/073271 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 September 2003 (04.09.2003)

PCT

(10) International Publication Number

WO 03/073271 Al

(51) International Patent Classification”: GO6F 9/44

(21) International Application Number: PCT/US03/04076
(22) International Filing Date: 12 February 2003 (12.02.2003)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/359,145
10/304,353

22 February 2002 (22.02.2002)
26 November 2002 (26.11.2002)

Us
Us

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: FRY, Chris; 1930 Hopkins Street, Berkeley,
CA 94787 (US). ZIEGLER, Scott; 419 Fulton Street-Unit
C, San Francisco, CA 94102 (US).

(74) Agents: MEYER, Sheldon, R., et al.; Fliesler Dubb
Meyer and Lovejoy LLP, 4 Embarcadero Center, Suite
400, San Francisco, CA 94111-4156 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,
SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FIL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR XML DATA BINDING

XML Schema - Classes
100 Compile 104
A
Instance Instance
of of
Unmarshall
.
XML Document Objects
=
102 Marshall 106

(57) Abstract: A schema parser can be used in data binding to create a schema object model when given an XML schema (100).
€7 Java classes (104) can be generated using the schema object model (106), which correspond to elements and types in the schema.
Mapping can be done in each direction between the schema and Java classes, which can be written to a type mapping directory.
The schema object model can also contain mappings between each Java class and an XSD type. The mappings in the type mapping
directory can then be used to generate XML when given a Java object tree, and can be used to create and populate a Java class when

given an XML instance matching the schema object model.

WO 03/073271 PCT/US03/04076

SYSTEM AND METHOD FOR XML DATA BINDING

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material
which is subject to copyright protection. The copyright owner has no
objection to the facsimile reproduction by anyone of the patent document

5 of the patent disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright rights
whatsoever.

CLAIM OF PRIORITY

This application claims priority to U.S. Provisional Patent Application
10 No. 60/359,145, filed February 22,2002, entitled “SYSTEM AND METHOD
FOR XML DATA BINDING”, and U.S. Patent Application No. 10/304,353,
filed November 26, 2002, entitled “SYSTEM AND METHOD FOR XML
DATA BINDING” which are hereby incorporated herein by reference.

CROSS-REFERENCED CASES

15 The following applications are cross-referenced and incorporated
herein by reference:

U.S. Patent Application No. 10/304,233 entitled “SYSTEM AND

METHOD FOR FAST XSL TRANSFORMATION” by Chris Fry, filed

November 26, 2002.

10

15

20

WO 03/073271

U.S. Patent Application No. 10/304,280 entitled “SYSTEM AND
METHOD FOR XML PARSING” by Chris Fry, filed November 26, 2002.
U.S. Patent Application No. 10/304,207 entitied “STREAMING
PARSER API” by Chris Fry and Sam Pullara, filed November 26, 2002.
FIELD OF THE INVENTION

The present invention relates to the binding of data, particularly the
binding of XML data.

BACKGROUND

The eXtensible Markup Language, otherwise known as XML, has
become a standard for inter-application communication. XML messages
passing between applications contain tags with self-describing text. This
self-describing text allows messages to be understandable not only to the
applications, but to humans reading an XML document as well. XML is
currently used to define standards for exchanging information in various
industries. These document standards are available in various forms.

Several XML-based communication protocols exist, such as the
Simple Object Access Protocol (SOAP) and the ebXML protocol. The
ebXML protocol is an open XML-based infrastructure that enables the
global use of electronic business‘information. SOAP is a lightweight XML
protocol, which can provide both synchronous and asynchronous
mechanisms for sending requests between applications. The transport of
these XML documents is usually over a lower level network standard ,such

as TCP/IP.

PCT/US03/04076

10

15

20

WO 03/073271

XML documents need to be valid and well-formed. An XML
document is considered to be “well-formed” if it conforms to the particular
XML standard. An XML document is considered valid if it complies with a
particular schema. At the core of an XML document is an XML parser,
which will check to verify that a document is well formed and/or valid.

The processing of XML has become a standard function in many
computing environments. When parsing XML, it is necessary to get data
from the XML file and transform the data such that the data can be handled
by a Java application or other application running the parser. Efficient XML
processing is fundamental to the server. As more and more documents
become XML based, more and more traffic on the server will be in XML.
The latest push into web services (with SOAP as the transport) has also
highlighted the fundamental need for fast XML processing. Web services
use XML over HTTP as the transport for remote procedure calls. These
calls cannot be done in a timely manner if the XML parser is slow. There
are primarily two standard approaches for processing XML: (1) SAX, or
Simple API for XML, and (2) DOM or Document Object Model. Each
protocol has its benefits and drawbacks, although SAX presently has more
momentum as an XML processing API.

XML data binding is a process whereby XML documents can be
bound to objects that are designed especially for the data in those
documents. Data binding allows applications to manipulate data that has

been serialized as XML in a way that can be more natural than DOM. Data

-3-

PCT/US03/04076

10

15

20

WO 03/073271

binding can also have many cross-system dependencies. Web services
and XML parsing are examples of clients or applications that can utilize
data binding.

One method that is useful for XML data binding is JAXB, or the
Java™ Architecture for Data Binding. JAXB compiles an XML schema into
Java classes, which handle XML parsing and formatting. These generated
classes also ensure that the constraints expressed in the schema are
enforced in the resulting methods and Java language data types.
Presently, however, there is not a solution that allows not only mapping
from XML to Java, but also from Java to XML.

Castor XML is an existing, open source data binding framework for
Java to XML binding. Castor enables one to deal with the data defined in
an XML document through an object model which represents that data,
instead of dealing with the structure of an XML document like DOM and
SAX. Castor XML can marshal many Java objects to and from XML.
Marshalling, and the inverse operation of unmarshalling, involves
converting a stream of data, or sequence of bytes, to and from an object.
Marshalling converts an object to a stream, while unmarshalling converts
from a stream to an object. Castor, however, is not a complete solution for

applications such as web services.

PCT/US03/04076

10

15

20

WO 03/073271

BRIEF SUMMARY

It is therefore desirable to provide a framework that can map from
both XML to Java and from Java to XML.

It is also desirable to provide data binding support to web services.

It is also desirable to develop a parsing system that has increased
speed and ease of use.

It is also desirable to develop a parsing system with broad support
of XML specifications.

It is also desirable to develop a parsing system that has
interoperability across platform versions and releases.

A system and method for data binding‘in accordance with one
embodiment of the present invention uses a schema parser to create a
schema object model when given an XML schema. Java classes can be
generated using the schema object model, with the Java classes
corresponding to elements and types in the schema. Mapping can be
done in each direction between the schema and Java classes. This
mapping is written to a type mapping directory. The schema object model
can also contain mappings between each Java class and an XSD type.
The mappings in the type mapping directory can then be used to generate
XML when given a Java object tree, and can be used to create and
populate a Java class when given an XML instance matching the schema
object model.

Other features, aspects, and objects of the invention can be

-5-

PCT/US03/04076

10

15

20

WO 03/073271

obtained from a review of the specification, the figures, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of a system that can be used in accordance
with one embodiment of the present invention.

Figure 2 is a diagram showing a data binding subsystem that can be
used with the system of Figure 1.

DETAILED DESCRIPTION

A data binding framework, or a data binding system, in accordance
with one embodiment of the present invention can provide a mapping from
XML to Java and from Java to XML. Such a framework can be based, at
least in part, on Castor and JAXB. XML schema can be used as a syntax
definition for the framework. Multiple modes can be supported, such as
may include ‘fully code generated’ mode and ‘fully interpreted’ mode. The
framework can bind to provided classes and can make use of a generic
API. The framework can also provide validation of XML content, and can
support a subset of an application runtime. There may be no inheritance
required in the user code. This approach can provide acceptable
performance, such as being able to work within a Java Remote Method
Invocation (RMI) type timeframe to allow Remote Procedure Call (RPC)
style invocations, such as under 10 ms. The system can utilize a
configuration with a binding schema file, and can offer interoperability with

systems such as .NET and IBM.

PCT/US03/04076

10

15

20

WO 03/073271

For web services, XML binding requirements at runtime can include
the creation of Web Service Definition Language (WSDL) code from an
existing remote Java interface. A schema can be generated for complex
Java data types. Primitive types can also be mapped to XML Schema
Definition language (XSD) types. XSD is an XML-based grammar that can
be used to describe the structure of an XML document. A schema-aware
validating parser can validate an XML document against an XSD schema
and can report any discrepancies. The system can handle arrays and
collection classes. The schema should be generated using some default
rules. The user can have some control over the schema generation. The
Java interface and data classes can be generated from WSDL. The
system can convert XSD data types to Java and can generate Java
classes for complex XML types. A user can choose a package for
generated Java classes. A user can also recreate a schema from the
generated classes.

For an XML to Java case, a given namespace and element name
user can get the appropriate Java classes at runtime in a mode such as
generated mode. Given the stream and class, a user can get the
populated java instance. The user can also have control over the de-
serialization. For a Java to XML case, the primitives can be mapped to
XSD types. The user can also specify the XSD type. The system can
convert the java instance to an XML stream or to a tree, such as a DOM

tree.

PCT/US03/04076

10

15

20

WO 03/073271

At runtime in dynamic mode, a system can read schema specified
in WSDL. The system can also validate incoming XML documents using
this schema. The system can create and manipulate XML using an API
such as a DOM API or streaming parser API.

According to the JAXB specification, an XML data binding facility
can contain a schema compiler able to bind an input schema to a Java
class. The binding facility can also provide a binding framework that can
utilize a runtime API supporting certain primary operations, such as
unmarshalling, marshalling, and validation. An unmarshalling operation
can map an XML document into a tree of existing and schema-derived
classes. A marshalling operation can map content trees back to XML
documents. A validation operation can validate content trees against
schemas.

A system utilizing these operations is shown in Figure 1. In this
system, an input XML schema 100 can be compiled into at least one Java
class 104. Marshalling can be used to map an XML document 102 to a
class tree or Java object 106, and unmarshalling can be used to map the
Java object 106 to an XML document 102. When unmarshalling, binding
can be used by feeding an XML stream for an instance of an XML
document to generated classes 104, which can create and fill Java objects
106. When marshalling, an instance of a Java object 106 can be fed to

generated classes 104.

PCT/US03/04076

10

15

20

WO 03/073271

Components of a system that can be useful for XSD / Java
databinding are shown in Figure 2. A data binding subsystem 200 is
shown, which includes a SOM instance 210, a schema compiler 212, an
instance of the binding language 214, and a binding framework 202. The
binding framework 202 itself can include a marshaller 204, an unmarshaller
206, and a validator 208. The system also utilizes a parsing subsystem
222, which includes a base parser 224, a non-validating parser 226, and
a validating parser 228. A parsing subsystem can be similar to that
described in U‘.S. Patent application 10/304,280, fled November 26, 2002
entitled “SYSTEM AND METHOD FOR XML PARSING” to Chris Fry et al.
The data binding subsystem can communicate with the parsing subsystem
through a stream interface 216 and a schema interface 218. The system
can also include a web services subsystem 230, which can communicate

with the data binding subsystem 200 through a data binding interface 220.

The schema object model, or SOM, is a java object model that can
read or write any valid XML schema document, verify its validity, and allow
easy programmatic manipulation of schema documents. A schema parser
can parse an XML schema and create a schema object model. A schema
writer can take a SOM and output an XML schema representation.

For each construct in SOM, there can be a corresponding interface.

All generated classes can implement these interfaces. It is possible to

PCT/US03/04076

10

15

20

WO 03/073271 PCT/US03/04076

write general parsing and XML output routines in terms of these interfaces,
thereby leaving all such code out of the generated classes. There can be
generic implementations of these interfaces that can be used in the
dynamic case, where users of the data binding will not have enough
information about the schema to write to a Java interface that is a direct
mapping of the schema. These generic classes can implement enough of
the DOM interfaces to allow processing through XSLT or other appropriate
tools.

Given a SOM and an optional binding specification, a schema
compiler can output a collection of java classes or interfaces that map the
complex types and elements described in the schema into Java classes.

The binding process can be configurable. This can allow an XML
Path language (XPath) expression or other similar expression on the
schema to specify bindings at specific nodes in the schema. A marshaller
can take a tree of java objects and output valid XML. An unmarshaller can
parse an XML instance of a schema document and generate or fill in an
object tree.

Generally speaking, data binding can happen at compile time or at
runtime. At runtme, an arbitrary schema can be received, such as from
WSDL, and the system can access the XML data from an instance
document in a generic fashion. Generating java classes may not be
feasible in this case, as the user of the generated classes may not know

which methods to call.

-10-

10

15

20

WO 03/073271

In a dynamic situation, a schema parser can be used to create a
SOM and set up data binding if the parser is given an XML schema. Using
generic XSD objects, one or more object trees can be created that are
based on the SOM. To use binding with unmarshalling, an empty object
tree can be obtained or cloned, the XML instance can be parsed using
general classes, and the object tree can be filled in. If marshalling, an XSD
instance XML writer can be used for output, and can do some validation in
the process.

For a code-generation situation, binding can be set up by first using
a schema parser to create a SOM when given an XML schema. Using this
SOM, Java classes can be generated that correspond to elements and
complex types in the s‘chema. The mapping in both directions can be
entered into a type mapping directory, from complex types to Java classes.
The generated classes can implement the DOM interfaces and generic
XSD object interfaces, and may not contain any parsing code. An XSD
instance parser can be initiated with the generated SOM, which can prefill
various hashes. A pool of empty object trees can be created that are ready
to be filled. An XSD instance XML writer can be instantiated with prefilled
data structures that are ready to output XML when given an object tree. For
unmarshalling, an empty object instance tree can be cloned, created, or
obtained from a pool of objects for use in binding. The instantiated XSD
instance parser can be used to parse the code and fill in the empty object

tree.

-11-

PCT/US03/04076

10

15

20

WO 03/073271

For a code generation case where Java classes are given, binding
can be set up by reflecting on Java classes, building a SOM that contains
mappings of each class into an XSD complex type or simple type. The
same basic procedure can be used as when starting with an XML schema.
Each generated class can contain a static method that can take an XML
instance of that schema type, and can create and populéte the given Java
class. There may be no need to create an intermediate tree of code-
generated objects.

When unmarshalling, binding can be used by feeding an XML
stream to generated classes, which can create and fill Java objects. When
marshalling, an instance of a Java object can be fed to generated classes.
There can be at least two choices at this point. Generated objectinstances
for DOM type manipulations can be created, or an XML stream can be
created directly out of the Java classes, bypassing any intermediate object
creation. |

For a code generation case where both Java classes and XML
schema are given, binding can be set up as described above, except that
a smarter binding dictionary can be generated. Implicit in all these cases
is the use of a binding specification that can be used to customize the
process. All these implementations can use a streaming parser, such as
is described in U.S. Provisional Application No. 60/362,773 entitled

“STREAMING PARSER API,” by Chris Fry et al.

-12-

PCT/US03/04076

10

15

20

25

30

35

WO 03/073271 PCT/US03/04076

SOM can be implemented as a set of Java classes that extend from
a generic XSD object class. A schema object can contain a catalog of
types, both complex and simple, as well as model group definitions and
element objects. These classes can somewhat directly model various
schema components. A schema parser can contain all the necessary
parsing code to take an XML schema and create a SOM. Similarly, a
schema writer can take a SOM and output an XML schema. The SOM
classes may not contain any parsing logic.

The following example includes code to create a SOM with one
element of complexType “someType”:

Schema schema = new Schema();
schema.setTargetNamespace(“http://www.foo.com”);

ComplexType ct = new ComplexType();
ct.setLocalName(“someType");
ct.setParent(schema);

schema.addComplexType(ct);

ModelGroup mg = new ModelGroup();
mg.setParent(ct);
ct.setContentModel(mg);

Element int_el = new Element();

ct.setLocalName(“some_integer”);

int_el.setType(new ExpName(SchemaTypes.SCHEMA_NS,
SchemaTypes.XSD_INT));

mg.addParticle(int_el);
mg.setMaxOccurs(2);

Element el = new Element();
el.setParent(schema);
el.setType(ct.getExpName());
el.setMinOccurs(4); / / particle

-13-

10

15

20

25

WO 03/073271

schema.addElement(el);

/ I is this schema valid?
schema.validate();

SchemaDumper d = new SchemaDumper(schema);

d.walkSchema();

For each class in the SOM, there can be a corresponding Instance
class that can hold an instance of a schema component. Each such
instance object can hold a reference to the SOM Object that it represents.
Given that the most common case can be receipt of many instance
documents after initial receipt of a schema, it is possible, using the
knowledge of the schema, to precreate much of the object tree in an empty
state. The empty trees can then be cloned when a new tree is needed, or
possibly pooled, to avoid some of the overhead involved going from an
XML instance of a schema to java objects. Given a fully instantiated object
tree, it only remains to call the appropriate setters on the leaf nodes to fill
in the actual data. Some schema constructs may not be able to be fully
allocated in advance. These instance classes can implement the DOM
interfaces to allow XSLT and other tools to operate.

Code generation can be limited to the generation of interfaces.
These interfaces can be implemented using dynamic proxies that can
dispatch calls to the generic XSD object instances. This can allow all the

parsing and XML output code to be reused.

-14-

PCT/US03/04076

10

15

WO 03/073271

Part of the binding process can involve mapping XML names to the
more restrictive space of Java names. JAXB outlines an algorithm and
approach that can generally be followed. In order to achieve a true round
trip from XML to Java and back, the original XML name may need to be
stored.in the generated or dynamic classes, or perhaps in the mapping
directory.

The foregoing description of the preferred embodiments of the
present invention has been provided for the purposes of illustration and
description. It is not intended to be exhaustive or to limit the invention to
the precise forms disclosed. Many modifications and variations will be
apparent to the practitioner skilled in the art. Embodiments were chosen
and described in order to best describe the principles of the invention and
its practical application, thereby enabling others skilled in the art to
understand the invention, the various embodiments and with various
modifications that are suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the following claims

and their equivalents.

-15-

PCT/US03/04076

10

15

20

WO 03/073271

What is claimed is:
1. A system for data binding, comprising:

a schema compiler adapted to accept a schema for an XML
document and generate a set of interfaces that map any types and
elements of the schema into Java classes; and

a runtime API for mapping between the XML document and the

Java classes.
2. A system according to claim 1, wherein said runtime API is further
capable of mapping between the XML document and a content tree of at

least one of existing and schema-derived Java classes.

3. A system according to claim 2, wherein said runtime API is further

capable of validating the content tree against the schema.

4. A system according to claim 1, further comprising a parser for parsing

the XML document for mapping.

5. A system accord}ing to claim 1, wherein said schema compiler is

adapted to accept and XSD schema.

-16-

PCT/US03/04076

10

15

20

WO 03/073271

6. A system according to claim 5, wherein said runtime API is further
capable of validating the XML document against the XSD schema and

reporting any discrepancies.

7. A system according to claim 1, wherein said schema compiler adapted
to accept WSDL code to be used in generating the set of interfaces and

Java classes.

8. A system according to claim 1, further comprising a parser API for

generating XML to be mapped to Java classes.

9. A system according to claim 1, further comprising a web services

subsystem for supporting web services.

10. A system according to claim 1, further comprising a schema parser for

parsing the schema and generating a schema object model.

11. A system according to claim 10, further comprising a schema writer for

taking the schema object model and generating an XML schema

representation.

-17-

PCT/US03/04076

10

15

20

WO 03/073271

12. A system according to claim 1, further comprising a type mapping
directory, containing the mapping in both directions between types in the

schema and the Java classes.

13. A system according to claim 12, wherein said type mapping directory
contains generated classes implementing DOM interfaces and generic
XSD object interfaces, and do not contain any source code.

x
14. A system according to claim 13, further comprising a pool of empty

object trees based on the generated classes.

15. A system according to claim 14, further comprising an XML writer
adapted to use said pool of empty object trees to output XML when given

an object tree.

16. A system according to claim 13, wherein said runtime API can clone

an object tree for use in binding.

17. A system for data binding, comprising:

a schema parser for generating a schema object model when given
an XML schema;

means for generating Java classes from the schema object model

that correspond to elements and types in the schema; and

-18-

PCT/US03/04076

10

15

20

WO 03/073271

a type mapping directory for containing mapping between the XML

schema and the Java classes.

18. A system according to claim 17, further comprising:
an instance parser that can be initiated with the schema object

model and can prefill data structures.

19. A system according to claim 18, further comprising:
an XSD instance writer adapted to use the type mapping directory

and prefilled data structures to output XML when given an object tree.

20. A system for data binding, comprising:

a schema parser for generating a schema object model when given
an XML schema;

means for generating Java classes from the schema object model
that correspond to elements and types in the schema;

means for mapping each of the Java class to an XSD type; and

a type mapping directory for containing mapping between the XML

schema, Java classes, and XSD types.

21. A system according to claim 20, further comprising a static method for
each of the generated Java classes that can take an XML instance and

populate the appropriate Java class.

-10-

PCT/US03/04076

WO 03/073271 PCT/US03/04076

22. A method for data binding, comprising:
using a schema parser to create a schema object model when given
an XML schema;
generating Java classes using the schema object model, the Java
5 classes corresponding to elements and types in the schema; and
mapping in each direction between the schema and Java classes
and writing the mapping to a type mapping directory.
23. A method according to claim 22, wherein said schema object model

10 contains mappings between each Java class and an XSD type.

24. A method according to claim 23, further comprising:
using the mapping in the type mapping directory to generate XML

when given a Java object tree.

15
25. A method according to claim 23, further comprising:
using the mapping in the type mapping directory to create and
populate a Java class when given an XML instance matching the schema
object model.
20

26. A computer-readable medium, comprising:
means for using a schema parser to create a schema object model

when given an XML schema;

-20-

10

15

20

WO 03/073271

means for generating Java classes using the schema object model,
the Java classes corresponding to elements and types in the schema; and
means for mapping in each direction between the schema and Java

classes and writing the mapping to a type mapping directory.

27. A computer program product for execution by a server computer for
data binding, comprising:

computer code for using a schema parser to create a schema object
model when given an XML schema;

computer code for generating Java classes using the schema object
model, the Java classes corresponding to elements and types in the
schema; and

computer code for mapping in each direction between the schema

and Java classes and writing the mapping to a type mapping directory.

28. A system for data binding, comprising:

means for using a schema parser to create a schema object model
when given an XML schema;

means for generating Java classes using the schema object model,
the Java classes corresponding to elements and types in the schema; and

means for mapping in each direction between the schema and Java

classes and writing the mapping to a type mapping directory.

-21-

PCT/US03/04076

10

WO 03/073271 PCT/US03/04076

29. A computer system comprising:

to:

a processor,

object code executed by said processor, said object code configured

use a schema parser to create a schema object model when given
an XML schema,;

generate Java classes using the schema object model, the Java
classes corresponding to elements and types in the schema;
and

map in each direction between the schema and Java classes and

writing the mapping to a type mapping directory.

-22-

PCT/US03/04076

WO 03/073271

1/2

; amSny

907 Ireysten A
s3299[q0 juswinoo(Q TNIX
lleys.tewun
10 Jo
aouejsuj aouelsu|
Y0l apdwosn ol
sosse|) BWAYIS TAIX

PCT/US03/04076

WO 03/073271

2/ 2

o
2
N

waysAsgng
S99IAI9S g9

7 amSgy

022
9JeLIdju]
Buipuig ejeq

¢ce

8

N

Bunepljep

9¢e
Bunepijea-uoN

8l¢
aoeLI9)U]
BWIAYOS

[z44
losied oseg

wolsAsqng buisied

9l¢
aoeLI9)U|
weans

vic c0¢
obenbue]
Buipuig 302
Jojepljep
\i 902
rAxd Jajjeyssewun
Joidwon
BWaYoS Y02
J9jjeysiep
A
}lomauwel] Buipuig
012
NOS

wajsAsgng Buipuig eyeq

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US03/04076
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GO6F 9/44
USCL ¢ 7177100

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/100

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y, P US 2002/0085020 A1 (CARROLL, JR.) 04 July 2002 (04.07.2002), see Abstract, Figures 1-29
1-24, [0017]-{0053].
Y, P US 6,516,322 B1 (MEREDITH) 04 February 2003 (04.02.2003), see Abstract, Figures 1- 1-29
30, col. 2, lines 13-67 through col. 3, lines 1-42.
Y, P US 2003/0005410 A1 (HARLESS) 02 January 2003 (02.01.2003), see Abstract, Figures 1- 1-29
6, [0036]-[0048].
Y,P US 2003/0018661 A1 (DARAUGAR) 23 January 2003 (23.01.2003), see Abstract, Figures 1-29

1-13, [0006]-[0023].

D Further documents are listed in the continuation of Box C. [:I See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“Xn document of particular relevance; the claimed invention cannot be
“E" earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L» document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“Q" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“p” document published prior to the international filing date but later than the “&” document member of the same patent family
priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report

04 May 2003 (04.05.2003) 14 JUL ‘2003

Name and mailing address of the ISA/US Authorized officer
Mail Stop PCT, Attn: ISA/US p
Commissioner for Patents John Follansbee ef,?sod\/\
P.O. Box 1450

Alexandria, Virginia 22313-1450 Telephone No. (703) 305-8498
Facsimile No. (703)305-3230

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

