
(12) United States Patent
Kar et al.

USOO7743118B1

(10) Patent No.: US 7,743,118 B1
(45) Date of Patent: *Jun. 22, 2010

(54) PROGRAMMABLE COMMUNICATION
INTERFACE

(75) Inventors: Barun Kar, Sunnyvale, CA (US); Troy
M. Sheets, San Francisco, CA (US);
Truman Joe, Stanford, CA (US);
Bharani Chadalavada, Santa Clara, CA
(US); Geetha Ramaian, Santa Clara,
CA (US)

(73) Assignee: Juniper Networks, Inc., Sunnyvale, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 12/331,746

(22) Filed: Dec. 10, 2008

Related U.S. Application Data
(63) Continuation of application No. 10/431,750, filed on

May 8, 2003, now Pat. No. 7,509,399.

(51) Int. Cl.
G06F 15/177 (2006.01)

(52) U.S. Cl. 709/220; 709/221; 709/222;
709/246; 710/5: 710/10; 710/19; 710/104;

725/37; 712/29: 712/220
(58) Field of Classification Search 709/220 222,

709/246, 244, 250; 710/5, 10, 19, 104; 725/37;
712/29, 220

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

4,574,354 A 3, 1986 Mihalik et al.
5,019,910 A 5, 1991 Filmer
5,051,980 A 9, 1991 Olsen
5,373,501 A 12/1994 Roland

2
Ya

DEVICE

PROCESSOR

COMMAND LINE
INTERFACE 20

5,379,337 A 1/1995 Castillo et al.
5,812,826 A 9/1998 McLain, Jr.
5,841,992 A 11/1998 Martin
5,958,024 A 9/1999 Typaldos et al.
5,968, 196 A 10/1999 Ramamurthy et al.
6,014,760 A 1/2000 Silva et al.
6,023,727 A 2/2000 Barrett et al.
6,067.483. A 5, 2000 Fesmire et al.
6,138,241 A * 10/2000 Eckel et al. T13,300
6,366,583 B2 4/2002 Rowett et al.
6,415,344 B1 7/2002 Jones et al.
6,609,163 B1 8/2003 Nguyen et al.
6,677,779 B1 1/2004 Su et al.
6,813,525 B2 11/2004 Reid et al.
6,851,621 B1 2/2005 Wacker et al.
7,136,724 B2 11/2006 Enberg
7,509,399 B1* 3/2009 Kar et al. TO9.220

(Continued)
Primary Examiner Nathan Flynn
Assistant Examiner—Mohammad A Siddiqi
(74) Attorney, Agent, or Firm Shumaker & Sieffert, PA.

(57) ABSTRACT

A device comprises a programmable communication inter
face and a processor. The programmable communication
interface communicates data via a set of signals. The proces
Sor configures the programmable communication interface to
communicate the data in accordance with a programmed
override state for at least one of the signals and actual states
for the remaining signals. The programmable communication
interface may be configured, for example, to programmably
treat an overridden signal as asserted or de-asserted regard
less of actual Voltages present on one or more electrical con
nectors associated with the overridden signal. As a result,
incorrectly wired electrical connectors of the programmable
communication interface may be programmably overridden.
Consequently, a technician need not manually rewire the
programmable communication interface.

18 Claims, 6 Drawing Sheets

PROGRAMMABLE
INTERFACE 26A

24 NT Act
s

PROGRAMMAs
REGISTER BLOCK

22

US 7,743,118 B1
Page 2

U.S. PATENT DOCUMENTS 2005, 01931.03 A1 9, 2005 Drabik

2004/0081186 A1 4/2004 Warren et al.
2004/025 1743 A1 12/2004 Sadowski et al. * cited by examiner

US 7,743,118 B1 Sheet 1 of 6 Jun. 22, 2010 U.S. Patent

?IETTORILNO O

U.S. Patent Jun. 22, 2010 Sheet 2 of 6 US 7,743,118 B1

30
OUTPUT CONFIGURATION REGISTER A?
15 5 4. 3. 2 1 O

RSVD SW S | SW S | SW C | SW C
RTS | DTR | RTS | DTR

FIG. 2A

32
INPUT CONFIGURATION REGISTER A?
15 5 4 3. 2 1 O

RSVD TM CD || CTS || DSR

FIG. 2B

POLARITY CONFIGURATION REGISTER A? 34
15 5 4. 3 2 1 O

RSVD POL POL | POL | POL | POL | POL
RTS DTR TM CD CLS DSR

FIG. 2C

U.S. Patent Jun. 22, 2010 Sheet 3 of 6 US 7,743,118 B1

31

REGISTER BLOCK

CONTROL COMMUNICATIONS 39
NACCORDANCE WITH ACTUAL

AND OVERRIDE SIGNAL
STATES

33

35

37

FIG. 3

U.S. Patent Jun. 22, 2010 Sheet 4 of 6 US 7,743,118 B1

START

DSR
IGNORED2

NO

DSR NO
ASSERTED2

40

YE

44

48

NO CTS
ASSERTED2

52 SEND
COMMUNICATION

50

FIG. 4

U.S. Patent Jun. 22, 2010 Sheet 5 of 6 US 7,743,118 B1

START

CD
IGNORED2

NO

58
CD NO

ASSERTED?

59
RECEIVE

COMMUNICATION

FIG. 5

U.S. Patent Jun. 22, 2010 Sheet 6 of 6 US 7,743,118 B1

ROUTER

76A IFC 72 CONTROL UNIT
76B PRB CHD

N- 74
76A 6 FC 72 ROUTING

D INFORMATION
76B PRB CHD 64
NH 74

CONFIGURATION
O DATA

66

72
76A FC USER

76B D PRB INTERFACE
RH 74 68

CLIENT
70

FIG. 6

US 7,743,118 B1
1.

PROGRAMMABLE COMMUNICATION
INTERFACE

This application is a Continuation of Appl. No. 10/431,750
filed May 8, 2003 now U.S. Pat. No. 7,509,399, issued Mar.
24, 2009, the entire content of which is incorporated herein by
reference.

TECHNICAL FIELD

The invention relates to communication interfaces, and
more particularly, to configuration of communication inter
faces.

BACKGROUND

Conventional computing devices often incorporate one or
more communication interfaces for communicating with
other devices. Often these communication interfaces conform
to communication standards, such as RS-232, RS-422, X.25,
V.35 and IEEE 1394 communication standards. Communica
tion standards are established in an attempt to assure that the
computing devices conforming to one of the standards will be
able to successfully communicate with each other. For
example, each communication standard typically defines a
specific set of input and output signals, e.g., data signals,
clock signals, flow control signals, and the like.

It is common for a device to implement only a subset of the
signals defined by a communication standard. For example, a
device may implement a subset of the RS-232 standard by
providing compliant clock and data signals, while not imple
menting the flow control signals. Moreover, it is common for
fully compliant and partially compliant devices to be con
nected. In this situation, only a Subset of the signals provided
by the fully compliant device is used for communication
between the fully and partially compliant devices. As a result,
a technician or other individual often must manually wire
electrical connectors, e.g., pins, that carry the unused signals
of the fully compliant device to appropriate voltage levels for
the devices to properly communicate. For example, unused
flow control signals may need to be manually wired to appro
priate Voltages, e.g., it 12 volts, to permit communication.

For complex communication interfaces, this manual wir
ing process may be relatively complex and labor-intensive,
which may lead to incorrect wiring of the interface. As a
result, errors or complete communication failure may occur,
and the technician may be forced to return to the devices and
attempt to identify and manually correct the wiring error.

SUMMARY

In general, the invention is directed to techniques for pro
grammably configuring a communication interface of a
device. In particular, the techniques allow a client to program
mably set "override states' for one or more signals of the
communication interface. Once set, the programmable com
munication interface operates in accordance with actual
states for any non-overridden signals and the programmed
override states for overridden signals. Consequently, opera
tion of the communication interface is unaffected by the
actual states of the overridden signals, which may be incor
rectly wired. In this manner, the programmable communica
tion interface can easily be utilized in a variety of communi
cation environments, including those environments in which
one or more devices implement only a Subset of the signals
specified by a communication standard.

10

15

25

30

35

40

45

50

55

60

65

2
As used herein, an override state for a signal refers to a

logical characteristic of the signal to be used in place of a
physical characteristic of the signal. As one example, the
programmable communication interface may be configured
to programmably treat a signal as asserted or de-asserted in
order to override an actual Voltages present on one or more
electrical connectors associated with the signal. As a result,
an unused signal for which an associated electrical connector
is mistakenly wired to an incorrect Voltage level may be
programmably overridden. Consequently, a technician need
not manually rewire the interface.
As another example, an override state may be programma

bly set to invert a polarity of a signal. For example, a signal
may be conveyed by a polarity defined by voltage levels of
two electrical connectors. If these electrical connectors are
incorrectly reversed, the programmable communication
interface may be configured to override the polarity of the
electrical connectors, i.e., invert the signal, without requiring
the technician to manually rewire the electrical connectors.

Consistent with the principles of the invention, a device
may incorporate a user interface that Supports a command
Syntax for remote configuration of the communication inter
face. A client, such as a local user, remote user, automated
Script, or the like, may interact with the user interface, and
provide commands in accordance with the Supported syntax
to programmably configure the communication interface. As
a result, override states may be defined for one or more of the
signals to remotely correct wiring errors.

In one embodiment, a method comprises programmably
setting an override state for one of a plurality of signals of a
communication interface. The method further comprises
communicating data via the communication interface in
accordance with the programmed override state for the over
ridden one of the signals and actual states for the non-over
ridden signals.

In another embodiment, a device comprises a program
mable communication interface and a processor. The pro
grammable communication interface communicates data via
a set of signals. The processor configures the programmable
communication interface to communicate the data in accor
dance with a programmed override state for at least one of the
signals and actual states for the remaining signals.

In another embodiment, a non-transitory computer read
able storage medium comprises instructions to cause a pro
cessor to programmably set an override state for at least one
of a plurality of signals of a communication interface. The
instructions further cause the processor to communicate data
via the communication interface in accordance with the pro
grammed override state for the overridden one of the signals
and actual states for the non-overridden signals.
The invention may provide one or more advantages. For

example, the programmable communication interface can
easily be utilized in a variety of communication environ
ments, including those environments in which one or more
devices implement less than all of the signals specified by an
industry standard. Moreover, the programmable communica
tion interface allows a client, e.g., a technician or automated
Script, to programmably correct any wiring errors that may be
present within the programmable communication interface.
In this situation, the incorrectly wired electrical connectors
need not be physically rewired, but signals associated with the
electrical connectors may be programmably overridden.

Moreover, the user interface and associated command Syn
tax allow the client to easily programmably override the sig
nal from a remote location. As a result, the client may easily
correct any wiring errors without having to physically travel
to the device. Furthermore, remote automated scripts may be

US 7,743,118 B1
3

used to configure the device, thus allow wiring errors to be
corrected in a more efficient manner in comparison with
manually rewiring the communication interface.
The details of one or more embodiments of the invention

are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example system in
which a device includes a programmable communication
interface in accordance with the principles of the invention.

FIGS. 2A-2C are block diagrams of exemplary program
mable registers to store configuration data for defining over
ride States for signals implemented by the programmable
communication interface.

FIG.3 is a flowchart illustrating exemplary operation of the
programmable interface in accordance with the principles of
the invention.

FIGS. 4 and 5 are flowcharts illustrating exemplary opera
tion of a controller within the programmable interface.

FIG. 6 is a block diagram illustrating an example network
router that Supports programmable communication interfaces
consistent with the principles of the invention.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating a system 2 in which a
device 10 communicates with a device 12 via a program
mable interface 16 in accordance with the principles of the
invention. In general, devices 10, 12 represent any device
capable of communication. For example, devices 10, 12 may
be computing devices, such as desktop computers, laptop
computers, personal digital assistants, and the like. In addi
tion, devices 10, 12 may be network devices, such as printers,
servers, hubs, Switches, routers, and the like.

Programmable interface 16 implements output signals 26A
and input signals 26B (collectively “signals 26') for commu
nication with interface 13 of device 12. In particular, pro
grammable interface 16 transmits and receives signals 26 by
one or more electrical connectors (not shown). Such as an
electrical pin. In the example of FIG.1, device 10 may be fully
compliant with a communication standard, and signals 26
implemented by programmable interface 16 may be all of the
signals defined by the standard. Further, in the example of
FIG. 1, device 12 may be partially compliant with the stan
dard, and implements only a Subset of the signals defined by
a communication standard.
As a result, Some of signals 26 may be associated with

electrical connectors that are wired to specific Voltage levels.
For example, device 12 may not implement flow control
signals. Consequently, a portion of input signals 26B corre
sponding to the unimplemented flow control signals may be
wired to Voltage levels that are necessary to permit commu
nication between devices 10, 12. Although described herein
with reference to fully and partially “compliant devices, the
invention is not limited by reference to communication stan
dards or their requirements. Instead, a device may operate
consistent with the principles of the invention in any case
where the device communicates with another device that does
not implement signals 26 implemented by the first device.

In general, programmable interface 16 controls communi
cations with device 12 and, in particular, controls signals 26 in
accordance with controller 24. More specifically, controller
24 defines and operates in accordance with a number of states

5

10

15

25

30

35

40

45

50

55

60

65

4
to control transmission and reception of signals 26. In the
exemplary embodiment, device 10 includes a processor 14 to
configure programmable interface 16 and, in particular,
define “override states' for signals 26 that may be associated
with incorrectly wired electrical connectors. Programmable
interface 16 includes a programmable register block 22 to
store data from processor 14 that defines any override states
for signals 26.

In accordance with the stored data, programmable register
block 22 generates override signals 23 and provides override
signals 23 to controller 24. Controller 24 may, for example,
read the data stored by programmable register block 22. Con
troller 24 controls operation of interface 16 based on signals
26 and override signals 23. In particular, controller 24 oper
ates in accordance with actual states for any non-overridden
signals 26, and the programmed override states for any of
signals 26 that have been overridden. Consequently, opera
tion of programmable interface 16 is unaffected by the actual
states of those signals 26 that have been incorrectly wired and
have been programmably overridden.
As one example, processor 14 may configure program

mable register block 22 to define an override state for one of
signals 26 to override an actual Voltage present on an electri
cal connector associated with that signal. This may, for
example, be beneficial in a situation where the overridden one
of signals 26 is not provided by device 12, and a technician
has wired the electrical connector associated with the over
ridden one of signals 26 to an incorrect Voltage level. In this
situation, processor 12 may configure programmable register
block 22 to override the incorrect voltage level, and the tech
nician need not manually rewire programmable interface 16.
As another example, processor 14 may configure program

mable register block 22 to define an override state to override
a polarity of one of signals 26. This may be beneficial in a
situation where the overridden one of signals 26 is defined by
a plurality of electrical connectors, and the technician has
incorrectly reversed the electrical connectors. In this situa
tion, processor 12 may configure programmable register
block 22 to programmably correct the polarity without requir
ing the technician to manually rewire the associated electrical
COnnectOrS.

In one embodiment, processor 14 presents a command line
interface (CLI) 18 by which a client 20 may configure pro
grammable register block 22. In particular, CLI 18 Supports a
command syntax by which client 20 specifies override states
for signals 26. Client 20 may be a technician located at or near
device 10, a remote user interacting within a computing
device coupled to device 10 via a network, a computer script
or batch process executing remotely, or the like.
As described in detail, CLI 18 Supports a command syntax

that supports two modes by which client 20 programmably
configures override States for signals 26. In the first mode,
CLI 18 accepts commands to override polarities for signals
26. In the second mode, CLI 18 accepts commands to over
ride voltage levels for signals 26.
To enter the first mode, client 20 provides an OPTIONS

command, which may take a variety of forms based on the
type of interface. If the communication interface conforms to
the RS-232 standard, client 20 enters the OPTIONS com
mand at a command line as follows:

user(a)hostserial-options.
Next, client 20 may enter commands for overriding the

polarity of signals 26 on device 10 according to the following
Syntax:

<signal name>-polarity (positivelnegative).
The <signal name> portion of the above command syntax

represents a name associated with one of signals 26 by pro

US 7,743,118 B1
5

grammable interface 16. For example, programmable inter
face 16 may associate one of signals 26 with the name "DCD"
for Data Carrier Detect as defined by the RS-232 standard.
The parameter following <signal name>-polarity represents
one of the two available polarity settings, positive and nega
tive. Thus, to override the polarity of one of signals 26 asso
ciated with the name "DCD. client 20 may enter the follow
ing command at command prompt presented by CLI 18:

user(a)hostdcd-polarity positive.
Additionally, client 20 may direct CLI 18 to accept com

mands to override Voltage levels for signals 26 by providing a
CONTROL-LEADS commandata command lineas follows:

user(a)host control-leads.
Next, client 20 may provide commands instructing pro

grammable interface 16 to define override states for signals
26. The command syntax for defining override states for input
signals 26B is as follows:

<signal name>(ignorelnormall require).
Similarly, the command syntax for output signals 26A is:

<signal name>(assertide-assert normal).
In both of these command syntaxes, the parameter <signal
name> specifies a name associated with one of signals 26, as
described above. In each case, the signal name is followed by
a parameter specifying the override state to be defined for the
identified one of signals 26. In particular, for input signals
26B, client 20 may define override states of IGNORE, NOR
MAL, and REQUIRE. For output signals 26A, client 20 may
define override states of ASSERT, DE-ASSERT, and NOR
MAL.

For those input signals 26B for which an override state of
IGNORE is designated, programmable interface 16 will not
react to input from that signal. In contrast, for those input
signals 26B for which an override state of NORMAL or
REQUIRED is designated, programmable interface 16
responds to the actual states, e.g., polarities and Voltages,
sensed from the electrical connectors for those signals. In
NORMAL mode, the state of the signals is used only to
control data transmission (in the case of DSR and CTS) or
reception (in the case of CD) by the controller and do not
effect a link state. In REQUIRED mode, the state of the
signals is used to control the link state. The link state defines
to processor 14 whether the link between device 10 and
device 12 is up or down. All data transmissions are halted
when the link state is down, regardless of all other control
signals.
An override state of NORMAL can also be designated for

output signals, such as output signal 26A. For this output
signal26A, controller 24 can assert or de-assert the signal on
the electrical connector depending on the ability of processor
14 to process the incoming receive data from device 12. The
processor may need to indicate to device 12 to temporarily
halt data transmission if the processor is unable to process all
the incoming data from the device 12. While in NORMAL
mode, controller 24 cantoggle the output signal26A based on
the ability of processor 14 to process the data, without inter
vention from programmable register block 22.

For an output signal 26A for which an override state of
ASSERT is designated, programmable register block 22 gen
erates one or more respective override signals 23 to represent
that one of output signals 26A as asserted logical values. For
example, programmable register block 22 may generate over
ride signals 23 that represent a positive electrical connector
set to a high-level Voltage (V) and a negative electrical
connector set to a low-level Voltage (V). Similarly, for an
output signal26A for which an override state of DE-ASSERT
is designated, programmable register block 22 generates one

10

15

25

30

35

40

45

50

55

60

65

6
or more respective override signals 23 to represent that one of
output signals 26A as set to a de-asserted logical value. For
example, programmable register block 22 may generate over
ride signals 23 that represent a positive electrical connector
set to a low-level Voltage (V) and a negative electrical con
nector set to a high-level Voltage (V).
The following example pseudocode illustrates a set of

commands provided by client 20 in accordance with the com
mand syntax supported by device 10 to set the polarity of one
of signals 26 associated with the name DCD, and to set an
override state of ASSERT for a different one of signals 26
associated with the name DTR:

user(a)hostserial-options
user(a hostddcd-polarity positive
user(a host-control-leads
user(a hostddtrassert.

Upon receiving the commands, CLI 18 processes the com
mands and configures programmable register block 22, as
described in more detail below.

FIG. 2A is an example of a programmable register 30 of
programmable register block 22 (FIG. 1) that stores configu
ration information for defining override states for output sig
nals 26A of programmable interface 16. In the illustrated
example, register 30 comprises a 16-bit register for storing
two different types of configuration bits for each of output
signals 26A that may be overridden. The first bit type, a
software control (SW C) bit, indicates whether controller 24
should use the actual state of the respective one of output
signals 26A, or whether an override state is to be used. As an
example, consider bit Zero of register 30, which indicates
whether an override State for one of output signals 26A asso
ciated with the name DTR has been defined. If this bit, SWC
DTR bit, is false then no override state has been defined. If,
however, the SW C DTR bit is set to a logical true, then an
override state has been defined, and controller 24 accesses the
second bit type, SW SDRT, to determine the particular over
ride state to use for the respective one of output signals 26A.
The second bit type, software set (SWS), indicates

whether the respective one of output signals 26A has been
overridden with an asserted or de-asserted state. If, for
example, commands from client 20 have designated an over
ride state of ASSERT for the DTR signal, processor 14 sets
SW SDTR, i.e., the third bit of register 30, to a logical true.
If, however, client 20 has designated an override state of
DE-ASSERT for the DTR signal, processor 14 sets SW S
DTR, i.e., the third bit of register 30, to a logical false.

In this way, a single command from client 20 can configure
the override state of a given one of output signals 26A. If a
non-overridden State is required, i.e., the actual state, client 20
can provide an override command that specifies a NORMAL
parameter, as described above, causing processor 14 to set the
respective SW C bit of register 30 to false.

FIG. 2B is another example of a programmable register 30
of programmable register block 22 (FIG. 1) that stores con
figuration information for defining override states for input
signals 26B of programmable interface 16. In the illustrated
example, register 32 comprises a 16-bit register for storing
data that indicates whetheran override state has been defined
for each of input signals 26B. In particular, a logical true in
one of the bits indicates that the corresponding one of input
signals 26B should be ignored, i.e., that the actual state of the
input signal should not affect controller 24. For example, if
the IGNORE DSR (I DSR) bit is settological true, controller
24 disregards the associated input signal 26B with regard to
flow control.

US 7,743,118 B1
7

FIG. 2C is another example of a programmable register 34
of programmable register block 22 (FIG. 1) that stores con
figuration information for defining override states to override
polarities of signals 26. In this example, register 34, like the
other registers 30, 32, is shown as a 16-bit register for storing
data that indicates whetheran override state has been defined
for the respective polarity of each of signals 26. In particular,
a logical true in one of the bits indicates that the polarity for
the corresponding one of signals 26 should be positive, i.e.,
unmodified. Conversely, a logical false in one of the bits
indicates that the polarity for the corresponding one of signals
26 should be overridden to be a negative polarity. Conse
quently, controller 24 may logically invert any values
received from the overridden signal. This may be beneficial in
a situation where the overridden one of signals 26 is defined
by a plurality of electrical connectors, and the technician has
incorrectly reversed the electrical connectors. In this situa
tion, processor 12 may configure programmable register
block 22 to programmably correct the polarity without requir
ing the technician to manually rewire the associated electrical
COnnectOrS.

FIG. 3 is a flowchart illustrating exemplary operation of
programmable interface 16 (FIG. 1) in accordance with the
principles of the invention. Initially, processor 14 presents
CLI 18 to client 20, and receives configuration commands
from client 20 (31). As described above, CLI 18 supports a
command syntax by which client 20 specifies override states
for signals 26.

Processor 14 processes the received commands (33), and
generates data for configuring programmable register block
22 (35). As described, programmable register block 22 may
include a plurality of programmable registers, e.g., registers
30, 32, 34, for storing the data.

Based on the configuration data, programmable register
block 22 generates override signals 23 and provides the over
ride signals to controller 24 (37). Controller 24 may, for
example, read the data stored by programmable register block
22.

Based on the override states defined within programmable
register block 22, controller 24 controls operation of interface
16 and communication with device 12. In particular, control
ler 24 operates in accordance with actual states for any non
overridden signals 26, and the programmed override states for
any of signals 26 that have been overridden within register
block 22 (39).

FIG. 4 is a flowchart illustrating exemplary operation of
controller 24 (FIG. 1) of programmable interface 16. In par
ticular, the flowchart of FIG. 4 illustrates operation of con
troller 24 in accordance with actual states for non-overridden
signals 26, and programmed override states for an exemplary
set of signals 26 that have been overridden within register
block 22. In this example, signals 26 include flow control
signals Data Set Ready (DSR) and Clear To Send (CTS),
which are required to send a communication as specified by
the RS-232 communication standard. Both DSR and CTS are
for purposes of illustration only.

Initially, controller 24 accesses register block 22 to receive
override signals 23 and determine whether the DSR signal is
ignored during operation of programmable interface 16 (40).
For example, controller 24 may read register 32 (FIG. 2B) of
register block 22, and apply a mask or other bit test to the
received data to determine whether the I DSR bit indicates
whether the DSR signal should be ignored or not ignored.

If the DSR signal is ignored, i.e., the I DSR bit is asserted,
controller 24 ignores the actual state of the DSR signal. More
specifically, controller 24 “ignores the DSR signal by not
allowing the actual state of the DSR signal to influence the

10

15

25

30

35

40

45

50

55

60

65

8
execution order of a state machine maintained by controller
24. As a result, controller 24 modifies the operation of the
state machine to disregard the actual state of the DSR signal.

If the DSR signal is not ignored, i.e., the I DSR bit is not
asserted, controller 24 processes the actual state of the DSR
signal. In particular, controller 24 reads the actual state of the
DSR signal, and determines whether the DSR signal is
asserted (42). If the DSR signal is not asserted, controller 24
executes a state to wait for the assertion of the DSR signal by
device 12 (44).
When the DSR signal is either asserted by device 12 or has

been programmably ignored, controller 24 accesses register
block 22 to determine whether the CTS signal is ignored for
operation of programmable interface 16 (46). For example,
controller 24 may read register 32 and apply a mask or other
bit test to determine whether the ICTS bit indicates whether
the CTS signal should be ignored or not ignored.

If the CTS signal is ignored, i.e., the I CTS bit is asserted,
controller 24 ignores the actual state of the CTS signal. As
with the DSR signal, controller 24 “ignores' the CTS signal
by modifying operation of the state machine to disregard the
actual state of the CTS signal and continues with the commu
nication.

If the CTS signal is not ignored, i.e., the I CTS bit is not
asserted, controller 24 processes the actual state of the CTS
signal. In particular, controller 24 reads the actual state of the
CTS signal, and determines whether the CTS signal is
asserted (48). If the CTS signal is not asserted, controller 24
executes a state to wait for the assertion of the CTS signal by
device 12 (50).
When the CTS signal is either asserted by device 12 or has

been programmably ignored, controller 24 drives output sig
nals 26A to output the current communication (52). In this
manner, override states can be programmably set to override
the actual states of individual output signals 26A, such as the
illustrative flow control signals DTR and CTS.

FIG. 5 is another flowchart illustrating exemplary opera
tion of controller 24 (FIG. 1) of programmable interface 16.
In particular, the flowchart of FIG. 5 illustrates operation of
controller 24 in accordance with actual states for non-over
ridden signals 26, and programmed override states for an
exemplary set of signals 26 that have been overridden within
register block 22. In this example, signals 26 include flow
control signals Carrier Detect (CD), which is required to
receive a communication as specified by the RS-232 commu
nication standard. CD is also for purposes of illustration only.

Initially, controller 24 accesses register block 22 to receive
override signals 23 and determine whether the CD signal is
ignored during operation of programmable interface 16 (54).
For example, controller 24 may read register 32 (FIG. 2B) of
register block 22, and apply a mask or other bit test to the
received data to determine whether the I CD bit indicates
whether the CD signal should be ignored or not ignored.

If the CD signal is ignored, i.e., the I CD bit is asserted,
controller 24 ignores the actual state of the CD signal. More
specifically, controller 24 “ignores the CD signal by modi
fying operation of the state machine to disregard the actual
state of the CD signal and continues with the communication.

If the CD signal is not ignored, i.e., the I CD bit is not
asserted, controller 24 processes the actual state of the CD
signal. In particular, controller 24 reads the actual state of the
CD signal, and determines whether the CD signal is asserted
(56). If the CD signal is not asserted, controller 24 executes a
state to wait for the assertion of the CD signal by device 12
(58).
When the CD signal is either asserted by device 12 or has

been programmably ignored, controller 24 receives the cur

US 7,743,118 B1

rent communication from signals 26B (59). In this manner,
override States can be programmably setto override the actual
states of individual input signals 26B, such as the illustrative
flow control signal CD.
The ability to define override states for signals 26, and

thereby programmatically influence the operation of control
ler 24 allows device 10 to connect to a wide variety of devices,
including those devices that only support a Subset of signals
defined by a communication standard. Moreover, this flex
ibility allows for wiring errors to be programmatically cor
rected, rather than requiring physical rewiring of program
mable interface 16. For example, if device 12 does not support
the exemplary flow control signals DSR, CD and CTS, and a
technician has incorrectly wired any of the corresponding
electrical connectors, then communications between device
10 and device 12 may fail. Rather than debugging and rewir
ing the incorrectly wired electrical connectors, client 20 may
configure programmable interface 14 with a programmed
override state for the corresponding signals.

FIG. 6 is a block diagram illustrating an example network
router 60 that Supports programmable communication inter
faces consistent with the principles of the invention. Router
60 includes a set of one or more interface cards (IFCs) 72 that
receive and send communications via input signals 76A and
output signals 76B (collectively “signals 76”), respectively.
As illustrated, one or more of the IFCs 72 contain a respective
programmable register block (PRB) 74 that contains pro
grammable registers to store configuration data for defining
override states for signals 76. One or more of IFCs 72 may
comprise interface cards for sending and receiving data pack
ets to and from a network. In addition, one or more of IFCs 72
may support direct communication with other devices via a
communication standard.

Router 60 includes a control unit 62 that maintains routing
information 64. Routing information 64 describes the topol
ogy the network and, in particular, routes through the net
work. Routing information 64 may include, for example,
route data that describes various routes within the network,
and corresponding next hop data indicating appropriate
neighboring devices within the networkfor each of the routes.
Control unit 62 maintains routing information 64 to accu
rately reflect the topology of the network. In general, router
60 receives a packet via inbound signals 76A, control unit 62
determines the destination address of the packet and outputs
the packet on outbound signals link 76B based on the desti
nation.

Control unit 62 may receive configuration input from a
client 70 via a user interface 68. User interface 68 may be a
CLI or other suitable interface, for processing user-provided
or script-driven commands. Control unit 62 stores the con
figuration input received from client 70 as configuration data
66, which may take the form of a text file, such as an ASCII
file. Alternatively, control unit 62 may process the configura
tion input and generate configuration data 66 in any one of a
number of forms, such as one or more databases, tables, data
structures, or the like.

In response to receiving a configure command, control unit
62 may parse the command, and place router 60 in a configu
ration mode for receiving configuration data 66 from client
70. Configuration data 66 may take the form of one or more
commands for adding new settings to the current configura
tion of router 60, commands for deleting or modifying exist
ing settings of the current configuration, or combinations
thereof. Upon receiving a commit command, control unit 62
applies configuration data 66 to router 60.

Configuration data 66 may include any of the commands
described above to set override states pertaining to signals 76.

10

15

25

30

35

40

45

50

55

60

65

10
Client 70 may submit commands that identify individual ones
of IFCs 72 and, in particular, configure any of the program
mable registers contained within PRBs 74 of the identified
IFCS
Once the configuration data is applied, IFCs 72 operate as

described above in reference to programmable interface 16.
In particular, based on the configuration data stored with each
of PRBs 74, IFCs 72 control communication via signals 76 in
accordance with actual states for any non-overridden signals
76, and the programmed override states for any of signals 76
that have been overridden within the respective PRBs 74. As
described, the IFCs 72 may be configured to programmably
assert or de-assert individual signals 76 to override actual
Voltages present on electrical connectors associated with the
signals. As a result, an unused one of signals 76 for which the
associated electrical connector is incorrectly wired may be
programmably overridden. As another example, an override
state may be programmably set to change a polarity of indi
vidual signals 76.

Various embodiments of the invention have been
described. For example, programmable interface methods
and apparatus consistent with the principles of the invention
may be used with any type of interface to a system. These and
other embodiments are within the scope of the following
claims.

The invention claimed is:
1. A method for operating an industry standard serial com

munication interface comprising:
programmably setting with a processor an override state

for one of a plurality of signals of the industry standard
serial communication interface for communication
between network devices in response to a command
received from a client via a user interface, wherein the
command specifies a respective name associated with
the overridden one of the signals and identifies, from a
set of interface cards, an interface card of the router that
includes the industry standard serial communication
interface, and wherein the overridden one of the signals
comprises a flow control signal;

storing configuration data that defines the override state to
a programmable register of the industry standard serial
communication interface included within the identified
interface card, wherein the override state defines a logi
cal characteristic for the overridden one of the signals to
be used in place of a physical characteristic of an asso
ciated one of electrical connectors of the communication
interface when the associated one of the electrical con
nectors conveys the overridden one of the signals; and

communicating data with a controller of the industry stan
dard serial communication interface via the electrical
connectors in accordance with the programmed override
state for the overridden one of the signals and actual
states for the non-overridden signals, wherein commu
nicating data comprises controlling a flow of the data
through the serial communication interface in accor
dance with the actual states for the non-overridden sig
nals and the programmed override state for the overrid
den flow control signal.

2. The method of claim 1, wherein storing the configuration
data comprises writing the configuration data to the program
mable register based on the command.

3. The method of claim 1, wherein programmably setting
the override state comprises programmably asserting and de
asserting the overridden one of the signals to override an
actual Voltage present on the electrical connector associated
with the overridden one of the signals.

US 7,743,118 B1
11

4. The method of claim 3, wherein the command further
specifies a parameter to selectively assert and de-assert the
overridden one of the signals,

wherein the configuration data further indicates whether
the overridden one of the signal is to be treated as
asserted or de-asserted based on the command, and

wherein programmably asserting and de-asserting the
overridden one of the signals comprises:

receiving the command from the client via the interface
that specifies the parameter to selectively assert and
de-assert the overridden one of the signals; and

storing the configuration data that further indicates
whether the overridden one of the signals is to be treated
as asserted or de-asserted based on the command.

5. The method of claim 1, wherein programmably setting
an override state comprises programmably setting an override
polarity for the overridden one of the signals, and wherein
communicating data comprises selectively inverting the over
ridden one of the signals based on the override polarity.

6. The method of claim 5, wherein the command further
specifies a polarity parameter,

wherein the configuration data further defines the override
polarity based on the command, and

wherein programmably setting an override polarity com
prises:

receiving the command from the client via the interface
that specifies the polarity parameter, and

storing the configuration data that defines the override
polarity based on the command.

7. The method of claim 1, wherein programmably setting
the override state comprises programmably specifying that
the actual state associated with the overridden one of the
signals is to be disregarded when communicating the data.

8. A router comprising:
a set of interface cards, wherein one of the interface cards

comprises a programmable serial communication inter
face that complies with an industry standard and
includes a controller to communicate data via a set of
signals with another device in accordance with the
industry standard,

wherein the industry standard serial communication inter
face also includes a programmable register that defines a
programmable override state; and

a processor to configure the programmable serial commu
nication interface by executing instructions to:

receive a command that specifies a respective name asso
ciated with one of the signals; and

store configuration data that defines the override state to the
programmable register Such that the controller commu
nicates the data in accordance with the programmed
override state for at least one of the signals and actual
states for the remaining signals,

wherein the configuration data sets an override polarity for
the overridden one of the signals, and

wherein the programmable serial communication interface
communicates the data by selectively inverting the over
ridden one of the signals based on the override polarity.

9. The router of claim 8, wherein the processor presents the
interface by presenting a user interface to accept a command
from the client, and configures the programmable serial com
munication interface based on the command.

10. The router of claim 8, wherein the processor program
mably asserts and de-asserts the overridden one of the signals
to override an actual Voltage present on the electrical connec
tor associated with the overridden one of the signals.

5

10

15

25

30

35

40

45

50

55

60

65

12
11. The router of claim 10, wherein the command further

specifies a parameter to selectively assert and de-assert the
overridden one of the signals.

12. The router of claim 8, wherein the command further
specifies a polarity parameter.

13. The router of claim 8,
wherein the controller of the programmable serial commu

nication interface maintains a state machine and com
municates the data via the set of signals in accordance
with the state machine,

wherein the controller further receives override signals
from the programmable register based on the configura
tion data that define the override state, and

wherein the override signals modify operation of the state
machine maintained by the controller causing the con
troller to communicate the data in accordance with the
programmed override State for at least one of the signals
and the actual state for the remaining signals.

14. A non-transitory computer readable storage medium
comprising instructions to cause a processor to:

programmably set with a processor an override state for
one of a plurality of signals of the industry standard
serial communication interface for communication
between network devices in response to a command
received from client via a user interface, wherein the
command specifies a respective name associated with
the overridden one of the signals and identifies, from a
set of interface cards, an interface card of the router that
includes the industry standard serial communication
interface;

store configuration data that defines the override state to a
programmable register of the industry standard serial
communication interface included within the identified
interface card, wherein the override state defines a logi
cal characteristic for the overridden one of the signals to
be used in place of a physical characteristic of an asso
ciated one of electrical connectors of the communication
interface when the associated one of the electrical con
nectors conveys the overridden one of the signals; and

communicate data with a controller of the industry stan
dard serial communication interface via the electrical
connectors in accordance with the programmed override
state for the overridden one of the signals and actual
states for the non-overridden signals, wherein the
instructions cause the processor to programmably assert
and de-assert the overridden one of the signals to over
ride an actual Voltage present on the electrical connector
associated with the overridden one of the signals.

15. The non-transitory computer readable storage medium
of claim 14, wherein the instructions cause the processor to
store the configuration data by writing the configuration data
to the programmable register based upon the command.

16. The non-transitory computer readable storage medium
of claim 14,

wherein the command further specifies a parameter to
selectively assert and de-assert the overridden one of the
signals,

wherein the configuration data further indicates whether
the overridden one of the signal is to be treated as
asserted or de-asserted based on the command, and

wherein the instructions cause the processor to further
programmably set the override state by:

receiving command that further specifies the parameter to
selectively assert and de-assert the overridden one of the
signals; and

US 7,743,118 B1
13

storing the configuration data that further indicates
whether the overridden one of the signals is to be treated
as asserted or de-asserted based on the command to the
programmable register.

17. The non-transitory computer readable storage medium
of claim 14,

wherein the command further specifies a polarity param
eter,

wherein the configuration data further defines the override
polarity based on the command, and

wherein the instructions cause the processor to further
programmably set the override state by:

5

14
receiving the command from the client via the interface

that further specifies the polarity parameter; and
storing the configuration data that defines the override

polarity based on the command to the programmable
register.

18. The non-transitory computer readable storage medium
of claim 14, further comprising instructions to cause the
processor to programmably specify that the actual state asso
ciated with the overridden one of the signals is to be disre

10 garded when communicating the data.

k k k k k

