Intelligent appointment reminder alerts, task checklists, and one-click everything "ready, set, go".

The present invention provides an adaptive, intelligent scheduling system and method of operating the system configured to dynamically respond to evolving situational contexts, i.e. changes in requirements for scheduled appointments and in user or device physical circumstances, such as geographical location and relative position location. In addition, the present invention overcomes a plurality of disadvantages suffered by the prior art to provide an improved system and method for assisting users in keeping track of their important persons, places and things. By tracking location, direction and relative proximity to other system elements, as well as indications of ownership, custody-ship, user-ship, etc., the present invention uses real-time information to dynamically schedule reminder alerts and determine assignments of tasks. With the present invention, users can create a routine checklists, check tasks on the checklist as completed, attach tags to any items associated with specific scheduled events, e.g. briefcases, laptops, thumb drives, projectors, etc., mark such items as required or desired for recurring or one-time events and enable generation of dynamic reminder alerts and task checklists based upon the scheduled appointments of a particular day.
INTELLIGENT APPOINTMENT REMINDER ALERTS, TASK CHECKLISTS, AND ONE-CLICK EVERYTHING “READY, SET, GO”

FIELD OF THE INVENTION
The present invention addresses the improved functioning of the impending Internet of Things and relates generally to the fields of software calendaring and intelligent scheduling of appointments and reminders, including the use of real-time information to dynamically update appointment and reminder information, electronic searching, location, tracking and pattern recognition of people, places, objects, activities and behaviors as well as to recordation and electronic indications of ownership, usership, custody and responsibility.

BACKGROUND OF THE RELATED ART
Appointment scheduler applications embodied within a software engine, e.g., electronic calendars and daily planners, comprise a functionality provided by most contemporary personal digital assistants (PDAs), cell phones, smart phones, etc. Scheduler applications enable users to store and maintain a daily schedule of real-world and virtual (teleconference, videoconference, virtual world, etc.) meetings and events, based on time.

For example, a user can create calendar entries for one-time scheduled appointments or recurring events (e.g., daily, weekly, monthly etc.), including user-set parameters, such as a predetermined date, time, location, weather conditions or other parameters for appointments or issuing reminder alerts. A conventional, commercially available scheduling application is Microsoft Outlook.

Appointments, events and activities also frequently have an intrinsic association with a place or event. And, many smart devices are equipped with location detectors capable of sensing device and user location, such as a wifi, cellular telephone, global positioning system (GPS) or other transceivers capable of transmitting, calculating or otherwise determining a precise geographic location, such as the European Galileo system or the Russian global navigation satellite service (GLONASS).
Advanced electronic schedulers can manage appointment reminder alerts based on real-time location or other parameters, such as preset reminder dates, times or occurrence of particular events, e.g. weather conditions, for example a reminder might be set to go skiing on the next “good powder” day. The scheduler application will then issue reminder alerts the user of the scheduled meeting, for example starting from one hour prior to the meeting time.

The reminder alert provides a sensory stimuli output to indicate to the user that the time for a scheduled event has arrived, or will arrive within a predetermined amount of time. When a reminder must be issued, a scheduler application will typically manipulate the functionality of the smart device (e.g., electronic messaging, flashing lights, sounding auditory alarms or vibrating) on which it is loaded to alert the user, and the reminder alert will continue to periodically trigger until the user disables it.

Location-based services available with geo-spatial navigation devices, including smart phones, assist in decision-making during user performance of tasks in space and time by enabling spatio-relational queries such as, for example, “the shortest route from A to B” or “the closest restaurant to A,” where A represents a location as specified either by the user or a current location of a location-detecting system. These services are capable of delivering real-time instructions to the user based on current location, helping the user to follow a selected route and arrive at a desired destination.

To minimize disruptions from unnecessary reminders, contemporary scheduler applications attempt to modify or suppress unnecessary event reminders by detecting conditions which may obviate the need for a reminder, e.g., when the user is already located at the scheduled appointment or is already on the line with the scheduled teleconference call. Real-time information employed to this end may include, date, time, location, direction of travel, traffic conditions, weather conditions, whether the user is calling the phone number associated with a scheduled teleconference, etc.

For example, in order to determine whether to issue, suppress or modify appointment reminder alerts the scheduler application operating on a smart device may ascertain whether the current user location or a placed phone call respectively
match a location or phone number indicated in a calendar entry (referred to herein as a scheduled appointment).

However, although contemporary scheduler applications may issue, modify or suppress reminders based on real-time indications of whether or not sending of the reminder is deemed appropriate, use of contemporarily available real-time information does not always yield satisfactory results. For instance, smart phone GPS transceivers are typically unable to determine the distinction between whether the user is in the room where a scheduled meeting is occurring or merely in the same building. Consequently, reminder alerts for scheduled appointments may sometimes be incorrectly suppressed by contemporary scheduling applications.

And, the method of communication used to convey a reminder may be integral to effective conveyance of such reminder. For example, a user may not be able to check email to receive a sent reminder in a timely manner, rendering it of no use. Instead, advanced scheduler applications can send SMS or voice reminders at the scheduled time or modify the time of the reminder, to improve user ability to be on-time for the appointments.

Further, if the user is traveling or far away from the appointment location, a reminder sent at some predetermined time interval before the appointment may be too late to be effective. Advanced scheduling applications can determine locations and times specified for appointments, current user location, speed, and direction of travel and use this information to schedule an appropriate appointment reminder.

More recently, many people-, pet- and object-tracking companies have been entering the consumer market, offering loss-prevention, virtual leash and intelligent tether solutions in the form of Bluetooth transceiver enabled ‘button’ tags. These contemporary consumer loss prevention solutions address the market need detailed in a 2012 survey conducted by the UK insurance company esure, according to which people misplace on average nine items per week and typically waste 15 minutes a day searching for misplaced items.

Companies that offer consumer loss prevention solutions, such as Tile, StickNFind and Bringrr, typically provide rudimentary object location, tracking and geofencing. Most of these companies manufacture slightly different versions of a button-sized
Bluetooth wireless transmitter that users can attach to objects, pets or people of which they may lose track. An example of an advanced contemporary loss prevention solution can be found in U.S. Patent 8,570,168, “System, Method and Device to Interrogate for the Presence of Objects”, by James D. Logan, et al.

These solutions utilize smart phone applications to determine distance to a Bluetooth transceiver within wireless range of a smart phone running such application and may cause a tag containing the Bluetooth transceiver to vibrate or emit an audio sound in response to a prompt. However, these solutions are typically limited to proximity detection and do not provide precise object location or directional finding. Consequently, users must self-determine general direction of a tagged thing by playing a game of ‘Hot and Cold’.

Further, no loss prevention solutions incorporate appointment scheduling function and conversely, neither do any conventional scheduling applications incorporate location and tracking functions for people, places and things. Moreover, neither appointment scheduling applications nor loss prevention solutions include any functionality related to activity and behavior pattern recognition or predictive groupings of and associations between people, places and things. The functionality of conventional calendaring software tends to be limited in scope to tracking scheduled rather than real-time, actual disposition of meeting locations, such as the company conference room.

To date, solutions to these problems are barely workable, and suffer from a variety of disadvantages and drawbacks. For instance, users can employ printable task checklists and electronic appointment schedulers only as poor, approximate substitutes to the present invention, which require significant user set-up, preparation and capacity to remember.

Further, task-scheduling applications, such as Daily Routine, HomeRoutines and Any.Do, do not present satisfactory solutions because they operate based only on information entered by the user. Appointment scheduling applications such as Microsoft Outlook also rely primarily on information entered by users or supplied by a smart phone or PDA. Neither types of software applications, appointment schedulers nor task schedulers, can adequately incorporate dynamically evolving
situational contexts based on information concerning or received from non-user devices and equipment, e.g. the company car, luggage, laptop or handset computers (i.e. smart phones), projectors, poster displays, etc. Nor do they include reminder alerts or task checklists for items and persons essential for scheduled appointments. In addition, currently object loss-prevention systems provide no software calendaring, neither scheduled nor dynamic reminder alerts nor task checklist functionality.

Heretofore, neither have scheduling application software engines incorporated the ability to track ownership, permissions and assignments of responsibility, as well as location, activity and behavior of persons, places and things, nor have tracking devices incorporated scheduling functionality or the capability to indicate ownership, rights or obligations to achieve the specific novelties and advantages of the system and method described herein.

Further limitations and disadvantages of conventional systems will become apparent to one of skill in the art after reviewing the remainder of the present application with reference to the invention summary, drawings and detailed description which follow.

SUMMARY OF THE INVENTION

For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.

The present invention provides an adaptive scheduling system capable of dynamically responding to evolving situational contexts, i.e. changes in requirements for scheduled appointments or in user or device physical circumstances, such as geographical location and relative position location, and addresses the longstanding and deeply felt need of people, groups, companies and institutions to easily and effectively keep track of their things of primary importance, among others including
appointments, tasks, duties, obligations, responsibilities, items and possessions. This need is simple to identify and observe.

Watching the behavior of people in public spaces, they can often be seen doing the "leaving a place" check, i.e. patting their pockets, visually inspecting their immediate premises and generally checking to make sure that they will not leave anything behind. Similarly, in talking with people about their upcoming plans, it is evident that many people have at least a small difficulty in remembering all of their impending tasks, obligations and appointments for the current day, let alone the coming week.

The present invention overcomes a plurality of disadvantages suffered by the prior art to provide an improved system and method for assisting users in keeping track of their important persons, places and things. By tracking location, direction and relative proximity to other system elements, as well as indications of ownership, custody-ship, user-ship, etc., the present invention uses real-time information to dynamically determine assignments of tasks, duties to hold custody over or responsibilities to carry or transport persons or things from one place to another.

In particular, the present invention relates to a system and method disclosed herein, which provide dynamic action reminder alerts to at least system users, smart devices and unique digital profiles for persons, places and things. With the present invention, users can create a routine checklists, check tasks on the checklist as completed, attach tags to any items associated with specific scheduled events, e.g. briefcases, laptops, thumb drives, projectors, etc., mark such items as required or desired for recurring or one-time events and enable generation of dynamic reminder alerts and task checklists based upon the scheduled appointments of a particular day.

The present invention generates and dynamically updates action reminders and task checklists, meaning that when a user marks a scheduled event as associated with a particular item, the present invention will provide to the user a reminder alert or task checklist indicating the need to collect and bring such item on the morning of and throughout the day of that scheduled event. And, if the user has tagged the item with a smart node or a uniquely identifiable tag (UIT), the user would be alerted upon attempting to leave home or other location without such essential item. This user
location-aware functionality can be enabled through the use of place-identified smart devices, such as Bluetooth beacons or other location embedded smart nodes. In one selected embodiment, a system is configured to enable users and system elements to respond effectively and efficiently to a digitalized synthesis of evolving situational contexts by providing said users and system elements with both dynamically generated and updated reminder alerts and task checklists, based on calendaring, timekeeping and tracking location or activity, among other principles. The system of the present invention comprises at least I) one or more persons, places and things, II) unique digital profiles, representing such persons, places and things, and groupings, associations and other current statuses thereof, and III) an enhanced digital calendar, including at least scheduled appointments, indicating persons or things scheduled to be present at designated places and specified times, as well as reminder alerts and task checklists indicating one or more actions or tasks suggested to satisfy the criteria of the scheduled appointments.

Further, the system includes IV) one or more smart devices, comprising at least one or more processors, storage devices, transmitters, receivers or transceivers, and power sources, configured to a) be associated to unique digital profiles representing the persons, places and things; b) to make wireless connections with other smart devices, the internet and one or more devices connected to the internet, and c) to operate a software engine configured to cause the system to: 1) create and maintain an enhanced calendar of scheduled appointments, including to create, update and store scheduled appointment calendar entries and various parameters thereof; 2) create, update and store unique digital profiles and various parameters thereof.

Furthermore, the system is configured to: 3) associate unique digital profiles to scheduled appointments; 4) store these associations in one or more of the various parameters of such scheduled appointments; 5) associate unique digital profiles to smart devices corresponding to persons, places or things represented by said unique digital profiles; and 6) store these associations in one or more of the various parameters of said unique digital profiles;
Moreover, the system is further configured to 7) calculate and store a dynamic set of information based upon evolving situational contexts; 8) recalculate and update the dynamic set of information and store an updated dynamic set of information; 9) iterate a query to determine whether to generate and issue one or more reminder alerts or task checklists to prompt a user, smart device or unique digital profile to complete an action based on an updated dynamic set of information; and 10) generate and issue reminder alerts or task checklists to a user, smart device or unique digital profile, upon determining to prompt said user, smart device or unique digital profile.

And, the System also includes V) an adjusted, altered, modified or other implemented change to the status, disposition, activity or behavior of a system user, smart device, unique digital profile, scheduled appointment, networks thereof and associations therebetween, taking into account one or more of issued reminder alerts and task checklists.

In another selected embodiment, a method is configured to provide users of a system or system elements with dynamically generated and updated reminder alerts and task checklists, based on calendaring, timekeeping or tracking location or activity, among other principles, to enable said users and system elements to respond effectively and efficiently to a digitalized synthesis of evolving situational contexts within the system. The method comprises at least: 1) operating on one or more smart devices, wherein each smart device is configured to a) be associated to unique digital profiles and b) to make wireless connections with other smart devices, the internet and one or more devices connected to the internet, a software engine. The software engine is configured to perform portions of the method, including: 1) creating and maintaining an enhanced digital calendar, comprised at least of scheduled appointments, indicating one or more of persons and things scheduled to be present at designated places and specified times, as well as reminder alerts and task checklists indicating one or more actions or tasks suggested to satisfy the criteria of the scheduled appointments, including creating, updating and storing scheduled appointments and various parameters thereof; and 2) creating, updating and storing unique digital profiles, representing persons, places and things and
groupings, associations and other current statuses thereof, and various parameters thereof.
The software engine is configured to perform further portions of the method, including: 3) associating unique digital profiles to scheduled appointments; 4) storing these associations as one or more of the various parameters of said scheduled appointments; 5) associating unique digital profiles to smart devices corresponding to a person, place or thing represented by said unique digital profiles; 6) storing these associations as one or more of the various parameters of such unique digital profiles; 7) making a data connection to other smart devices, the internet and one or more devices connected to the internet and transmitting data; and 8) calculating and storing a dynamic set of information based upon evolving situational contexts.
Furthermore, The software engine is configured to perform additional portions of the method, including: 9) recalculating and updating the dynamic set of information and storing an updated dynamic set of information; 10) iterating a query to determine whether to generate and issue one or more reminder alerts and task checklists to prompt a user, smart device or unique digital profile to complete an action based on an updated dynamic set of information; and 11) generating and issuing one or more reminder alerts or task checklists to a user, smart device or unique digital profile, upon determining to prompt said user, smart device or unique digital profile.
And, the method further includes II) adjusting, altering, modifying or in any other way implementing a change to the status, disposition, activity or behavior of a system user, smart device, unique digital profile, scheduled appointment, networks thereof and associations therebetween taking into account one or more of issued reminder alerts and task checklists.

These and other embodiments of the present invention, as well as its objectives, advantages and other novel features, will be apparent from the following detailed description, when read in conjunction with the appended claims and accompanying drawings, without limiting the invention to any particular embodiment(s) discussed. The claimed invention may be expressed in alternative arrangements while still maintaining the spirit of its original purpose and fundamental features.
Various modifications, as well as a variety of uses in different applications, will be readily apparent to those skilled in the art. The general principles, defined herein, may be applied to a wide range of embodiments. The descriptions of the various embodiments provided herein explain and are not intended to be nor should they be read as limiting of the invention to any of the particular selected exemplary embodiments.

The present invention should rather be accorded the widest scope consistent with the principles and novel features disclosed herein. Additional information in the claims concerning the present invention must be realized to the extent the claim language enables the invention. The scope of the invention will be pointed out in the claims.

The following drawings, in conjunction with the subsequent description, are presented to help enable one of ordinary skill in the art to make and use the present invention and to implement the various embodiments of the present invention.

Furthermore, it should be noted that unless explicitly stated otherwise, the figures included herein are illustrated schematically and without any specific scale, as they are provided as qualitative illustrations of the concept of the present invention.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a flow chart for a first embodiment of the claimed method.

Figure 2 illustrates a flow chart for a second embodiment of the claimed method.

Figure 3 illustrates a flow chart for a third embodiment of the claimed method.

Figure 4 illustrates the components of a simple smart device.

Figure 5 illustrates the components of a more complex smart device.

DETAILED DESCRIPTION OF THE INVENTION

The present invention, comprising the disclosed system and method for dynamic reminder alerts, their component parts and constituent parts, will become more thoroughly understood through the following detailed description and elaboration of possible embodiments and configurations as well as through the subsequent claims. The described embodiments and configurations provide only exemplary details, which should not in any way be interpreted to limit the invention.
Description of the present invention makes reference to the embodiments and configurations of the included figures. Figures 1 – 5 illustrate components of the dynamic reminder alert system and method, described in the current disclosure. The drawings in the figures are not to scale and are not intended to limit the scope of the invention in any way.

The system and method disclosed herein implement an improved functionality for the impending Internet of Things and are based on calendaring, timekeeping and tracking location and activity, among other principles. Of primary importance, the present invention, system and method, enable a user of the system to access improved real-time information and decision support regarding the user’s possession and obligations, responsibilities and duties as a caretaker, caregiver, guardian, steward or manager of possessions, animals, places or other persons. As used herein, the term “user” may indicate either a person or an autonomous virtual agent embodied in one or more software engines resident on or distributed across one or more computing devices. In addition, as used herein, the term “person” means a natural person, i.e. a human being. Further, the term “place”, will be used to mean either a geographic or relative position location, capable of identification by, respectively, spatial coordinates and a referential position such as a proximity to a person, an object or another location. Furthermore, for the purposes of this description, “thing” will be used to mean anything having a physical embodiment, including at least, and without limitation, all tangible possessions, objects, items, articles, equipment, devices, animals, pets, places and persons.

For the purposes of this description, “smart devices” 400/500, as depicted in Figures 4 and 5, will be used to mean a network node, having at least one or more of processors 420/520, storage devices 430/530, transmitters, receivers or transceivers 410/510, and power sources 440/540.

As further depicted in Figure 5, smart devices may also include user interfaces, such as user display interfaces 550, and other peripherals, such as sensors 560. Examples of smart devices can include and instances of the term “smart device” within this specification and the following claims shall be interpreted to include computers, handset or “pocket” computers, personal digital assistants (PDAs),
portable calendar devices, cell phones, smart phones, augmented reality display
devices and other types of network beacons, nodes, routers, access points and the
like which interface with computer or communications networks.

And, as used herein, “smart nodes” can be considered to be a subset type of smart
device, generally configured to attach to persons, places and things. Smart nodes
include both smart beacons, such as commercially available Wifi, RFID or Bluetooth
indoor location beacons, including the Estimote and StickNFind beacons, which
implement the Apple iBeacon protocol, as well as button tracking devices, such as
the commercially available Bluetooth button trackers including Tile, StickNFind,
Bringrr, etc.

However, the smart devices, e.g. smart nodes and smart beacons, contemplated
under the present invention are configured to include many different modes of
connectivity known in the art, such as wifi, radio frequency (RF), near field
communication (NFC), cellular, satellite, and physical hard line connections,
including Ethernet, serial peripheral interface (SPI), universal serial bus (USB) and
MicroUSB, among others. The smart devices, smart nodes and smart beacons are
also configured to incorporate many different types of sensors and detectors.
Information collected by smart devices is both processed locally to derive intelligent
decision support and is also communicated to back-end server systems as well as
among groups of smart devices, mutually associated using digital associations of
“unique digital profiles” (or “UDPs”), representative of persons, places and things.

Also for the purposes of this description, “uniquely identifiable tags” (or “UItSs”) will
be used to mean tags having at least one or more of transmitters, receivers, and
transceivers, supporting RF, NFC or other wireless connectivity, patterned image
reflectors, such as bar code, quick response code (QRC) or other digitally
recognizable image, and storage devices, storing at least a unique identifier on the
tag, and capable of being attached to persons, places or things.

And in addition, for the purposes of this description, “visual recognizable code” (or
“VRC”) will be used to mean any computer readable image, including QR codes, that
a machine can capture and read using specialized algorithms for pattern analysis, a
processor and a camera. Like a QR code, VRC stored patterns can contain a code,
in the case of an image, the image itself can contain, or reference to, a code. This code can then serve as a reference to additional data repositories, such as UDPs. As used in this description, an “image recognition file” (or “IRF”), means a file containing VRC to act as a passive tag associated to a person place or thing, in contrast to a smart device or UIT, by comparison against VRCs generated by smart devices, in order to determine whether a user or smart device is attempting to interface with a person, place or thing having a system recognized UDP.

In a preferred embodiment, operation of the software engine occurs across a distributed system of personal computers, smart devices, smart nodes and back-end cloud servers, as individual stand-alone instances on any of these devices or as an integrated system of distributed instances across the multiple hardware platforms. The present invention also specifically contemplates the use of smart devices in conjunction with Bluetooth beacons as well as small, wirelessly interconnecting, button-sized smart nodes capable of being attached to persons, places and things.

Information collected by the smart devices can be processed to derive intelligent decision support locally, as well as in a distributed fashion by components of the software engine operating across multiple devices and levels of the network. Further, intelligence derived at one location, on one or more specific devices operating in the back-end server system cloud or in any particular sub-network, can be propagated throughout the network to specific smart devices, UITs, UDPs and IRFs having a definite use or capable of using such intelligence.

The smart nodes can be used to establish and operate a 3D ad-hoc wireless mesh network, using RF, wifi, Bluetooth 4.1 or other wireless connectivity, to enable the present system and method of providing dynamically generated and updated reminder alerts and task checklists to users and smart devices. This 3D ad-hoc wireless mesh network interpenetrates and operates in conjunction with conventional static wireless networks and standard physical connection, hard line networks. Computers, smart devices, e.g. smart phones, smart beacons and smart nodes, UITs and IRFs are all connected in this interpenetrating network via a physical layer comprising either a wireless or hard line connection, and are all connected virtually, as well, through UDP associations. All devices and UDPs within
the network are given unique digital addresses, such as IPV4, IPV6, 6LowPAN or Bluetooth 4.1 addresses, enabling point to point addressing and location. Both the smart devices and smart nodes may communicate with and across the internet using one or more of cellular, satellite, wifi, Bluetooth, RF or other type of wireless or wired connectivity. In alternative embodiments, the 3D ad-hoc wireless mesh network may be composed entirely of interconnected smart devices not including smart nodes, i.e. smart phones, augmented reality display devices, etc. Or, even further alternative embodiments, smart nodes may be built directly into products, e.g. toaster, refrigerator, washer, dryer, etc., obviating the need for users to attach the smart nodes to the things they want to include within the network.

Similarly, although affording markedly less functionality than smart devices or smart nodes, UITs can be incorporated into and located within an established 3D ad-hoc wireless mesh network for purposes of tracking ss of persons, places and things. Alternatively, items may be associated to UITs, including RF, NFC, bar code, or QRC, or IRFs, used as a trigger for a type of virtual passive “tag”. The smart devices of the present invention are configured to make wireless connections with one or more of other smart devices and UITs.

The present invention comprises, at least in part, one or more smart devices, including smart beacons and smart nodes, configured to operate a software engine enabled to provide enhanced scheduling, location, pattern recognition, prediction and decision support. To accomplish this, the invention incorporates multiple real-time streams of information including user input, location and other autonomous transmissions between one or more smart devices, as a first layer of user interface, a broader 3D ad-hoc wireless distributed sensor and mesh communications network composed of one or more smart nodes, as a second layer of user interface, and a tertiary level of network and user interface, comprising connections to individual UITs or to other wireless device alternative protocol networks of devices, regardless of whether wired or wireless.

The primary network protocols for communicating across the extended smart device and smart node network include Internet Protocol 4 (IPV4) and Internet Protocol 6 (IPV6), inclusive of IPV6 over low power wireless personal area networks (6LoPAN),
as embedded within cellular, wifi, RF, Bluetooth or Ethernet transmission protocols. However, the individual UITs, and other wireless device alternative protocol devices and networks to which the 3D ad-hoc wireless mesh network may connect, may support RF, NFC, Bluetooth (specifically Bluetooth 4.1), and other types of wireless connectivity, as well as barcode, QRC, IRF and other image pattern recognition capability.

Further, the essence of the present invention should be recognized as entirely independent of the types of network connections and network protocols utilized to effectuate the network telecommunications. Indeed, the present invention relates primarily to the use of interconnected mobile computers, aka smart devices, and a method of using such interconnected mobile computers to provide enhanced scheduling, location tracking, reminder alerts and task checklists.

One of the primary aims of the present invention is to assist people in overcoming the difficulty inherent in remembering all impending tasks, obligations and upcoming appointments for themselves, their charges and possessions. Another primary aim of the present invention is to use pattern recognition to accurately infer or deduce emotional and mental states of users and equivalent statuses for smart devices, UITs, IRFs, UDPs and corresponding persons, places and things, in order to better determine efficiencies and goals for users and system components. These inferences and deductions are based on machine learning and recognition of patterns of activity, behavior, location and disposition, among other parameters.

In particular, the present invention relates to a system and method disclosed herein, which provide dynamic reminder alerts and task checklists to at least system users, smart devices, UITs, IRFs and UDPs. These reminder alerts and task checklists can be shared between users, smart devices, UITs, IRFs and UDPs manually, automatically or dynamically based on multivariate conditional criteria. For instance, if a UIT or smart device, e.g. smart node or smart beacon, is not connected to the internet or in range of the broader 3D ad-hoc wireless mesh network, or a sub-network thereof, it can store one or more task checklists or reminder alerts to be triggered upon entering into the wireless connection range of another smart device or upon operation by a user. For UITs and IRFs, the one or more task checklists
and reminder alerts may be generated by one or more smart devices and exported to the UDPS of one or more UITS or IRFs, or to a physical storage device contained in a UIT, for future access, to be activated by proximity, wireless connection or other appropriate trigger.

The present invention provides to users thereof the ability to easily, efficiently and effectively track the past and present and predict future locations of persons, places and things important to such users. It also allows users to quickly determine whether such users have satisfied all tasks or holds in their immediate possession everything needed to achieve the goals and criteria for present and future events or appointments. In addition, the present invention can be utilized to make determinations or predictions regarding the mental and emotional states of users based on patterns of user location, activity and behavior.

When a user marks a scheduled appointment as associated to certain persons, places or things, or a particular group thereof, on the morning of the day of that scheduled appointment, the software engine will remind the user to bring, retrieve, or secure the associated item or person. And, if the user has attached a smart device, such as a smart node or smart beacon, or a UIT to a person, place or thing of interest and the smart device or UIT is in range of a smart device employed by the user, the scheduler application will issue a reminder alert to the user if they attempt to leave their home or current location without one or more associated items or persons.

In addition, a current or future predicted state, activity, behavior, location or disposition of a user, smart device, UIT, IRF, or UDP can be used by the system and method to determine which persons or things a user must retrieve, at which locations such persons and things must be retrieved and to which locations such persons and things must be transported. Further, current and predicted future states, activities, behaviors, locations or dispositions of persons and things, as well as of locations where such persons and things might be located currently or in the future or to where such persons or things must be delivered, may further inform determinations by the system and method regarding which persons and things a
user must retrieve and the most efficient order of retrieval and delivery or other disposition.

In a preferred embodiment, the present invention is configured to provide users with a one-click "everything ready, set, go" inventory function, to quickly and easily determine for such users whether they have accomplished all suggested tasks or actions or have in their immediate or planned possession all desired items to achieve the goals of an upcoming appointment or event. To achieve this "ready, set, go" functionality, the system of the present invention is configured to review all current checklists and reminder alerts relevant to a user, or any smart devices or UDPs associated to such user, to determine whether the user has satisfied all "ready, set, go" criteria. This same functionality enables the location and retrieval of all necessary and desired persons and things at any given location, taking into account the prospective outlook of current task checklists and reminder alerts as well as upcoming scheduled appointments, reminder alerts and task checklists.

The system and method of the present invention achieve this in part by employing a network of smart devices, including smart nodes, to locate and track the activity of users, smart devices or UITs and to provide an embedded-intelligence analysis of historical patterns of object, item, thing, place, and person or user activity or behavior using pattern recognition and predict future locations and dispositions of devices and users. To enable this functionality, the present invention draws from the fields of software calendaring, e.g. electronic appointment scheduling, and electronic location, tracking and pattern recognition of persons, places, things, activities and behaviors as well as the use of real-time information to dynamically update information regarding scheduled appointments, locations and preferences for persons, places and things.

Specifically, the one-click "everything ready, set, go" checklist function relies upon a search and locate function, indications of digital associations, such as ownership, usership, custody-ship or assignments of responsibilities, duties or obligations, and dynamic reminder alerts, based on precise time-keeping and scheduling. The "everything ready, set, go" indications can be considered to be a subset type of reminder alerts, initiated either by a user or autodynamically based upon system
conditions. "Everything ready, set, go" indications comprise an reminder alert that is
issued as an 'all clear' signal, indicating to the user that the user has successfully
gathered all items, things and persons or completed all actions necessary to achieve
the goals of a scheduled appointment.

In a preferred embodiment of the present invention, a system is configured to
provide users with dynamically updated reminder alerts and task checklists based on
calendar, timekeeping or tracking location and activity, among other principles.
The system of the present invention comprises at least: one or more persons, places
and things, and smart devices 400/500, such as smart phones, smart beacons or
other smart nodes, configured to be associated to one or more UDPs, representing a
person, place and thing. In addition, the system may further include one or more of
UITs, and one or more smart devices may further comprise augmented reality
display systems having an augmented reality interface for interacting with the smart
device 400/500 and the system of the present as a whole. Further, the smart
devices are configured to make wireless connections with one or more of other
smart devices, e.g. smart phones, smart beacons or smart nodes, and UITs.
The system of the present invention may be comprised of one or more smart
devices 400/500, including smart nodes, smart beacons and smart phones,
configured to operate a software engine, distributed across a 3D ad-hoc wireless
mesh network composed of such smart devices. Stand-alone instances of the
software engine exist on each computer and smart device 400/500 in the network,
as well as on backend server systems connected to the internet. However, although
each instance of the software engine is capable of stand-alone, independent
operation, they are each enabled for integrated, collaborative, distributed operation
in conjunction with all other instances of the software engine. In this way, the
software engine of the system is configured to operate as an end-to-end software
appliance (from node to handset to cloud) and to leverage evolving statuses and
situational contexts, as well as other information, from all devices connected to a
broad digital ecosystem composed of component digital ecosystems, including the
internet, the 3D ad-hoc wireless mesh network and sub-networks thereof.
The software engine of the present invention is further enabled to create and maintain an enhanced calendar of scheduled appointments. Smart devices, such as smart beacons and smart nodes, and UITs may be attached to persons, places and things, and IRFs may be associated to UDPs representing such persons, places and things, in order to monitor the evolving statuses and situational contexts of system components. The enhanced calendar comprises a collection of scheduled appointments, task checklists and reminder alerts, created, updated and stored on one or more system storage devices. Various parameters of the scheduled appointments include, among others, date, time, place, required persons, equipment, items and materials.

Among other functions, the smart devices, including smart beacons and smart nodes, and UITs enable tracking and identification of persons, places and things to which they are attached. UITs are included in an alternate embodiment of the invention, which includes UITs as well as smart devices, whereas the primary embodiment includes solely smart devices. In an even further embodiment of the invention, IRFs, for instance containing VRCs, can be used to enable the system, and components thereof, to recognize persons, faces or other biometrics, as well as objects and places.

Further, the system is configured to create, update and store UDPs, each representing one of a person, place or thing. Various parameters of the UDPs include, among others, name, identity, status, physical characteristics, preferences, typical location, activity or behavior. UDPs are configured to be associated both to scheduled appointments and smart devices, UITs or IRFs, enabling the system to track and update statuses of various UDPs relevant to particular scheduled appointments. Even further, appointment organizers and participants can select specific persons or things, or classes of persons or things, belonging to or under the custody of all or some participants of a scheduled appointment, as required, suggested or optional for a particular calendar entry.

Furthermore, the system is configured to create, store, update and utilize associations of UDPs to scheduled appointments and to corresponding smart devices, UITs or IRFs to track the status of system elements, including persons,
places and things corresponding with such UDPs and to generate task checklists and reminder alerts and to provide decision support with respect to remaining tasks needed to be completed to achieve the goals and requirements of a scheduled appointment. Associations between UDPs and scheduled appointments are stored in one or more of the various parameters of such scheduled appointments, and associations between UDPs and corresponding smart devices, UITs or IRFs are stored in one or more of the various parameters of such UDP. Information about smart devices, UITs or IRFs, and the persons, places or things to which they are associated or attached, may be stored directly on a storage device integrated within or connected to such smart device or UIT, including within a locally stored UDP representing the person, place or thing to which the smart device, UIT or IRF is associated or attached. UDPs representing persons, places or things associated to an IRF, managed by a user or managing smart device and stored within one or more various parameters of such UDP, are typically stored locally on a smart device or UIT, utilized by such user or managing smart device to track the person, place or thing represented by such UDP.

Moreover, the system and method are configured to enable creation, update and storage of scheduled appointments, reminder alerts, task checklists, UDPs, various parameters thereof and associations therebetween, as well as associations between UDPs and smart devices, UITs or IRFs by system users, employing a computer or smart device having a software engine application interface. Alternatively, these system components may be created, updated and stored autodynamically by an instance of the software engine operating on a smart device or backend server, based on evolving statuses and situational contexts of system components.

And further, the system and method of the present invention are additionally configured to utilize the information collected by smart devices, UITs and UDPs, and with respect to IRFs, to autodynamically determine, predict and indicate persons and things required or suggested to be included in scheduled meetings. In addition, the system and method are configured to autodynamically determine, predict and appoint required or suggested locations for meetings, based on the same collected information. Effectively, this means that the system and method of the present
invention are capable of independently determining and scheduling appointments, including appointment locations, participants and items suggested to be included in such meetings.

Moreover, the system is further configured to calculate, update and store a dynamic set of information based upon an evolving situational contexts related to the status of system elements. Evolving situational contexts may include updates to UDPs, changes in requirements for scheduled appointments, such as location, time or list of attendees, changes in the disposition or physical circumstances of smart devices or UITs and information derived therefrom, such as location, activity or behavior, networks and associations therebetween and changes to the same.

And, based upon updated dynamic sets of information, the system is further configured to iterate a query to determine whether to generate and issue one or more reminder alerts or task checklists to prompt a user, a smart device or a UDP. This determination also includes the suppression of one or more reminder alerts and task checklists, based on evolving statuses of system components. Determining which information to not display to the end user is just as, if not more, important than determining which information to display.

Upon determining to prompt a user, smart device or UDP, the software engine will generate and issue one or more reminder alerts or task checklists to such user, smart device or UDP. Current solutions fail to appropriately create, update and suppress object reminder alerts because they are unable to incorporate a level of real-time contextual information of sufficiently fine granularity. The present invention achieves the necessary level of granularity in information regarding the evolving situational contexts of the system and system components by implementing unique addressing of communications between objects within a 3D ad-hoc mesh network system based on network protocols, including IPV6, 6LowPAN, and Bluetooth 4.1, among others.

In a preferred embodiment, the present invention is configured to autodynamically incorporate evolving situational contexts, including information related to scheduled appointments, UDPs, users, smart devices and UITs, into updates for scheduling, reminder and task checklist functionalities. Users may attach wirelessly linked smart
devices, such as smart nodes, or UITS to persons and things associated to UDPs, which are in turn associated to scheduled appointments, e.g. a presenter, support staff, briefcases, laptops, thumb-drives, projectors, etc., and also to places comprising appointed locations or waypoints for scheduled appointments, e.g. the board room or a conference room.

The system of the present invention enables users to create a daily calendar of scheduled appointments and a variety of routine task checklists, such as morning routine, daily routine and travel or appointment routine task checklists, as well as mark persons and items as associated with a specific scheduled appointment and check tasks on the routine checklists as completed (e.g. laptop and projector placed in briefcase). Further, the system automatically updates reminder alerts and routine task checklists for that day, based on detected changes in the configuration of system elements and evolving situational contexts.

The system is further configured to create, store, update and utilize associations between smart devices or UITS and UDPs representing persons, places or things, e.g. luggage, briefcases, laptops, projectors, thumb-drives, etc. and also thereby to create, store, update and utilize associations between such persons, places or things with one or more scheduled appointments and also with specific smart devices or UITS, through associations both between such smart devices or UITS and the UDPs representing such persons, places and things and between the UDPs and specific scheduled appointments. Additionally, the software engine is further configured to automatically update reminder alerts and routine task checklists based on evolving situational contexts, including information related to scheduled appointments, UDPs, smart devices and UITS.

For instance, when a scheduled appointment has been marked as associated with one or more UDPs for a particular set of persons, places and things, either directly by a user or autodynamically by a smart device, on the morning of the day of that scheduled appointment the system will remind the appointment participants, through their associated UDPs, to bring with them the required persons and things when they leave their home or other location. And if the user has attached a smart device or UIT to a person, place or thing of interest and the smart device or UIT is in range
of a smart device employed by the user, the software engine will issue one or more reminder alerts or task checklists to the user, via the smart device(s) employed by such user, if said user starts to leave their home or current location without any required item or person.

Further, users may designate items or persons associated to smart devices or UITs as required, essential, or suggested for particular categories of events or appointments. The system and method employ smart devices attached to associated persons, places and things to actively track their location and disposition. Persons, places and things, associated to individual or set(s) of scheduled appointments, may also be as associated to UITs, including RF, NFC, bar codes or QRC, or IRFs, as a trigger for a type of virtual passive tags. And last, items may be designated as required but remain untagged, in which case the scheduler application can only issue reminders based on a user-indicated typical location of the untagged item.

In a preferred embodiment, the system and method are configured to enable users to create different classes or categories of UDPs configured to interact with corresponding classes of users, smart devices and other UDPs based on assigned levels of permission. For instance. A user may designate certain UDPs as belonging to, for instance, public, private (i.e. trusted) and hidden categories. Public class UDPs would allow anyone (user, smart device, or UDP) defined as a member of the general public to interact with information included in the UDP, through the smart device or UIT associated to the person, place or thing represented by such UDP.

Private class UDPs would allow all users to see a limited amount of information contained in the UDP, such as type of object (e.g. 1957 Chevy), but would only allow users, smart devices or UDPs having been assigned to a specific subcategory of the private classification granting a sufficient level of permission to view and interact with a larger subset of the information contained in such private class UDP and the corresponding smart device or UIT. Hidden class UDPs do not even show themselves or the fact of their existence to users, smart devices or UDPs not having been assigned a classification granting a sufficient level of permission to view the
UDP or some subset of information contained in the UDP. “Pure” hidden class UDPs would only be visible to the creator or manager of such UDP.

Users may wish to designate further subcategories; for instance, private class UDPs could be further divided into levels of trust or permissions including, among others, acquaintance, business associate, friend, family or some other set list of individual users, smart devices or UDPs. Each subcategory could be granted different levels of permission or authorization to interact with the managing user’s smart devices, UITs, persons, places and things and their corresponding UDPs. Private and hidden class UDPs would provide restricted access for interaction with information in such UDPs and their corresponding smart devices and UITs. In a preferred embodiment, the current states and classes of persons, places and things is used to determine one or more corresponding classes of persons places and things with which they may interact.

In an additional preferred embodiment, the system and method are configured to enable users to create different classes or categories of appointments and to designate corresponding different classes and categories of things or equipment which must or are preferred to always be brought to certain appointments of a particular corresponding category. For instance, users may designate core items, essential to have with the user at all times, such as smartphone, wallet, purse, backpack, keys, etc. Effectively, if the user and any objects or persons included in the core group ever become separated by more than a specified distance, the software engine will issue one or more reminder alerts and task checklists to the user. Or, as a further example, a particular user may be designated to always bring the company laptop and projector to the conference room for Monday morning meetings.

Specifically, the system of the present invention may additionally be configured to enable users to designate a core group of items or persons, attached to corresponding smart devices or UITs, to be kept with the user at all times or at particularly specified times. For instance, a user may employ this functionality to ensure that items, such as keys, wallet, smart phone, briefcase, handbag or backpack, are kept within a certain proximity of the user at all times.
Or, this functionality could be used to support an activity such as babysitting the neighbor's child every day from 15:00 to 18:00 hours, where the child is equipped with a smart node to ensure that the child does not leave the immediate proximity of the babysitter. This scenario could work something like the following arrangement: Amy comes home from high school and stops at her house to drop off her things; since the system knows that Amy is due at the neighbor's house in 15 minutes, it issues her a reminder alert and reminds her to bring her keys, smart phone, backpack and homework with her; if and only if she fails to retrieve any of these items before she leaves her house; when Amy arrives at the neighbor's house, she is greeted by the mother and because the schedules for Amy and the mother have been synchronized for this event in the system, the system automatically hands-off or transfers primary responsibility for the child, i.e. indications, determinations and predictions regarding the child's needs and wants, including reminder alerts and task checklists e.g. moisture sensor detects a dirty diaper needs changing, to the babysitter before the mother leaves the house.

Additionally, the system can remind the user to prepare for an upcoming duty based upon user location, direction of travel, speed, and may even autonomously cancel or reschedule certain appointments based on these and other parameters of user activity and behavior. As further examples, the system and method are especially well suited for adapting to a variety of exemplary scenarios, including emergency situations, public outings, visiting friends, travel arrangements and business meetings, among others. For instance, when an emergency or accident happens that requires an emergency response, emergency responders are required to retrieve and bring with them certain sets of critical tools, depending on the type of emergency call.

The system and method of the present invention are configured to enable determination, based on the type of emergency call, of which set(s) of tools the emergency responders must retrieve and bring with them on the emergency call. For instance, an alarm issued by a system component, or by an alarm system connected to one or more system elements, alerting users, smart devices, and UDPs of the fire conditions will be interpreted by the system and cause the method
to dynamically change user preferences and update reminder alerts and task checklists issued to emergency responders.

In addition, the system and method are configured to provide dynamic routing to users, indicating the best path of travel to the appointed location, including the most efficient order and route for collection of required items and tool sets. In a preferred embodiment, the system and method of the present invention, continually take inventory of the state of users, smart devices, and UDPs, as well as the state of the local, regional and global environments, in order to better inform calculations of dynamic sets of information and evolving situational contexts and updates to reminder alerts and task checklists. In addition, these state-based calculations and updates can be used to further inform “ready, set, go” queries as well as for autodynamic updating of updating of UDPs and preferences for users, smart devices, UITS or IRFs.

As an additional example, take for instance a mother taking her young child for an outing to a local park which they frequently visit and where she has friends and acquaintances also in attendance. The mom has attached smart nodes to both the child and to the stroller she uses to wheel the child to the park. Further, the mother has classified the UDPs for the stroller and child as trusted private, meaning that only family and friends, and not acquaintances, that the mother has also designated as trusted can view or interact with certain subsets of the information contained in the UDPs managed by the smart nodes of the stroller and child.

Acquaintances would be allowed to view a limited amount of information contained in these UDPs and members of the general public who attempt to interact with the UDPs and smart nodes of the stroller or child will be informed that they are not allowed to do so. In addition, should the mother and stroller or child become separated by more than a specified distance, the system and method are configured to automatically transfer responsibility over the child and stroller to the nearest and most trusted friend in a tiered hierarchy of descending order priority, for instance first to a family member and then to a trusted friend, if available, before issuing an system wide emergency alert (i.e. a lost child alert). Further, smart nodes and smart devices in sufficient proximity to the smart nodes of the child and stroller will
inform the smart device employed by the mother of the current location of her child
and stroller.

And furthermore, the system and method are also configured to issue one or more
reminder alerts and task checklists to users for UDPs of persons, objects or other
things associated with a particular smart device, but which remain physically
unattached to any smart device or UIT. Preferably, in this embodiment the software
ingine is at least configured to use VRC based IRFs to recognize images of
persons, places and things, captured by a smart device equipped with a camera or
other image capture device, and to associate such persons, places and things with
the location of image capture. However, items in this embodiment may be
designated as required but remain untagged altogether, e.g. unattached to either a
smart device or UIT and unassociated with any IRFs. In this case the software
engine can only issue reminders based on various parameters, such as user
location, time and indicated last known or typical location of the untagged item or
person.

VRC based IRF tags include images, such as pictures or diagrams, which reveal
associated information or are associated to referenced information (i.e. a UDP) in a
database (e.g. stored on a local smart device or online). In a preferred embodiment,
facial and object recognition algorithms can be used to identify persons, places and
things and to reference correspondingly associated UDPs by matching captured
images to VRCs stored in IRFs. Additionally, IRF tags can be functionally
implemented when a user views a person, place or object, such as a building,
through a camera integrated in or otherwise connected to a smart device, such as a
smart phone. In a preferred embodiment, the geolocation or relational proximity
location of a user, camera or smart device is used to determine a subset of possible
IRF files upon the initiation of an IRF comparison request. Further, perspective, as
defined by compass direction, angle of view as well as height, as determined by 3D
mesh network location algorithms, or solely compass direction can be used to further
narrow the subset of potential IRF files for consideration by the system regarding an
IRF request.
The system and method are configured to compare VRC(s) generated by the camera of the smart phone, and a geo-location signal encoded in the images captured by the user’s smart phone, to the VRC(s) included in an IRF stored in UDP(s), having a geolocation parameter indicating a geolocation similar to that of the VRC captured by the user’s smart phone. Upon recognizing and identifying an IRF, and associated UDP, having VRC(s) sufficiently similar to and represented by the VRC(s) captured by the user's smart phone, the system and method are configured to access the information, contained within the such UDP.

Further, the system and method may be configured to provide information contained in such UDP in view of the associated person, place or thing enhanced by an augmented reality informational overlay. Furthermore, this augmented reality display may additionally be configured to operate as an interactive user management interface for UDPs and associated persons, places and things; options for status, preferences and settings can be overlaid directly upon a view of the person, place or thing in question, using geolocation information to orient the view the overlay information provided.

In another preferred embodiment, the present invention includes a method for providing users, smart devices and UDPs with dynamically updated action reminder alerts, task checklists and “everything ready, set, go” indications. As depicted in Figures 1-3, the method further comprises at least the first step (110, 210 and 310, respectively) of operating a software engine, configured to create and maintain an enhanced calendar of scheduled appointments, on one or more smart devices. To this end, the method of operating the system and software engine includes the second step (115, 215 and 315, respectively) of creating, updating and storing one or more scheduled appointments and various parameters of the scheduled appointments. The third step of the method (120, 220 and 320, respectively) includes creating, updating and storing UDPs, representing persons, places and things, and various parameters of such UDPs.

The method further includes the step (125, 225 and 325 respectively) of associating UDPs to scheduled appointments and storing these associations in one or more of the various parameters of such scheduled appointments. For the method employing
UITs, the step (230) of attaching the UITs to one or more persons, places and things must follow. The method additionally comprises associating UDPS to corresponding smart devices (130), UITs (235) and IRFs (330) and storing these associations in one or more of the various parameters of such UDPS (130, 235 and 335, respectively). For the method employing IRFs, this step (335) includes storing one or more IRFs in one or more of the various parameters of such UDPS.

For the method employing UITs, the UITs must make a wireless communication and transmit data to one or more of smart devices, the internet and other devices connected to the internet (Step 240). For the method employing IRFs, the method further includes the steps of using one or more smart devices or cameras to capture images of persons, places and things (Step 340) and comparing captured images to IRFs to determine whether the images captured represent persons, places or things corresponding to IRFs associated to one or more UDPS (Step 345).

The method furthermore includes the step of calculating, updating and storing a dynamic set of information based on evolving situational contexts (135, 245 and 350, respectively), as enumerated above but not limited thereto. The method also further includes the steps of recalculating, updating and storing an updated dynamic set of information (140, 250 and 355, respectively) and iterating a query to determine whether to prompt one or more users, smart devices and UDPS with one or more reminder alerts or task checklists based on an updated dynamic set of information (145, 255 and 360, respectively). Upon determining to prompt such users, smart devices or UDPS, the method continues with the step of generating and issuing such reminder alerts and task checklists (150, 260 and 365, respectively). Finally, the method concludes with the step of adjusting or altering a status, disposition, location, activity or behavior of a user, smart device UDP or scheduled appointment in response to a reminder alert or task checklist (155, 265, 370, respectively).

In an additional embodiment, the method may furthermore include attaching UITs, supporting wireless connectivity, to two or more persons, places and things, making a wireless communication between such UITs and one or more smart devices or other UITs, and establishing wireless connections between such UITs and one or more smart devices or other UITs to establish a 3D ad-hoc wireless mesh network.
Such 3D ad-hoc wireless mesh network may operate based on cell, wifi, Bluetooth, RF, IPV4, IPV6 or 6LoPAN connections or other wireless connectivity. In a preferred embodiment of the present invention, the system and method may also use global positioning system (GPS) transmitters, receivers or transceivers, or other means of geolocation, e.g. the European Galileo or the Russian GLONASS systems, onboard the smart device to acquire a geographic location signal. In addition the system and method of the present invention may incorporate the European geostationary navigation overlay service (EGNOS), a geolocation augmentation system developed in part by the European Space Agency, to supplement the GPS, GLONASS and Galileo systems. EGNOS achieves this by providing ephemeris files to the system and smart devices, which determine the reliability and accuracy of positioning data provided by other systems. The smart device then provides this geographic location to one or more of other smart devices and UI Ts, calculating a precise geographic location for one or more of the smart devices and UI Ts using one or more of: multilateration, hyperbolic navigation and multiangulation (when a smart device or UIT is within an appropriate range to make a wireless connection to two or more of other smart devices and UI Ts having established locations) and inertial navigation (when a smart device is outside an appropriate range to make a wireless connection to two or more of other smart devices and UI Ts having established locations).

Multilateration is a navigational technique based on measuring the differences in distances of a point from two or more stations at known locations broadcasting signals at known times, by determining the timing differences in reception of the two or more signals at the point in question. Multilateration determines a small number of possible locations, based on multiple measurements, from which the system may deduce the actual location. Multilateration is common in radio navigation systems, where it is known as hyperbolic navigation, because plotting all of the potential locations of the receiver for the measured delay produces a series of hyperbolic lines on a chart. Taking two such measurements and looking for the intersections of the hyperbolic lines reveals the receiver’s location to be in one of two locations. Any
form of other navigation information can be used to eliminate this ambiguity and determine a fix.

As compared to lateration, the numerical problem of angulation is similar, but the technical problem presented by the need to perform angular measurements is more challenging because angles require two measures per position. Triangulation uses the angular measurements performed within the contexts of trigonometry and geometry to determine the location of a point by measuring angles to it from known stations at either end of a fixed “baseline”, whereas trilateration measures distances to the point directly. In triangulation, the point can then be fixed as the third point of a triangle with one known side and two known angles. Similar to triangulation, multiangulation utilizes more than two known stations and uses angular measurements from the point in question to all known stations to fix the desired location.

Further, the method may additionally comprise performing inertial navigation by calculating a position, orientation and velocity for a smart device, via dead reckoning from a last known geographic location using various sensors, including one or more of motion sensors, such as accelerometers, and rotational sensors, such as gyroscopic sensors.

The method may also further include associating UDPs to corresponding smart devices and linking the network address included in the UDPs to corresponding smart devices and recording these associations in one or more of the various parameters of such unique digital profile and storing such UDPs in one or more storage devices. Specifically, the method may include storing a known geographic location or a precise relational location, such as a relative position location, comprising a proximity to one or more of other smart devices, UITs and IRF tagged persons, places and things, in one of the various parameters of such UDPs.

Various modifications and variations of the described invention and its components will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the disclosure has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, those
skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
CONCLUSIES

1. Systeem, geconfigureerd om gebruikers en systeemelementen de mogelijkheid te bieden om effectief en efficiënt te reageren op een gedigitaliseerde synthese van zich ontwikkelende situationele contexten, door voor de gebruikers en voor de systeemelementen zowel dynamisch gegenereerde als geactualiseerde herinneringsalarmen en opdrachten-checklists te voorzien, op basis van één of meerdere van het bijhouden van een kalender, het bijhouden van een tijdgebruik, en het volgen van een locatie en een activiteit, naast andere principes, en ten minste omvattende:

 één of meerdere personen, plaatsen, en dingen,
 unieke digitale profielen die elk één of meerdere van de personen, plaatsen, en dingen kunnen vertegenwoordigen alsook diverse groeperingen, associaties, statussen, of andere parameters daarvan;
 een verbeterde digitale kalender, kalenderinvoeren omvattende die ten minste geplande afspraken omvatten die één of meerdere personen en dingen aanduiden waarvan verwacht wordt dat ze aanwezig zijn op één of meerdere aangeduide plaatsen en op gespecificeerde tijdstippen, alsook herinneringsalarmen en opdrachten-checklists die één of meerdere acties en opdrachten omvatten waarvan gesuggereerd wordt dat ze voldoen aan de criteria van de geplande afspraken;
 één of meerdere intelligente apparaten, ten minste één of meerdere processoren omvattende, opslaginrichtingen, transmitters, ontvangers of transceivers, en energiebronnen, en waarbij elke intelligent apparaat geconfigureerd is om geassocieerd te worden met één of meerdere unieke digitale profielen, teneinde draadloze verbindingen tot stand te brengen met één of meerdere andere intelligente apparaten, met het internet, en met één of meerdere apparaten die verbonden zijn met het internet, en om software te gebruiken die geconfigureerd is om ervoor te zorgen dat het systeem:

 een verbeterde kalender met geplande afspraken creëert en bijhoudt, met inbegrip van het creëren, het actualiseren, en het opslaan op ten minste één opslaginrichting van het systeem, van één of meerdere kalenderinvoeren met betrekking tot geplande afspraken en diverse parameters van de één of meerdere geplande afspraken;
 het creëren, het actualiseren, en het opslaan op ten minste één opslaginrichting van het systeem, van één of meerdere unieke digitale profielen en van diverse parameters van de unieke digitale profielen;
het associëren van één of meerdere van de unieke digitale profielen met één of meerdere geplande afspraken;
het opslaan van associaties tussen de één of meerdere unieke digitale profielen en één of meerdere geplande afspraken in één of meerdere van de diverse parameters van de geplande afspraken;
het associëren van de één of meerdere unieke digitale profielen met één of meerdere intelligente apparaten die overeenstemmen met personen, plaatsen, of dingen die door de unieke digitale profielen vertegenwoordigd worden;
het opslaan van associaties tussen de één of meerdere unieke digitale profielen en de intelligente apparaten in één of meerdere van de diverse parameters van de unieke digitale profielen;
het berekenen, op ten minste één processor van het systeem, en het opslaan, op ten minste één opslaginrichting van het systeem, van een dynamische gegevensset op basis van ten minste zich ontwikkelende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, intelligente apparaten, unieke digitale profielen, geplande afspraken, daaruit afgeleide informatie, netwerken daarvan, associaties daartussen, en wijzigingen daarop;
het opnieuw berekenen, op de ten minste ene processor van het systeem, en het actualiseren van de dynamische gegevensset, en het opslaan, op de ten minste ene opslaginrichting van het systeem, van een geactualiseerde dynamische gegevensset;
het itereren, op ten minste één processor van het systeem, van een zoekopdracht om te bepalen of één of meerdere herinneringsalarmen en opdrachten-checklists moeten gegenereerd en afgegeven worden om één of meerdere van een gebruiker, een intelligent apparaat, en unieke digitale profielen een actie te laten uitvoeren op basis van een geactualiseerde dynamische gegevensset;
het genereren en het afgeven van één of meerdere herinneringsalarmen en opdrachten-checklists aan één of meerdere van een gebruiker, een intelligent apparaat, en unieke digitale profielen, en dit op het moment dat de gebruiker, het intelligente apparaat, of het unieke digitale profiel uitgenodigd wordt; en een aangepaste, gewijzigde, gemodificeerde, of andere geïmplementeerde wijziging van de status, van de toestand, van de activiteit, of van het gedrag van een systeemgebruiker, een intelligent apparaat, een uniek digitaal profiel, een gemaakte
afspraak, netwerken daarvan en associaties daartussen, waarbij één of meerdere afgegeven herinneringsalarmen en opdrachten-checklists in beschouwing worden genomen.

2. Systeem volgens conclusie 1, waarbij het systeem bovendien is voorzien van ten minste één of meerdere uniek te identificeren tags, ten minste één of meerdere opslaginrichtingen en transmitters, receivers of transceivers omvattende, waarbij elke uniek te identificeren tag geconfigureerd is om verbonden te worden met één van een persoon, een plaats, en een ding, om geassocieerd te worden met één of meerdere unieke digitale profielen, en om draadloze communicaties tot stand te brengen met één of meerdere intelligente apparaten en andere inrichtingen die verbonden zijn met het internet, en waarbij de software bovendien geconfigureerd is om:

één of meerdere van de unieke digitale profielen te associëren met één of meerdere uniek te identificeren tags die verbonden zijn met personen, plaatsen of dingen die vertegenwoordigd worden door de unieke digitale profielen;
associaties op te slaan tussen de één of meerdere unieke digitale profielen en de uniek te identificeren tags in één of meerdere van de diverse parameters van de unieke digitale profielen; en
op ten minste één processor van het systeem een dynamische gegevensset te berekenen en op te slaan op ten minste één opslaginrichting van het systeem, en dit op basis van ten minste zich ontwikkelende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, een intelligent apparaat, uniek te identificeren tags, unieke digitale profielen, geplande afspraken, en informatie die daarvan is afgeleid, netwerken daarvan, associaties daartussen en wijzigingen daarvan.

3. Systeem volgens conclusie 1 of conclusie 2, waarbij de software bovendien geconfigureerd is om ervoor te zorgen dat het systeem:

één of meerdere van de unieke digitale profielen associeert met één of meerdere bestanden voor beeldherkenning, bestaande uit visueel te herkennen code en overeenstemmend met een persoon, een plaats, of een ding die of dat vertegenwoordigd wordt door de unieke digitale profielen;
de bestanden voor beeldherkenning en alle associaties tussen de één of meerdere unieke digitale profielen en de bestanden voor de beeldherkenning opslaat, in één of meerdere van de diverse parameters van de unieke digitale profielen;
één of meerdere van de intelligente apparaten en camera's gebruikt die voorzien zijn van verbindingen die de transmissie van ten minste gegevens mogelijk maakt naar één of meerdere van de internet- en intelligente apparaten, teneinde één of meerdere beelden op te nemen van één of meerdere personen, plaatsen, en dingen; opgenomen beelden van de één of meerdere personen, plaatsen, en dingen vergelijkt met de visueel te herkennen code of een monster daarvan, die of dat vervat zit in een bestand voor beeldherkenning, teneinde te beoordelen of het opgenomen beeld een persoon, een plaats, of een ding vertegenwoordigt die of dat geassocieerd is met de één of meerdere unieke digitale profielen; en

op ten minste één opslaginrichting van het systeem een dynamische gegevensset berekent en opslaat op basis van ten minste zich ontwikkelende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, en intelligent apparaat, bestanden voor beeldherkenning, en resultaten van een vergelijking van bestanden voor beeldherkenning, unieke digitale profielen, geplande afspraken, en daarvan afgeleide informatie, netwerken daarvan, associaties daartussen, en wijzigingen daarvan.

4. Systeem volgens conclusie 2 of conclusie 3, waarbij de uniek te identificeren tags bovendien ten minste één of meerdere omvatten van radiofrequentietransmitters, ontvangers of transceivers, nabij-veld communicatietransmitters, ontvangers of transceivers, snelle responscodes, en streepjescodes.

5. Systeem volgens conclusie 1, 2, of 3, waarbij één of meerdere intelligente apparaten bovendien geconfigureerd is of zijn om verbonden te worden met één of meerdere van een persoon, een plaats, en een ding, en waarbij één of meerdere van intelligente apparaten en uniek te identificeren tags verbonden is of zijn met één of meerdere personen, plaatsen, en dingen.

6. Systeem volgens conclusie 1, 2, of 3, waarbij één of meerdere van de intelligente apparaten bovendien ten minste één of meerdere omvat of omvatten van transmitters, ontvangers en transceivers die geschikt zijn voor een cellulaire netwerk-, een satellietnetwerk-, wifi-, Bluetooth-, 6LoPAN-, RF-, NFC-, en GPS-, GLONASS-, Galileo-, of andere GNSS- en overige draadloze netwerken connectiviteit, en waarbij het systeem bovendien geconfigureerd is om ervoor te zorgen dat een intelligent apparaat een gegevensverbinding maakt met één of meerdere andere intelligente apparaten, uniek te identificeren tags, het internet, en één of
meerdere inrichtingen die verbonden is of zijn met het internet en die gegevens verzendt of verzenden.

7. Systeem volgens conclusie 6, waarbij één of meerdere eerste intelligente apparaten geconfigureerd is of zijn om één of meerdere relatieve positielocaties te detecteren, met inbegrip van het in de buurt zijn van één of meerdere andere intelligente apparaten, uniek te identificeren tags, en met behulp van bestanden voor beeldherkenning getagde personen, plaatsen, en dingen, en een geografisch locatie, met inbegrip van een absolute positie die wordt afgeleid door gebruik te maken van één of meerdere van een kompasuitlezing, een stand-alone GNSS-positionering, een geassisteerde GNSS- positionering, een Precise Point positionering, een tijd- en frequentiereferentie positionering, en dead reckoning.

8. Systeem volgens conclusie 7, waarbij het systeem bovendien geconfigureerd is om één of meerdere herinneringsalarmen en opdrachten-checklists te genereren en af te geven bij het, door de één of meerdere intelligente apparaten detecteren of voorspellen van één of meerdere toestanden, met inbegrip van één of meerdere van het voorbijgaan, het aankomen, en het bereiken van een gespecificeerd tijdstip, en het door de eerste intelligente apparaten vertrekken, bijna klaar zijn om te vertrekken, vertrokken zijn, aankomen, bijna aankomen, en aangekomen zijn in een opgegeven geografische locatie of een relatieve positielocatie.

9. Systeem volgens conclusie 7, waarbij de geografische locatie of de relatieve positielocatie één of meerdere kan omvatten van een thuisbasis, een kantoor, een gebouw, een tas, een aktentas, bagage, en een voertuig zoals een auto, een bus, een boot, een trein, en een vliegtuig.

10. Systeem volgens conclusie 6, waarbij één of meerdere eerste intelligente apparaten bovendien geconfigureerd zijn om:

een gekend geografisch locatiesignaal te verkrijgen en om het geografische locatiesignaal door te geven aan één of meerdere andere intelligente apparaten;
op iteratieve wijze een nauwkeurige geografische locatie te berekenen voor één of meerdere van de andere intelligente apparaten, en dit door gebruik te maken van één of meerdere van:

multilateratie, hyperbolische navigatie en multi-angulering, wanneer de andere intelligente apparaten zich binnen een gepast bereik bevinden om een draadloze verbinding tot stand te brengen met twee of meerdere van de eerste intelligente apparaten met gekende geografische locaties,
inertienavigatie, wanneer de andere intelligente apparaten zich buiten een gepast bereik bevinden om een draadloze verbinding tot stand brengen met twee of meerdere van de eerste intelligente apparaten met gekende geografische locaties;

één of meerdere van de eerste geografische locaties die berekend zijn voor de andere intelligente apparaten, tweede geografische locaties die berekend zijn voor de andere intelligente apparaten, en geografische locaties die worden aangeleverd aan de andere intelligente apparaten, te vergelijken; en

een meest nauwkeurige geografische locatie te bepalen voor de andere intelligente apparaten.

11. Systeem volgens conclusie 4 of conclusie 6, waarbij één of meerdere eerste intelligente apparaten bovendien geconfigureerd zijn om:

een gekend geografisch locatiesignaal te verkrijgen en om het geografische locatiesignaal door te geven aan één of meerdere andere intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning;

op iteratieve wijze een nauwkeurige geografische locatie te berekenen voor één of meerdere van de andere intelligente apparaten en uniek te identificeren tags, door gebruik te maken van één of meerdere van:

multi-lateratie, hyperbolische navigatie en multi-angulering, wanneer de andere intelligente apparaten of uniek te identificeren tags zich binnen een gepast bereik bevinden om een draadloze verbinding tot stand brengen met twee of meerdere van de eerste intelligente apparaten, andere uniek te identificeren tags, en bestanden voor beeldherkenning, met gekende geografische locaties;

inertienavigatie, wanneer de andere intelligente apparaten zich buiten een gepast bereik bevinden om een draadloze verbinding tot stand brengen met twee of meerdere van de eerste intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning met gekende geografische locaties;

één of meerdere van de eerste geografische locaties die berekend zijn voor de andere intelligente apparaten of voor de uniek te identificeren tags, tweede geografische locaties die berekend zijn voor de andere intelligente apparaten of uniek te identificeren tags, en een geografische locatie die wordt aangeleverd aan de andere intelligente apparaten of uniek te identificeren tags, te vergelijken; en

een meest nauwkeurige geografische locatie te bepalen voor de andere intelligente apparaten of voor de uniek te identificeren tags.
12. Systeem volgens conclusie 10 of conclusie 11, waarbij de één of meerdere andere intelligente apparaten bovendien één of meerdere externe en on-board sensoren omvatten die geconfigureerd zijn om te helpen bij het uitvoeren van een inertienavigatie vanaf een laatst gekende geografische locatie, door een positie, een oriëntatie, en een snelheid te detecteren voor de één of meerdere intelligente apparaten.

13. Systeem volgens conclusie 12, waarbij de één of meerdere intelligente apparaten bovendien ten minste één of meerdere bewegingssensoren, zoals versnellingsmeters, en rotatiesensoren, zoals een kompas of gyroscopische sensoren, omvat die geconfigureerd zijn om te helpen bij het uitvoeren van een inertienavigatie.

14. Systeem volgens conclusie 1, 2, of 3, waarbij het intelligente apparaat bovendien ten minste één of meerdere omvat van interfaces met gebruikersknoppen en gebruikersdisplay-interfaces, geconfigureerd om het gebruikers mogelijk te maken diverse parameters in te voeren en te actualiseren van één of meerdere van unieke digitale profielen en geplande afspraken, en waarbij de gebruikersdisplay-interfaces geconfigureerd zijn om één of meerdere uit te voeren van het weergeven en het ontvangen van gebruikersinvoer.

15. Systeem volgens conclusie 1, 2, of 3, waarbij één of meerdere van de unieke digitale profielen geconfigureerd zijn om een communicatie mogelijk te maken met een intelligent apparaat dat overeenstemt met een uniek digitaal profiel door in één of meerdere van de diverse parameters van het unieke digitale profiel een geassocieerd netwerkkadres te voorzien, zoals onder andere één of meerdere van een Universally Unique Identifier, een MAC-adres, een IPV4-adres, een IPV6-adres, een 6LowPan-adres, en een Bluetooth-adres.

16. Systeem volgens conclusie 15, waarbij het netwerkkadres een referentie omvat naar een klasse type of categorie van het unieke digitale profiel waarmee een dergelijk netwerkkadres is geassocieerd.

17. Systeem volgens conclusie 1, 2, of 3, waarbij de één of meerdere energiebronnen één of meerdere kunnen omvatten van draadloze vermogenstransmissie-antennes, inductief laden, batterijen, fotovoltaïsche cellen, brandstofcellen, piezo-elektrische transduceers, en andere middelen voor het oogsten van energie uit de omgeving, alsook de mogelijkheid om een verbinding te maken met een externe energiebron, zoals energie-via-Ethernet of het elektrische systeem van een huis, een voertuig, een computer, een smartphone, of een andere elektrisch gevoede inrichting of apparaat.
18. Systeem volgens conclusie 1, 2, of 3, waarbij één of meerdere intelligente apparaten bovendien ten minste één of meerdere omvatten van fysieke of draadloze verbindingen die de transmissie mogelijk maken van één of meerdere van gegevens en energie tussen het intelligente apparaat en één of meerdere van het internet, één of meerdere inrichtingen of apparaten die verbonden zijn met het internet, en één of meerdere externe en on-board detectors en sensoren.

19. Systeem volgens conclusie 18, waarbij de één of meerdere inrichtingen of apparaten die verbonden zijn met het internet, zonder beperking één of meerdere backend-serversystemen omvatten die ten minste één of meerdere processoren, opslaginrichtingen, verbindingen met het internet, en energiebronnen omvatten.

20. Systeem volgens conclusie 19, waarbij het systeem bovendien is voorzien van één of meerdere softwarepakketten die geladen zijn in één of meerdere opslaginrichtingen die geassocieerd zijn met één of meerdere intelligente apparaten, en een softwarepakket dat geladen is in één of meerdere backend-serversystemen waartoe toegang kan verkregen worden door middel van een netwerkverbinding van een intelligent apparaat, zoals via een geschikte internetsite.

21. Systeem volgens conclusie 18, waarbij de externe en on-board detectors en sensoren één of meerdere kunnen omvatten van onder andere omgevings- of milieusensoren, weersensoren, temperatuursensoren, vochtigheidssensoren, akoestische sensoren, trillingsdetectors, stromingssensoren, snelheidsdetectors, krachtensensoren, dichtheidssensoren, drukssensoren, spanningssensoren, reksensoren, nabijheiddetectors, positiesensoren, hoeksensoren, rotatiesensoren, versnellingsensoren, bewegingsensoren, camera’s, optische detectors, lichtsensoren, warmtesensoren, thermische sensoren, stralingssensoren, subatomaire deeltjesensoren, elektrische-veldsensoren, elektrische-stroomsensoren, elektrische-potentiëalsensoren, magnetische-veldsensoren, metaaldetectors, detectors voor explosieven, chemische sensoren, rookdetectors, en koolstofmonoxide sensoren.

22. Systeem volgens conclusie 1, 2, of 3, waarbij het softwarepakket bovendien een standaard geautomatiseerde computerleermodule omvat die geconfigureerd is om één of meerdere uit te voeren van een patroonherkenning en het voorspellen van één of meerdere van een locatie, een toestand, voorkeuren, een activiteit, en een gedrag die of dat geassocieerd zijn met één of meerdere van gebruikers, intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, en geplande afspraken, en eveneens
geconfigureerd is om autodynamisch diverse parameters te creëren en te actualiseren van één of meerdere unieke digitale profielen en geplande afspraken, op basis van waarnemingen en voorspellingen betreffende locatie, toestand, voorkeuren, activiteit, of gedrag van gebruikers, intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, en geplande afspraken.

23. Systeem volgens conclusie 22, waarbij de unieke digitale profielen geconfigureerd zijn om één of meerdere eerste parameters te omvatten die één of meerdere vertegenwoordigen van een evaluatie van een mentale en emotionele toestand in het verleden en in het heden, en een voorspelling van een mentale en emotionele toestand in de toekomst van één of meerdere van een systeemgebruiker, deelnemers aan de afspraak, en andere personen die herkend zijn door het systeem, en waarbij de één of meerdere eerste parameters één of meerdere zijn van door een gebruiker gecreeerd en gactualiseerd en door het softwarepakket autodynamisch gecreeerd en gactualiseerd op basis van één of meerdere patronen van locatie, toestand, voorkeuren, voorgaande en huidige mentale en emotionele toestanden, activiteit, en gedrag, en dit naast andere waargenomen parameters.

24. Systeem volgens conclusie 1, 2, of 3, waarbij de associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere overeenstemmende gassocieerde intelligente apparaten, uniek te identificeren tags en bestanden voor beeldherkenning, een status aanleveren en opnemen, met inbegrip van ten minste één of meerdere van tijdelijk, onbepaald, en permanent eigendom, gebruik, gezagsrecht, verantwoordelijkheid, beheer, bruikleen, en verbinding, alsook verschillende niveaus van toegangsrechten, met inbegrip van ten minste publieke, privé, en verborgen toegangsrechten tot één of meerdere intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, personen, plaatsen, en dingen.

25. Systeem volgens conclusie 1, 22, 23, of 24, waarbij het systeem bovendien geconfigureerd is om één of meerdere unieke digitale profielen te omvatten die ten minste gedeeltelijk gecreeerd of gactualiseerd zijn op basis van invoer die aangeleverd wordt door één of meerdere van een gebruiker van het unieke digitale profiel, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van het unieke digitale profiel, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van het unieke digitale profiel.
26. Systeem volgens conclusie 25, waarbij één of meerdere van de diverse parameters van de
unieke digitale profielen ten minste één of meerdere indicaties kunnen omvatten van huidige
of uit het verleden gekende statussen, geplande afspraken, toestanden, voorkeuren, activiteit,
'en gedrag van een persoon, plaats, of ding die weergegeven zijn door het unieke digitale
profiel, en waarbij deze één of meerdere diverse parameters geconfigureerd kunnen zijn om
aan het systeem één of meerdere set items, tools, of dingen aan te leveren die één of meerdere
specifieke systeemgebruikers nodig kunnen hebben om op te halen en mee te brengen, en
waarbij het systeem geconfigureerd is om herinneringsalarmen en opdrachten-checklists
dienovereenkomstig te actualiseren.

27. Systeem volgens conclusie 1, 23, of 24, waarbij het systeem bovendien geconfigureerd is om
één of meerdere geplande afspraken, herinneringsalarmen, en opdrachten-checklists te
omvatten die tenminste gedeeltelijk gecreëerd of geadaptieder werden op basis van invoer
door één of meerdere van een organisator van geplande afspraken, een persoon die in het
bezit is van een toegekende classificatie met voldoende rechten om dergelijke actualisaties in
te voeren, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende
classificatie met voldoende rechten om autodynamisch dergelijke actualisaties in te voeren.

28. Systeem volgens conclusie 1 of conclusie 27, waarbij het systeem bovendien geconfigureerd
is om aan één of meerdere van een gebruiker, uniek digitaal profiel, en intelligent apparaat,
onmiddellijk na één of meerdere van een alarm en een wek Luurina van de gebruiker, het
unieke digitale profiel, en het intelligente apparaat, één of meerdere af te geven van
herinneringsalarmen en van opdrachten-checklists, waarin één of meerdere van acties en
opdrachten worden aangeduid die vereist zijn of gesuggereerd worden, teneinde te voldoen
aan criteria van geplande afspraken voor één of meerdere van de huidige en een toekomstige
dag.

29. Systeem volgens conclusie 1 of conclusie 27, waarbij het herinneringsalarm en de
opdrachten-checklist één of meerdere omvatten van een haptische feedback, een tactiele
stimulatie, een trillende, knipperende lichten of een andere visuele stimulatie, een grafische of
geschreven stimulus, een auditive stimulatie, en een auditive boodschap, en andere
geschikte stimuli.

Systeem volgens conclusie 29, waarbij het systeem bovendien geconfigureerd is om een
gespecialiseerde categorie van een herinneringsalarm te genereren en af te geven, het “ready-
set-go” herinneringsalarm, om te bepalen of een gebruiker heeft voldaan aan alle uitstaande
herinneringsalarmen en opdrachten-checklists, bij het zich voordoen van één of meerdere van
tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald werden door het systeem, een door een gebruiker geïnitieerd "ready-set-go" verzoek, en het afronden van alle acties en opdrachten die van de gebruiker vereist werden of aan de gebruiker gesuggereerd werden om te voldoen aan criteria van één of meerdere geplande afspraken.

30. Systeem volgens conclusie 30, waarbij het door een gebruiker geïnitieerde "ready-set-go" verzoek wordt geïnitieerd door een enkele knop op een intelligent apparaat in te drukken.

31. Systeem volgens conclusie 27, waarbij het systeem bovendien geconfigureerd is om één of meerdere te berekenen en af te geven van ad hoe gesuggereerde afspraken, meest geschikte tijdstippen voor afspraken en locaties, en meest efficiënte routes naar een afspraak, tenminste gebaseerd op één of meerdere van de huidige tijd alsook van huidige en toekomstige voorspelde tijden van onderlinge beschikbaarheid, locaties, en afstanden daartussen, beschikbare reismodi en -routes, trends in de richting en de snelheid waarmee de reis kan uitgevoerd worden, externe omstandigheden, zoals weers- en verkeersonstigheden, te verkiezen data die zijn opgeslagen in één of meerdere diverse parameters van unieke digitale profielen of geplande afspraken, zoals te verkiezen locaties en smaken op het vlak van drank en voedsel, alsook andere relevante beschouwingen voor systeemgebruikers en bevestigde deelnemers aan een afspraak.

32. Systeem volgens conclusie 27 of conclusie 32, waarbij het systeem bovendien geconfigureerd is om één of meerdere te omvatten van geplande afspraken, herinneringsalarmen, en opdrachten-checklists die tenminste gedeeltelijk gecreeerd of geactualiseerd werden op basis van één of meerdere van gegevens betreffende voorkeuren van gebruikers, te verkiezen data die zijn opgenomen in digitale profielen, en geplande afspraken, data, tijdstippen, een geografische locatie, een relatieve positielocatie die een nabijheid omvat ten opzichte van één of meerdere andere intelligente apparaten, uniek te identificeren tags, en personen die getagt zijn door middel van bestanden voor beeldherkenning, plaatsen, en dingen, een huidige locatie, een laatst gekende locatie, een reisrichting, en een reisnauwkeurige in de richting in kwestie, verkeersomstandigheden, luchtkwaliteit, weers- en klimaatomstandigheden, en financiële omstandigheden.

33. Systeem volgens conclusie 1, 22, 26, of 33, waarbij het systeem bovendien geconfigureerd is om indicaties te omvatten, in één of meerdere associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere geplande afspraken, van personen of dingen waarvan gepland is dat ze aanwezig moeten zijn op voorgeschreven plaatsen en op voorgeschreven
tijdstippen, en gecreëerd door één of meerdere van een organisator van de één of meerdere geplande afspraken, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van de één of meerdere geplande afspraken, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van de één of meerdere geplande afspraken.

34. Systeem volgens conclusie 1, waarbij de associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere geplande afspraken bovendien een indicatie omvatten van één of meerdere van een gerelateerde categorie, klasse, en een set met geplande afspraken, zoals regelmatig geplande afspraken, regelmatig voorkomende dynamisch geplande afspraken, en andere afspraken betreffende weerkerende gebeurtenissen.

35. Systeem volgens conclusie 35, waarbij het systeem bovendien geconfigureerd is om in de associaties tussen één of meerdere unieke digitale profielen en één of meerdere geplande afspraken die zijn opgeslagen in één van de diverse parameters van de één of meerdere geplande afspraken, een benaming op te nemen van de personen of dingen die worden weergegeven door de één of meerdere unieke digitale profielen, zoals vereist, essentieel, of gesuggereerd voor één of meerdere van welbepaalde categorieën, klassen, en sets met geplande afspraken, waarbij gebruik wordt gemaakt van invoer van één of meerdere van een organisator van de geplande afspraken, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van de geplande afspraak, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van de geplande afspraken.

36. Systeem volgens conclusie 1, 8, 11, of 35, waarbij het systeem bovendien geconfigureerd is om in een parameter van één of meerdere van een uniek digitaal profiel en een geplande afspraak een benaming op te nemen van één of meerdere personen of dingen die zijn weergegeven door één of meerdere overeenstemmende unieke digitale profielen, zoals vereist, essentieel, of gesuggereerd om binnen een bepaalde nabijheid te houden van één of meerdere van gebruikers, intelligente apparaten, en uniek te identificeren tags voor één of meerdere specifieke geplande afspraken, een welbepaalde categorie, klasse, of set met gemaakte afspraken, op specifieke tijdstippen en op alle tijdstippen, door gebruik te maken van invoer van één of meerdere van een eigenaar van het unieke digitale profiel in kwestie, een organisator van de geplande afspraak, een persoon die in het bezit is van een toegekende
classificatie met voldoende rechten om actualisaties in te voeren van het unieke digitale profiel of van de gemaakte afspraak, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van het unieke digitale profiel of van de geplande afspraak.

37. Systeem volgens conclusie 1, 8, 11, of 36, waarbij het systeem bovendien geconfigureerd is om één of meerdere van herinneringsalarmen en opdrachten-checklists op te nemen, bovendien instructies omvattende om één of meerdere personen en dingen op te halen met een uniek digitaal profiel dat geassocieerd is met een relevante geplande afspraak.

38. Systeem volgens conclusie 38, waarbij de één of meerdere herinneringsalarmen en opdrachten-checklists bovendien een indicatie omvatten van een locatie voor één of meerdere personen, plaatsen, en dingen en instructies met het oog op het uitvoeren van één of meerdere van het ophalen of verzekeren van één of meerdere van de personen en dingen op de locatie in kwestie, en om één of meerdere van de personen en dingen op een andere locatie te verzekeren of achter te laten.

39. Systeem volgens conclusie 38, waarbij de één of meerdere herinneringsalarmen en opdrachten-checklists bovendien één of meerdere van een geografische locatie, een relatieve positielocatie, een huidige locatie, en een laatst gekende locatie omvatten van een persoon, een plaats, of een ding, alsook instructies voor één of meerdere van het ophalen en het verzekeren van één of meerdere van dingen en personen op de locatie in kwestie.

40. Systeem volgens conclusie 1, 2, 3, waarbij het systeem bovendien geconfigureerd is om associaties op te nemen van een intelligent apparaat van een gebruiker in één of meerdere van één of meerdere unieke digitale profielen die geconfigureerd zijn om beheerd te worden door het intelligente apparaat, en één of meerdere unieke digitale profielen die overeenstemmen met één of meerdere van een persoon, een plaats, of een ding waarmee andere intelligente apparaten en uniek te identificeren tags van de gebruiker in kwestie verbonden zijn.

41. Systeem volgens conclusie 1, 2, 3, waarbij het systeem bovendien geconfigureerd is om een dynamische set met gegevens op te nemen, berekend op het zich voordoen van één of meerdere tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald werden door het systeem, een door een gebruiker geïnitieerd "ready-set-go" verzoek, en het afronden van alle acties en opdrachten die van de gebruiker vereist werden of aan de
gebruiker gesuggereerd werden om te voldoen aan criteria van één of meerdere geplande afspraken.

42. Systeem volgens conclusie 1 of conclusie 22, waarbij het systeem bovendien geconfigureerd is om een dynamische set met gegevens op te nemen, bovendien één of meerdere van voorspelde groeperingen van personen, plaatsen, en dingen omvattende, en overeenstemmende te voorspellen associaties tussen unieke digitale profielen, uniek te identificeren tags, intelligente apparaten, en geplande afspraken.

43. Systeem volgens conclusie 43, waarbij het systeem bovendien geconfigureerd is om voorspelde groeperingen te omvatten van personen, plaatsen, en dingen, en overeenstemmende te voorspellen associaties tussen gebruikers, intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, en geplande afspraken, met inbegrip van toekomstige locaties, toestanden, voorkeuren, activiteiten, en gedragingen, ten minste gedeeltelijk berekend op basis van een geactualiseerde dynamische set met gegevens en van een patroonherkenning van één of meerdere huidige en zich in het verleden voorgedaan hebbende locaties, toestanden, voorkeuren, activiteiten en gedragingen.

44. Systeem volgens conclusie 43, waarbij het systeem bovendien geconfigureerd is om een dynamische set met gegevens te omvatten die ten minste gedeeltelijk berekend is op basis van voorkeursgegevens, en bovendien voorkeursgegevens van een gebruiker omvat zoals hobby’s en indicaties van gedeelde interesses, opgeslagen in één of meerdere van de diverse parameters van een overeenstemmend uniek digitaal profiel.

45. Systeem volgens conclusie 1, waarbij het systeem bovendien geconfigureerd is om een dynamische set met gegevens te omvatten die één of meerdere netwerken omvat van associaties tussen unieke digitale profielen, geplande afspraken, intelligente apparaten, uniek te identificeren tags, alsook voorkeursgegevens die zijn aangeduid in één of meerdere van unieke digitale profielen, herinneringsalarmen, en opdrachten-checklists.

46. Systeem volgens conclusie 1, 2, of 3, waarbij het systeem bovendien geconfigureerd is om gebruik te maken van één of meerdere processoren om een zoekopdracht te herhalen bij het zich voordoen van één of meerdere van tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, en van tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald werden door het systeem.
47. Systeem volgens conclusie 47, waarbij de zoekopdracht die herhaald wordt door de één of meerdere processoren, een standaard zoekopdracht kan omvatten of een gemodificeerde zoekopdracht op basis van één of meerdere van unieke digitale profielen, geplande afspraken, gegevens die zijn aangeleverd door één of meerdere intelligente apparaten, en uniek te identificeren tags, en één of meerdere geactualiseerde dynamische sets met gegevens.

48. Systeem volgens conclusie 1 of conclusie 43, waarbij het systeem bovendien een softwarepakket omvat dat geconfigureerd is om één of meerdere uit te voeren van het genereren, het actualiseren, het afgeven en het onderdrukken van herinneringsalarmen, en meldingen met betrekking tot opdrachten-checklists aan de personen, de plaatsen, of de dingen die het onderwerp uitmaken van de unieke digitale profielen die geassocieerd zijn met een geplande afspraak.

49. Werkwijze om aan gebruikers van het systeem en systeemelementen zowel dynamisch gegenereerde als geactualiseerde herinneringsalarmen en opdrachten-checklists aan te leveren op basis van één of meerdere van het bijhouden van een kalender, het bijhouden van tijdsgebruik, en het volgen van de locatie en de activiteit, naast andere principes, om het de gebruikers en de systeemelementen mogelijk te maken om op effectieve en efficiënte wijze te reageren op een gedigitaliseerde synthese van zich wijzigende situationele contexten binnen het systeem, en ten minste omvattende:

het gebruiken op één of meerdere intelligente apparaten, die ten minste één of meerdere processoren, opslaginrichtingen, transmitters, ontvangers, of transceivers, en energiebronnen omvatten, en waarbij elk intelligent apparaat geconfigureerd is om geassocieerd te worden met één of meerdere unieke digitale profielen, van een softwarepakket dat geconfigureerd is om uit te voeren:

het creëren en het bijhouden van een verbeterde digitale kalender, kalenderinvoeren omvattende die ten minste geplande afspraken omvatten die één of meerdere personen en dingen aanduiden waarvan verwacht wordt dat ze aanwezig zijn op één of meerdere aangeduide plaatsen en op gespecificeerde tijdstippen, alsook herinneringsalarmen en opdrachtenchecklists die één of meerdere acties en opdrachten omvatten waarvan gesuggereerd wordt dat ze voldoen aan de criteria van de geplande afspraken; het creëren, het actualiseren, en het opslaan op ten minste één opslaginrichting van het systeem, van één of meerdere geplande afspraken, kalenderinvoeren, en diverse parameters van de één of meerdere geplande afspraken;
het creëren, het actualiseren, en het opslaan op ten minste één opslaginrichting van het systeem, van één of meerdere unieke digitale profielen, en van diverse parameters van de unieke digitale profielen, die elk één of meerdere van personen, plaatsen, en dingen en groeperingen, associaties, statussen, of andere parameters daarvan kunnen vertegenwoordigen;
het associëren van één of meerdere van de unieke digitale profielen met één of meerdere geplande afspraken;
het opslaan van associaties tussen de één of meerdere unieke digitale profielen en één of meerdere geplande afspraken in één of meerdere van de diverse parameters van de geplande afspraken;
het associëren van één of meerdere van de unieke digitale profielen met één of meerdere intelligente apparaten die overeenstemmen met personen, plaatsen, of dingen die worden weergegeven door de unieke digitale profielen;
het opslaan van associaties tussen de één of meerdere unieke digitale profielen en de intelligente apparaten in één of meerdere van de diverse parameters van de unieke digitale profielen;
het tot stand brengen van een gegevensverbinding met één of meerdere van andere intelligente apparaten, het internet, en één of meerdere inrichtingen die verbonden zijn met het internet, en het verzenden van gegevens;
het berekenen op ten minste één processor van het systeem, en het opslaan op ten minste één opslaginrichting van het systeem, van een dynamische set met gegevens op basis van ten minste zich wijzigende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, intelligente apparaten, unieke digitale profielen, geplande afspraken, gegevens die daarvan afgeleid zijn, netwerken daarvan, associaties daartussen, en wijzigingen ervan;
het opnieuw berekenen op ten minste één processor van het systeem, en het actualiseren van de dynamische set met gegevens, en het opslaan op de ten minste ene opslaginrichting van het systeem, van een geactualiseerde dynamische set met gegevens;
het itereren op ten minste één processor van het systeem, van een zoekopdracht om te bepalen of er één of meerdere herinneringsalarmen en opdrachten-checklists moeten gegenereerd en afgegeven worden om één of meerdere van een gebruiker, een intelligent apparaat, en een uniek digitaal
profiel aan te sporen om een actie uit te voeren op basis van een geactualiseerde dynamische set met gegevens;
het genereren en het afgeven van één of meerdere herinneringsalarmen en opdrachten-checklists aan één of meerdere van een gebruiker, een intelligent apparaat, en een uniek digitaal profiel, en dit indien de gebruiker, het intelligente apparaat, of het unieke digitale profiel daartoe wordt aangespoord;
het aanpassen, wijzigen, modificeren, dan wel op een andere wijze implementeren van een wijziging van de status, de toestand, de activiteit, of het gedrag van een systeemgebruiker, intelligent apparaat, uniek digitaal profiel, geplande afspraken, netwerken daarvan, en associaties daartussen, waarbij één of meerdere van afgegeven herinneringsalarmen en opdrachten-checklists in beschouwing worden genomen.

50. Werkwijze volgens conclusie 15, waarbij de werkwijze bovendien omvat:
het toevoegen van één of meerdere uniek te identificeren tags, met inbegrip van ten minste één of meerdere van opslaginrichtingen en transmitters, ontvangers, en transceivers, aan één of meerdere personen, plaatsen, en dingen;
het associëren van één of meerdere unieke digitale profielen met één of meerdere uniek te identificeren tags die zijn toegekend aan personen, plaatsen, of dingen die vertegenwoordigd worden door de unieke digitale profielen;
het opslaan van associaties tussen de één of meerdere unieke digitale profielen en de uniek te identificeren tags in één of meerdere van de diverse parameters van de unieke digitale profielen;
het tot stand brengen van een draadloze communicatie tussen een uniek te identificeren tag en één of meerdere van intelligente apparaten en andere inrichtingen die verbonden zijn met het internet, en het verzenden van gegevens;
het berekenen op ten minste één processor van het systeem, en het opslaan op ten minste één opslaginrichting van het systeem, van een dynamische set met gegevens op basis van ten minste zich wijzigende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en het gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, intelligente apparaten, uniek te identificeren tags, unieke digitale profielen, geplande afspraken, en gegevens die daarvan afgeleid zijn, netwerken daarvan, associaties daartussen, en wijzigingen ervan.

51. Werkwijze volgens conclusie 50 of conclusie 51, waarbij de werkwijze bovendien omvat:
het associëren van één of meerdere unieke digitale profielen met één of meerdere bestanden voor beeldherkenning, bestaand uit visueel herkenbare code en overeenstemmend met een persoon, een plaats, of een ding die of dat wordt weergegeven door de unieke digitale profielen;

het opslaan van de bestanden voor beeldherkenning en van mogelijke associaties tussen de één of meerdere unieke digitale profielen en de overeenstemmende bestanden voor beeldherkenning in één of meerdere van de diverse parameters van de unieke digitale profielen;

het gebruiken van één of meerdere intelligente apparaten en camera's die in het bezit zijn van een verbinding die het verzenden mogelijk maakt van ten minste gegevens naar één of meerdere van het internet en intelligente apparaten, teneinde één of meerdere beelden op te nemen van één of meerdere personen, plaatsen, en dingen;

het vergelijken van opgenomen beelden van de één of meerdere personen, plaatsen, en dingen met de visueel herkenbare code, of een monster daarvan, vervat in een bestand voor beeldherkenning, teneinde te bepalen of de opgenomen beelden een persoon, een plaats, of een ding vertegenwoordigen die of dat geassocieerd is met één of meerdere van de unieke digitale profielen;

het berekenen door het softwarepakket en het opslaan op ten minste één opslaginrichting, van een dynamische set met gegevens op basis van ten minste zich wijzigende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, intelligente apparaten, bestanden voor beeldherkenning, en resultaten van een vergelijking van bestanden voor beeldherkenning, unieke digitale profielen, geplande afspraken, en gegevens die daarvan afgeleid zijn, netwerken daarvan, associaties daartussen, en wijzigingen ervan.
52. Werkwijze volgens conclusie 51 of conclusie 52, waarbij de werkwijze bovendien het tot stand brengen omvat van een draadloze verbinding met één of meerdere van een intelligent apparaat en andere apparaten die verbonden zijn met het internet doordat de uniek te identificeren tags gebruik maken van ten minste één of meerdere radiofrequentietransmitters, ontvangers, of tranceivers, nabij-veld communicatiemitters, ontvangers of tranceiver, snelle-responcodes, en streepjescodes.

53. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het verbinden omvat van één of meerdere van de intelligente apparaten met één of meerdere overeenstemmende personen, plaatsen, en dingen.

54. Werkwijze volgens conclusie 50, 51, 52, waarbij de werkwijze bovendien het tot stand brengen omvat van een draadloze verbinding door één of meerdere van de intelligente apparaten door gebruik te maken van één of meerdere van transmitters, ontvangers en tranceivers die geconfigureerd zijn om een draadloze verbinding tot stand te brengen via een cellulair netwerk-, een satellietnetwerk-, wifi-, Bluetooth-, 6LoPAN-, RF-, NFC-, en GPS-, GLONASS-, Galileo-, of andere GNSS- en overige draadloze netwerkconnectiviteit.

55. Werkwijze volgens conclusie 55, waarbij de werkwijze bovendien het gebruik omvat van één of meerdere eerste intelligente apparaten om één of meerdere van een relatoire positielocatie, met inbegrip van een nabijheid ten opzichte van één of meerdere andere intelligente apparaten, uniek te identificeren tags, en personen, plaatsen, en dingen die getagd zijn met bestanden voor beeldherkenning, en een geografische locatie, een absolute positie omvattende die is afgeleid door gebruik te maken van één of meerdere van een kompasuitlezing, een stand-alone GNSS-positionering, een geassisteerde GNSS-positionering, een Precise Point positionering, een tijd- en frequentiereferentie positionering, en dead reckoning.

56. Werkwijze volgens conclusie 56, waarbij de werkwijze bovendien het genereren en het afgeven omvat van één of meerdere herinneringsalarms en opdrachten-checklists bij het, door de één of meerdere intelligente apparaten, detecteren of voorspellen van één of meerdere toestanden, met inbegrip van één of meerdere van het passeren, aankomen, en het bereiken van een gespecificeerd tijdstip, en het door de eerste intelligente apparaten vertrekken, bijna klaar zijn om te vertrekken, vertrokken zijn, aankomen, bijna aankomen, en aangekomen zijn in een opgegeven geografische locatie of een relatieve positielocatie.
57. Werkwijze volgens conclusie 56, waarbij de één of meerdere herinneringsalarmen en opdrachten-checklists worden gegenereerd en afgegeven wanneer de één of meerdere eerste intelligente apparaten de één of meerdere toestanden detecteren met betrekking tot één of meerdere van de geografische locatie en de relatieve positielocatie, met inbegrip van één of meerdere van een huis, een kantoor, een gebouw, een tas, een aktentas, bagage, en een voertuig zoals een auto, een bus, een boot, een trein, en een vliegtuig.

58. Werkwijze volgens conclusie 55, waarbij de werkwijze bovendien omvat:
het gebruik van een GPS of van een andere geolocatie-transceiver aan boord van één of meerdere eerste intelligente apparaten, teneinde een bestaand geolocatie-signal te verkrijgen, en het aanleveren van het geolocatie-signal aan één of meerdere andere intelligente apparaten;
het berekenen van een nauwkeurige geografische locatie voor één of meerdere van de andere intelligente apparaten, door gebruik te maken van één of meerdere van:
multilateratie, hyperbolische navigatie en multi-angulering, wanneer de andere intelligente apparaten zich binnen een gepast bereik bevinden om een draadloze verbinding tot stand te brengen met twee of meerdere van de eerste intelligente apparaten met gekende geografische locaties;
inertienavigatie, wanneer de andere intelligente apparaten zich buiten een gepast bereik bevinden om een draadloze verbinding tot stand te brengen met twee of meerdere van de eerste intelligente apparaten met gekende geografische locaties;
het vergelijken van één of meerdere van eerste geografische locaties die berekend zijn voor de andere intelligente apparaten, tweede geografische locaties die berekend zijn voor de andere intelligente apparaten, en geografische locaties die worden aangeleverd aan de andere intelligente apparaten; en
het bepalen van een meest nauwkeurige geografische locatie voor de andere intelligente apparaten.

59. Werkwijze volgens conclusie 53 of conclusie 55, waarbij de werkwijze bovendien omvat:
het gebruik van een GPS- of van een andere geolocatie-transceiver aan boord van één of meerdere eerste intelligente apparaten teneinde een gekend geolocatie-signal te verkrijgen, en het aanleveren van het geolocatie-signal aan één of meerdere van andere intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning;
het berekenen van een nauwkeurige geografische locatie voor één of meerdere van de andere intelligente apparaten en uniek te identificeren tags door gebruik te maken van één of meerdere van:

multilateratie, hyperbolische navigatie en multi-angulering, wanneer de andere intelligente apparaten zich binnen een gepast bereik bevinden om een draadloze verbinding tot stand te brengen met twee of meerdere van de eerste intelligente apparaten, andere uniek te identificeren tags, en bestanden voor beeldherkenning met gekende geografische locaties;
inertienavigatie, wanneer de andere intelligente apparaten zich buiten een gepast bereik bevinden om een draadloze verbinding tot stand te brengen met twee of meerdere van de eerste intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning met gekende geografische locaties;
het vergelijken van één of meerdere van eerste geografische locaties die berekend zijn voor de andere intelligente apparaten of uniek te identificeren tags, tweede geografische locaties die berekend zijn voor de andere intelligente apparaten of uniek te identificeren tags, en een geografische locatie die wordt aangeleverd aan de andere intelligente apparaten; en
het bepalen van een meest nauwkeurige geografische locatie voor de andere intelligente apparaten of uniek te identificeren tags.

60. Werkwijze volgens conclusie 59 of conclusie 60, waarbij de werkwijze bovendien het uitvoeren omvat van een inertienavigatie vanaf een laatst gekende geografische locatie, door gebruik te maken van één of meerdere sensoren die extern aan of aan boord zijn van de één of meerdere andere intelligente apparaten, teneinde een positie, een oriëntatie, en een snelheid voor het intelligente apparaat te bepalen.

61. Werkwijze volgens conclusie 61, waarbij de werkwijze bovendien het uitvoeren omvat van een inertienavigatie door gebruik te maken van ten minste één of meerdere van bewegingssensoren, zoals versnellingsmeters, en rotatiesensoren, zoals een kompas of gyroscopische sensoren.

62. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien één of meerdere omvat van het weergeven van gegevens en het ontvangen van gebruikersinvoer via ten minste één of meerdere van gebruikersdisplay-interfaces en interfaces met gebruikersknoppen die deel uitmaken van één of meerdere van de intelligente apparaten.
63. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het voorzien omvat van een netwerkadres, zoals één of meerdere van een MAC-adres, een IPV4-adres, en een IPV6-adres, voor een overeenstemmend intelligent apparaat, en dit in één of meerdere van de diverse parameters van de unieke digitale profielen, en het versturen van communicaties naar het unieke digitale profiel en naar het intelligente apparaat door gebruik te maken van het netwerkadres.

64. Werkwijze volgens conclusie 64, waarbij het voorziene netwerkadres een referentie omvat naar een type van de klasse of de categorie van het unieke digitale profiel waarmee een dergelijk netwerkadres is geassocieerd.

65. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien één of meerdere omvat van het van energie voorzien en het opnieuw opladen van de één of meerdere intelligente apparaten via één of meerdere van draadloze vermogenstransmissie-antennes, inductief laden, batterijen, fotovoltaïsche cellen, brandstofcellen, piezo-elektrische transducers, en andere middelen voor het oogsten van energie uit de omgeving, alsook de mogelijkheid om een verbinding te maken met een externe energiebron, zoals energie-via-Ethernet of het elektrische systeem van een huis, een voertuig, een computer, een smartphone, of een andere elektrisch gevoede inrichting of apparaat.

66. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het versturen omvat van energie en gegevens tussen één of meerdere intelligente apparaten en één of meerdere van het internet, één of meerdere inrichtingen of apparaten die verbonden zijn met het internet, met inbegrip maar zonder beperkt te zijn tot één of meerdere backendserversystemen die ten minste één of meerdere processoren, opslaginrichtingen, verbindingen met het internet, en energiebronnen omvatten, en één of meerdere van externe en interne detectors en sensoren, via één of meerdere van een fysieke en draadloze verbinding tussen de één van meerdere intelligent apparaten en het internet, de inrichtingen of apparaten die verbonden zijn met het internet, en de één of meerdere externe en interne detectors en sensoren.

67. Werkwijze volgens conclusie 67, waarbij de werkwijze bovendien het verbinden omvat van één van meerdere inrichtingen of apparaten met het internet, met inbegrip van één of meerdere backendserversystemen die tenminste één of meerdere processoren, opslaginrichtingen, verbindingen met het internet, en energiebronnen omvatten, en het versturen van gegevens tussen de één van meerdere intelligente apparaten en één van meerdere backendserversystemen.
68. Werkwijze volgens conclusie 68, waarbij de werkwijze bovendien het verkrijgen van toegang omvat door één of meerdere intelligente apparaten tot een softwarepakket van het systeem dat geladen is op één of meerdere backend-serversystemen waartoe toegang verkregen wordt via een netwerkverbinding van een intelligent apparaat, zoals via een gepaste internetsite.

70. Systeem volgens conclusies 50, 51, of 52, waarbij de werkwijze bovendien het autodynamisch genereren omvat van associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere geplande afspraken door gebruik te maken van waarnemingen van één of meerdere van intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning, alsook van patroonherkenning van typische locaties, toestanden, activiteiten, en gedragingen van gebruikers, intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning en unieke digitale profielen.
71. Werkwijze volgens conclusie 71, waarbij de werkwijze bovendien het voorzien en het opslaan omvat in één of meerdere eerste parameters van één of meerdere unieke digitale profielen van één of meerdere van een evaluatie van voorgaande en huidige mentale en emotionele toestanden, en een voorspelling van een toekomstige mentale en emotionele toestand van één of meerdere van een systeemgebruiker, deelnemers aan een afspraak, en andere personen die door het systeem herkend zijn, en waarbij de één of meerdere eerste parameters één of meerdere zijn van door een gebruiker gecreeerde en geactualiseerde en door het softwarepakket autodynamisch gecreeerde en geactualiseerde, op basis van één of meerdere van de patronen van locaties, toestanden, voorkeuren, voorgaande en huidige mentale en emotionele toestanden, activiteiten, en gedragingen, naast andere waargenomen parameters.

72. Werkwijze volgens conclusies 50, 51, of 52, waarbij de werkwijze bovendien het voorzien en het opslaan omvat in één of meerdere diverse parameters van één of meerdere unieke digitale profielen, van associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere overeenstemmende geassocieerde intelligente apparaten, uniek te identificeren tags, en bestanden voor beeldherkenning, een toestand, met inbegrip van ten minste één of meerdere van tijdelijk, onbepaald, en permanent eigendom, gebruik, gezagsrecht, verantwoordelijkheid, beheer, bruikleen, en verbinding, alsook verschillende niveaus van toegangsrechten tot, met inbegrip van ten minste publieke, privé, en verborgen toegangsrechten tot één of meerdere intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, personen, plaatsen, en dingen.

73. Werkwijze volgens conclusies 50, 71, 72, of 74, waarbij de werkwijze bovendien het creëren en het actualiseren omvat van unieke digitale profielen, ten minste gedeeltelijk op basis van invoer die wordt aangeleverd door een eigenaar van het unieke digitale profiel, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van het unieke digitale profiel, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van het unieke digitale profiel.

74. Werkwijze volgens conclusie 74, waarbij de werkwijze bovendien het voorzien en het opslaan omvat in één of meerdere van de diverse parameters van één of meerdere unieke digitale profielen, van één of meerdere indicaties van huidige of uit het verleden gekende toestanden, geplande afspraken, locaties, toestanden, voorkeuren, activiteiten en gedragingen van een persoon, een plaats of een ding dat wordt weergegeven door het unieke digitale
profiel, en waarbij deze één of meerdere diverse parameters geconfigureerd kunnen zijn om één of meerdere sets aan te leveren aan het systeem met items, tools, of dingen die één of meerdere specifieke systeemgebruikers of intelligente apparaten moeten ophalen en meebrengen, en waarbij het systeem geconfigureerd is om herinneringsalarmen en opdrachten-checklists dienovereenkomstig te actualiseren.

75. Werkwijze volgens conclusie 50, 72, of 73, waarbij de werkwijze bovendien het creëren en het actualiseren omvat van één of meerdere geplande afspraken, herinneringsalarmen, en opdrachten-checklists, ten minste gedeeltelijk op basis van invoer door één of meerdere van een organisator van een geplande afspraak, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om dergelijke actualisaties in te voeren, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch dergelijke actualisaties in te voeren.

76. Werkwijze volgens conclusie 50 of conclusie 76, waarbij de werkwijze bovendien het afgeven omvat aan één of meerdere van een gebruiker, een uniek digitaal profiel, en een intelligent apparaat, onmiddellijk volgend op één of meerdere van een alarm en van een wekroutine van de gebruiker, het unieke digitale profiel, en het intelligente apparaat, van één of meerdere van een herinneringsalarm en een opdrachten-checklist, waarin één of meerdere van acties en opdrachten worden aangeduid die vereist zijn of gesuggereerd worden, teneinde te voldoen aan criteria van geplande afspraken voor één of meerdere van de huidige en een toekomstige dag.

77. Werkwijze volgens conclusie 50 of conclusie 76, waarbij de werkwijze bovendien het afgeven van één of meerdere van herinneringsalarmen en opdrachten-checklists omvat in één of meerdere van geschreven, grafische, visuele, auditieve, tactiele, of andere vorm.
78. Werkwijze volgens conclusie 78, waarbij de werkwijze bovendien het genereren en het afgeven omvat van een gespecialiseerde categorie van een herinneringsalarm, het “ready-set-go” herinneringsalarm, om te bepalen of een gebruiker heeft voldaan aan alle uitstaande herinneringsalarmen en opdrachten-checklists, bij het zich voordoen van één of meerdere van tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald werden door het systeem, een door een gebruiker geïnitieerd "ready-set-go" verzoek, en het afronden van alle acties en opdrachten die van de gebruiker vereist werden of aan de gebruiker gesuggereerd werden om te voldoen aan criteria van één of meerdere geplande afspraken.

79. Werkwijze volgens conclusie 79, waarbij de werkwijze bovendien het aanvangen omvat van een door een gebruiker geïnitieerd "ready-set-go" verzoek door een enkele knop op een intelligent apparaat in te drukken.

80. Werkwijze volgens conclusie 76, waarbij de werkwijze bovendien het berekenen en het afgeven omvat van één of meerdere van ad hoc gesuggereerde afspraken, meest geschikte tijdstippen voor afspraken en locaties, en meest efficiënte routes naar een afspraak, tenminste gebaseerd op één of meerdere van de huidige tijd alsook van huidige en toekomstige voorspelde tijden van onderlinge beschikbaarheid, locaties, en afstanden daartussen, beschikbare reismodi en -routes, trends in de richting en de snelheid waarmee de reis kan uitgevoerd worden, externe omstandigheden, zoals weers- en verkeersomstandigheden, te verkrijzen data die zijn opgeslagen in één of meerdere diverse parameters van unieke digitale profielen of geplande afspraken, zoals te verkrijzen locaties en smaken op het vlak van drank en voedsel, alsook andere relevante beschouwingen voor systeemgebruikers en bevestigde deelnemers aan een afspraak.
81. Werkwijze volgens conclusie 76 of conclusie 81, waarbij de werkwijze bovendien het creëren en het actualiseren omvat van één of meerdere van geplande afspraken, herinneringsalarmen, en opdrachten-checklists, ten minste gedeeltelijk gebaseerd op één of meerdere van gegevens betreffende gebruikersvoorkeuren, voorkeurgegevens die zijn opgenomen in unieke digitale profielen en geplande afspraken, data, tijdstippen, een geografische locatie, een relatieve positielocatie, een nabijheid omvattende ten opzichte van één of meerdere andere intelligente apparaten, uniek door het softwarepakket te identificeren tags, en personen, plaatsen, en dingen die getagd zijn met behulp van bestanden voor beeldherkenning, een huidige locatie, een laatst gekende locatie, een reisrichting en een snelheid waarmee de reis in die richting wordt afgelegd, verkeersomstandigheden, luchtkwaliteit, weers- en klimaatomstandigheden, en financiële omstandigheden.

82. Werkwijze volgens conclusies 50, 71, 75, of 82, waarbij de werkwijze bovendien het aanduiden omvat in één of meerdere associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere geplande afspraken, personen, of dingen waarvan verwacht wordt dat ze aanwezig zouden zijn op aangeduide plaatsen en op specifieke tijdstippen, en gecreëerd door één of meerdere van een organisator van de één of meerdere geplande afspraken, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van de één of meerdere geplande afspraken, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van de één of meerdere geplande afspraken.

83. Werkwijze volgens conclusie 50, waarbij de werkwijze bovendien het creëren omvat van associaties tussen de één of meerdere unieke digitale profielen en de één of meerdere geplande afspraken, met inbegrip van indicaties van één of meer van een gerelateerde categorie, klasse, en een set met geplande afspraken, zoals regelmatig geplande afspraken, regelmatig voorkomende dynamisch geplande afspraken, en andere afspraken betreffende weerkerende gebeurtenissen.
Werkwijze volgens conclusie 84, waarbij de werkwijze bovendien het aanduiden omvat, in één of meerdere associaties tussen één of meerdere unieke digitale profielen en één of meerdere geplande afspraken, en opgeslagen in één van de diverse parameters van de één of meerdere geplande afspraken, van een benaming van personen of van dingen die worden weergegeven door de één of meerdere unieke digitale profielen, zoals vereist, essentieel, of gesuggereerd voor één of meerdere van welbepaalde categorieën, klassen, en sets met geplande afspraken, waarbij gebruik wordt gemaakt van invoer van één of meerdere van een organisator van de geplande afspraak, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van de geplande afspraken, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van de geplande afspraken.

Werkwijze volgens conclusie 50, 57, 60, of 84, waarbij de werkwijze bovendien het benoemen omvat, in een parameter van één of meerdere van een uniek digitaal profiel en een geplande afspraak, van één of meerdere personen of dingen die worden weergegeven door één of meerdere overeenstemmende unieke digitale profielen, zoals vereist, essentieel, of gesuggereerd om binnen een bepaalde nabijheid te houden van één of meerdere van gebruikers, intelligente apparaten, en uniek te identificeren tags voor één of meerdere specifieke geplande afspraken, een welbepaalde categorie, klasse, of set met gemaakte afspraken, op specifieke tijdstippen en op alle tijdstippen, door gebruik te maken van invoer van één of meerdere van een eigenaar van het unieke digitale profiel in kwestie, een organisator van de geplande afspraak, een persoon die in het bezit is van een toegekende classificatie met voldoende rechten om actualisaties in te voeren van het unieke digitale profiel of van de gemaakte afspraak, en een intelligent apparaat of softwarepakket dat in het bezit is van een toegekende classificatie met voldoende rechten om autodynamisch actualisaties in te voeren van het unieke digitale profiel of van de geplande afspraak.

Werkwijze volgens conclusie 50, 57, 60, of 85, waarbij de werkwijze bovendien het genereren en het afgiven omvat van één of meerdere herinneringsalarmen en opdrachten-checklists die bovendien instructies omvatten om één of meerdere personen en dingen op te halen die in het bezit zijn van een uniek digitaal profiel dat geassocieerd is met een relevante geplande afspraak.
87. Werkwijze volgens conclusie 70, waarbij de werkwijze bovendien het aangeven omvat in de één of meerdere herinneringsalarmen en opdrachten-checklists, van een locatie voor één of meerdere van personen, plaatsen, en dingen, en instructies om één of meerdere uit te voeren van het ophalen of het verzekeren van één of meerdere van de personen en dingen op de locatie in kwestie, en om één of meerdere van de personen en dingen te verzekeren of achter te laten op een andere locatie.

88. Werkwijze volgens conclusie 87, waarbij de werkwijze bovendien het aangeven omvat in de één of meerdere herinneringsalarmen en opdrachten-checklists, van een geografische locatie, een relatiee positielocatie, een huidige locatie en een laatst gekende locatie van een persoon, plaats, of ding, alsook instructies om één of meerdere uit te voeren van het ophalen en het verzekeren van één of meerdere van dingen en personen op de locatie in kwestie.

89. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het creëren en het actualiseren omvat van associaties van een intelligent apparaat van een gebruiker met één of meerdere van één of meerdere unieke digitale profielen die geconfigureerd zijn om beheerd te worden door het intelligente apparaat, en één of meerdere unieke digitale profielen die overeenstemmen met één of meerdere van een persoon, een plaats, of een ding waarmee andere intelligente apparaten en uniek te identificeren tags van een dergelijke gebruiker verbonden zijn.

90. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het berekennen omvat van een dynamische set met gegevens bij het zich voordoen van één of meerdere van tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald werden door het systeem, een door een gebruiker geïnitieerd "ready-set-go" verzoek, en het afronden van alle acties en opdrachten die van de gebruiker vereist werden of aan de gebruiker gesuggereerd werden om te voldoen aan criteria van één of meerdere geplande afspraken.

91. Werkwijze volgens conclusie 50 of conclusie 71, waarbij de werkwijze bovendien het berekenen omvat van een dynamische set met gegevens die bovendien één of meerdere omvat van voorspelde groepering van personen, plaatsen, en dingen, en overeenstemmende voorspelde associaties tussen unieke digitale profielen, uniek te identificeren tags, intelligente apparaten, en geplande afspraken.
92. Werkwijze volgens conclusie 92, waarbij de werkwijze bovendien het voorspellen omvat van groeperingen van personen, plaatsen, en dingen, en het voorspellen van overeenstemmende associaties tussen gebruikers, intelligente apparaten, uniek te identificeren tags, bestanden voor beeldherkenning, unieke digitale profielen, en geplande afspraken, met inbegrip van toekomstige locaties, toestanden, voorkeuren, activiteiten, en gedragingen, ten minste gedeeltelijk berekend op basis van een geactualiseerde dynamische set met gegevens, en patroonherkenning van één of meerdere huidige en voorgaande locaties, toestanden, voorkeuren, activiteiten, en gedragingen.

93. Werkwijze volgens conclusie 92, waarbij de werkwijze bovendien het berekenen omvat van een dynamische set met gegevens, ten minste gedeeltelijk op basis van voorkeursgegevens, bovendien voorkeursgesprekken van gebruikers omvattende, zoals hobby's en aangeduide gedeelde interesses, opgeslagen in één of meerdere van de diverse parameters van een overeenstemmend uniek digitaal profiel.

94. Werkwijze volgens conclusie 50, waarbij de werkwijze bovendien het berekenen omvat van een dynamische set met gegevens, één of meerdere omvattende van netwerken van associaties tussen unieke digitale profielen, geplande afspraken, intelligente apparaten, uniek te identificeren tags, alsook voorkeursgegevens die terug te vinden zijn in één of meerdere unieke digitale profielen, herinneringsalarms, en opdrachten-checklists.

95. Werkwijze volgens conclusie 50, 51, of 52, waarbij de werkwijze bovendien het op één of meerdere processoren itereren omvat van een zoekopdracht bij het zich voordoen van één of meerdere van tijdstippen, intervallen, gebeurtenissen, en locaties die zijn ingesteld door een gebruiker, en tijdstippen, intervallen, gebeurtenissen, en locaties die autodynamisch bepaald zijn door het systeem.

96. Werkwijze volgens conclusie 96, waarbij het itereren van één of meerdere van een standaard zoekopdracht en van een gewijzigde zoekopdracht op basis van één of meerdere unieke digitale profielen, geplande afspraken, informatie die is aangeleverd door één of meerdere intelligente apparaten en uniek te identificeren tags en één of meerdere geactualiseerde dynamische sets met gegevens.
97. Werkwijze volgens conclusie 50 of conclusie 92, waarbij de werkwijze bovendien één of meerdere omvat van het genereren, het actualiseren, het afgeven, en het onderdrukken van meldingen van herinneringsalarmen en opdrachten-checklists aan de personen, plaatsen, of dingen die het onderwerp uitmaken van de unieke digitale profielen die geassocieerd zijn met een geplande afspraak.
Figure 1
Figure 2

210 Operating on one or more smart devices a software engine configured to create and maintain an enhanced digital calendar

215 Creating, updating and storing scheduled appointments and various parameters thereof

220 Creating, updating and storing UDPs, representing persons, places and things, and various parameters thereof

225 Associating UDPs to scheduled appointments and storing such associations as a parameter of the scheduled appointments

230 Attaching smart devices and UITs to one or more persons, places and things

235 Associating UDPs to corresponding smart devices and UITs and storing such associations as a parameter of the UDPs

240 Making a wireless communication and transmitting data to one or more of smart devices, the internet or other devices connected to the internet

245 Calculating and storing a dynamic set of information based on evolving contexts

250 Recalculating, updating and storing an updated dynamic set of information

255 Iterating a query to determine whether to generate and issue a reminder alert or task checklist to a user, smart device or UDP

260 Generating and issuing a reminder alert or task checklist to a user, smart device or UDP upon determining to issue such prompt

265 Adjusting the status, disposition, location, activity or behavior of a user, smart device, UDP or scheduled appointment in response to a reminder alert or task checklist
Figure 3

310
Operating on one or more smart devices a software engine configured to create and maintain an enhanced digital calendar.

315
Creating, updating and storing scheduled appointments and various parameters thereof.

320
Creating, updating and storing UDPs and various parameters thereof.

325
Associating UDPs to scheduled appointments and storing such associations as a parameter of the scheduled appointments.

330
Associating UDPs to one or more IRFs, composed of visually recognizable code and corresponding to a person place or thing represented by a UDP.

335
Storing said IRFs and the associations between UDPs and IRFs as a parameter of the UDPs.

340
Using one or more smart devices or cameras to capture images of persons, places and things.

345
Comparing captured images to IRFs to determine whether such captured images represent persons, places or things corresponding to IRFs associated to a UDP.

350
Calculating and storing a dynamic set of information based on evolving contexts.

355
Recalculating, updating and storing an updated dynamic set of information.

360
Iterating a query to determine whether to generate and issue reminder alerts or task checklists to a user, smart device or UDP.

365
Generating and issuing reminder alerts or task checklists to a user or UDP upon determining to prompt a user, smart device or UDP.

370
Adjusting the status, disposition, location, activity or behavior of a user, smart device, UDP or scheduled appointment in response to a reminder alert or task checklist.
ABSTRACT

The present invention provides an adaptive, intelligent scheduling system and method of operating the system configured to dynamically respond to evolving situational contexts, i.e. changes in requirements for scheduled appointments and in user or device physical circumstances, such as geographical location and relative position location. In addition, the present invention overcomes a plurality of disadvantages suffered by the prior art to provide an improved system and method for assisting users in keeping track of their important persons, places and things. By tracking location, direction and relative proximity to other system elements, as well as indications of ownership, custody-ship, user-ship, etc., the present invention uses real-time information to dynamically schedule reminder alerts and determine assignments of tasks. With the present invention, users can create a routine checklists, check tasks on the checklist as completed, attach tags to any items associated with specific scheduled events, e.g. briefcases, laptops, thumb drives, projectors, etc., mark such items as required or desired for recurring or one-time events and enable generation of dynamic reminder alerts and task checklists based upon the scheduled appointments of a particular day.
<table>
<thead>
<tr>
<th>Categorie</th>
<th>Titel</th>
<th>Auteur(s)</th>
<th>Datum</th>
<th>Page</th>
<th>IPC</th>
<th>Classificatie</th>
</tr>
</thead>
</table>

Indien gewijzigde conclusies zijn ingediend, heeft dit rapport betrekking op de conclusies ingediend op:

Plaats van onderzoek: München
Datum waarop het onderzoek werd voltoid: 14 oktober 2014
Bevoegd ambtenaar: Gabriel, Christiaan

CATEGORIE VAN DE VERMELDE LIETRATUUR

- X: de conclusie wordt als niet nieuw of niet inventief beschouwd ten opzichte van deze literatuur
- Y: de conclusie wordt als niet inventief beschouwd ten opzichte van de combinatie van deze literatuur met andere geciteerde literatuur van dezelfde categorie, waarbij de combinatie voor de vakman voor de hand liggend wordt geacht
- A: niet toe de categorie X of Y behorende literatuur die de stand van de techniek beschrijft
- O: niet-schriftelijke stand van de techniek
- P: tussen de voorraadsgrootte en de indicaties voor gedurende de ontwikkeling van de ontwikkelingsaanvragen, gepubliceerd op of na de indieningsdatum, waarin dezelfde uitvinding is beschreven
- L: om andere redenen vermeldde literatuur
- T: na de indieningsdatum of de voorraadsgrootte gepubliceerde literatuur die niet bezwaard is voor de ontwikkeling, maar wordt vermeld ter verheldering van de techniek of het principe dat ten grondslag ligt aan de ontwikkeling
- E: eerdere ontwikkelingsaanvragen, gepubliceerd op of na de indieningsdatum, waarin dezelfde uitvinding is beschreven
- D: in de ontwikkelingsaanvragen vermeld
- F: in de ontwikkelingsaanvragen vermeld
Het aanhangsel bevat een opgave van elders gepubliceerde octrooiaanvragen of octrooien (zogenaamde leden van dezelfde octrooifamilie), die overeenkomen met octrooischriften genoemd in het rapport. De opgave is samengesteld aan de hand van gegevens uit het computerbestand van het Europees Octroibureau per de juistheid en volledigheid van deze opgave wordt noch door het Europees Octroibureau, noch door het Bureau voor de Industriële eigendom gegarandeerd; de gegevens worden verstrekt voor informatiedoeleinden.

<table>
<thead>
<tr>
<th>In het rapport genoemd octrooigeschrift</th>
<th>Datum van publicatie</th>
<th>Overeenkomend(e) geschrift(en)</th>
<th>Datum van publicatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2011148625 A1</td>
<td>23-06-2011</td>
<td>GEEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014055276 A1</td>
<td>27-02-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011044462 A1</td>
<td>14-04-2011</td>
</tr>
<tr>
<td>US 2005148339 A1</td>
<td>07-07-2005</td>
<td>GEEN</td>
<td></td>
</tr>
</tbody>
</table>

Algemene informatie over dit aanhangsel is gepubliceerd in de 'Official Journal' van het Europees Octroibureau nr 12/82 blz 448 ev.
Deze schriftelijke opinie bevat een toelichting op de volgende onderdelen:

- Onderdeel I Basis van de schriftelijke opinie
- Onderdeel II Voorrang
- Onderdeel III Vaststelling nieuwheid, inventiviteit en industriële toepasbaarheid niet mogelijk
- Onderdeel IV De aanvraag heeft betrekking op meer dan één uitvinding
- Onderdeel V Gemotiveerde verklaring ten aanzien van nieuwheid, inventiviteit en industriële toepasbaarheid
- Onderdeel VI Andere geciteerde documenten
- Onderdeel VII Overige gebreken
- Onderdeel VIII Overige opmerkingen

Form NL237A (Dekblad) (July 2006)
Onderdeel I Basis van de Schriftelijke Opinie

1. Deze schriftelijke opinie is opgesteld op basis van de meest recente conclusies ingediend voor aanvang van het onderzoek.

2. Met betrekking tot nucleotide en/of aminozuur sequenties die genoemd worden in de aanvraag en relevant zijn voor de uitvinding zoals beschreven in de conclusies, is dit onderzoek gedaan op basis van:

a. type materiaal:
 - [] sequentie opsomming
 - [] tabel met betrekking tot de sequentie lijst

b. vorm van het materiaal:
 - [] op papier
 - [] in elektronische vorm

c. moment van indiening/aanlevering:
 - [] opgenomen in de aanvraag zoals ingediend
 - [] samen met de aanvraag elektronisch ingediend
 - [] later aangeleverd voor het onderzoek

3. [] In geval er meer dan één versie of kopie van een sequentie opsomming of tabel met betrekking op een sequentie is ingediend of aangeleverd, zijn de benodigde verklaringen ingediend dat de informatie in de latere of additionele kopieën identiek is aan de aanvraag zoals ingediend of niet meer informatie bevatten dan de aanvraag zoals oorspronkelijk werd ingediend.

4. Overige opmerkingen:
SCHRIFTELIJKE OPINIE

Onderdeel V Gemotiveerde verklaring ten aanzien van nieuwheid, inventiviteit en industriële toepasbaarheid

1. Verklaring

<table>
<thead>
<tr>
<th></th>
<th>Ja: Conclusies</th>
<th>Nee: Conclusies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nieuwheid</td>
<td>2-48, 50-97</td>
<td>1, 49</td>
</tr>
<tr>
<td>Inventiviteit</td>
<td>Conclusies</td>
<td>Conclusies 1-97</td>
</tr>
<tr>
<td>Industriële toepasbaarheid</td>
<td>Conclusies 1-97</td>
<td>Conclusies</td>
</tr>
</tbody>
</table>

2. Citaties en toelichting:

Zie aparte bladzijde

Onderdeel VII Overige gebreken

De volgende gebreken in de vorm of inhoud van de aanvraag zijn opgemerkt:

Zie aparte bladzijde

NL237B (July 2006)
item V

1 Reference is made to the following documents:

D4 Lisa Raphael: "Your Missing Cat is Found Thanks to This Know-it-All Tracking Device | Brit + Co", 24 februari 2014 (2014-02-24), XP055135490, Gevonden op het Internet: URL:http://www.brit.co/bringrr/ [gevonden op 2014-08-20]

2 The subject-matter of claim 49 does not involve an inventive step, for the following reasons:

2.1 The following aspects of claim 49 are considered to define an administrative scheme as such:

"Werkwijze om aan gebruikers van het systeem en systeemelementen zowel dynamisch gegenereerde als geactualiseerde herinneringsalarmen en opdrachten-checklists aan te leveren op basis van één of meerdere van het bijhouden van een kalender, het bijhouden van tijdsgebruik, en het volgen van de locatie en de activiteit, naast andere principes, om het de gebruikers en de systeemelementen mogelijk te maken om op effectieve en efficiënte wijze te reageren op een gedigitaliseerde synthese van zich wijzigende situationele contexten binnen het systeem, en ten minste omvattende:

het creëren en het bijhouden van een verbeterde digitale kalender, kalenderinvoeren omvattende die ten minste geplande afspraken omvatten die één of meerdere personen en dingen aanduiden waarvan verwacht wordt dat ze aanwezig zijn op één of meerdere aangeduide plaatsen en op gespecificeerde tijdstippen, alsook herinneringsalarmen en opdrachten-checklists die één of meerdere acties en opdrachten omvatten waarvan gesuggereerd wordt dat ze voldoen aan de criteria van de geplande afspraken;
het creëren, het actualiseren, en het opslaan, van één of meerdere geplande afspraken, kalenderinvoeren, en diverse parameters van de één of meerdere geplande afspraken;

het creëren, het actualiseren, en het opslaan, van één of meerdere unieke digitale profielen, en van diverse parameters van de unieke digitale profielen, die elk één of meerdere van personen, plaatsen, en dingen en groeperingen, associaties, statussen, of andere parameters daarvan kunnen vertegenwoordigen;

het associëren van één of meerdere van de unieke digitale profielen met één of meerdere geplande afspraken;

het opslaan van associaties tussen de één of meerdere unieke digitale profielen en één of meerdere geplande afspraken in één of meerdere van de diverse parameters van de geplande afspraken;

het associëren van één of meerdere van de unieke digitale profielen met één of meerdere intelligente apparaten die overeenstemmen met personen, plaatsen, of dingen die worden weergegeven door de unieke digitale profielen;

het opslaan van associaties tussen de één of meerdere unieke digitale profielen en de intelligente apparaten in één of meerdere van de diverse parameters van de unieke digitale profielen;

het berekenen, en het opslaan, van een dynamische set met gegevens op basis van ten minste zich wijzigende situationele contexten met betrekking tot één of meerdere van een status, een toestand, een activiteit, en een gedrag van systeemelementen, met inbegrip van één of meerdere van een gebruiker, intelligente apparaten, unieke digitale profielen, geplande afspraken, gegevens die daarvan afgeleid zijn, netwerken daarvan, associaties daartussen, en wijzigingen ervan;

het opnieuw berekenen, en het actualiseren van de dynamische set met gegevens, en het opslaan, van een geactualiseerde dynamische set met gegevens;

het itereren, van een zoekopdracht om te bepalen of er één of meerdere herinneringsalarmen en opdrachten-checklists moeten gegenereerd en afgegeven worden om één of meerdere van een gebruiker, een intelligent apparaat, en een uniek digitaal profiel aan te sporen om een actie uit te voeren op basis van een geactualiseerde dynamische set met gegevens;
het genereren en het afgeven van één of meerdere herinneringsalarmen en opdrachten-checklists aan één of meerdere van een gebruiker, een intelligent apparaat, en een uniek digitaal profiel, en dit indien de gebruiker, het intelligente apparaat, of het unieke digitale profiel daartoe wordt aangespoord; het aanpassen, wijzigen, modificeren, dan wel op een andere wijze implementeren van een wijziging van de status, de toestand, de activiteit, of het gedrag van een systeemgebruiker, intelligent apparaat, uniek digitaal profiel, geplande afspraken, netwerken daarvan, en associaties daartussen, waarbij één of meerdere van afgegeven herinneringsalarmen en opdrachten-checklists in beschouwing worden genomen."

This scheme essentially defines to store and associate calendar related information, and to periodically update status thereof in order to determine whether alarms/reminders should be generated. The "unieke digitale profielen" have not further been defined and hence can be any information. Administrative schemes are not directed at a technical problem and a technical solution and hence cannot contribute to an inventive step.

2.2 The further, technical, features of claim 49 define

"het gebruiken op één of meerdere intelligente apparaten, die ten minste één of meerdere processoren, opslaginrichtingen, transmitters, ontvangers, of transceivers, en energiebronnen omvatten, en waarbij elk intelligent apparaat geconfigureerd is om geassocieerd te worden met één of meerdere unieke digitale profielen, van een softwarepakket dat geconfigureerd is om [de methode] uit te voeren";

"ten minste één opslaginrichting van het systeem" to store data of the system;

"het tot stand brengen van een gegevensverbinding met één of meerdere van andere intelligente apparaten, het internet, en één of meerdere inrichtingen die verbonden zijn met het internet, en het verzenden van gegevens;"

i.e. these features define that for instance an Internet client and server are used to implement the non-technical scheme identified above. Such technical system was commonly known before the priority date of the present application, and the implementation of the above scheme would not involve an inventive step.

2.3 It is further noted that claim 49 has been broadly worded by having many options ("een of meerdere") and non-limiting expressions ("mogelijkheid te bieden om"; "gedigitaliseerde synthese"; "zich ontwikkelende situationele contexten"; "naast andere principes"; "kunnen vertegenwoordigen";
"gesuggereerd"; "verwacht"; "verbeterde"; "intelligente"; "dynamische"), which renders the claim unclear. Nonetheless, it would appear that a commonly known electronic calendar which gives alarms/reminders of a pending appointment is comprised in the subject-matter of claim 49, which would imply that the subject-matter is not novel.

3 The objections in respect of claim 49 apply, for similar reasons, to the corresponding claim 1.

4 The dependent claims and the present application as a whole mention many technologies which are commonly known (BLE, RFID, WLAN, GPS, Galileo, GLONASS, triangulation), of which examples can be found in the prior art cited above. It is commonly known to use beacons to check proximity of items and to give alarms when beacons cannot be found (see e.g. D4). It is not apparent which technical teaching is added to the prior art, whereas an inventive step can be acknowledged only if a non-obvious contribution is made to the technological state of the art. The application is written at a high level of abstraction and only few concrete examples are given concerning the purposive use of the identified technologies. Those examples that are given, in particular on pages 6, 24 and 25 of the description, merely identify high level results to be achieved without actually showing in any detail how technology should be used to accomplish these results. What appears to be the essential teaching of the application is to combine calendar information with task lists, so that calendar events can be used to trigger a search for items identified in a list (see page 6 of the present application). This concept is a non-technical one. Since the automation of non-technical, administrative schemes (in the present case the automatic checking of the presence of items according to a calendar event) is obvious, the subject-matter of all dependent claims lacks an inventive step. Notwithstanding the administrative nature of the automated scheme, similar schemes were known before the priority date of the present application (D1, par. 30; D2, par. 73, 74, 77; D3, par. 23; D4).

item VII

1 Method claim 50 refers back to claim 15, which is however not a method claim.