode

Attribute Name Attribute Type Notes

Version WORD The version of this structure.
(e.g., a 16 bit integer)

cAssocMsgs DWORD The number of FAI data
(e.g., a 32 bit integer) objects to be transferred.

1ITotal AssocMsgSize QWORD The total size of all FAI data
(e.g., a 64 bit integer) objects to be transferred.

-37-

32

IncrSyncProgressMode
Attribute Name Attribute Type Notes
cNormalMsgs DWORD The number of email
messages to be transferred.
lITotalNormalMsgSize QWORD The total size of all email
' messages to be transferred.
[0133] As can be seen, separate attributes may be defined for the number of FAl data

objects, the total size of all FAI data objects, the number of email messages to be transferred,
and the total size of all the email messages to be transferred. Other combinations and
additional attributes may be added to the format as desired.

[0134] The following table shows a format for the size and other information that may
be supplied with each message.

IncrSyncProgressModePerMsg . —’
Attribute Name Attribute Type Notes
Message Size LONG The size of the next
message.
FAI flag BOOL Indicates if the next message
is FAL
[0135] As can be seen, the format includes the size of the next message and whether or
not the next message is FAL
[0136) FIGS. 17A and 17B show steps for streaming a message set in accordance with

a previous version of the email components, and a most recent version of the email
components, respectively. The steps in FIG. 17A are similar to steps 1501-1503 in FIG. 15A.
For FIG. 17B, the PROGRESS _MODE flag has been sent, for example with a ROP, by a most
recent email client component 501. After the message set is prepared at step 1701, a
determination is made whether the flag is present. If so, then the progress data totals are sent in

-38-

33

step 1702, and the process then proceeds to step 1502, where the first message is ‘streamed. If
the flag is not present, then step 1701 branches directly to step 1502.

[0137] After the first message is streamed, the process proceeds to step 1703, where a
determination is made if the flag is available. If s0, then step 1703 branches to step 1704,
where the per message progress data is streamed. The process then proceeds to step 1503,
described earlier. If the flag is not available, step 1703 branches directly to step 1503.

[0138] An example of the stream of data for a most recent server component sending
data to a most recent client component is set forth below. The stream of data is similar to the
stream of data described above, but additionally includes ptags for progress totals data
(ptagIncrSyncProgressMode), which may have, for example, binary properties. In addition, for
each message, the per message progress data is supplied, for example, as
ptagincrSyncProgressModePerMsg.

PtagIncrSyncProgressMode {PT_BINARY)
[Contents as described by table]
ptagMessageListStart
PtagIncrsyncProgressModePerqu [PT_BINARY]
[Contents as described by table]
ptagMessageStart
ptagProplist
ptagSubject [PT_STRING)
“Re: Your email”

ptagMessageEnd
PtagInchyncProqi:essModePerMsg [PT_BINARY]

[Contents as described by table]
ptagMessageStart

ptagMessageEnd
PtagInchyncFrogressModePerMsg [PT_BINARY]
[Contents as described by table]

-39-

34

ptagMessageStart

ptagMessageEnd
ptagMessageListEnd

[0139] In the example shown, the ptags including the progress totals data
(ptagIncrSyncProgressMode) and the ptags for the message progress data

(ptagInerSyncPro gressModePerMsg) are located before the list of messages, and before each
message, respectively. However, the structure of the streaming of the data objects may be
revised so that the progress data may be included within the messages or within the message
list. It is further possible to revise the structure of the streaming of the data objects in order to
eliminate ptags delimiting messages and/or message lists entirely.

[0140) An email client component receiving the progress data may utilize this data to
determine the progress of synchronization or copying of data objects from the email server
component, and may utilize the per message progress data to determine the progress of each
individual message. This information may be helpful, for example, in monitoring real time
information about the progress of a synchronization.

[0141] There are several different character sets that may be used for storing an email
message or other data objects. For example, ASCII is most commonly used for storing English
language characters. However, ASCI is not sufficient for storing characters for all languages,
because it is based upon 8-bit characters, Thus, ASCII code can be used for only 256
characters, which is enough for English but not enough for languages that have more
characters. Unicode, on the other hand, is a character set that uses 16 bits (two bytes) for each
character, and therefore is able to include more characters than ASCIL Unicode can have
65,536 characters, and therefore can be used to encode almost all the languages of the world.
Unicode includes the ASCII character set within it.

[0142] In general, previous versions of email client components 501 have a designated
code page; or character set and/or language associated therewith. For example, a particular
version of an email client component 501 may have a German code page, and another version
may have an ANSI code page. At times, it may be desirable for an email client component 501
1o receive emails in character sets other than the designated code page. In accordance with one
aspect of the present invention, a most recent client component may force an email server
component to pfovide all emails in Unicode. Once the emails are received by the email client

-40-

35

component 501, the Unicode emails may be converted to the client’s cade page, or may
alternatively be.maintained in Unicode format.

[0143] To indicate that an email client component 501 calls for emails to be provided in
Unicode, the email client component 501 may, for example, provide a flag, such as
FORCEUNICODE, to the email server component 502. The flag may be provided with a
request, such as a ROP. If the email server component 502 is a most recent version, the email
server component 502 can provide a Unicode version of the email, if available, or can convert
email messages in other character sets to Unicode.

[0144] FIG. 20 shows steps for providing a particular character set for a message in
accordance with one aspect of the present invention. Beginning at step 2001, the email server
component 502 retrieves a message from its data store. At step 2002, a determination is made
whether the FORCEUNICODE flag is present. If not, then step 2002 branches to step 2003,
where the email server component 502 provides the email message in the email client
component’s designated code page, converting if necessary.

[0145) If the FORCEUNICODE flag is present, then step 2002 branches to step 2004,
where a determination is made whether the message is stored as Unicode. If so, step 2004
branches to step 2005, where the message is provided to the email client component 501 in the
Unicode charagter set. If the message is not stored in Unicode, then step 2004 branches to step
2006 where the message is converted to Unicode, and then the process continues to step 2005,
where the message is provided to the email client component in Unicode.

[0146] All references, including publications, patent applications, and patents, cited
herein are hereby incorporated by reference to the same extent as if each reference were
individually and specifically indicated to be incorporated by reference and were set forth in its
entirety herein.

[0147] The use of the terms “a” and “an” and “the” and similar referents in the context
of describing the invention (especially in the context of the following claims) are to be
construed to cover both the singular and the plural, unless otherwise indicated herein or clearly
contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are
to be construed as open-ended terms (i.e., meaning “including, but not limited 10,”) unless
otherwise noted. Recitation of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate value falling within the range,
unless otherwise indicated herein, and each separate value is incorporated into the specification
as if it were individually recited herein. All methods described herein can be performed in any
suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is

-41-

36

intended merely to better illuminate the invention and does not pose a limitation on the scope of
the invention unless otherwise claimed. No language in the specification should be construed
as indicating any non-claimed element as essential to the practice of the invention.

[0148] Preferred embodiments of this invention are described herein, including the best
mode known té the inventors for carrying out the invention. Variations of those preferred
embodiments tay become apparent to those of ordinary skill in the art upon reading the
foregoing description. The inventors expect skilled artisans to employ such variations as
appropriate, and the inventors intend for the invention to be practiced otherwise than as
specifically described herein. Accordingly, this invention includes all modifications and
equivalents of the subject matter recited in the claims appended hereto as permitted by
applicable law. Moreover, any combination of the above-described elements in all possible
variations thereof is encompassed by the invention unless otherwise indicated herein or
otherwise clearly contradicted by context.

Throughout this specification and the claims which follow,
unless the context requires otherwise, the word "comprise",
and variations such as ""comprises" and "comprising", will

The reference to any prior art in this specification is not,
and should not be taken as, an acknowledgement or any form
of suggestion that that prior art forms part of the common
general knowledge in Australia.

-42-

02 Jun 2009

2003268611

20

25

30

37

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A data packet embodied on a computer readable medium comprising:

a first data field identifying an email client component;

a second data field including a request for a plurality of email data objects; and

characterized in that it comprises a third data field including an indication that the
email client component is capable of handling progress mode data sent along with the
plurality of requested email data objects wherein the progress mode data includes a total
size of the plurality of email data objects, a total number of email messages in the plurality

of email data objects, and a size of each of the email data objects.

2. The data packet of claim 1, wherein the indication comprises a flag included with

the request.

3. The data packet of claim 1, wherein the request comprises a request for

synchronization of a folder in which the email data objects are located.

4. The data packet of claim 1, wherein the request comprises a request for a copy of

email messages.

S. The data packet of claim 1, wherein the progress mode data includes the number of

folder associated information (FAI) objects in the plurality of email data objects.

6. The data packet of claim 3, wherein the progress mode data includes the size of the

total folder associated information (FAI) objects in the plurality of email data objects.

7. The data packet of claim 1, wherein the progress mode data further includes

whether each object is a folder associated information (FAI) object.

8. A computer-readable medium having computer-executable instructions, the

instructions comprising:

-43-

02 Jun 2009

2003268611

20

25

30

pages 15 5pa o

38

receiving, from an email client component, a request for a plurality of email data
objects and an indication that the email client component is capable of handling progress
mode data;

in response to the request and the indication, retrieving the plurality of email data
objects; and

providing progress mode data to the email client component along with the
plurality of email data objects, the progress mode data comprising a size of each of the
email data objects, a total size of the plurality of email data objects, and a total number of

email messages in the plurality of email data objects.

9. The computer-readable medium of claim 8, wherein the indication comprises a flag

included with the request.

10. The computer-readable medium of claim 8, wherein the request comprises a

request for synchronization of a folder in which the email data objects are located.

11. The computer-readable medium of claim 8, wherein the request comprises a

request for a copy of email messages.

12. The computer-readable medium of claim 8, wherein the progress mode data further
includes the number of folder associated information (FAI) objects in the plurality of email

data objects.
13. The computer-readable medium of claim 12, wherein the progress mode data
further includes the size of the total folder associated information (FAI) objects in the

plurality of email data objects.

14, The computer-readable medium of claim 8, wherein the progress mode data further

includes whether each email data object is a folder associated information (FAI) object.

15. A computer-implemented method, comprising the steps of:

-44-

02 Jun 2009

2003268611

20

25

poges 151

39

sending, from an email client component, a request for a plurality of email data
objects and an indication that the email client component is capable of handling progress
mode data sent along with the plurality of requested email data objects the progress mode
data comprising a size of each of the email data objects, a total size of the plurality of
email data objects, and a total number of email messages in the plurality of email data
objects; at an email server component, in response to the request and the indication,
retrieving the plurality of email data objects and progress mode data for the plurality of
email data objects; and

at the email client component, receiving the progress mode data sent along with the
plurality of requested email data objects and utilizing the progress mode data to monitor

transmission progress of the plurality of email data objects 1o the email client component.

16. The method of claim 15, wherein the progress mode data comprises the number of

folder associated information (FAI) objects in the plurality of email data objects.

17. The method of claim 16, wherein the progress mode data comprises the size of the

total folder associated information (FAI) objects in the plurality of email data objects.

18. The method of claim 15, wherein the progress mode data further includes whether

each data object is a folder associated information (FAI) object.

19. A data packet embodied on a computer readable medium, substantially as

hereinbefore described with reference to the accompanying drawings.

20. A computer readable medium, substantially as hereinbefore described with

reference to the accompanying drawings.

21. A computer-implemented method, substantially as hereinbefore described with

reference to the accompanying drawings.

-45-

1/23

o I Ol
// soindwo)
Jaindwo)n

oL

oL

/ Jaindwog
oL

///;.hoiaeoo Aﬂuuunuuuuuﬁv

0l

ot
JeIndwon / somduos

-46-

2/23

S0¢
S

vac |
N

(414

~—

{s)uonoauuon
uofjeodiunwiwon

(syaaineq
induy

(s)eanaqg
indino

sbeioyg
9|geAowWay-uoN

sbeioig
s|qeAcway

¢9ld

8l
S . L \—

hl

SinEjOA-UON

un anejon

Buissaooug

Kowspy waysAg

—

9t

(3074

47-

Email
Client
Component

301

3/23

Protocols

Email
Server
Component

303

Vn

Vi 304

305

Vn 306

-48-

4/23
Email Email
Client 401 402 Server
Component ~/. Component

Client Version Information

403 /

[

4—{ Server Version Information
K\‘- 404

FIG4

-49-

5/23

208 j

S 9Old

\\ 10§

iayng . Jsyng
pusg asuodsay o ETNELEN)
N N
05 j 509 c0s :/ 905
layng > Jayng
CIVEREN - 1sanbay pusg
wauodwo) juauodwo)
198G jlewg JUNID |lewd

-50-

6/23
Email Email
Client 501 502 Server
Component Component

FXPrepare (data ID)

601 ’/ ‘;
602 —/
603 ’/
604 /

i FXPrepare (fast transfer ID)

. FXGetBuffer (fast transfer ID)

FXGetBuffer (data)

FIG 6A
Email Email
. Client 501 502 Server
Component Component

FXPrepare; FXGetBuffer

FXPrepare; FXGetBuffer

605 /
_J

606

FIG 6B

-51-

7/23

g/ 9Old

Aunpeooidgns
puz

wauodwes
WEP ews

0] Apoq sbessal
I'ew puag

€0. k

1euUOy prepue}s
0) Apoq abessaw
Jlews ysaucy

[A72

voL

s3k

PACTILTY
piepuels u) £poq
abessaw ewe
st

ey
AQog™1838
uigjuca jsenbas
ssog

ainpaoosdgns
ueig

puas o} jeuun)
Apoq ebessaw
1B 153q P3fes

V. 9Old

ampavoidqns
pu3

¥

uauodwod
> ua ews

0} Apoq eSessaw
{lews puas

mchu\

94

7

1euwo} prepuels
©) Apoq afessaw
WIS POALOY

00—

éjewioy
piepuels ui Apoq
obesssw |lewa
st

anpaodosdgns
vels

-52-

88 OlI4

8/23

_ [P
Apog 1opesy
3
Apog lapeay
[}]
908
808
Apog 1apesy
y
508
[Z08
Apog lapeayy
| Y
!

Apog

lapeay .gA

Apog

[

el

-

€08

-]
0|

Apog

A

108

N
0

Apog

N

[-—

-53-

(>

9/23

as oid

!

Apog \“ lapesH
]
€l8
Apog Jspea A.*
'8 iApog éiopesH
. K
L8
Apog iopesH

!

08 9Old

!

608

org Apog IopesH
[
608
oi8 Apog 1speap
608
o8 Apog 13pesH
Iy
608
oig Apog lopesH

f

-54-

10/23

moml///

///nmom

6 Ol

N

o

-55-

11/23

Email
Client 501
Component /

SynchFolder (stateblob,)

Email
502 Server
Component

o

SynchFolder (changes, stateblob,)

1001_,,///

f 3

SynchFolder (stateblob,)

1ooz—~////

1ooa—f/// §

SynchFolder (changes, stateblob,)

FIG 10

1004 —

-56-

Start
subprocedure

1101
_\ Build

Message Changes
Seen Set

Y

1102
~

Optimize
native message
changeiDs

1103

Add to
stateblob

4

End N
subprocedure ‘/)

FIG 11A

12/23

Start
subprocedure

Builg
Message Changes
Seen
Set

1101

1102

Optimize
native message
changelDs

1104

Optimize
foreign message
changeiDs

1103

Add to

stateblob
End
subprocedura

FIG 11B

-57-

Root Folder 4LFolder
USSR

1201 /

13/23

Folder

Folder

Folder

Folder
1202 —

— Folder

— Folder

1203:
— Folder
'‘— Folder

FIG 12

Folder

Folder

Folder

1204 /

-58-

14/23

Email
Server
Component

Email
Client
Component

501 502

GetHierarchyTable

-
et

1301
GetHierarchyTable

NN

1302

SynchFolder

1303
SynchFolder

NN

1304

NotificationAlert

\

1305

GetNotification

1306
GetNotification

NN

1307

FIG 13

-59-

15/23
Email Email
Client 501 502 Server
Component —/ _ Component

FXPrepare (messagelD set)

1401
FXPrepare (fast transfer ID)

1402

FXGetBuffer (fast transfer 1D)

1403
FXGetBuffer (fatal ROP error)

NIENERNEN

FIG 14A

-60-

16/23
Email Email
Client 501 502 Server
Component Component

FXPrepare (messagelD set)

P
L]

1401
FXPrepare (fast transfer ID)

NN

1402

FXGetBuffer (fast transfer ID)

1403
FXGetBuffer (M,, M,, FXErrorinfo, M,)

NN

1405

FXGetBuffer (fast transfer ID)

: 1406
. FXGetBuffer (M,, M;)

\J '\

1407

FIG 14B

61-

17/23

g6l Oid

Jou3 JON 1818}

N0 Weang

v0S1 1\

6ey
JACWYEIACDIUXS ojupongxXy
UIBIUD2 Jsanbes no weang

s200

SOS1L

aas
sabessawr
alon

103

L

no weang

20st .K

18s abessaw
aredarg

1051 \

Wwnpavosdgns
vmig

VSL Old

10413 4Oy 1e1ey
no weens

sinpaaocidgns
puz

aesu
sabessaw
aopy

€£0St

lona ho weang il

20st I\

195 abessaw
asedasg

105} I\

anpaoodqns
vels

-62-

18/23
Email Email
Client 501 502 Server
Component Component

FXPrepare (messagelD set)

1601
FXPrepare (fast transfer 1D)

‘-
g

NN

1602

FXGetBuffer (fast transfer ID)

\

1603
FXGetBuffer (M;, M,, M,)

Tk

1604

FXGetBuffer (fast transfer ID)

1605
FXGetBuffer (M,, M, M,)

1606

NINEEN

FIG 16A

63-

19/23
Email Email
Client - 501 502 Server
Component l Component

FXPrepare (messagelD set)

1601
FXPrepare (fast transfer ID)

NN

1602

FXGetBuffer (fast transfer ID)

; 1603
| FXGetBuffer (P, P;, M,, P,, M,, P, M,

¢

. Y

1607

FXGetBuffer (fast transfer ID)

1605
o . FXGetBuffer (P, M,, P, M,, P,, M,)

-

NIENEEN

1608

FIG 16B

-64-

Start
subprocedure

Prepare
message sel

1501

1502

— Y

Straam out

message

i

L]

messages
in set?

'End
subprocedure

FIG 17A

20/23

Stant
Subprocedure

1501

Prepare
message set

1702

request contain yes Stream out
PROGRESS_MODE, progress data
flag? totals

1502

Stream out

message

1704

Stream out
per message
progress data

messages
in set?

Eng
subprocedure

FIG 17B

-65-

21/23
1801

1806

C,
1802 F 1804
S

1803

FIG 18

-66-

Stant
subprocedure

/-1901

Get next

> subscriber
to be notified

/‘1902

Send notification
to subscriber

More
subscribers to be

yes notfied?

End
subprocedure

FIG 19A

22/23

subscribers to be
yes .. hotified?

Start
subprocedure

/—1901

Get next
] subscriber
to be notified

1904

Does
subscription
include
IGNORE_OWN
flag?

subscriber
trigger this
notification?

Send notification
to subscriber

More

End
subprocedure

FIG 19B

67-

23/23

@

2001
Y

Retrieve
Message

Unicode
available?

2008 < 2006

Unicode

yes

0 ___l_[ms

[_ " Provide

| Unicode
4

End

Provide
Client
Codepage

FIG 20

-68-

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

