发明名称
偏振耦合的并联式调 Q 固体激光器

摘要
本发明公开了一种偏振耦合并联式调 Q 固体激光器，它包括位于同一光路上的第一全反射镜，第一调 Q 器件，偏振分束器，第一激光介质，以及输出镜，其特征在于：偏振分束镜的另一个支路上放置有一个第二全反射镜。这种具有偏振耦合并联式的谐振腔结构，对偏振分束镜退偏损耗部分的能量进行补偿，使该部分激光重新进入到谐振腔中进行谐振；通过偏振分束镜对激光的偏振分束作用，使谐振腔形成两个正交偏振、能量补偿的并联支路，在两个并联的支路内激光具有完全的线偏特性，而在两支路的耦合部分具有部分正交偏振的激光特性。本发明不仅实现了退偏损耗的再利用，增加了激光转换效率，提高光束质量，而且获得具有偏振特性的激光输出。
1、一种偏振耦合联式调 Q 固体激光器，它包括位于同一光路上的第一全反镜（1），第一调 Q 器件（2），偏振分束镜（3），第一激光介质（4），以及输出镜（5），其特征在于：偏振分束镜（3）的一个支路位于所述光路上，另一个支路上放置有第二全反镜（6）。

2、根据权利要求（1）所述的偏振耦合联式调 Q 固体激光器，其特征在于：在第二全反镜（6）与偏振分束镜（3）之间放置有第二调 Q 器件（7）。

3、根据权利要求（1）或（2）所述的偏振耦合联式调 Q 固体激光器，其特征在于：在第一激光介质（4）的任一边放置有 λ/4 波片（8）。

4、根据权利要求（2）所述的偏振耦合联式调 Q 固体激光器，其特征在于：在偏振分束镜（3）与第二调 Q 器件（7）之间放置有第二激光介质（9）。
偏振耦合的并联式调 Q 固体激光器

技术领域

本发明属于激光器技术，具体涉及一种偏振耦合并联式调 Q 固体激光器。

背景技术

获得高平均功率、高峰值功率、高光束质量的激光输出，一直是激光器研制领域的热点问题。目前，对高功率连续固体激光器（100W 以上），实现调 Q 技术多数采用串联两组声光开关形成相互垂直的超声场的方式来实现，这种方法无疑增加了谐振腔的调试难度，增加了腔内插入损耗，降低了输出功率。而对于脉冲激光器，一般采用电光调 Q 技术，通常需要插入偏振元件，造成一部分偏振光损耗掉，降低了输出能量，另一方面，在高重复频率的调 Q 激光器中，由于激光晶体的热致双折射效应，会大大增加谐振腔的退偏损耗，致使激光器的输出激光模式的下降。

发明内容

本发明的目的在于提供一种偏振耦合并联式调 Q 固体激光器，该调 Q 固体激光器能够克服现有棒状固体激光器在调 Q 状态下运行的种种弊端，不仅实现了退偏损耗的再利用，增加了激光转换效率，提高光束质量，而且获得具有偏振特性的激光输出。

本发明提供的偏振耦合并联式调 Q 固体激光器，它包括位于同一光路上的第一全反射镜，第一调 Q 器件，偏振分束镜，第一激光介质，以及输出镜，其特征在于：偏振分束镜的一个支路位于所述光路上，另一个支路上
放置有第二全反镜。

在现有激光器谐振腔布局的基础上，提出具有偏振耦合并联式的谐振腔结构，对偏振分束镜退偏损耗部分的能量进行补偿，使该部分激光重新进入到谐振腔中进行起振；通过偏振分束镜对激光的偏振分束作用，使谐振腔形成两个正交偏振、能量补偿的并联支路，在两个并联的支路内激光具有完全的线偏特性，而在两支路的耦合部分具有部分正交偏振的激光特性。因此可通过同步控制两并联支路上的电光调 Q 器件或直接控制耦合支路上的声光调 Q 器件，实现调 Q 的开关过程，获得高平均功率、高峰值功率、高光束质量的激光输出。具体而言，本发明具有以下优点：

（1）利用偏振分光的原理，将较高功率的激光进行分解，分别在每个支路中进行协同的电光调 Q 控制，降低调 Q 器件的要求，达到高效运行。

（2）利用偏振分光的原理，在耦合支路上采用声光调 Q 的控制，在达到高效运行的同时，可获得激光的偏振输出。

（3）对于采用偏振分光镜进行并联耦合的调 Q 激光器，通过支路能量的耦合，补偿激光介质的退偏损耗，增加谐振腔的选模能力，实现了偏振或部分偏振光的输出。

（4）在偏振耦合并联调 Q 的谐振腔中，通过是否采用 λ/4 波片，增加了各个并联子腔能量的交换能力，实现了输出激光偏振态的改变。当谐振腔内不放入 λ/4 波片时，输出的激光为部分正交偏振，当插入 λ/4 波片后，输出激光为部分圆偏振，可有效改变输出激光的偏振态。

（5）并联式调 Q 的方法有效的压缩了激光谐振腔的腔长，可获得更高的电光转换效率。

附图说明

图 1 是偏振耦合的并联式调 Q 固体激光器第一种实施方案的示意图；
图 2 是偏振耦合的并联式调 Q 固体激光器第二种实施方案的示意图；
图 3 是偏振耦合的并联式调 Q 固体激光器第三种实施方案的示意图；
图 4 是偏振耦合的并联式调 Q 固体激光器第四种实施方案的示意图；
图 5 是偏振耦合的并联式调 Q 固体激光器第五种实施方案的示意图；
图 6 是偏振耦合的并联式调 Q 固体激光器第六种实施方案的示意图；
图 7 是偏振耦合的并联式调 Q 固体激光器第七种实施方案的示意图；
图 8 是偏振耦合的并联式调 Q 固体激光器第八种实施方案的示意图；
图 9 是偏振耦合的并联式调 Q 固体激光器第九种实施方案的示意图。

具体实施方式

本发明在偏振耦合并联式谐振腔结构的基础上，通过不同的实施方案，实现了具有不同偏振态的激光输出。根据偏振耦合并联式谐振腔布局的不同，调 Q 器件可以是声光调 Q 器件也可以是电光调 Q 器件；激光工作物质可以是一个也可以是两个；泵浦源可以是闪光灯也可以是半导体激光源，其工作方式可以是连续或脉冲工作方式。下面结合附图和实例来说明本发明的多种具体实现方式。

图 1 所示，该激光器包括第一、第二全反射 1 和 6，第一、第二调 Q 器件 2 和 7，偏振分束镜 3，激光介质 4，输出镜 5。第一全反射 1，第一调 Q 器件 2，偏振分束镜 3，激光介质 4，以及输出镜 5 依次位于同一光路上，第二全反射 6 位于偏振分束镜 3 的另一个支路，第二调 Q 器件 7 位于第二全反射 6 与偏振分束镜 3 之间。第一、第二调 Q 器件 2 和 7 可以是两个声光调 Q 器件也可以是两个电光调 Q 器件，它们分别置于分束镜 3 与全反射镜 1 和 6 之间的两个支路上。

全反射 1、6 与偏振分束镜 3 构成两个并联支路，并通过偏振分束镜进行耦合与输出镜 5 构成谐振腔。偏振分束镜 3 是起偏镜，它可以是以布儒斯特角度放置的偏振镜，也可以是有反射偏分束作用的其他光学元件，如格兰棱镜等；激光介质可以用闪光灯泵浦，也可以用半导体二极管泵浦。

工作原理为；偏振分束镜 3 将激光分成具有偏振态相互垂直的两路，分别在输出镜和两个全反镜之间形成两个子谐振腔。两路激光通过偏振分束镜 3 再次合束，穿过激光介质，从输出镜 5 处输出激光。两个支路相互
补偿了由于棒状激光介质的热应力双折射所带来的退偏损耗，提高了输出激光的光束质量。由于两支路内的激光为完全的线偏光，故在两支路上布局的调 Q 器件可以是电光调 Q 也可以是声光调 Q 器件。该类调 Q 器件均能有效地抑制腔内光路，实现谐振腔高损耗状态，使得激光谐振腔不能起振；等到激光介质 4 中的反转粒子数积累后，控制调 Q 器件 2 处于低损耗状态，激光谐振腔振荡，大量的反转粒子数在瞬间被消耗，产生调 Q 巨脉冲从输出镜 5 输出，形成具有部分正交偏振特性的激光输出。

如图 2 所示，本发明的第二种实施方案的结构与第一种实施方案的不同之处在于：第一全反射 1，激光介质 4，偏振分束镜 3，第一调 Q 器件 2，以及输出镜 5 依次位于同一光路上，其它结构相同。

这种结构从输出镜 5 所获得的激光具有完全线偏振激光输出，因此与实施方案 1 相比，当调 Q 器件打开时，产生调 Q 的巨脉冲从输出镜 5 输出的激光为完全线偏振光。

图 3 为偏振耦合的并联式调 Q 固体激光器实施方案 3 的示意图，与图 1 相比，该方案仅在实施方案 1 并联谐振腔结构的基础上，在耦合支路上增加了一个 λ/4 波片 8，其他器件与工作原理与图 1 完全相同。λ/4 波片 8 的加入，增强了两路并联支路能量的耦合能力。并使得在输出镜 5 处形成的激光具有部分圆偏光的特性。

图 4 为偏振耦合的并联式调 Q 固体激光器实施方案 4 的示意图，该布局与实施方案 2 类似，仅在耦合支路上增加了一个 λ/4 波片 8。其他器件与工作原理与图 2 完全相同。λ/4 波片 8 的加入，增强了两路并联支路能量的耦合能力，并在输出镜 5 处形成具有线偏的激光输出。

图 5 为偏振耦合的并联式调 Q 固体激光器实施方案 5 的示意图，该方案包括两个全反射 1 和 6，两个调 Q 器件 2、7 可以是电光调 Q 器件，也可以是声光调 Q 器件，偏振分束镜 3，输出镜 5 和两个激光介质 4、9。

两个激光介质 4、9 分别放置在两个支路上，并通过偏振分束镜 3 进行耦合，在输出镜 5 处形成输出。

工作原理为：分束镜 3 将激光分束成两路光，两光路分别有各自的激
光介质形成独立的谐振腔，通过偏振分束镜 3 相互耦合起来。打开调 Q 器件 2、7 的控制电源，调 Q 器件 2、7 开始处于高损耗状态，激光谐振腔不能起振，等到激光介质 4、9 中的反转粒子数积累后，控制调 Q 器件 2、7 处于低损耗状态，激光谐振腔振荡，大量的反转粒子数在瞬间被消耗，转换成大量光能分别在两对全反镜之间振荡，再控制调 Q 器件 2、7 处于高损耗状态，大量光能形成调 Q 巨脉冲从输出镜 5 输出。从输出镜 5 处输出激光的偏振态为正交偏振。

图 6 为偏振耦合的并联式调 Q 固体激光器实施方案 6 的示意图，该激光器包括两个全反镜 1 和 6，调 Q 器件 2 为一个声光器件，输出镜 5 和激光介质 4。偏振分束镜 3 与全反镜 1 和 6 形成两个具有正交偏振的支路，并通过偏振分束镜 3 进行耦合在耦合支路上形成具有正交偏振的激光，由于声光调 Q 器件采用衍射超声场来关断腔内光路，对偏振态没有选择，因此在耦合支路上一个声光调 Q 器件就能实现两个支路的开关运行。由于偏振分束镜 3 对腔内偏振态的控制能力，可以形成两个支路的偏振态相互补偿，弥补了激光介质退偏损耗，在输出镜 5 处获得具有部分正交偏振的激光输出。

图 7 为偏振耦合的并联式调 Q 固体激光器实施方案 7 的示意图，该激光器的几何布局与图 6 基本相同，只是输出镜 5 和全反镜 1 的位置不同。输出镜 5 被设置在偏振支路上，其他器件的功能和工作原理与图 6 相同，因此在输出镜 5 处可以获得线偏振的激光输出。

图 8 为偏振耦合的并联式调 Q 固体激光器实施方案 8 的示意图，该结构与图 6 的布局相似，仅在激光介质 4 和输出镜 5 之间，插入了 $\lambda/4$ 波片 8，其他器件与谐振腔的功能完全相同，由于波片的存在增强了两个并联子腔能量的耦合能力，使得输出镜 5 处输出的激光具有部分圆偏振的特性。

图 9 为偏振耦合的并联式调 Q 固体激光器实施方案 9 的示意图，该结构与图 7 的结构基本相同，仅在全反镜 1 和激光工作物质 4 之间插入了一个 $\lambda/4$ 波片 8，其他器件谐振腔的功能与图 7 完全相同。$\lambda/4$ 波片 8 的加入增加两个并联支路能量的耦合作用，使得在输出镜 5 处可获得完全的线
偏振光输出。

具体实现时，第一全反射镜 1，第一调 Q 器件 2，偏振分束镜 3，第一激光介质 4，以及输出镜 5 之间的顺序还可以作其它的变化，这种变化只可能带来输出激光偏振特性的不同，不影响本发明的目的和技术效果的实现。

总之，本发明不局限于上述具体实施方式，本领域一般技术人员根据本发明公开的内容，可以采用其它多种具体实施方式实施本发明，因此，凡是采用本发明的设计结构和思路，做一些简单的变化或更改的设计，都落入本发明保护的范围。