本发明公开了一种处理危险废弃物的等离子气化炉及工艺。包括：气化炉体，其包括一体成型的圆柱状的上部分，圆柱状的中部以及圆柱状的下部分，上部分的内壁和中部的内壁均设有硅酸钙板层、刚玉浇注料层和高铝浇注料层，硅酸钙板层、刚玉浇注料层和高铝浇注料层的厚度总和为 300 ～ 500mm。下部分的内壁设有硅酸钙板层、刚玉浇注料层和含铬砖层，硅酸钙板层、刚玉浇注料层和含铬砖层的厚度总和为 300 ～ 500mm。上部分、中部和下部分的高度比为 70：25：30：30：35。本发明提供一种原料适应性好，技术先进，气化效率高，没有二次污染的处理和利用危险废弃物的等离子气化工艺及其设备。
1. 一种处理危险废弃物的等离子气化炉，其特征在于，包括：

气化炉体，其包括一体成型的圆柱状的上部分、倒置圆台状的中部分以及圆柱状的下部分；

至少一个进料管，其靠近所述中部分的一端设置于所述上部分的侧壁，所述进料管与所述气化炉体连通；

出气口，其形成于所述上部分顶部的中心处；

1 ～ 4 组气化剂入口，其沿所述下部分的轴线均匀设置于所述下部分的侧壁，每组所述气化剂入口包括 2 ～ 6 个气化剂管；

熔渣排出口，其形成于所述下部分的下端。

其中，所述上部分的内壁和所述中部分的内壁均设有硅钙板层、刚玉浇注料层和高铝浇注料层，所述硅钙板料层、所述刚玉浇注料层和所述高铝浇注料层的厚度总和为 300 ～ 500mm；

所述下部分的内壁设有硅钙板层、刚玉浇注料层和铬锆砖层，所述硅钙板料层、所述刚玉浇注料层和所述铬锆砖层的厚度总和为 300 ～ 500mm；

所述上部分、所述中部分和所述下部分的高度比为 70 ： 25 ～ 30 ： 30 ～ 35。

2. 如权利要求 1 所述的处理危险废弃物的等离子气化炉，其特征在于，所述下部分的侧壁设置有 1 ～ 4 个等离子体炬，所述等离子体炬沿所述下部分的侧壁的圆周均匀分布，所述等离子体炬的功率为 100 ～ 500kW。

3. 如权利要求 2 所述的处理危险废弃物的等离子气化炉，其特征在于，所述进料管为 1 ～ 4 个，所述等离子体炬的功率为 2 ～ 4 个时，所述等离子体炬沿所述下部分的圆周均匀分布，并延伸穿过所述上部分的侧壁，与所述上部分的侧壁垂直。

4. 如权利要求 3 所述的处理危险废弃物的等离子气化炉，其特征在于，每组气化剂入口中的气化剂管沿所述下部分的圆周均匀分布，并向上延伸穿过所述下部分的侧壁。

5. 如权利要求 4 所述的处理危险废弃物的等离子气化炉，其特征在于，所述进料管的外壁上设置有水冷夹套，其包括：

第一夹套壁，其形成于所述进料管的外壁，与所述进料管的外壁之间形成第一腔体；

第二夹套壁，其形成于所述第一夹套壁的外壁，与所述第一夹套壁的外壁之间形成第二腔体，所述第一腔体和所述第二腔体在靠近所述气化炉体的一端连通；

进水管，其与所述第二腔体连通；

出水管，其与所述第一腔体连通。

6. 如权利要求 5 所述的处理危险废弃物的等离子气化炉，其特征在于，所述熔渣排出口延伸穿过所述下部分的下端，呈 L 型。

7. 如权利要求 6 所述的处理危险废弃物的等离子气化炉，其特征在于，还包括温度检测预警装置，包括：

温度检测模块，其包括设置于所述气化炉体的下部分的第一红外线测温仪和设置于所述出气口处的第二红外线测温仪；

数据处理模块，其包括与所述第一红外线测温仪连接的第一数据处理模块，以及与所述第二红外线测温仪连接的第二数据处理模块；

GSM 模块，其与所述数据处理模块连接，以及
电脑终端，其与所述 GSM 通讯连接；
其中所述第一数据处理模块设置为每间隔 1 小时采集第一红外线检测仪检测的温度，当温度低于 1500℃时，将采集的数据发送给 GSM 模块，并发出报警；所述第二数据处理模块设置为每间隔 1 小时采集第二红外线检测仪检测的温度，当温度低于 1000℃时，将采集的数据发送给 GSM 模块，并发出报警。
8. 一种如权利要求 6 所述的等离子气化炉处理危险废弃物的工艺，其特征在于，包括以下步骤：
步骤一、启动等离子体炬，通过进料口添加燃料并引燃，预热所述等离子气化炉，控制所述气化炉体的上部分和中部分的温度不低于 1100℃，控制所述气化炉体的下部分的下端温度不低于 1500℃；
步骤二、向所述气化器入口通入氧气、富氧空气或空气中的任意一种，将经过预处理的危险废弃物通过所述进料管进入下部分下端形成的熔融区，经气化、熔融后，其中的有机物气化为合成气，依次进入所述中部分和上部分形成的气化区，无机物熔化为液态物质，所述液态物质通过所述熔渣排出口排出，激冷后形成包裹重金属的玻璃体渣；
步骤三、合成气进入所述出气口时，控制所述合成气的温度为 1000℃～1100℃，使出气口的合成气进入余热锅炉，之后回收所述合成气。
9. 如权利要求 8 所述的等离子气化炉处理危险废弃物的工艺，其特征在于，所述合成气从所述出气口依次通过第一除尘装置、余热回收装置、脱硫装置以及第二除尘装置。
10. 如权利要求 9 所述的等离子气化炉处理危险废弃物的工艺，其特征在于，所述危险废弃物的预处理为：将所述危险废弃物处理至粒度为 5～150mm，含水率不高于 40％。
处理危险废弃物的等离子气化炉及工艺

技术领域
[0001] 本发明涉及一种节能环保的气化炉，更具体的涉及一种处理危险废弃物的等离子气化炉及工艺。

背景技术
[0002] 随着国家经济的快速发展，我国危险废弃物的产量逐年增多，截至2014年，危险废弃物的年产生量已经突破1400万吨，并且还在持续增加，如果不加以适当地处理，人类赖以生存的环境将受到严重的污染和破坏。
[0003] 与一般的废弃物相比，危险废弃物具有腐蚀性、浸出毒性、急性毒性、易燃性、传染性等特性。针对危险废弃物的处理，全球乃至我国都相继出台了一系列的法律法规，危险废弃物的处理对于全球都着重要的意义。危险废弃物的常见处理方式分为预处理技术、填埋法、固化法和焚烧法等。目前预处理技术存在过程复杂、处理周期长、处理成本高、处理效率低下等缺点。填埋法是最终处置危险废物的一种方法，若有合适的土地可供利用，此法最为经济；它不受废物的种类限制，适合处理大量的废物；填埋后的土地可重新用作停车场、游乐场、高尔夫球场。但其也存在一些缺点，其在填埋过程中，由于自然条件的影响，如雨水长时间的冲刷、地表水及地底水的长时间的浸泡以及发酵，会产生含有多种有毒有害物质的渗滤液以及易燃、易爆或毒性气体，需加以控制和处理。并且填埋法还会占用大量的土地资源，不符合减量化和资源化的废弃物处理原则。固化法是将水泥、塑料、水玻璃、沥青等凝结剂同危险废弃物物加以混合进行固化，使得污泥中所含的有害物质封闭在固化体内不被浸出。固化法能降低废物的渗透性，并且能将其制成具有高应变能力的的最终产品，变废为宝。但固化法存在污染物浸出的风险，一旦固化体破裂，污染物就会浸出污染环境。相对于上述的预处理技术、填埋法和固化法，焚烧法有着显著的优势，差不多所有的有机性危险废弃物都可用焚烧法处理。焚烧法的优点在于能迅速而大幅度的减少可燃性危险废弃物的容积，焚烧后的废物容积只是原容积的20%甚至更少。一些有害废物经过焚烧，其组成结构被破坏，其中的病原菌被杀死，达到减量化、无害化的处理目的。但是危险废弃物的组成、热值、形状和燃烧状态会随着时间与燃烧区域的不同而有较大的变化，燃烧后所产生的废气组成和废渣性质也会随之改变。焚烧的设备有专用的焚烧炉和工业窑炉，不论采用哪种焚烧设施，均要考虑产生二次污染的问题，焚烧会产生具有严重毒性的二噁英，一旦被人体吸收，会对人体的健康产生极大的危害。
[0004] 在综合分析比较上述常用的处理方法的优缺点的基础上，全球相继开展了一种新型的危险废弃物处理技术——等离子气化技术的研究。等离子气化技术是指利用等离子体炬作为气化炉的热源，而不是传统的点火和熔炉。不同于焚烧，等离子体炬利用电弧的能量加热气体，产生高温、高热密度等离子射流，几乎能将废物中的有机物完全转化成合成气，无机物经过熔融、激冷变成无害化的玻璃体渣。整个过程没有二次污染的产生。用于处理和利用危险废弃物的等离子气化技术及设备正是解决日渐增多的危险废弃物的新型方向，对于环保技术的发展有着重大的意义。
发明内容
[0005] 本发明的一个目的是解决至少上述问题和缺陷，并提供后期将说明的优点。
[0006] 本发明还有一个目的是提供一种原料适应性好、技术先进、气化效率高、没有二次污染的处理和利用危险废弃物的等离子气化工艺及其设备。
[0007] 本发明还有一个目的是提供一种具有温度检测预警装置的等离子气化炉，严格控制炉体内部的温度，防止温度低于设定温度时二噁英的产生。
[0008] 本发明还有一个目的是能够将具有毒性、腐蚀性、传染性的危险废弃物高温气化，气化过程连续，无废渣的排放，并且产生的气体为合成气，可以先经过余热锅炉对其热量进行回收，用以生产蒸汽，冷却后的合成气，经过除尘、脱硫、脱硝后，可以用于发电、供暖或用来生产甲醇等化工产品；危险废弃物中的无机物经过高温熔融，产生的液态熔渣排出炉后，经冷却后形成玻璃体渣，危险废弃物中的铬、铅等重金属会被牢牢包裹在玻璃体致密的硅氧网状结构中，经毒性浸出测试，是无害的，可作为路基材料。
[0009] 为了实现根据本发明的上述目的和其它优点，提供了一种处理危险废弃物的等离子气化炉，包括：
[0010] 气化炉体，其包括一体成型的圆柱状的上部分、倒置圆台状的中部分以及圆柱状的下部分；
[0011] 至少一个进料管，其靠近所述中部分的一端设置于所述上部分的侧壁，所述进料管与所述气化炉体连通；
[0012] 出气口，其形成于所述上部分顶部的中心处；
[0013] 1～4组气化剂入口，其沿所述下部分的轴线均匀设置于所述下部分的侧壁，每组所述气化剂入口包括2～6个气化剂管；
[0014] 熔渣排出口，其形成于所述下部分的下端。
[0015] 其中，所述上部分的内壁和所述中部分的内壁均设置有硅酸钙板层、刚玉浇注料层和高铝浇注料层，所述硅酸钙板层、所述刚玉浇注料层和所述高铝浇注料层的厚度总和为300～500mm；
[0016] 所述下部分的内壁设为硅酸钙板层、刚玉浇注料层和高铝浇注料层，所述硅酸钙板层、所述刚玉浇注料层和所述高铝浇注料层的厚度总和为300～500mm；
[0017] 所述上部分、所述中部分和所述下部分的高度比为70：25～30：30～35。
[0018] 优选的是，所述下部分的侧壁设置有1～4个等离子体炬，当所述等离子体炬的数量为2～4个时，2～4个所述等离子体炬在所述下部分的侧壁的圆周均匀分布，所述等离子体炬的功率为100～500kw。
[0019] 优选的是，所述进料管为1～4个，当所述进料管的数量为2～4个时，所述进料管沿所述上部分的圆周均匀分布，并延伸穿过所述上部分的侧壁，与所述上部分的侧壁垂直。
[0020] 优选的是，每组气化剂入口中的气化剂管沿所述下部分的圆周均匀分布，并向上延伸穿过所述下部分的侧壁。
[0021] 优选的是，所述进料管的外壁上设置有水冷夹套，其包括：
[0022] 第一夹套壁，其形成于所述进料管的外壁，与所述进料管的外壁之间形成第一腔
体；
[0023] 第二夹套壁，其形成于所述第一夹套壁的外壁，与所述第一夹套壁的外壁之间形成第二腔体，所述第一腔体和所述第二腔体在靠近所述气化炉筒的一端连通；
[0024] 进水管，其与所述第二腔体连通；
[0025] 出水管，其与所述第一腔体连通。
[0026] 优选的是，所述熔渣排出口延伸穿过所述下部分的下端，呈倒L型。
[0027] 优选的是，还包括温度检测预警装置，包括：
[0028] 温度检测模块，其包括设置于所述气化炉筒的下部分的第一红外线测温仪、设置于所述出气口处的第二红外线测温仪；
[0029] 数据处理模块，其包括与所述第一红外线测温仪连接的第一数据处理模块，以及与所述第二红外线测温仪连接的第二数据处理模块；
[0030] GSM模块，其与所述数据处理模块连接；以及
[0031] 电脑终端，其与所述GSM通讯连接；
[0032] 其中，所述第一数据处理模块设置为每间隔1小时采集第一红外线检测仪检测的温度，当温度低于1500℃时，将采集的数据发送给GSM模块，并发出报警；所述第二数据处理模块设置为每间隔1小时采集第二红外线检测仪检测的温度，当温度低于1000℃时，将采集的数据发送给GSM模块，并发出报警。
[0033] 本发明还可以进一步的由等离子气化炉处理危险废弃物的工艺来实现，包括以下步骤：
[0034] 步骤一，启动等离子体炬，通过所述进料口添加燃料并引燃，预热所述等离子气化炉，控制所述气化炉筒的上部分和中部分的温度不低于1100℃，控制所述气化炉筒的下部分的下端温度不低于1500℃。
[0035] 步骤二，向所述气化剂入口通入氧气、富氧空气或空气中的任意一种，将经过预处理的危险废弃物通过所述进料管进入下部分下端形成的熔融区，经气化、融化后，其中的有机物气化为合成气，依次进入所述中部分和上部分形成的气化区，无机物熔化为液态物质，所述液态物质通过所述熔渣排出口排出，经冷却后形成包裹有重金属的玻璃体渣；
[0036] 步骤三，合成气进入所述出气口时，控制所述合成气的温度为1000℃～1100℃，使出气口的合成气进入余热锅炉，之后回收所述合成气。
[0037] 优选的是，所述合成气从所述出气口出来后，依次通过第一除尘装置、余热回收装置、脱硫装置以及第二除尘装置。
[0038] 优选的是，所述危险废弃物的预处理为；将所述危险废弃物处理至粒度为5～150mm，含水率不高于40%。
[0039] 本发明的有益效果是：
[0040] 1.本发明采用的气化技术，环保和经济效益好，生成的合成气从炉顶排出，热量可回收用来生产蒸气；炉渣经过高温液态排渣，可形成玻璃体渣，用作路基材料；合成气经过净化（包括除尘、脱硫、脱硝等）后，可用于发电、供暖或生产甲醇等化工产品。
[0041] 2.本发明采用的气化技术对原料的种类适应性强，可处理热值高的医疗垃圾，中热值的污泥等，并且还能处理多种混合危险废弃物；
[0042] 3.本发明采用的炉体结构新颖独特，炉体提供危险废弃物气化的能源来自等离子
体炬，等离子炬具有高热流密度，进料口、出气口位置的设置合理准确，能够保证危险废弃物在炉内彻底分解可能携带的二噁英以及焦油等物质，出气化炉的合成气中无二噁英和焦油，等离子炬的功率可调，排布方式利于充分利用等离子炬的能量形成高温环境，利于危险废弃物的瞬间气化。

【0043】4. 本发明提供的等离子气化炉节省，等离子体炬的能量只占危险废弃物总能量的极小部分，并且催化剂入口的排布方式具有创新性，能够灵活控制氢气化炉内氢化剂的流量，充分利用危险废弃物自身的热量，调节合成气的出口温度和成分。

【0044】5. 本发明提供的等离子化炉炉筒，既提高了化炉处理的无害化和资源化的原则，危险废弃物中有机物高温气化产生的合成气从炉顶流出，其携带的热量可以回收利用产生蒸汽，合成气出口设有气体成分分析仪，可以通过调整氢化剂的用量来改变合成气的成分，自身可以供暖或用来合成化工产品；危险废弃物中无机物熔融、激冷后，形成无害化的玻璃体渣，可用来制造建筑材料。

【0045】6. 本发明提供的用于处理和利用危险废弃物的等离子气化技术是一种节省投资的技术，由于从等离子气化炉出来的合成气中携带的氯氧化物、硫化物等有害物质的量较少，用于处理它们的设备的投资也会相应降低，并且没有填埋的费用以及处理二次污染的费用，节省了企业和政府大量的投资。

【0046】本发明的其它优点、目标和特征将部分通过下面的说明体现，部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。

附图说明

【0047】图1为处理危险废弃物的等离子气化炉的结构示意图；

【0048】图2为处理危险废弃物的等离子气化炉中的水冷夹套的结构示意图；

【0049】图3为等离子气化炉处理危险废弃物的工艺的流程图。

具体实施方式

【0050】下面结合附图对本发明做进一步的详细说明，以令本领域技术人员参照说明书文字能够据以实施。

【0051】需要说明的是，在本发明的描述中，术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“远”、“近”、“竖直”、“水平”、“竖”、“横”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系，仅是为了便于描述本发明和简化描述，并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作，因此不能理解为对本发明的限制。

【0052】参照图1，示出了根据本发明的一种实现形式，提供了一种处理危险废弃物的等离子气化炉，包括：

【0053】气化炉体1，其包括一体成型的圆柱状的上部分11、倒置圆台状的中部分12以及圆柱状的下部分13。

【0054】至少一个进料管113，可以是一个、两个或者多个，其靠近所述中部分12的一端设置于所述上部分11的侧壁，所述进料管113与所述气化炉体1连通，用于将危险废弃物投入所述气化炉体1中。
出气口 111，其形成于所述上部分 11 顶部的中心处，将危险废弃物产生的气体排出。出气口 111 设置于气化炉体 1 的上部分 11 顶部，气化炉体 1 留有足够大的空间，利于二噁英及氯气产生的焦油在进料口和出气口 111 之间的空间内的彻底分解，使从出气口 111 出来的气体中无二噁英及焦油，且温度控制在 1000 ～ 1100℃。

1 ～ 4 组气化入口，其沿所述下部分 13 的轴线均匀设置在所述下部分 13 的侧壁，每组所述气化入口包括 2 ～ 6 个气化液管 133。

熔渣排出口 134，其形成于所述下部分 13 的下端。

其中，所述上部分 11 的内壁和所述中部分 12 的内壁均设有硅酸钙板层、刚玉浇注料层和高铝浇注料层，三者组合为第一隔热层 112，所述硅酸钙板层、所述刚玉浇注料层和所述高铝浇注料层的厚度总和为 300 ～ 500mm；

所述下部分 13 的内壁设有硅酸钙板层、刚玉浇注料层和含铬砖层，三者组合为第二隔热层 131，所述硅酸钙板层、所述刚玉浇注料层和所述含铬砖层的厚度总和为 300 ～ 500mm。

在上述技术方案中，由于上部分 11、中部分 12 和下部分 13 的温度各不相同，下部分 13 的温度尤其高，要保证炉体外部的温度低，针对性的对气化炉体 1 的内壁设置耐高温层，相较于现有的普通耐火材料，本发明通过大量实验发现当温度在 1100℃左右时，通过硅酸钙板层、所述耐火浇注料层和所述高铝浇注料层的设置，控制三者的厚度总和为 300 ～ 500mm 时，可使上部分 11 和中部分 12 的外壁温度低于 100℃，当温度在 1500℃时，通过设置硅酸钙板层、耐火浇注料层和高铝浇注料层，控制三者的厚度总和为 300 ～ 500mm 时，可使下部分 13 的外壁温度低于 100℃，当使用单一的耐火材料，或者其他耐火材料的组合，或者以上三种耐火材料的组合但厚度小于 300mm 时，气化炉体 1 的外壁温度均不能低于 100℃，因此不能确保气化炉的安全运行。

所述上部分 11，所述中部分 12 和所述下部分 13 的高度比为 70：25：30：30～35，例如，当所述上部分 11 的高度为 7m 时，所述中部分 12 的高度为 -3m，所述下部分 13 的高度可以是 -3m。

在上述技术方案中，相较于一般的气化炉体 1，本发明的气化炉体 1 的下部分 13 的高度比一般气化炉体 1 的高度要高 20%，由于所述下部分 13 的温度高，可充分利用下部分 13 的高温，提高危险废弃物的气化效率。

所述下部分 13 的侧壁设置有 1～4 个等离子体炬 132，所述等离子体炬 132 的数量为 2～4 个时，2～4 个所述等离子体炬 132 沿所述下部分 13 的侧壁的圆周均匀分布，所述等离子体炬 132 的功率为 100 ～ 500kw。

在上述技术方案中，等离子体炬 132 排列方式能够形成环状，能够充分的利用等离子体炬产生的高温，大大提高了危险废弃物的气化效率与强度。

在另一种技术方案中，所述进料口 113 为 1～4 个，当所述进料口 113 的数量为 2～4 个时，所述进料口 113 沿所述上部分 11 的圆周均匀分布，并延伸穿过所述上部分 11 的侧壁，与所述上部分 11 的侧壁垂直。

在上述技术方案中，进料口 113 设置过多，不利于进料操作，根据投放的速度，决定设置 1～4 个进料口 113，完全可达到危险废弃物的投入量与气化量达到一个动态的平衡，当危险废弃物的投放量过低或过高时，不利于气化温度控制，有可能使气化炉产生有
毒有害物质。
[0067] 在另一种技术方案中，每组气化剂入口中的气化剂管 133 沿所述下部分 13 的圆周均匀分布，并向上延伸穿过所述下部分 13 的侧壁。
[0068] 在上述技术方案中，气化剂管 133 沿所述下部分 13 的圆周均匀分布，使进入到气化炉体 1 内的气体更均匀，与危险废弃物的接触更充分。
[0069] 参照图 2，在另一种技术方案中，所述进料管 113 的外壁上设置有水冷夹套 14，其包括：
[0070] 第一夹套壁 141，其形成于所述进料管 113 的外壁，与所述进料管 113 的外壁之间形成第一腔体；
[0071] 第二夹套壁 142，其形成于所述第一夹套壁 141 的外壁，与所述第一夹套壁 141 的外壁之间形成第二腔体，所述第一腔体和所述第二腔体在靠近所述气化炉体 1 的一端连接，使第一腔体和第二腔体中的液体能够相互交换；
[0072] 进水管 143，其与所述第二腔体连通，水从进水管 143 进入第二腔体，通过第二腔体进入第一腔体。
[0073] 出水管 144，其与所述第一腔体连通，用于将第一腔体内的水排出，将排出的水降温后，再次循环进入第二腔体。
[0074] 在上述方案中，进料管 113 一般为耐高温设计的，进料的过程会遇到有炉体底部生成的并上行的高温合成气（1100℃），长期使用会对进料管 113 造成高温热辐射，而损坏进料管 113，需要定期更换进料管 113，每更换一次都要将气化炉体 1 停止运行，需要人力物力的配合，造成一定的经济损失，对危险废弃物的处理也耽误了，会加重对环境的污染，通过设置与进料管 113 相配套的水冷夹套 14，通过热交换，能够降低进料管 113 周围的温度，大大降低了进料管 113 的损坏，所用水为循环水，不会造成浪费，同时收集热水中的热量，还可用于发电等，降低了热能的损坏。
[0075] 在另一种技术方案中，所述熔渣排出口 134 延伸穿过所述下部分 13 的下端，熔渣排出口 134 与下部分 13 接触的一端倾斜向下，呈类似倒 L 型。便于液态熔渣从气化炉体 1 的下端流出至激流池。
[0076] 在另一种技术方案中，还包括温度检测预警装置，包括：
[0077] 温度检测模块，其包括设置于所述气化炉体 1 的下部分 13 的第一红外线测温仪、设置于所述出气口 111 处的第二红外线测温仪；
[0078] 数据处理模块，其包括与所述第一红外线测温仪连接的第一数据处理模块，以及与所述第二红外线测温仪连接的第二数据处理模块；
[0079] GSM 模块，其与所述数据处理模块连接；以及
[0080] 电脑终端，其与所述 GSM 通讯连接；
[0081] 其中，所述第一数据处理模块设置为每间隔 1 小时采集第一红外线检测仪检测的温度，当温度低于 1500℃时，将采集的数据发送给 GSM 模块，并发出报警；所述第二数据处理模块设置为每间隔 1 小时采集第二红外线检测仪检测的温度，当温度低于 1000℃时，将采集的数据发送给 GSM 模块，并发出报警。
[0082] 在上述技术方案中，设置温度检测预警装置可严格控制气化炉体 1 两个重要的地方的温度，一个是下部分 13 的下端为熔融区，保证了温度不低于 1500℃，若低于会立马发
出警报信号，只会对危险废弃物的处理造成短暂的影响，不然当温度低于1500℃时，不能使熔渣呈液态形式流出，就不能持续的排渣，可能会堵塞排渣口。另一个是在出气口111，保证了温度低于1000℃时，会立发出报警信号，避免二噁英在低于1000℃时未分解排放出去，给后续的净化工序增加处理负荷，若排放出去对环境会造成污染。

[0083] 参照图3，等离子气化炉处理危险废弃物的工艺，包括以下步骤：

[0084] 步骤一，启动等离子体矩132，通过所述进料口添加一定量的燃料并引燃，预热所述等离子气化炉，控制所述气化炉体1的气化区即上部分11和中部分12的温度不低于1100℃，同时气化区也包括气化炉体1下部分13的端面，控制所述气化炉体1的熔融区即下部分13的下端温度不高于1500℃。

[0085] 在步骤一中，提供给危险废弃物的气化的热源不是蒸汽，而是具有高热流密度的等离子体矩132，使得气化的危险废弃物的种类进一步扩大，危险废弃物进入气化炉中，其中含有的有机物能够迅速裂解，气化为合成气，且合成气的出口温度为1050±50℃，能够保证无有毒有害物质二噁英的排放。危险废弃物中的无机物在炉内高温熔融后，以液态的形式由气化炉壳体底部的熔渣排出口134排出来，危险废弃物中残留的重金属也会随之排出，可回收利用。

[0086] 步骤二，向所述气化剂入口通入氧气、富氧空气或空气中的任意一种，通入气化剂，形成部分氧化的反应环境，能够充分利用危险废弃物自身的热值，而等离子体矩132提供的能量只占危险废弃物总能量极小部分，大大降低等离子体矩132能量的输入。将经过预处理的危险废弃物通过所述输送管113进入下部分13下端形成的熔融区，经气化、熔融后，其中的有机物气化为合成气，合成气的有效成分为CO和H₂，依次进入所述中部分12和上部分11形成的气化区，无机物熔化为液态物质，所述液态物质通过所述熔渣排出口134排出，激冷后形成包裹有重金属的玻璃体渣。

[0087] 步骤三，合成气进入所述出气口111时，控制所述合成气的温度为1000℃～1100℃，使出气口111的合成气进入余热锅炉，之后回收所述合成气。

[0088] 在另一种技术方案中，所述合成气从所述出气口111出来后依次经过第一除尘装置、余热回收装置、脱硫装置以及第二除尘装置，经过第一除尘装置初步过滤大颗粒的灰尘；经过第二除尘装置过滤小颗粒的灰尘，使合成气更加清洁。

[0089] 在另一种技术方案中，所述危险废弃物的预处理为：将所述危险废弃物处理至粒度为5～150mm，含水率不高于40%。

[0090] 在上述技术方案中，提供的等离子气化炉是一种符合危险废弃物处理无害化和资源化原则的新型工业炉，危险废弃物由气化炉壳体上部侧面的进料口送入等离子气化炉内，从气化炉下部喷入的气化剂，使炉内形成部分氧化的环境，危险废弃物中的有机物在高温下迅速气化，其结构发生全面裂解，生成合成气（有效成分为CO和H₂），从气化炉壳体顶部的出气口111排出，收集起来可以用于发电、供暖或合成化工产品。由于炉内处于高温（1100℃左右），调整气化剂的流量和等离子体矩的数量来调整合成气的温度，保持高的合成气温度，彻底分解二噁英等有毒物质。危险废弃物中的无机物经高温熔融形成熔融态的玻璃态渣，以液态的形式由气化炉壳体底部的炉渣排出口流出，经激冷后形成玻璃体渣，废物中的重金属被固化在玻璃体硅氧键包裹的密致网格结构中，无渗析，经毒性浸出试验证明无害，可用作路基材料，具有一定的经济效益。
在上述技术方案中，用于处理和利用危险废弃物的等离子气化炉，结构简单、新颖，侧面进料和顶部出气的设置能够保证出气化炉的合成气的温度为1050±50℃，避免携带二噁英和焦油；炉体内衬设置的耐高温材料和进料口设有的水冷夹套能够保证气化炉整体的稳定、安全的运行；催化剂入口和等离子体炬132的排布方式能够最大限度地利用危险废弃物自身的热值，完全利用等离子体的高温，还能够根据进料的热值高低调节等离子体炬132的功率，保证危险废弃物的高温气化。

综上所述，本发明提供的一种用于处理和利用危险废弃物的等离子气化技术及设备，技术先进、节能、环保，经济效益巨大，设备结构简单、新颖，设备运行稳定性高。与传统的用于处理和利用危险废弃物的技术与设备相比，本发明提供的技术与设备，原料适用性好，炉体结构的设计能够确保充分利用危险废弃物自身的热值和等离子体的热值，气化效率高，危险废弃物中有机物的转化率高，无废气的排放，有益于环保，气化产生的合成气应用范围广泛，经济效益巨大，高温熔融的无机物经过激冷，可以收集起来制造建筑材料。可以预测，在不久的将来，本发明所述的技术及其设备，将引领环保领域危险废弃物处理和利用的发展方向，为创新和改善危险废弃物处理流程发挥其重要的作用，逐步改善我国的现有生存环境。

尽管本发明的实施方案已公开如上，但其并不仅限于说明书和实施方式中所列举运用，它完全可以适用于各种适合本发明的领域，对于熟悉本领域的人员而言，可容易地实现另外的修改，因此在不脱离权利要求及等同范围所限定的一般概念下，本发明并不限于特定的细节和这显示出与描述的图例。