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Figure 13: Exemplary ENC() CBC method with intra-segment key changes 
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BITSTREAM CONFIRMATION FOR 
CONFIGURATION OF A PROGRAMMABLE 

LOGIC DEVICE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This is a Continuation of pending U.S. patent application 
Ser. No. 14/737,154, filed Jun. 11, 2015, which is a Continu 
ation of U.S. patent application Ser. No. 14/617.437, filed 
Feb. 9, 2015, which is a Continuation of U.S. patent applica 
tion Ser. No. 14/201,539, filed Mar. 7, 2014, which issued on 
Mar. 10, 2015 as U.S. Pat. No. 8,977,864, which is a Con 
tinuation of U.S. patent application Ser. No. 13/762.703, filed 
Feb. 8, 2013, which issued on Apr. 22, 2014 as U.S. Pat. No. 
8,707,052, which is a continuation of U.S. patent application 
Ser. No. 12/958,570, filed Dec. 2, 2010, which issued on Feb. 
26, 2013 as U.S. Pat. No. 8,386,800, which claims priority to 
U.S. Provisional Patent Application Ser. No. 61/266,948, 
filed Dec. 4, 2009, each of which is incorporated by reference 
herein in their entirety. 

FIELD 

This patent relates to techniques for processing encrypted 
data inputs, and more specifically, to protecting Such systems 
and data against external monitoring attacks. 

BACKGROUND 

Systems that operate on sensitive data need to protect 
against the unauthorized access to, or disclosure or alteration 
of Such data by attackers. Attackers who gain access to cryp 
tographic keys and other secrets could steal or tamper with the 
sensitive data, leading to severe consequences such as Sub 
version of critical operations of the system through the intro 
duction of unauthorized commands and the exposure of con 
fidential or proprietary information. One compromised 
element may also be used to mount further attacks, endanger 
ing other elements of a system. More specifically, previous 
research has shown that an attacker can monitor a device's 
external characteristics such as operation timing, power con 
Sumption and/or electromagnetic radiation and use this addi 
tional information to extract the secret keys being used within 
the device. For example, as described by Kocher et al (see P. 
Kocher, J. Jaffe, B. Jun, “Differential Power Analysis.” 
Advances in Cryptology Crypto 99 Proceedings, Lecture 
Notes. In Computer Science Vol. 1666, Springer-Verlag, 
1999), it is well known in the art that external monitoring of 
a device performing a sequence of cryptographic operations 
using the same set of keys with different data can result in the 
leakage of the key. 

Because external monitoring attacks are typically passive 
and non-invasive, traditional tamper resistance defenses 
which are based on thwarting physical access or detecting 
improper usage are insufficient or impractical to provide pro 
tection against Such attacks. For example, methods for man 
aging secret keys using physically secure, well-shielded 
rooms are known in the background art. However, in many 
applications, requiring cryptographic systems to remain in 
physically isolated facilities is not feasible, given the envi 
ronments in which they are expected to operate. In addition, 
Such facilities are expensive to build and operate, and may 
still be imperfect in their ability to prevent small amounts of 
information from leaking to adversaries. 
Of course, other methods are known in the background art 

that can mitigate the problem of information leakage from 
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2 
monitoring attacks without necessarily relying on physical 
shielding. These include methods for reducing the amount (or 
rate) of information leaking from transactions, modifying 
cryptographic algorithm implementations to randomize com 
putational intermediates, and/or introducing noise in power 
consumption and operation timing. 

For example, U.S. Pat. No. 6,539,092, entitled “Leak-Re 
sistant Cryptographic Indexed Key Update.” provides meth 
ods for converting a shared master key and an index value 
(e.g., a counter) into a transaction key, where the derivation is 
protected against external monitoring attacks. Those methods 
work well in applications where the device(s) being protected 
against external monitoring attacks can contribute to the deri 
vation of the transaction key. For example, the '092 patent 
describes how a Smartcard can maintain an index counter 
which increments with each transaction, then use the index 
counter in the key derivation. 

There are applications, however, where the participant(s) 
in a protocol should be protected against external monitoring 
attacks, but lack the ability to store sequence counters and 
updated keys, as described in the 092 patent. For example, 
consider the case where a device needs to regularly process 
the same input data, such as a device which contains a fixed 
and unchanging embedded key that is repeatedly used to 
decrypt ciphertexts in arbitrary order. Firmware encryption is 
an example of Such an application; a microprocessor may be 
manufactured having an embedded key infuses, and on every 
reboot the microprocessor needs to re-decrypt its firmware 
image loaded from an untrusted external flash. The firmware 
image may occasionally be updated, but the same ciphertext 
may also be decrypted repeatedly. Thus, both the application 
requirements and the physical manufacturing limitations 
(such as the inability to modify stored keys due to the use of 
one-time-programmable fuses to hold keys) can make it 
impractical for the device to limit the number of times the 
decryption key will be used. The firmware publisher could 
use the methods described in the '092 patent with a new index 
value each time a new encrypted firmware image is released, 
but the decrypting device cannot use a different index value 
on each reboot, since changing the index value to a value other 
than the one used by the encrypting device would result in an 
incorrect decryption. Thus, an attacker can potentially supply 
the decryption device with tampered data sets, then attempt to 
recover the secret key by monitoring external characteristics 
while the device processes (e.g., decrypts, etc.) these cipher 
texts. Statistical side channel attacks, such as differential 
power analysis (DPA), can deduce a secret key from a set of 
measurements collected when a device uses the same key 
repeatedly to operate on different input values (such as the 
different firmware ciphertexts or tampered versions of the 
same firmware ciphertexts in the foregoing examples). Mea 
Surements from a single long message (e.g., comprising many 
block cipher inputs) or a collection of legitimate messages 
(such as multiple firmware versions) may also provide suffi 
cient data for a side channel attack, even if ciphertext mes 
sages are not tampered. 
Of course, in some situations where a device uses the same 

key for every transaction, the device could theoretically 
implementalock-out (e.g., by self-destructing ifa transaction 
or failure threshold is exceeded) to limit the number of trans 
actions an adversary can observe. Lock-out mechanisms, 
however, introduce numerous practical problems, however, 
such as reliability concerns and the difficulties associated 
with storing a failure counter (e.g., many semiconductor 
manufacturing processes lack secure on-chip nonvolatile 
storage, and off-chip storage is difficult to secure). 
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In light of all the foregoing, a method that provides a 
Verifiably secure way for devices to communicate and 
exchange data, with protection against external monitoring 
attacks and the ability for devices to reject non-genuine data, 
would be advantageous. 

SUMMARY 

This patent describes ways to secure devices which utilize 
secret cryptographic keys against external monitoring 
attacks, as well as to provide improved security against con 
ventional cryptanalysis and other attacks (such as DPA and 
other forms of external monitoring attacks) which gather 
information correlated to the device's internal operations. 
Various exemplary embodiments for encrypting sensitive 
data are disclosed in the specification. 

While these various embodiments may vary considerably 
in their details, they are all encompassed within the following 
general technique, as may be readily Verified with respect to 
the various embodiments described in the specification: With 
respect to encryption, each set of data to be encrypted is 
associated with a message identifier (such as a transaction/ 
message counter, a hash of the plaintext, a random value, or 
another unique or semi-unique value). The encryption device 
derives a message key using the message identifier and an 
initial secret internal state that is shared with the decryption 
device(s). This derivation is performed in an iterative manner 
through a Succession of one or more intermediate keys, start 
ing from at least a portion of the shared secret internal state 
and leading up to the message key, where, in each iteration, 
the next key depends on at least one prior key and at least a 
portion of the message identifier. The plaintext may be 
decomposed into one or more segments. Each plaintext seg 
ment is encrypted with one or more secret keys that can 
include the message key, or keys further derived from the 
message key, to create the corresponding encrypted segment. 
Typically, a different key (or a different set of keys) is used for 
each segment. 
The encrypting device then uses a secret key shared with 

the decrypting device (such as the message key, the secret 
internal secret, a different key, keys derived from the forego 
ing, etc.) to compute at least one validator. Derivation of the 
validator may be performed using an iterative process similar 
to that used to produce the message key, whereby a sequence 
of transformations are applied to the secret key to produce 
Successive values (for example, where the generation of each 
intermediate includes hashing its parent value). 
The encrypting device outputs the one or more encrypted 

segments and one or more validators. Additional information 
may also be output as needed to enable the recipient to deter 
mine the message identifier. 

During the corresponding decryption process, a decrypting 
device receives the one or more encrypted segments, one or 
more validator(s), and the message identifier corresponding 
to the encrypted segment(s). It then uses one or more valida 
tors to verify that at least the first encrypted segment to be 
decrypted has not been modified. Verification of the validator 
may include computing a sequence of Successive intermedi 
ate values, starting with a secret shared with the encrypting 
device and where each intermediate is the hash of its parent 
(and the specific hash operation depends on a portion of the 
hash of said encrypted segment(s)). Typically, the decryption 
process for an encrypted segment is only permitted to proceed 
if it is verified that the segment is not modified. If verification 
is successful, the decrypting device computes the message 
key (if not already derived), using the secret internal state that 
it shares with the encryption devices, by following the same 
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4 
iterative key derivation process followed by the encrypting 
device (i.e., starting from at least a portion of the shared secret 
internal State, leading to the final message key, through a 
sequence of intermediate keys, where at each step the next 
key depends on at least a portion of the message identifier and 
at least one prior key). Each encrypted segment (if determined 
to be unmodified) is decrypted with the one or more corre 
sponding secret keys derived from the message key to recover 
the corresponding plaintext segment. 

BRIEF DESCRIPTION OF THE FIGURES 

FIG. 1 shows an exemplary embodiment of the overall 
process for verifiable, leak-resistant encryption using key and 
ciphertext hash chaining. 

FIG.2 shows an exemplary embodiment of a leak resistant, 
key-tree-based key derivation process starting from a shared 
cryptographic secret, KSTART, and continuing through a 
path P1 ... PQ. The key derivation process of FIG. 2 is usable 
in connection with the first exemplary encryption process of 
FIGS. 1 & 3 and the first exemplary decryption process of 
FIG. 4. It is also usable in connection with the other exem 
plary encryption processes of FIGS. 5, 11 & 13, and the other 
exemplary decryption processes of FIGS. 6, 12 & 14. 

FIG.3 shows an exemplary embodiment of a leak-resistant 
key and ciphertext hash chaining process for encryption (e.g., 
comprising part of the overall encryption process shown in 
FIG. 1). 

FIG. 4 shows an exemplary embodiment of a verifiable, 
leak-resistant decryption process using key and ciphertext 
hash chaining corresponding to the encryption process of 
FIG. 1 (and FIG. 3). 

FIG. 5 shows an exemplary embodiment of a process for 
Verifiable, leak-resistant encryption using key and plaintext 
hash chaining. 

FIG. 6 shows an exemplary embodiment of a process for 
Verifiable, leak-resistant decryption using key and plaintext 
hash chaining corresponding to the encryption process of 
FIG.S. 

FIG. 7 shows an environment in which verifiable, leak 
resistant cryptographic operations are used for loading firm 
ware onto a system on a chip. 

FIG. 8 shows an environment in which verifiable, leak 
resistant cryptographic operations are used within a secure 
CPU chip, where external memory such as flash and/or RAM 
is untrusted. 

FIG. 9 shows an environment in which verifiable, leak 
resistant cryptographic operations are used for loading a bit 
stream image on to a field programmable gate array. 

FIG. 10 shows an environment in which verifiable, leak 
resistant cryptographic operations are used in a packet based 
network communication device. 

FIG. 11 shows an exemplary embodiment of a process for 
verifiable packet-level leak-resistant encryption that can be 
used with the environment described in FIG. 10, as well as in 
other embodiments. 

FIG. 12 shows an exemplary embodiment of a process for 
verifiable packet-level leak-resistant decryption correspond 
ing to the encryption process described in FIG. 11. 

FIG. 13 shows an exemplary embodiment of an exemplary 
ENC() operation, using cipher block chaining (CBC) with 
intra-segment key changes. 

FIG. 14 shows an exemplary embodiment of an exemplary 
DEC() operation, using cipher block chaining (CBC) with 
intra-segment key changes, corresponding to the encryption 
operation of FIG. 13. 
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DETAILED DESCRIPTION 

The techniques described in this patent enable parties to 
communicate cryptographically-protected sensitive data with 
increased security against external monitoring attacks. 5 
Although exemplary embodiments are described involving 
two parties, typically referred to as an “encrypting device' 
and a “decrypting device', the term “device' is chosen for 
convenience and need not necessarily correspond directly to 
any particular role in a system design. The devices may, but 10 
are not required to, utilize differentform factors or implemen 
tations. For example, the encrypting and decrypting devices 
could both be portable hardware devices. Alternatively, the 
encrypting device could be a software application running on 
a server operating in a facility, while the decrypting device 15 
could be a portable hardware device (or vice versa). Further 
more, although most cryptographic operations involve two 
parties, the techniques of this patent can, of course, be applied 
in environments involving only one party (such as in secure 
memory or storage systems in which both roles are under a 20 
single party's and/or device's control, e.g., in the exemplary 
environment illustrated in FIG. 8) or in environments involv 
ing more than two parties and/or devices (such as the exem 
plary embodiment which is illustrated in FIG. 10). 
Entropy Redistribution Operations 25 
As used herein, an “entropy redistribution operation’ (or 

“entropy distribution operation') is an operation which mixes 
its input(s) Such that unknown information about input bits is 
redistributed among the output bits. For example, Suppose an 
X bit cryptographic key KO is processed repeatedly with an 30 
entropy redistribution operation f such that key Ki-f(Ki-1) 
for each is 1. Next, suppose an adversary obtains y bits of 
information (e.g., obtained as part of an attempted external 
monitoring attack) about each of n different keys Ki, provid 
ing more than enough information to solve for key KO (e.g., 35 
y*n->x). The use of the entropy distribution operation f can 
make Such solution computationally infeasible. A crypto 
graphic hash function H is an example of an operation that 
may be used as an entropy redistribution operation. For 
example, consider a strong hash function H that produces a 40 
256-bit result. Given a random 256-bit initial key KO, let 
Ki=H(Ki-1) for each is 1. An adversary with knowledge of 
(for example) the least-significant bit of each KO. . . K999, 
999 has 1,000,000 bits of data related to KO. A hypothetical 
adversary with infinite computing power could find KO by 45 
testing all possible 2256 values for KO to identify a value 
which is consistent with the known sequence of least-signifi 
cant bits. Actual adversaries have finite computational power 
available, however, and the entropy redistribution operation 
prevents there from being a computationally practical way to 50 
solve for KO (or any other Ki) given the information leaked 
through attempted external monitoring attacks. 

Entropy redistribution operations may be implemented, 
without limitation, using cryptographic hash functions, 
operations constructed using block ciphers (such as AES), 55 
pseudorandom transformations, pseudorandom permuta 
tions, other cryptographic operations, or combinations 
thereof. As a matter of convenience, certain exemplary 
embodiments are described with respect to a hash, but those 
skilled in the art will understand that, pursuant to the forego- 60 
ing, other entropy redistribution functions may also be used 
instead or in addition. 

Multiple entropy redistribution operations can also be con 
structed from a base operation. By way of example, if two 
256-bit entropy redistribution operations fo() and fl() are 65 
required, f()() could comprise applying the SHA-256 cryp 
tographic hash function to the operation identifier string “fo 

6 
concatenated with the input to fo() while fl() could comprise 
applying SHA-256 to the operation identifier string “fl” con 
catenated with the input to fl(). Entropy redistribution opera 
tions can be construed using the well-known AES block 
cipher. For example, to implement fo()...fb-1 (), each fi() 
can use its input as an AES-256 key to encrypt a pair of 
128-bit input blocks that are unique to the choice of i within 
0...b-1, yielding 256 bits of output. A wide variety of block 
cipher based hash function and MAC constructions are also 
known in the background art and may also employed. 
Shared Cryptographic Values and Operations 

This section describes certain cryptographic value(s) and/ 
or operation(s) shared by both the encryption device, and its 
corresponding decryption device, used to perform verifiable 
leak-resistant cryptographic operations as described in this 
patent. 
The encrypting device and decrypting device are set up so 

that each has access to a base shared secret cryptographic 
state value, such as a secret key denoted as KROOT. This 
secret state may, for example, be stored in one or more of 
EEPROM, flash, fuses, or other storage on a tamper-resistant 
chip, and may be derived in whole or in part from other values 
or processes, or may be obtained externally. The method by 
which each of these devices obtained KROOT could include, 
without limitation, each being manufactured with KROOT, 
the devices negotiating KROOT directly with each other or 
via third parties (e.g., using protocols utilizing RSA, Diffie 
Hellman, or other public key cryptographic techniques, or 
symmetric techniques), by receiving of KROOT via a physi 
cal keying interface, randomly generating KROOT (e.g., if 
the encrypting and decrypting device are the same), etc. 

In addition, the encrypting device and decrypting device 
also are both able to compute a set of non-linear crypto 
graphic entropy redistribution operations fo() f1(). . . . . 
fb-1 ( ) where b>1 is a positive integer. These b entropy 
redistribution functions can be configured in a tree structure. 
For example, a simple b-ary tree structure of height Q (i.e., 
having Q+1 levels, from 0 through Q) can be created by using 
b distinct entropy distribution functions, fo( ) . . . fb-1 () to 
represent the b possible branches of this b-ary tree at each 
node of the tree, each node representing a possible derived 
key. In Such a tree, starting from a root cryptographic key 
KSTART (which is at level 0), b possible derived keys can be 
computed at level 1: f()(KSTART) for the leftmost branch; 
fl(KSTART) for the next branch; and continuing until fb-1 
(KSTART) for the rightmost branch. At level 2, b2 possible 
keys can be derived, since each of fo() . . . fb-1 () could be 
applied to each of the b possible level 1 keys. Of course, 
computing a specific level 2 node only requires two, not b2, 
computations (i.e., the nodes not on the path are not com 
puted). The tree continues for successive levels 1 through Q, 
where each possible key (i.e., a different node) of a prior level 
can be processed by applying fo()...fb-1 () in turn to derive 
b additional possible derived keys. The entire key tree has 
Q+1 levels, starting with a single node at level 0, continuing 
with binodes at level i, and ending with bO nodes at level Q. 
Thus, there are bO possible paths from the root node at level 
0 to the bO final nodes at level Q. Each such possible path, 
corresponding to a unique the sequence of functions applied 
at the different levels, can be represented as a sequence of Q 
integers, each integer being selected from (0...b-1). 

For example, in an exemplary embodiment, b=2. Thus, two 
entropy redistribution operations, f()() and fl() are used (and 
may be constructed from a base operation, e.g., as described 
above). If Q=128 (i.e., the height is 128), 2128 paths are 
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possible and 128 entropy redistribution function computa 
tions are required to derive the level Q key from the level 0 
node (i.e., the starting key). 
As a variation, embodiments can involve more variety in 

the choice of b, such as varying the value ofb among levels, 
and/or varying b based on the route taken to a particular level. 
Likewise, the entropy redistribution operations can also be 
varied, such as by making the entropy redistribution opera 
tions fi() differ at different levels or making these operations 
depend on the sequence taken to a particular level. 
The encrypting and decrypting devices are also able to 

perform a cryptographic, non-linear key chaining operation 
g(), which may be (but is not necessarily) distinct from the 
functions fi(). For example, in one embodiment, g() consists 
of a cryptographic hash operation. Variant embodiments can 
use different functions for different applications of g( ), 
including variants constructed from a base function (e.g., by 
hashing the input data with a counter or another value repre 
senting the application of g()). 
The encrypting device and decrypting device also have a 

cryptographic, collision-resistant, one-way hash function h() 
(e.g., employed as a segment hashing function), which may 
be (but is not necessarily) distinct from the operations fi() and 
from g(). 

In an exemplary embodiment, each of the operations fi(), 
g(), and h( ) is constructed from a common cryptographic 
hash function by computing each operation as the crypto 
graphic hash of an operation identifier and the input data. The 
operation identifier may, for example, be a Zero-terminated 
string consisting of “fif', ''g'' or “h” where it is the value of i 
for a given fi( ) such that the operation identifier for fo( ) 
would be “fo”. The HMAC of an operation identifier using the 
input as a key may also be used to implement these opera 
tions. Hash functions usable with the techniques of this patent 
include, without limitation, MD5, SHA-1, SHA-256, SHA 
512, any SHA3 candidate operation, as well as combinations 
of the foregoing and constructions using the foregoing (Such 
as HMAC). As used herein, each of the functions BLAKE, 
Blue Midnight Wish, CubeHash, ECHO, Fugue, Grostl, 
Hamsi, JH, Keccak, LANE, Luffa, Shabal, SHAvite-3, 
SIMD, and Skein is a “SHA3 candidate operation”. In other 
embodiments, the hash function is derived using other well 
known constructions such as, without limitation, Matyas 
Meyer-Oseas, Davies-Meyer, Miyaguchi-Preneel, Merke 
Damgard, etc., that convert block ciphers such as AES, DES 
or other ciphers into a hash function. Transformations that are 
not collision-resistant (such as MD5, reduced-round variants 
of hash transformations, or other mixing operations) can also 
redistribute entropy present in the input, but would be less 
attractive for use as the one-way function h(). 

Still other embodiments may utilize stream ciphers, poten 
tially including lightweight and potentially cryptographically 
weak stream ciphers, in implementing entropy redistribution 
operations fo...b-1 (). For example, the stream cipher RC4 
may be employed, where the entropy redistribution operation 
input is used as the RC4 key and the RC4 output bytes are 
used as (or used to form) the entropy redistribution operation 
output. 
The encrypting device and decrypting device have a secret 

key encryption function (or set of functions) ENC() with a 
corresponding decryption function DEC(). In some embodi 
ments, such as those with fixed-length messages, ENC() and 
DEC() may utilize conventional cipher constructions such as 
AES in ECB or CBC mode. Constructions of ENC() and 
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8 
DEC( ) for other embodiments are described later with 
respect to FIG. 13 and FIG. 14, respectively. 

Exemplary Embodiment in FIGS. 1 and 2 

This section describes an exemplary embodiment of the 
general technique for verifiable leak-resistant encryption and 
decryption. This first exemplary embodiment uses key chain 
ing and ciphertext hash chaining. 
Encryption 

For convenience, following the traditional nomenclature in 
cryptography, we use the term “plaintext to refer to the data 
to be encrypted. As those skilled in the art will understand, 
this does not necessarily mean that the input data is human 
readable, and indeed, nothing precludes such data from itself 
being compressed, encoded, or even encrypted, prior to its 
being protected with the techniques of this patent. Similarly, 
those skilled will understand that the term “data encom 
passes any quantity being processed, and could include, with 
out limitation, content, data, Software, code, and any other 
type of information. 

Given a sensitive plaintext data message D to be protected, 
and with knowledge of a shared base secret cryptographic 
value KROOT, the encrypting device performs the following 
steps, as outlined in FIG. 1. First it decomposes the sensitive 
plaintext data D into a sequence of L segments D1, ..., DL 
(step 100), where (L. 1), each of which is small enough to fit 
into the memory for incoming segments in the receiver(s). In 
addition, the size of each of these segments should be suffi 
ciently small to meet the leakage requirements of the appli 
cation and implementation. The segments can be, but are not 
necessarily, the same size. In addition, other variants can also 
Support segments of unlimited size by changing keys (e.g., 
within ENC() and DEC() as will be shown below with 
respect to FIGS. 13 and 14. 
The encrypting device also generates (step 101) a nonce N 

which (as will be shown below) may be used as a message 
identifier (or a precursor thereto) for use in connection with 
the encryption of D. For example, the nonce could be gener 
ated using a true random number generator, a pseudorandom 
number generator, some combination of true and pseudoran 
dom number generators, a counter value or other (preferably 
unique or seldom-repeating) parameter, or by deriving N 
from keys and/or data (including without limitation D, e.g., 
by setting N to the hash of part or all of D) available to the 
encryption device. In FIG. 1, for a given KROOT, the value of 
Nused to encrypt a particular message is preferably not used 
to encrypt any other message (or if so, any reuse should be 
limited, unlikely and/or infrequent). 

In the exemplary embodiments that follow, a message iden 
tifier H1 is formed using nonce N. In the most straightforward 
implementation, in which N serves as the message identifier, 
H1 may simply equal N. As another example, in which N 
serves as a precursor to the message identifier, the encrypting 
device could compute H1 (step 102) as the hash of Nusing the 
function h(). Hashing is useful in situations where one wishes 
to produce a fixed-size message identifier, for example, to 
permit the incorporation of longer data values (such as text 
strings) while operating on shorter quantities for computa 
tional efficiency, or to convert variable-length data values to a 
uniform length message identifier for computational simplic 
ity, or to reduce any ability adversaries may have to influence 
the selection of H1. Of course, hashing is only one way to 
produce the message identifier, and those skilled in the art will 
appreciate that functions other than h may be employed to 
produce H1. 
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After computing H1, the encrypting device computes a 
message key, KMESSAGE, using the shared base secret 
cryptographic value KROOT and H1 (103) as input to a leak 
resistant, key-tree-based key derivation process. For conve 
nience of discussion, the key derivation process is presented 
here in the context of encryption (e.g., performed by the 
encrypting device), and more specifically, in the context of 
the first exemplary encryption process of FIG. 1. However, 
the same key derivation process will also be used in the first 
exemplary decryption process of FIG.4, in which case it will 
be performed by the decrypting device. Similarly, the key 
derivation process will also be used in connection with other 
processes, including the exemplary encryption processes of 
FIGS. 5, 11 & 13, and the exemplary decryption processes of 
FIGS. 6, 12 & 14. 
An exemplary key derivation process is diagrammed in 

FIG. 2. The process begins with a starting point of the tree, 
which is denoted KSTART (201), and a path P1 ... PQ (202). 
For example, in FIG. 1 step 103 above, KSTART is the value 
of the shared secret key KROOT and path P1 ... PQ (202) is 
determined by H1. (The conversion of H1 into P1 ... PQ is 
discussed below.) The path specifies a succession of entropy 
redistribution operations to be applied to KSTART. 

In an exemplary implementation, message identifier H1 is 
decomposed into Q parts P1, P2, ..., PQ. In an exemplary 
decomposition, each part Pi is an integer from 0 thru (b-1) 
(e.g., if b–4 then each Pi is a two-bit value (0, 1, 2, or 3)). 
Likewise, if b–2, each Pi is a single bit (0 or 1). Hence, the 
path parts P1 ... PQ can be used to specify a specific path from 
KSTART to KSTART. PATH by applying functions fo( ), 
f1(),..., fb-1 () to produce a plurality of intermediate keys 
leading to KSTART PATH as follows. First, the function fP1 
is applied to KSTART (203) to yield an intermediate key 
KSTARTP1, followed by the application offP2 on KSTART, 
P1 to yield the intermediate key KSTARTP1, P2 (204) and so 
on, until the final application offPQ on the intermediate key 
KSTART, P1, P2,..., PQ-1 (205) to yield the final derived 
key, KSTART, P1, P2,..., PQ (206). Note that the derivation 
of each intermediate key depends on at least one predecessor 
key (e.g., in the case of FIG. 2, its immediate parent) and the 
relevant portion of the message identifier. For convenience, 
we shall denote this final derived key with the notation 
KSTARTPATH (indicating the key that was reached by start 
ing with KSTART and following PATH). Likewise, in the 
case of FIG. 1 step 103, the final derived key (the message key 
which is assigned to KMESSAGE) is denoted KROOTH1 
since the starting key is in fact KROOT, and the path is in fact 
P1, P2,..., PQ which is simply the decomposition of H1. (In 
alternate embodiments, KMESSAGE may be derived from 
KROOTH1, e.g., by hashing KROOTH1. Either way, 
KMESSAGE is based on KROOTH1.) 

At step 104, the data segment(s) are encrypted using at 
least one cryptographic key based on said message key 
KMESSAGE, producing ciphertext E=E1,..., EL is from the 
input segment(s) DD1,..., DL. An exemplary embodiment 
for step 104 is shown in FIG. 3, which depicts the steps and 
states involved in computing the encrypted segments 
E1, ..., E.L. 
The process of FIG. 3 uses KMESSAGE to compute L 

individual segment encryption keys, Ki (i-1 to L), each key 
being used to encrypt a corresponding segment Di (i-1 to L) 
of the secret message data D. First, the function g() is applied 
to KMESSAGE to yield K1 (302), the encryption key to be 
used for the first segment. Then, the function g() is applied to 
the key K1 to yield K2, the encryption key for the second 
segment (303), and so on. Finally, the function g() is applied 
to key KL-1 to produce KL the encryption key for the final 
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10 
segment (305). We refer to this type of process as key chain 
ing because the encryption keys are chained to one another. 

After the L keys K1,..., KL for encrypting the L segments 
have been determined, the encryption of the segments pro 
ceeds as follows. The final (L'th) segment is processed first, 
where the plaintext input (306) to the ENC() function is the 
L'th data segment DL, concatenated with message integrity 
value computed by cryptographically hashing the entire 
plaintext D1 ... DL. (The inclusion of the hash of D1 ... DL 
is optional; embodiments may omit this, or concatenate other 
data such as sequence of 0 bytes or some other form of 
padding). This L'th plaintext segment is encrypted by the key 
KL to yield the encrypted segment EL (307). 

Next, the L-1th segment is processed at (308) by applying 
the hash function h() to EL, appending this hash value to data 
segment DL-1, and using the result as the encryption input to 
the L-1th segment. At (309), the L-1th plaintext segment is 
then encrypted using the key KL-1 to yield encrypted seg 
ment EL-1. This process is repeated for the other segments. 
For instance, the encryption input (310) corresponding to the 
second plaintext segment is composed of the second data 
segment D2 followed by h(E3), the hash of the third 
encrypted segment, and input (310) is then encrypted using 
the key K2 to yield the encrypted segment E2 (311). Finally, 
the encryption input (312) corresponding to the first plaintext 
segment is composed of the first data segment D1 followed by 
h(E2), the hash of the second encrypted segment (311), and 
input (311) is then encrypted using the key K1 to yield the 
encrypted segment E1 (313). (As a variant of the foregoing, 
the Subsequent segment hashes do not need to be encrypted, 
e.g., Ei could be formed by encrypting Dithen concatenating 
the encryption result with the hash of Ei-i-1.) 
The encrypted segments E1 ... EL form the ciphertext E. 

Step 104 in FIG. 1 is then completed. Using the hash of each 
Ei-1 in the computation of Ei effectively chains together the 
encrypted values, which serves to enable decrypting devices 
to detect modified (or defective) ciphertext segment(s) prior 
to decrypting the defective segment(s). We refer to this as 
"ciphertext hash chaining. In the example shown above, each 
ciphertext segment Ei(1<i>L) depends on the hash of the next 
ciphertext segment, e.g., a validator V is used to authenticates 
the hash of the first ciphertext segment (E1), then E1 yields 
(after decryption to D1 if necessary) the expected hash of E2. 
Likewise, E2 yields (after decryption if necessary) the hash of 
segment E3, and so forth. 
Note that the process of FIG.3 can still be performed where 

all the data is in one segment (i.e., L-1) (e.g., because the 
input message is Small or an encryption process ENC() Such 
as the process shown in FIG. 13 is employed). For the L=1 
case, only K1 is required and K1-g(KMESSAGE). Alter 
nately, KMESSAGE may be used directly as K1, in which 
case the operation go can be omitted altogether. As described 
above, inclusion of the hash of D1 ... DL (which, in this case, 
would just be D1 since L=1) is optional. The result of the 
process E=E1, since this is the only segment. 

Referring back to FIG. 1, after the data segments Di have 
been computed, a validator V is computed that will enable 
authorized recipients of the encrypted message to authenti 
cate the ciphertext prior to decryption. First, a value H2 is 
calculated (105) as the hash of the first encrypted segment E1. 
Recall that the first segment E1 incorporates the hashes of all 
other segments. Thus, the hash of E1 actually reflects the 
contents of all the segments, including segment E1, and can 
be used to Verify that none of the segments has been changed. 
(Optionally, in addition to E1, the input to the hash producing 
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H2 may also include additional information about the mes 
sage, such as the length, version number, sender identity, 
value of N, etc.). 

Next, the encrypting device uses a secret key to compute V 
(106), which is a validator of the message identifier and 
ciphertext segment(s) Ei. Validator V is computed using the 
hash of at least one ciphertext segment (e.g., the hash H2=h. 
(E1)) and an initial secret (e.g., KMESSAGE, or other values 
as described in the following paragraph). Computation of V 
may be performed using the leak resistant, key-tree-based key 
derivation process described in FIG. 2, with the starting key 
KSTART being KMESSAGE and the path being determined 
using H2 (106). Thus, the derivation of Vincludes computing 
a plurality of Successive intermediate values leading to V. 
where each depends on at least one predecessor (e.g., in the 
case of FIG. 2, its parent value) and the relevant portion of the 
hash (e.g., H2). Note that the functions fi() the value b, etc. 
may be (but are not required to be) the same as were used in 
(103). This process results in the derivation of the key KMES 
SAGE.H2 which is (or is further processed to form) the vali 
dator V. 
The foregoing description commenced with KMESSAGE 

in deriving the validator, but alternate embodiments may start 
with a different value. For example, the key KMESSAGE at 
step 104 and the key KMESSAGE at step 106 may be differ 
ent from each other but both derived from KROOTH1. Like 
wise, the key used at step 106 may be derived from the 
KMESSAGE used at step 104, or vice versa, or a different 
base key (besides KROOT) may be employed as KSTART. Of 
course, KROOT itself may even be used as KSTART (e.g., if 
H2 is a hash of N and/or H1 and one or more ciphertext 
segments). 
The validator, as utilized in this patent, is a verifiable cryp 

tographic proof that Some putative ciphertext is an unmodi 
fied version of an encryption of some plaintext message data 
associated with a particular message identifier, and was pro 
duced by an entity with access to a secret cryptographic value. 
The validator constructed at step 106 can be conveniently 
validated by a recipient, such as a decryption device, in a 
manner that avoids susceptibility to differential power analy 
sis and related external monitoring attacks. In addition, the 
validator creation process (i.e., the performance of step 106) 
also enables the encryption device to avoid susceptibility to 
differential power analysis and related external monitoring 
attacks. 

After computing the validator, the encryption process is 
complete. At step 107, the result is output. The output data 
consists of the information (if any, e.g., nonce N) required to 
enable a recipient to derive the message identifier, the valida 
tor V, and the encrypted result E (comprising encrypted seg 
ments E1, ..., EN). By combining key chaining and cipher 
text hash chaining, this type of encryption process is able to 
yield cryptographically-strong output with message authen 
tication, while avoiding the re-use of secret keys located in the 
encrypting device in ways that would facilitate differential 
power analysis and related attacks against the encrypting 
device. The encryption result is created in a form which 
enables a decryption device to perform the decryption with 
out re-using secret keys in ways that would facilitate differ 
ential power analysis and related attacks against the decryp 
tion device. The key-tree process limits the re-use of keys in 
the formation of KMESSAGE and the validator V, while the 
ciphertext hash chaining method limits the use of keys used in 
the data encryption. 

The next section explains how the output data can be Sub 
sequently decrypted by the decrypting device. 
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Decryption 

FIG. 4 shows an exemplary decryption process corre 
sponding to the exemplary encryption process of FIGS. 1 and 
3. As stated earlier, this requires that both the decryption 
device and the encryption device have the ability to derive the 
same message identifier (e.g., because each device knows 
nonce N it can compute H1), base secret cryptographic value 
KROOT, cryptographic functions f() g() and h(). The exem 
plary decryption process will use the same key derivation 
process (and key chaining) depicted in FIG. 2. 
The exemplary decryption process begins at step 400 with 

obtaining (e.g., over an untrusted digital interface) the puta 
tive result of the encryption (namely, the message identifier 
(e.g., nonce N), the validator V, and the encrypted result E 
comprising segments E1, . . . . EN). At step 401, the device 
next computes the value H1 by hashing the received nonce N. 
Note that, unless the nonce was received incorrectly, the 
derived H1 will equal the H1 used in the encryption process. 
At step 402, the decrypting device computes the value H2 by 
hashing the segment E1 (and, if previously used during the 
encryption, other information about the message that was 
incorporated into the derivation of H2). At step 403, the 
device attempts to compute the message key, KMESSAGE, 
using the leak resistant, key-tree-based key derivation process 
described in FIG. 2, with KSTART=KROOT and PATH=H1. 
At step 404, the device computes the expected validator V", by 
using the same leak resistant, key-tree-based key derivation 
process as the encrypting device (e.g., the process in FIG. 2 
using the key KSTART-KMESSAGE and PATH=H2). At 
step 405, the computed value V is compared with the received 
validator V. If the expected validator V" does not match the 
provided validator V, the process terminates with an error 
(step 406) since the provided data may have been corrupted or 
maliciously modified, or some other error has occurred. 

If the check at step 405 is successful, then the process 
moves to step 407 where a counteri is initialized to the value 
1, a key register K is initialized to the result of computing 
g(KMESSAGE) which is the key for decrypting the first 
encrypted segment E1 (i.e., the value of K1 which is labeled 
302 in FIG. 3). Also at step 407, a variable H is initialized to 
H2. The following operations are then performed in a loop as 
shown FIG. 4. First, the hash of the next ciphertext segment to 
be decrypted (i.e., h(Ei)) is computed and compared with the 
expected hash H (step 408). If the comparison fails, the 
encrypted segment has been altered, so the process terminates 
with an error (409) and no further decryption is performed. If 
the comparison Succeeds at Step 408, the segment Ei is 
decrypted at step 410, using the decryption function DEC(), 
with the key K to yield the decrypted segment, which is 
interpreted as containing the plaintext Di followed by the 
purported hash of the next ciphertext segment. His set to this 
purported hash value. Next, at step 411, a check is performed 
to see if all the L segments have been decrypted (i.e., whether 
the counter i equals L). If the counter has not yet reached L. 
then in step 412, the counteri is incremented and the register 
K is updated to the decryption key for the next segment by 
computing K g(K), and the process is repeated from step 408 
onwards. If step 411 determines that i has reached L, a check 
is performed at step 413 to see if H equals the expected pad 
data (e.g., the hash of D1 . . . DL). If this check fails, the 
decryption ends with a failure condition (414). If the check 
Succeeds, then the decryption process is successful and the 
recovered decrypted output D-D1,..., DL is returned at step 
415. 

Note that in this embodiment, the decryption process can 
be done in a streaming manner (i.e., the decryption device 
could initially obtain N. V and E1 and then receive the 
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remaining segments E2, ..., EL one at a time), and still be 
able to carry out the steps outlined above. Streaming opera 
tion is, for example, useful if the decrypting device lacks 
Sufficient memory to hold the entire message, or if initial 
portions of the decrypted data need to be available before the 
all of the data has been received and decrypted. 

Second Exemplary Embodiment 

This section describes a second exemplary embodiment of 
the general technique for verifiable leak-resistant encryption 
and decryption. In contrast to the first exemplary embodiment 
which used ciphertext hash chaining, the second exemplary 
embodiment uses plaintext hash chaining. However, in both 
cases, the re-use of keys is controlled at both the encrypting 
device and the decrypting device to prevent differential power 
analysis and related attacks. 
Encryption 
The second exemplary embodiment of encryption by the 

encrypting device is shown in FIG. 5 which, for the sake of 
conciseness, is depicted as a combined process diagram and 
state diagram. The encrypting device creates or obtains the 
message to encrypt, D, and a message identifier N, which may 
be a counter, randomly-generated value, plaintext hash, etc. 

The input message D is divided into a sequence of seg 
ments D1, ..., DL (although L=1 is permitted), and these 
segments are used to create the plaintext segments B1,..., BL 
as follows. First, segment B1 (501) is formed by concatenat 
ing message segment D1 with the hash of any desired mes 
sage data (denoted as X, which may include elements such as 
length L. message identifier N, a transaction identifier or 
counter, etc.) Next, B2 (502) is formed by concatenating D2 
with h(B1) (i.e., the hash of B1). Each subsequent Bi up to 
BL-1 is then formed by concatenating Di with the hash of 
Bi-1. Finally, the last plaintext segment BL (504) is formed 
by concatenating DL with h(BL-1). 

The next steps of the process (505-508) generate encryp 
tion keys for each of the plaintext segments using a key 
chaining process so that, similar to the first exemplary 
embodiment, each encryption key is directly or indirectly 
based on the message key. In the second exemplary embodi 
ment, the first encryption key K1 is simply set to the value of 
message key KMESSAGE derived (505) by computing h(N) 
and then K1=KMESSAGE=KROOT, h(N) using the leak 
resistant, key-tree-based key derivation process as described 
in FIG. 2 with KSTART=KROOT and PATH=h(N). Key Ki 
for i>1 is computed as g(Ki-1), where g(). Thus, the second 
key K2 is the result of computing g(K1) (506). This process is 
repeated so that the L-1th key (KL-1) is computed as g(KL 
2) (507), and the final segment key KL is computed as g(KL 
1)(508).) Thus, every key Ki is based on (e.g., equal to or 
derived using) the message key KMESSAGE. 
The next step in the process is the encryption of each of the 

plaintext segments B1, ..., BL with the corresponding keys 
K1, ..., KL to yield the encrypted segments E1,..., EL. For 
instance, encrypted segment E1 is created by encrypting B1 
with K1 (509), E2 is created by encrypting B2 with K2 (510), 
and so on, with EL-1 created by encrypting BL-1 with KL-1 
(511), and EL is created by encrypting BL with KL (512). The 
encrypted result E consists of the segments E1, ..., E.L. 
The next step in the process is the computation of the 

validator V for the encryption (513). First, the hash function 
h() is used to compute h(NE1 ... ||EL)h(BL)), where “0” 
denotes concatenation. Next, Z=h(NE1 ... ELh(BL)) is 
computed, then KROOT, Z is computed using leak resistant 
key-tree-based key derivation process (e.g., as described in 
FIG. 2, with KSTART-KROOT and the PATH=Z). The vali 
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14 
dator V is then computed as the hash of the key tree result (i.e., 
h(KROOTZ)). Finally, the result of the encryption process is 
provided, comprising N, h(BL), E, and the validator V (514). 
The encryption process above can be employed in systems 

where the input data Darrives by streaming, or where for 
other reasons D cannot be processed all at once (e.g., because 
of memory limitations). In this case, the encrypting device 
commences by obtaining N. hCX), and K1. In addition, a 
running hash computation is initialized with N. 

1. Create or obtain N 
. Initialize running hash calculation 
. Let H=h(X) 
. Let KKRoozlov 
. Update running hash calculation with N 
. Let i=1 
. Receive input data D. (e.g., streaming in) 
. Create B, concatenation of D, and H 

9. Let H=h(B) 
10. Create E-ENC(K, D.) 
11. Update running hash calculation with E, 
12. Output E, 
13. Increment i 
14. If more there is input data, go to step 7 
15. Update running hash calculation with H 
16. Finalize running hash calculation and store in Z 
17. Compute V=h(Koozz) 
18. Output H (which equals h(B), N. V 

Decryption 
The process of decryption is illustrated in FIG. 6. At step 

600, the decrypting device receives (typically from an 
untrusted interface) the purported results of the encryption 
process, namely E, h(BL), nonce N, and validator V. The 
decrypting device divides E into E1, . . . , EL, initializes a 
counteri to be 1, and sets a register H to be the received value 
hash h(BL). The length of the message L is also received or 
determined (e.g., if a segment size of 1 kilobyte is used for all 
but the last segment, which may be less than 1 kilobyte, then 
L is the length of the message in kilobytes, rounded up). At 
step 605, the decrypting device computes Z=h(NE1 ELIH), 
where “0” denotes concatenation. At step (610), the decrypt 
ing device computes the value of KROOTZ using the leak 
resistant key-tree-based key derivation process described in 
FIG. 2, with the root being KSTART-KROOT and the 
PATH-Z, and then hashes the result to yieldh(KROOTZ). At 
step 620, it compares the computed h(KROOTZ) with the 
received validator V. If the result does not equalV, there is data 
corruption and the process is stopped at 611 without perform 
ing any decryption. If the check Succeeds, then at Step 620 the 
decrypting device computes h(N), then initializes key register 
K with the result of computing KROOT, h(N) using the leak 
resistant key-tree-based key derivation process described in 
FIG. 2, with KSTART-KROOT and PATH=h(N) and sets a 
counter i to be 1. 

Next, the following operations are performed in a loop: At 
step 630, the segment Ei is decrypted with the key in key 
register K to produce a plaintext segment Bi which consists of 
a data segment Diandahash value. At step 640 the hash from 
of the decrypted current segment is checked. For the first 
segment (i.e., i=1), the hash is compared against h(X), where 
X consists of the same fields as X during encryption. For 
segments after the first one (i.e., id1), the hash from Bi is 
compared against the hash of the prior segment (i.e., h(Bi 
1)). If the comparison fails, the decryption process fails at step 
641. Otherwise, at step 650, the message portion of Bi (i.e., 
Di) is added to the output buffer (e.g., in RAM), and key 
register K is advanced to the next segment key by computing 
g(K) then storing the result in K. The counter i is also incre 
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mented by 1. At step 660, the value of i is compared with L 
and, if the value of i does not exceed L, the decryption process 
loops back to step 630. Otherwise, the decryption process is 
complete and at step 670, where the hash of the last plaintext 
segment (i.e., h(BL)), is compared to the received hash H. If 
the comparison at Step 670 fails (i.e., the values are not equal), 
an error has occurred and the decryption fails (step 671). 
Otherwise the result data D1,..., DL are output in step 680. 

In this embodiment, the hashes of the plaintext are chained, 
with plaintext segment Bi containing the hash of the plaintext 
Bi-1. This chaining, while not strictly necessary for leakage 
resistance, provides the additional property that any faults 
that occur during the decryption process can be detected 
because the plaintext is verified to be that same as what was 
encrypted. Thus, this embodiment is advantageous for use in 
environments where there is potential for corruption the 
decryption process. 
Systems, Applications, and Variants 
Up to this point, this patent has described a general tech 

nique for leak-resistant encryption and decryption, together 
with some exemplary embodiments of that technique. This 
section will describe some exemplary systems and/or appli 
cations in which the foregoing can be utilized, as well as 
additional variants of aspects of the exemplary embodiments 
described above. 
Secure Firmware Loading 

FIG. 7 shows the application of verifiable leak-resistant 
cryptography for securely loading sensitive firmware on a 
central processing unit (CPU), e.g., as part of a so-called 
system on a chip (SoC). For convenience, depending on con 
text, the reference numerals may refer to steps in a process, 
and/or to quantities used (or produced) by such process steps. 
In this embodiment, the SoC consists of a single integrated 
circuit (700), containing a CPU (703), and various types of 
memory. The memories may include, without limitation, ran 
dom access memory (RAM) (701) from which code may be 
executed, read-only-memory (ROM) (704) containing 
trusted bootstrap code, and a secret state storage memory 
(702) that holds a shared cryptographic secret KROOT. The 
key storage memory could be implemented using a variety of 
techniques, such as, without limitation, fuses/antifuses, bat 
tery backed RAM, and EEPROM. The SoC may have an 
external power input (707) which may receive power from an 
untrusted Source (e.g., potentially under the control and/or 
observation of adversaries). An externally supplied clock 
(708) may also be received (and may be used with PLLs to 
form additional clocks). The SoC has a cryptographic hard 
ware component (705) with an AES engine for data encryp 
tion and decryption, a hash function engine, such as, without 
limitation, a SHA-1 or SHA-256 or a AES based hash func 
tion engine, and an implementation of the leak resistant, 
key-tree-based key derivation process based on FIG. 2, with 
functions fo( ) . . . , fb-1 ( ) implemented using the hash 
function and/or the AES function or their variants. It should 
be obvious to those skilled in the art that, in other embodi 
ments, the entire functionality of the cryptographic hardware 
component (705), or some subset thereof could be performed 
by in software (e.g., by the CPU). 
Upon bootstrap from the trusted bootstrap code in ROM, 

the SoC loads its sensitive software/data, over an untrusted 
interface (706), from an external, untrusted storage device, 
which in this embodiment is flash memory (709). To protect 
the sensitive software/data from disclosure or unauthorized 
modification, it is encrypted using the verifiable leak-resistant 
techniques (e.g., as shown in FIG. 1 or 5) by a device manu 
facturer or other code issuer using the shared secret crypto 
graphic value KROOT. The encryption result is stored in the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
flash memory (709). The SoC first loads the encrypted code/ 
data from the flash memory (709) to its internal RAM (701). 
It then performs the leak resistant decryption (e.g., as shown 
in FIG. 4), where the process is implemented in the trusted 
bootstrap code store in ROM (704) cryptographic hardware 
component (705), and is performed using the shared secret 
key KROOT from keystore (702). If successful, this process 
creates a validated and decrypted sensitive code/data image 
within RAM memory (701), which may then be executed. In 
case the decryption process fails, the encrypted code/data 
(and any partially decrypted code/data) in RAM is flushed 
and the operation restarted from the beginning when required. 

In an optional enhancement to this embodiment, security is 
complemented by storing a minimum acceptable Software 
version number in fuses, battery backed memory, or other 
local storage of the device onto which the software is to be 
loaded. All software to be loaded into the device would carry 
a version number, and the device would only accept Software 
with a version number greater that the minimum. In addition, 
some software versions might specifically instruct the SoC to 
update the minimum acceptable software version number, 
thereby preventing malicious rollback of software to a prior 
version that was deemed unacceptable. The foregoing anti 
rollback methods could be implemented independently of 
(i.e., as an adjunct to) the verifiable leak-resistant operations. 
Alternatively, the anti-rollback methods could be imple 
mented as part of the message identifier, the validator, or the 
other secured quantities used in the verifiable leak-resistant 
operations. 

Those with ordinary skill in the art will easily recognize 
that SoC applications are not limited to the specific architec 
ture presented herein, and SoCs or other devices with a dif 
ferent internal architecture and/or components from the 
embodiment presented in FIG.7 may be protected. 

For example, FIG. 8 shows the application of verifiable 
leak-resistant cryptography to a secure processor architecture 
(800). For convenience, depending on context, the reference 
numerals may refer to steps in a process, and/or to quantities 
used (or produced) by Such process steps. In this setting, the 
device contains a CPU, a keystore that holds internal secret 
state including a base secret cryptographic key KROOT. Non 
Volatile storage. Such as, without limitation, fuses (801) may 
be employed for storing the internal Secret state. The crypto 
graphic hardware Subcomponent (804) encrypts and/or integ 
rity protects and/or replay protects all data moving out of the 
on-chip data/instruction cache (803) to external insecure 
RAM memory (806), and decrypts and/or integrity checks 
and/or replay checks all data being fetched from external 
insecure RAM memory. In addition, all code is stored in 
encrypted and integrity protected form in the insecure flash 
(805) and is decrypted and integrity checked when brought 
into the on-chip data/instruction cache (803). Exemplary pro 
cessor architectures of the background art whose security 
could be improved through the addition of verifiable leak 
resistant cryptography include, without limitation, the Secure 
Blue design from IBM (announced in an IBM press release 
entitled “IBM Extends Enhanced Data Security to Consumer 
Electronics Products” on Apr. 6, 2006) and the AEGIS design 
from MIT (described in AEGIS: Architecture for Tamper 
evident and Tamper-resistant Processing, Proceedings of the 
17th Annual International Conference on Supercomputing, 
pages 160-171, 2003). 
The use of Verifiable leak-resistant cryptography Substan 

tially improves the Security of existing processor designs by 
providing protection against monitoring attacks. In particular, 
this embodiment enhances the cryptographic hardware Sub 
component (804) to include a hash function and a key tree 



US 9,367,693 B2 
17 

processing capability that reuses the (e.g., AES) encryption 
capability of an existing secure processor design and imple 
ments the steps and method of the first exemplary embodi 
ment to create a secure leak-resistant secure processor. In 
particular, any data written from cache (803) to the RAM 
memory (806) is encrypted using the leak resistant encryption 
process (e.g., as shown in FIG. 1) and any code read from 
untrusted flash (805) and untrusted RAM is decrypted using 
the leak resistant decryption process outlined in FIG. 4. When 
data are written to a particular segment, a counter correspond 
ing to the segment is incremented, and the counter value is 
incorporated in the encryption and/or integrity check creation 
process for the segment, thereby enabling the detection of 
attacks that involve substitution of old data. 
FPGA Bitstream Loading 
The logic to be loaded into a field programmable gate array 

(FPGA) often contains highly sensitive trade secrets, crypto 
graphic secrets, and/or other sensitive information that needs 
to be protected from disclosure or copying. This loaded logic, 
or upgraded logic is typically supplied to the FPGA as a 
bitstream from an external source. Such as, without limitation, 
a flash memory device or a CPU or some other source (907). 
Some FPGAs contain nonvolatile memory for storing con 
figuration data, while others must be re-loaded each time the 
chip is powered on. Existing FPGAs have the ability to 
decrypt bitstreams, typically using a key that is held a battery 
backed memory or stored locally (such as using on-chip flash, 
EEPROM, or fuses). The FPGA decrypts the supplied 
encrypted bitstream before (or while) installing it into the 
programmable slices present within the FPGA. Differential 
power analysis attacks and related external monitoring 
attacks can be attempted against the bitstream decryption 
processes, posing a serious security risk as a Successful attack 
can result in disclosure of the bitstream decryption key and/or 
the bitstream itself. 

Referring to FIG.9, verifiable leak-resistant cryptography 
can be used to create a secure bitstream decryption capability 
on an FPGA. Prior to decryption, the sensitive bitstream is 
encrypted by an external device (using Software, hardware or 
Some combination thereof) using a leak-resistant encryption 
process (e.g., as described in the first exemplary embodi 
ment), producing the encrypted bitstream. The encrypted bit 
stream may be located (907) in an untrusted memory, such as 
an external flash or hard drive, or retrieved from an untrusted 
source such as a CPU etc. 

Within the FPGA, the cryptographic secret KROOT for 
leak-resistant decryption is kept in the keystore (902) which 
stores the internal secret state, and which may be imple 
mented using technologies such as, without limitation, fuses, 
battery-backed RAM (902, 903), EEPROM, flash, etc. The 
FPGA (900) receives the encrypted bitstream over interface 
(906). This bitstream could, for example, have been 
encrypted using either of the first embodiment or the second 
exemplary embodiment (corresponding to FIGS. 1 and 5). 

If the embodiment of FIG. 1 was used for encryption, the 
FPGA first receives nonce N, validator V. length L, and initial 
segment E1. E1 is stored in encrypted segment buffer (905). 
Using a leak-resistant decryption process as described above 
(e.g., see FIG. 4), the hash of E1 is computed, and validatorV 
is verified, with KROOT, L, and the hash, yielding (if suc 
cessful) KMESSAGE or a fatal error (in which case the pro 
cess halts). If successful, the FPGA uses the segment decryp 
tion processing component (904) to perform the leak resistant 
decryption process on E1. The decryption of E1 yields the 
hash of segment E2, which is loaded, verified, and decrypted. 
The process continues one segment at a time, until the final 
segment is decrypted and verified. If an error occurs, the 
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process halts and all partial FPGA decrypted data are wiped. 
(Upon failure the process can be re-started again from the 
beginning.) One or more status registers 910 are used to track 
the status of the bitstream loading process (e.g., tracking 
whether the process is in-progress, failed, or complete). The 
status can also be exported for diagnostic purposes and foruse 
by external components. Once all segments have been loaded 
successfully, the FPGA is now configured and can be used 
(e.g., the FPGA can now permit I/O, clocking, etc. to be 
applied to the loaded bitstream image). FPGA operation can 
be prevented until the bitstream is fully loaded (e.g., to avoid 
revealing information about an incomplete FPGA image and 
to avoid unpredictable behavior of the overall circuit arising 
from incorrect FPGA configuration). 

If the second embodiment of FIG. 5 was used for encryp 
tion, the FPGA first receives E. V. N. and h(BL), and stores E 
in a buffer. The FPGA's segment decryption processing com 
ponent 904 then uses the method described in FIG. 6 to 
validate and decrypt the provided encrypted segments. Status 
register(s) 910 are used to track the status of the bitstream 
loading, validation, and decryption processes, and any seri 
ous error results in the halting of the process and the wiping of 
any partial decrypted data. 
Network Communications and Other Packet-Based Applica 
tions 

FIG. 10 shows the application of verifiable leak-resistant 
cryptography to protecting network communications from 
external monitoring attacks. In this embodiment, multiple 
network devices, such as Device A (1000), Device B (1030) 
and Devices C, D, E, etc. (1040) communicate with each 
other over a network (1020). Some or all of these communi 
cations may contain sensitive information, making it useful to 
encrypt and authenticate the data. Moreover, some of these 
devices (such as Device A in this embodiment) are required to 
protect their cryptographic computations and keys from 
external monitoring attacks. 

Device A has a keystore (1001) to store a table of shared 
cryptographic root keys with other devices it needs to com 
municate with. These keys may have been previously stored, 
or may be negotiated (e.g., using public key cryptography). 
Methods for using public key cryptosystems to negotiate keys 
are well known in the background art, and are utilized in 
protocols such as SSL and IPSEC. This embodiment could 
easily be integrated into these or other protocols. 
Outbound packets or data segments to be encrypted origi 

nate from an application, operating system, driver, or other 
component (1002) and enter plaintext packet buffer (1003). 
Each packet is then processed using the segment encryption/ 
decryption processing component (1004), where it is 
encrypted using a verifiable leak resistant encryption method 
(e.g., as described in FIG. 1). The root key for this encryption 
is the shared key between Device A and the destination 
device, which is obtained from the keystore (1001). For this 
processing, the message identifier nonce N may be any (pref 
erably) unique value, including a counter. For example, the 
nonce could equala packet identifier, a TCP sequence number 
with possibly the incorporation of additional most-significant 
bits to prevent overflows), the hash of a value, a random value, 
etc. For each packet, the leak resistant encryption operation 
produces an encrypted segment and a validator V. The nonce 
may be transmitted or may be implicit (e.g., based on the 
number of packets received previously). The encrypted seg 
ment, V, and any other required data are assembled into an 
outgoing packet and moved to the network interface compo 
nent (1006) and then to the network (1020) for routing to the 
appropriate destination device. 
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For inbound encrypted packets, it is assumed that the send 
ing device has performed the encryption as described above. 
These packets are received from the network (1020) by the 
network interface component (1006) and then moved to the 
ciphertext packet buffer (1005). Each packet is then pro 
cessed by segment encryption/decryption processing compo 
nent (1004), where a leak-resistant decryption process (e.g., 
as described in FIG. 4) is performed. For this decryption 
process, (i) the shared key between the receiving and sending 
device (e.g., KROOT or a precursor used to derive KROOT) 
is obtained from keystore (1001), (ii) the nonce N is recovered 
from the packet or otherwise determined, (iii) the validator is 
verified against N and the encrypted packet, and (iv) if the 
validator is correct, the packet data are decrypted. The shared 
cryptographic secret between Device A and the sending 
device may be used as KROOT. If the decryption or validation 
fails, the packet is dropped. Otherwise, upon Successful 
decryption, the decryption result can be provided to the appli 
cation, operating system, driver, etc. 

This process is outlined in FIGS. 11 and 12. FIG. 11 illus 
trates the verifiable packet level leak-resistant encryption pro 
cess and FIG. 12 illustrates the corresponding decryption 
process. The verifiable packet level leak-resistant encryption 
process is the following: Given an input packet data D (1100) 
with the Source and destination sharing a base cryptographic 
value KROOT, a message identifier N is generated in step 
1101 (e.g., using a random source and/or information present 
in the packet D and/or some packet identifier Such as a 
sequence number associated with the communication proto 
col). For TCP/IP communications, Ncan be constructed from 
a session identifier, the sequence number (optionally with 
additional most significant bits appended to prevent rollover), 
the source port, the destination port, and/or other values. 
Next, in step 1102, the hash of N is computed. (Optionally, 
this step may be omitted and N may be used instead of h(N) in 
deriving KMESSAGE.) Subsequently, in step 1103, message 
key KMESSAGE=KROOT, h(N) is computed using the leak 
resistant key-tree-based key derivation process described in 
FIG. 2, with KSTART=KROOT and PATH=h(N). The input 
packet data D is encrypted with the key KMESSAGE to yield 
the encrypted result E (1104). 

Next the hash of E is computed (1105) (e.g., using SHA 
256). Then the validator V for the encryption is computed as 
KMESSAGE.h(E) (1106) using the leak resistant key-tree 
based key derivation process outlined in FIG. 2, with 
KSTART-KMESSAGE and PATH=h(E). Finally the output 
packet is formed to include V, E, and N (or any other infor 
mation, if any, required to enable the recipient to recover N) 
(1107). The output data E is then transferred to a remote 
device (such as a remote computer over the Internet) in a 
packet. 
As an optional optimization, if the encrypting device has 

multiple packets buffered for sending, it can encrypt multiple 
packets simultaneously such that only a single validator is 
required for all packets. For example, the encryption process 
may be performed as shown in FIG.3, where each segment Di 
is a packet. Combining packets in this manner reduces the 
number of key tree operations required for both the sender 
and the recipient. 
A corresponding verifiable packet level leak resistant 

decryption process is illustrated in FIG. 12. Given an 
encrypted packet including V, E, N (or data sufficient to 
recover N, e.g., a sequence number), and the shared crypto 
graphic secret KROOT (1200), the decryption process pro 
ceeds as follows: First, the value of h(N) is computed (1201) 
is computed (or, if the encrypting device used N directly, then 
this step is omitted). Then the hash of E is computed (1202). 
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Next KMESSAGE=KROOT, h(N) is computed at step 1203 
using the leak resistant key-tree-based approach diagrammed 
in FIG. 2 with KSTART-KROOT and PATH=h(N). Next 
V=KMESSAGE, h(E) is computed using the leak resistant 
key tree process outlined in FIG. 2, with 
KSTART-KMESSAGE and PATH=h(E) (1204). Subse 
quently, the decryption device checks whether V-V (1205). 
If they are not equal, processing is stopped for this packet and 
the packet is discarded (1206). If the check succeeds, then E 
is decrypted with KMESSAGE to yield D, the plaintext 
packet (1207) (e.g., using the DEC() process shown in FIG. 
14). 
Smart Card Applications 

Verifiable leakage-resistant encryption and decryption can 
be implemented in Smart-cards (e.g., in connection with pro 
tocols where the Smart-card is required to perform encryption 
and/or decryption in a manner that is secure from differential 
power analysis and related external monitoring attacks). 
Examples of Such systems and protocols include, without 
limitation, the derivation of keys (control words) for the 
decryption of pay television signals, payments (including 
off-line payments), identity verification/network login, 
mobile telephone SIM cards, and transit passes. The exem 
plary cryptographic techniques disclosed in this patent can be 
used to ensure that the secret keys within Smart-cards are 
protected from external monitoring attacks while performing 
Such protocols. Smart cards (or other security chips) can also 
be used to implement part or all of the leak resistant encryp 
tion or decryption processes utilized in a larger system, Such 
as if the Smart card implements the key-tree based key deri 
vation process of FIG.3 so that KSTART never needs to leave 
the smart card. 
Mutual Authentication Applications 

In many applications, two or more devices need to authen 
ticate each other and/or exchange sensitive information 
amongst them. Example applications of Such protocols 
include, without limitation: (i) authentication between a 
printer and a cartridge to ensure that both devices are genuine 
and not counterfeit; (ii) authentication between a set-top box 
and a Smart-card to ensure that components are authentic 
(e.g., to prevent the introduction of stolen video decryption 
keys); (iii) authentication between a garage door and an 
opener; (iv) keyless entry systems (such as may be used in 
cars) which authenticate keys (e.g., prior to unlocking doors 
or starting the engine); (V) authentication protocols per 
formed by frequently stolen items (such as car radios, GPS 
units, cellphones, etc.) to prevent stolen or tampered devices 
from being operated; and (vi) entry systems such as those 
found in secure buildings that authenticate keyS/tokens prior 
to permitting entry. In these applications, challenge response 
protocols between the devices have traditionally been used 
both for mutual authentication and to set up a shared secret 
key for the exchange of sensitive information. Simple proto 
cols to perform these authentications while resisting DPA can 
be constructed by using the methods of this patent to perform 
any required encryption or decryption operations. For 
example, a device can demonstrate its authenticity using tech 
niques disclosed in this patent through its ability to Supply a 
valid validator and/or decrypt a message. 
Segment Encryption and Decryption with Intra-Segment Key 
Changes 

This section describes exemplary variants of the ENC( ) 
and DEC() operations which can be used in place of conven 
tional encryption processes (such as AES in ECB or CBC 
mode) in implementing the exemplary embodiments (e.g., as 
shown at step 320 of FIG. 3, step 410 of FIG. 4, step 509 of 
FIG.5, step 630 of FIG. 6, step 1104 of FIG. 11, and step 1207 
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of FIG. 12). In the ENC() and DEC() variants shown in FIGS. 
13 and 14 respectively, the cryptographic keys are changed 
frequently, for even greater security. Specifically, additional 
cryptographic key updates occur within the encryption of a 
data segment Dito Ei(or vice versa). Accordingly, we refer to 
these variants as implementing intra-segment key changes. 

Other than the changes to ENC() and DEC() the remainder 
of the operations in the first and second exemplary embodi 
ments can be implemented as previously described. For 
example and without limitation, the operations involving the 
initial message key KMESSAGE, the validator V, and so 
forth, need not be changed. 

FIG. 13 shows an exemplary embodiment of an ENC( ) 
operation for encrypting data segments. FIG. 14 shows a 
corresponding exemplary embodiment of a DEC() operation. 
In this embodiment, these operations are built using the block 
cipher AES in cipher block chaining (CBC) mode, but it 
should be clear to those skilled in the art, that other block 
ciphers or encryption/decryption primitives or encryption 
modes could be used as well. 
The inputs to the encryption process for segment i are 

segment key Ki (1301) and data segment Di (1310). The input 
data segment Di (1310) is divided into sub-segments Di, 1 
(1311), Di.2 (1312), etc. FIGS. 13 and 14 show the data 
segment D being divided into sub-segments of 3 AES blocks, 
although other sizes can also be used and algorithms other 
than AES may, of course, also be employed. (Smaller sub 
segments increase computational overhead, while larger Sub 
segments cause keys to be used in more operations, increasing 
the potential for information to leak.) Segment key Ki is 
transformed with a hash operation m() yielding Ki, 1 (1302) 
which is the key for the first sub-segment Di, 1. If an initial 
ization vector (IV) (1314) is to be used, it is XORed with the 
first AES block of Di, 1. (If no IV is to be used, this XOR step 
may be omitted. If an IV is used, it can be authenticated, e.g., 
by incorporating it into the validator computation, or by 
deriving the IV from a validated value Such as a message 
identifier.) The first bits of (Di XOR IV) are encrypted with 
AES (1315) using the segment key Ki, 1 (1302), forming the 
first portion of ciphertext sub-segment Ei, 1 (1320). This 
ciphertext portion is also XORed with the next bits of sub 
segment Di, 1 (1311), yielding another AES input which is 
Subsequently encrypted using segment key KO (1302) to pro 
duce the next portion of sub-segment Di, 1 (1311). A similar 
cipher block chaining operation is performed to form the 
input to the third AES encryption, which is also performed 
with key Ki, 1. The results of the three AES operations is the 
ciphertext sub-segment Ei, 1 (1320). The fourth AES opera 
tion is performed on the first block of the next data sub 
segment Di.2, (1312), and a new key is used, notably Ki.2 
(1303), which is derived by applying m() to Ki, 1 (1302). The 
last ciphertext from processing Di, 1 becomes the IV (1317) 
for the first portion of Di2 (1312). The encryption process 
continues until all blockSofalls data Sub-segments have been 
encrypted, ultimately yielding the encrypted Sub-segments 
Ei.2 (1321),..., Eis (1322), and where a new key is derived 
using m() for each sub-segment. Finally, the ciphertext Sub 
segments are assembled to form the final ciphertext segment 
Ei (1330). 

Referring to FIG. 14, the decryption process DEC() is the 
reverse of the ENC() process. The subkeys Ki, 1 (1402), Ki.2, 
(1403), etc. are derived from the segment key Ki (1401) using 
m( ) via the same process as for encryption above. The 
encrypted segment Ei is divided into Sub-segments, each 
comprising one or more AES inputs, which are decrypted 
with the Subkeys. After each decryption operation, the appro 
priate IV (if any) or prior ciphertext is XORed with the data. 
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The final data are assembled to form the sub-segments (1420, 
1421, 1432, etc.), which are in turn assembled to form Di 
(1430). 
The ENC() and DEC() process above are examples which 

involve rapid key changes so as to provide greater leakage 
tolerance. Other segment encryption and decryption methods 
can be used, including the application of stream ciphers and/ 
or block ciphers (such as RC4, SEAL, AES, DES, triple DES, 
etc.) in ECB, CBC, or counter (e.g., Galois counter) modes. 
For such operations where the same key is applied to all the 
data in a segment, it may be advantageous to limit the size of 
each segment (e.g., by dividing up the data into Sub-segments 
as shown in FIG. 3) prior to encryption so as to limit that the 
number of operations performed with each key, thereby 
reducing the number of operations an adversary can observe 
being performed with each key. 
Communications Channels 

Data exchanges described herein may be accomplished in 
a wide range of possible manners. For example, and without 
limitation, conventional buses/interfaces (such as I2C, JTAG, 
PCI, serial I/O (including USB), PCI Express, Ethernet, etc.), 
wireless protocols (such as 802.11 family, Bluetooth, cellular 
telephony protocols, ISO14443, etc.), and intra-chip connec 
tions (such as APB, direct connections with other flip flops, 
etc.) may all be used. For each of the foregoing, the sending 
device(s) and receiving device(s) would have appropriate 
interfaces (e.g., interfaces of the foregoing types) with can 
send, receive, or send and receive (as appropriate). 
Alternate Forms of Data Validation Prior to Decryption 
The exemplary embodiments presented thus far, have uti 

lized the leak-resistant key-tree-based key derivation process 
(e.g., as illustrated in FIG. 2) to compute a validator of the 
ciphertext which can be verified safely prior to decryption. 
While this process is well suited to a broad range of applica 
tions, other techniques for creating a value that could serve a 
similar role, and may be adequate in certain settings. For 
example, in some embodiments the encryption process is not 
required to be resistant to external monitoring (but the 
decryption process does require Such resistance) and/or algo 
rithm-level countermeasures for public key digital signing 
processes (such as those described in U.S. Pat. No. 6,304,658) 
may be present. For these systems, digital signing (digital 
signature) operations may be used to construct a value which 
can be verified at decryption time to ensure that the ciphertext 
is unmodified. For example, the digital signature could 
authenticate the message identifier and at least one encrypted 
segment. Examples of public key digital signing algorithms 
include, without limitation, RSA, DSA, and elliptic curve 
DSA variants (including without limitation EC-DSA). The 
Verification of a digital signature does not require any sensi 
tive information, and accordingly may be performed prior to 
decryption. However, this flexibility comes at the cost of 
requiring public key signing logic within the encrypting 
device and public key verification logic within the decrypting 
device. It is also possible for a validator (or validator substi 
tute) to be comprised of multiple symmetric validators, public 
key signatures, or other elements. 
Non-Sequential Segment Key Derivation 

Segment keys (e.g., K1, K2, ... KL in FIG. 3) and sub 
segment keys (Ki.1, Ki.2, etc. in FIG. 13) are not required to 
be derived sequentially. For example, keys can be derived in 
a hierarchical tree pattern, or more generally each key can be 
a function of any prior key(s), or could be independently 
derived from KROOT using the key tree construction, or keys 
could be derived using some combination of other keys and 
the key tree construction. 
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Reordering of Data Transmissions and Calculations 
The ordering of data transmissions and operations can be 

altered. For example, the first exemplary embodiment 
described in FIGS. 1, 3 and 4 shows the encryption process 
proceeding from the last segment DL to the first segment D1 
with each segment Di containing the hash of the encryption 
result, Ei-i-1, of the i+1th segment. A separate validator is 
computed for the first encrypted segment E1 (e.g., see step 
106). This approach can be advantageous for the decrypting 
device as shown in FIG. 4, since it does not need to buffer the 
entire encryption result before decrypting, whereas the 
encrypting device has to do so. 

Alternatively, the encrypting device could encrypt the seg 
ments starting from D1 and ending with DL, with each seg 
ment Di-1 containing the hash of the encryption Ei of the 
previous segment. In this example, the segment D1 is (for 
example) extended by a string of 0s of size equal to the output 
length of the hash function to indicate it is the first segment. A 
validator, created using the key-tree is then computed using 
PATH=h(EL). For this variant, the decryption process is simi 
lar to FIG. 4, but proceeds in the reverse direction starting 
from the last encrypted segment to the first. Thus, the encrypt 
ing device no longer has to buffer the data segments, although 
the decrypting device now has to do so. 
Substitution of Additional Validators for Hashes 

Although some examples show hashes in data segments 
which authenticate Subsequent encrypted segments, the Sub 
sequent segments can alternatively carry their own indepen 
dent validator. For example, FIG. 3 shows first data segment 
(312) carrying a hash h(E2) to validate that segment E2 was 
not changed. However, Such hash is not always required, and 
in Some cases could be omitted (e.g., if the next segment 
instead carries a validator). This simplifies encryption some 
what, but increases computation time since more validators 
need to be computed and checked. In streaming applications 
or if storage/memory are limited, the additional computa 
tional effort may be justified given the benefit of avoiding the 
need to have the subsequent data available and buffered. 
Variations in Hashing 

In some diagrams, a single operation, such as h() in FIG.3, 
is applied multiple times and/or is used for different uses. It is 
generally not required that these all be the same function. For 
example, different steps could employ different hash func 
tions. 

The output of hash function may be truncated, combined 
with other hash function outputs, or otherwise modified 
through post-processing. For example, SHA-2 produces a 
256-bit output hash, but a shorter message identifier (such as 
160- 128-, 80- or 64-bits) may be desired. The function h() 
may use SHA-2 internally and return only some bits of its 
result. 
Variations in Order of Operations 
Some of the exemplary embodiments designate a specific 

order in which data elements are concatenated or combined. 
For instance, in FIG. 3, steps 303-312, the data Di is concat 
enated with the hash h(Ei-1). Other examples where data 
segments are concatenated in sequence before being hashed 
include FIG. 5, elements 501-504 & 513, in step 306 of FIG. 
3. These specific orderings are just one example of a possible 
ordering, and a variety of other data orderings could be uti 
lized in alternate embodiments. 
Variations in Tree-Based Key Derivation 

If operations (such as fi) are invertible, it is possible to use 
a value other than the top of the tree as the starting value. 
Similarly, computed values can be cached (e.g., if the mes 
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sage identifier is a counter, the initial operations will usually 
not change from one message to the next and therefore do not 
need to be recomputed). 
Error Detection and/or Correction 

It is well known in the art that incorrect outputs produced as 
a result of injecting faults in a cryptographic device's opera 
tion can yield information about sensitive data and keys. 
When practical, cryptographic operations can be checked to 
help prevent the release of incorrect computations which can 
compromise secrets. For example, a simple and effective 
technique is to perform cryptographic operations twice, ide 
ally using two (or more) independent hardware processors 
and implementations, with a comparator to verify that both 
(orall) produce identical results. If the results produced by the 
units do not match, the comparator will prevent either result 
from being used and/or trigger other error conditions. Within 
individual cryptographic operations (such as hashing steps), 
error-detection and/or error-correction logic can also be 
employed to help prevent or detect situations where crypto 
graphic operations are performed incorrectly. 
The techniques disclosed in this patent may additionally 

provide Some inherent resistance against certain types of fault 
injection attacks on the encryption and decryption processes. 
During the encryption process, a limited or partial fault intro 
duced during the key tree based key derivation process would 
produce random, unpredictable results due to the usage of 
entropy redistribution functions within this process. In par 
ticular, corrupted intermediates will typically be mixed by 
subsequent entropy redistribution functions, which will limit 
adversaries’ ability to mount attacks utilizing defective 
results. 

Likewise, during decryption, faults or errors introduced 
within the ciphertext or the message identifier processing will 
generally resulting the validator being rejected. The second 
embodiment, with plaintext hash chaining, provides further 
resistance since the plaintext segments are independently 
authenticated for correctness prior to being output. Ofcourse, 
the checking of operations and other well known fault-detec 
tion techniques may additionally be utilized. 

Self-diagnostic functions such as a POST (power-on-self 
test) and random number testing may also be incorporated to 
Verify that cryptographic functions and random numbergen 
eration capability has not been damaged. 
Additional Host Environments and Form Factors 

Several exemplary systems and applications for the utili 
Zation of Verifiable leak-resistant cryptography were 
described above. However, as those skilled in the art will 
appreciate, the techniques described above are not limited to 
particular host environments or form factors. Rather, they can 
be used in a wide variety of applications, including without 
limitation: application-specific integrated circuits (ASICs), 
field programmable gate arrays (FPGAs), systems on chip 
(SoC), microprocessors, secure processors, secure network 
devices, cryptographic Smartcards of all kinds (including 
without limitation Smartcards Substantially compliant with 
ISO 7816-1, ISO 7816-2, and ISO 7816-3 (“ISO 7816-com 
pliant Smartcards”)); contactless and proximity-based Smart 
cards and cryptographic tokens (including without limitation 
smartcards substantially compliant with ISO 14443); stored 
value cards and systems; cryptographically secured credit 
and debit cards; customer loyalty cards and systems; crypto 
graphically authenticated credit cards; cryptographic accel 
erators; gambling and wagering systems; secure crypto 
graphic chips; tamper-resistant microprocessors; Software 
programs (including without limitation programs for use on 
personal computers, servers, etc. and programs that can be 
loaded onto or embedded within cryptographic devices); key 
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management devices; banking key management systems; 
secure web servers; defense systems; electronic payment sys 
tems; micropayment systems and meters; prepaid telephone 
cards; cryptographic identification cards and other identity 
Verification systems; systems for electronic funds transfer, 
automatic teller machines; point of sale terminals; certificate 
issuance systems; electronic badges; door entry systems; 
physical locks of all kinds using cryptographic keys; systems 
for decrypting television signals (including without limita 
tion, broadcast television, satellite television, and cable tele 
vision); systems for decrypting enciphered music and other 
audio content (including music distributed over computer 
networks); systems for protecting video signals of all kinds; 
content protection and copy protection systems (such as those 
used to prevent unauthorized copying or use of movies, audio 
content, computer programs, Video games, images, text, data 
bases, etc.); cellular telephone scrambling and authentication 
systems (including telephone authentication Smartcards); 
secure telephones (including key storage devices for Such 
telephones); cryptographic PCMCIA cards; portable crypto 
graphic tokens; and cryptographic data auditing systems. 

All of the foregoing illustrates exemplary embodiments 
and applications of the Verifiable leak-resistant cryptography, 
from which related variations, enhancements and modifica 
tions will be apparent in the context of the spirit and scope of 
the disclosure. Therefore, the invention(s) protected by this 
patent should not be limited to the foregoing disclosure, but 
rather construed by the claims appended hereto. 

What is claimed is: 
1. A method comprising: 
receiving a bitstream for configuration of a programmable 

logic device, the bitstream comprising a data segment 
and authentication data associated with the data seg 
ment; 

computing, by the programmable logic device, a hash of 
the data segment; 

comparing, by the programmable logic device, the com 
puted hash of the data segment with the authentication 
data; 

halting configuration of the programmable logic device 
responsive to a determination that the computed hash of 
the data segment does not match the authentication data; 
and 

continuing configuration of the programmable logic device 
using the data segment responsive to a determination 
that the computed hash of the data segment matches the 
authentication data. 

2. The method of claim 1, wherein the authentication data 
comprises an expected hash of the data segment. 

3. The method of claim 1, wherein the programmable logic 
device comprises a field programmable gate array (FPGA). 

4. The method of claim 1, wherein the bitstream further 
comprises an additional data segment, the method further 
comprising: 

configuring the programmable logic device using the data 
Segment, 

determining whether the additional data segment has been 
altered using the authentication data; 

halting configuration of the programmable logic device 
responsive to a determination that the additional data 
segment has been altered; and 

continuing configuration of the programmable logic device 
using the additional data segment responsive to a deter 
mination that the additional data segment has not been 
altered. 
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5. The method of claim 4, wherein the bitstream comprises 

a plurality of data segments that include the data segment and 
the additional data segment, the method further comprising: 

preventing operation of the programmable logic device 
until all of the plurality of data segments have been 
Successfully used to configure the programmable logic 
device. 

6. The method of claim 1, wherein computing the hash of 
the data segment is performed using an SHA-256 message 
authentication code (MAC) algorithm. 

7. The method of claim 1, further comprising: 
decrypting the data segment based on use of a shared 

symmetric key stored at the programmable logic device. 
8. The method of claim 7, wherein the decrypting is per 

formed using an advanced encryption standard (AES) block 
cipher. 

9. The method of claim 7, wherein comparing the com 
puted hash of the data segment with the authentication data is 
performed prior to decrypting the data segment. 

10. A programmable logic device, comprising: 
a plurality of programmable regions; 
an interface to receive a bitstream for configuration of the 

plurality of programmable regions of the programmable 
logic device, the bitstream comprising a data segment 
and authentication data associated with the data seg 
ment; and 

a processing component, coupled to the interface, to: 
compute a hash of the data segment; 
compare the computed hash of the data segment with the 

authentication data; 
halt configuration of the programmable logic device 

responsive to a determination that the computed hash 
of the data segment does not match the authentication 
data; and 

continue configuration of the programmable logic 
device using the data segment responsive to a deter 
mination that the computed hash of the data segment 
matches the authentication data. 

11. The programmable logic device of claim 10, wherein 
the authentication data comprises an expected hash of the data 
Segment. 

12. The programmable logic device of claim 10, wherein 
the programmable logic device comprises a field program 
mable gate array (FPGA). 

13. The programmable logic device of claim 10, wherein 
the bitstream further comprises an additional data segment, 
and wherein the processing component is further to: 

configure the programmable logic device using the data 
Segment, 

determine whether the additional data segment has been 
altered using the authentication data; 

halt configuration of the programmable logic device 
responsive to a determination that the additional data 
segment has been altered; and 

continue configuration of the programmable logic device 
using the additional data segment responsive to a deter 
mination that the additional data segment has not been 
altered. 

14. The programmable logic device of claim 13, wherein 
the bitstream comprises a plurality of data segments that 
include the data segment and the additional data segment, and 
wherein the processing component is further to: 

prevent operation of the programmable logic device until 
all of the plurality of data segments have been success 
fully used to configure the programmable logic device. 
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15. The programmable logic device of claim 10, wherein 
an SHA-256 message authentication code (MAC) algorithm 
is used to compute the hash of the data segment. 

16. The programmable logic device of claim 10, further 
comprising: 
A memory to store a shared symmetric key, wherein the 

processing component is further to decrypt the data seg 
ment based on use of the shared symmetric key. 

17. The programmable logic device of claim 16, whereinto 
decrypt the data segment the processing component uses an 
advanced encryption standard (AES) block cipher. 

18. The programmable logic device of claim 16, wherein 
the processing component is to compare the computed hash 
of the data segment with the authentication data prior to 
decrypting the data segment. 

19. A non-transitory computer readable medium compris 
ing instructions that, when executed by a programmable logic 
device, cause the programmable logic device to perform 
operations comprising: 
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receiving a bitstream for configuration of the program 

mable logic device, the bitstream comprising a data seg 
ment and authentication data associated with the data 
Segment, 

computing, by the programmable logic device, a hash of 
the data segment; 

comparing, by the programmable logic device, the com 
puted hash of the data segment with the authentication 
data; 

halting configuration of the programmable logic device 
responsive to a determination that the computed hash of 
the data segment does not match the authentication data; 
and 

continuing configuration of the programmable logic device 
using the data segment responsive to a determination 
that the computed hash of the data segment matches the 
authentication data. 

20. The non-transitory computer readable medium of claim 
19, the operations further comprising: 

decrypting the data segment based on use of a shared 
symmetric key stored at the programmable logic device. 

k k k k k 


