
(12) United States Patent
Kocher et al.

US0093.67693B2

US 9,367,693 B2
Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

BITSTREAM CONFIRMATION FOR
CONFIGURATION OF A PROGRAMMABLE
LOGIC DEVICE

Applicant: Cryptography Research, Inc., San
Francisco, CA (US)

Inventors: Paul C. Kocher, San Francisco, CA
(US); Pankaj Rohatgi, Los Altos, CA
(US); Joshua M. Jaffe, San Francisco,
CA (US)

Assignee: Cryptography Research, Inc.,
Sunnyvale, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/752,677

Filed: Jun. 26, 2015

Prior Publication Data

US 201670026826A1 Jan. 28, 2016

Related U.S. Application Data
Continuation of application No. 14/737,154, filed on
Jun. 11, 2015, which is a continuation of application
No. 14/617,437, filed on Feb. 9, 2015, which is a
continuation of application No. 14/201,539, filed on

(58) Field of Classification Search
CPC G06F 21/72: G06F 21/75; G06F 21/76:

G06F 21/78; H04L 9/3223; H04L 9/0813;
H04L 9/0816; H04L 9/0894; H04L 9/32:
H04L 9/36; H04L 9/3239; H04L 9/3242

USPC 380/277, 286, 29; 713/168, 174, 181,
713/189, 193, 194; 726/26, 30

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

9, 1987 Horne et al.
3/1990 Matsumura et al.

(Continued)

4,694,491 A
4,908,038 A

FOREIGN PATENT DOCUMENTS

EP
JP

O781003 A2 6, 1997
2002-520905. A T 2002

(Continued)
OTHER PUBLICATIONS

CN Office Action dated Apr. 22, 2015 in CN Application No.
201080060319.3, includes English Translation. 10 pages.

(Continued)

Primary Examiner — Hosuk Song
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(57) ABSTRACT
Abitstream for configuration of a programmable logic device
is received, the bitstream comprising a data segment and

(Continued) authentication data associated with the data segment. The
programmable logic device computes a hash of the data seg

Int. C. ment. The programmable logic device compares the com
H04L 9M32 (2006.01) puted hash of the data segment with the authentication data.
G06F 2/57 (2013.01) Configuration of the programmable logic device halts respon

(Continued) sive to a determination that the computed hash of the data
segment does not match the authentication data. Configura

U.S. C. tion of the programmable logic device using the data segment
CPC G06F 21/575 (2013.01); G06F 8/71 continues responsive to a determination that the computed

(2013.01); G06F 9/44505 (2013.01); hash of the data segment matches the authentication data.
(Continued) 20 Claims, 14 Drawing Sheets

input Data D=D,..., D. - 100
C

Generate once N - 101

Compute H = h(N) - 102

--13 Compute KMessage = Kroot, H, using KeyTree
Cm

encrypt data segment(s); Compute key and
clphertext hash chaining on D=D., Dusing
Kesses, yielding ciphertext E. E. E.

t
Compute H=h(E)

Using Key Tree, compute
Walidator W = KEssacEH

Output N, V, E=E.E.

- 104

105

-106

-- 7

Verifiable leak-resistant encryption using ciphertext hash
chaining

US 9,367,693 B2
Page 2

Related U.S. Application Data
Mar. 7, 2014, now Pat. No. 8,977,864, which is a
continuation of application No. 13/762.703, filed on
Feb. 8, 2013, now Pat. No. 8,707,052, which is a con
tinuation of application No. 12/958,570, filed on Dec.
2, 2010, now Pat. No. 8,366,800.

(60) Provisional application No. 61/266,948, filed on Dec.
4, 2009.

(51) Int. Cl.
G06F2L/60 (2013.01)
H04L 9/00 (2006.01)
H04L 9/08 (2006.01)
G06F 2/14 (2006.01)
H04L 9/06 (2006.01)
H04L 9/16 (2006.01)
G06F 9/445 (2006.01)
G06F2L/76 (2013.01)
G06F 9/44 (2006.01)
HO4L 29/06 (2006.01)

(52) U.S. Cl.
CPC G06F 12/1408 (2013.01); G06F 21/602

(2013.01); G06F2I/76 (2013.01); H04L 9/003
(2013.01); H04L 9/0631 (2013.01); H04L

9/085 (2013.01); H04L 9/088 (2013.01); H04L
9/0861 (2013.01); H04L 9/0894 (2013.01);

H04L 9/16 (2013.01); H04L 9/3236 (2013.01);
H04L 9/3247 (2013.01); G06F2221/034

(2013.01); G06F222 1/2107 (2013.01); H04L
63/0428 (2013.01); H04L 63/0869 (2013.01);

H04L 2209/24 (2013.01); H04L 2209/38
(2013.01); H04L 2209/56 (2013.01); H04L

2463/061 (2013.01)

(56) References Cited

U.S. PATENT DOCUMENTS

4,972.472 A 11, 1990 Brown et al.
5,017,766 A 5, 1991 Tamada et al.
5,179,951 A 1/1993 Knudson
5,297,207 A 3/1994 Degele
5,319, 172 A 6, 1994 Komatsu
5,454,037 A 9, 1995 Pacella
5,491,749 A 2/1996 Rogaway
5,511,123 A 4, 1996 Adams
5,513,261 A 4, 1996 Maher
5,944,833. A 8/1999 Ugon
6,009, 177 A 12, 1999 Sudia
6,278,783 B1 8, 2001 Kocher et al.
6,298.442 B1 10, 2001 Kocher et al.
6,304,658 B1 10, 2001 Kocher et al.
6,327,661 B1 12/2001 Kocher et al.
6,510,518 B1 1/2003 Jaffe et al.
6,539,092 B1 3/2003 Kocher
6,587,563 B1 7/2003 Crandall
6,654,884 B2 11/2003 Jaffe et al.
6,654,889 B1 * 1 1/2003 Trimberger GO6F 21,76

T13, 188
6,724,894 B1 4/2004 Singer
6,931,543 B1 8/2005 Pang et al.
6,996,724 B2 2, 2006 Murakami et al.
7,028,191 B2 4/2006 Michener et al.
7,117,373 B1 10/2006 Trimberger et al.
7,146,501 B2 12/2006 Tanaka
7.333,616 B1 2/2008 Brettle et al.
7,339,400 B1* 3/2008 Walstrum, Jr. ... H03K 19/17768

326, 101
7,373,506 B2 5/2008 Asano et al.
7,373,668 B1 5/2008 Trimberger

7.550,324 B1* 6/2009 Walstrum, Jr. ... H03K 19/17768
326, 101

7,599,488 B2 10/2009 Kocher et al.
7,634,083 B2 12/2009 Kocher et al.
7,657,035 B2 2/2010 Yato et al.
7,668,310 B2 2/2010 Kocher et al.
7,787,620 B2 8, 2010 Kocher et al.
7,986,158 B2 * 7/2011 Langton GO1R 31,31719

257,686
8,095,800 B2 * 1/2012 Creary HO4L 9,0822

T13, 189
8,261,068 B1 9/2012 Raizen et al.
8,261,085 B1* 9/2012 Fernandez GO6F 21,565

T11 113
8.332,649 B2 12/2012 Yokota et al.
8,386,800 B2 2/2013 Kocher et al.
8,707,052 B2 4/2014 Kocher et al.
8,879,724 B2 11/2014 Kocher et al.

2004/0030905 A1 2/2004 Chow et al.
2006/0294.018 A1 12/2006 Tuoriniemi
2008/0085003 A1 4/2008 Waisbard
2008/0263363 A1 10, 2008 Jueneman et al.
2009/0048953 A1 2/2009 Hazel et al.
2009/0070583 A1 3/2009 von Mueller et al.
2009/0252324 A1 10, 2009 Seleznev et al.
2010.0125739 A1 5/2010 Creary et al.
2011/0258459 A1 10/2011 Guilley et al.

FOREIGN PATENT DOCUMENTS

JP 2003-022007 A 1, 2003
JP 2004-096754. A 3, 2004
JP 2009-081549. A 4, 2009
JP 2009-145544 8, 2009
WO WO-00-02342 A2 1/2000

OTHER PUBLICATIONS

Dziembowski et al. “Leakage-Resilient Cryptography in the Stan
dard Model.” FOCS, pp. 293-302, IEEE Computer Society, May 28,
2008. 13 pages.
Faust et al., “Leakage-Resilient Signatures.” TCC, vol. 5978 of Lec
ture Notes in Computer Science, pp. 343-360, 2010. 21 pages.
PCT International Preliminary Report on Patentability dated Jun. 14.
2012 in International Application No. PCT/US2010/058768. 12
pageS.

JP Decision of Rejection dated Nov. 28, 2013 in JP Application No.
2012-542196. Includes English Translation.9 pages.
JP Office Action dated May 17, 2013 in JP Application No. 2012
542196. Includes English Translation. 15 pages.
Kocher et al., “Differential Power Analysis.” Advances in Cryptol
ogy Crypto 99 Proceedings, Lecture Notes in Computer Science,
vol. 1666, Springer-Verlag, 1999, pp. 388-397. 10 pages.
Lorentz Center, “Workshop on Provable Security Against Physical
Attacks.” Feb. 15-19, 2010, found at http://www.lorentzcenter.nl/lc/
web/2010/383/presentations/index.php3?wsid=383
&type presentations. 1 page.
McEvoy et al., “All-or-Nothing Transforms as a Countermeasure to
Differential Side-Channel Analysis.” Cryptology ePrint Archive,
Report 2009/185. http://eprintiacr.org/2009/185. 18 pages.
Menezes et al., “Handbook of Applied Cryptography.” Chapters 1, 5.
and 7. CRC Press, Boca Raton, Florida, 1997, 130 pages.
Menezes et al., “Handbook of Applied Cryptography.” CRC Press;
1996, pp. 285-298, 312-319, 452-452, 475, and 515-524, found at
found at http://www.cacrmath.uwaterloo.ca/haci on Jun. 22, 2011.
45 pages.
Menezes et al., “Handbook of Applied Cryptography.” pp. 71, 586,
636-607, CRC Press, Boca Raton, Florida, 1997. 6 pages.
Menezes et al., “Efficient Implementation.” Handbook of Applied
Cryptography, CRC Press, Chapter 14, pp. 591-634, 1996, 44 pages.
Petit et al., “A Block Cipher Based PRNG Secure Against Side
Channel Key Recovery”. Proceedings of ASIACCS 2008, pp. 56-65,
Tokyo, Japan, Mar. 2008. 22 pages.

US 9,367,693 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Pietrzak, K., “A Leakage-Resilient Mode of Operation.” Eurocrypt
2009, Lecture Notes in Computer Science, vol. 5479, pp. 462-482,
Cologne, Germany, Apr. 2009, 20 pages.
Pietrzak, K., “Provable Security for Physical Cryptography.” Invited
Talk, Paper, Proceedings of WEWORC 2009, Graz, Austria, Jul.
2009. 17 pages.
Pietrzak, K., “Provable Security for Physical Cryptography.” Invited
Talk, Slides, Proceedings of WEWORC 2009, Grazt, Austria, Jul.
2009. 126 pages.
Standaert et al., “Leakage Resilient Cryptography in Practice.”
Cryptology ePrint Archive, Report 2009/341, 2009, found at http://
eprintiacr.org/2009/341.pdf. 37 pages.
Standaert, Frencois-Xavier, “How Leaky is an Extractor?. Work
shop on Provable Security Against Sid-Channel Attacks, Leiden, The
Netherlands, Feb. 2010. 11 pages.

Tanaka et al., “Study on Practical; Message Authentication Mecha
nisms for Digital Streaming Services.” IEICE Technical Report, Jul.
18, 2001, vol. 101, No. 204, Tokyo. Japan, 11 pages.
TW Office Acton dated Jul. 16, 2013 in TW Application No.
99142160, Includes Engish Translation. 12 pages.
EP Extended European Search Report with mail date of Dec. 4.
2015 re EP Applin. No. 10835139.6. 10 Pages.
Hu, Lingxuan et al., “Secure Aggregation for Wireless Networks'.
Applications and the Internet Workshops, 2003. Proceedings 2003
Symposium, pp. 384-391, Jan. 27-31, 2003.8 Pages.
Su, Chien-Chung et al., “The New Intrusion Prevention and Detec
tion Approaches for Clustering-Based Sensor Networks”. Wireless
Communications and Networking Conference. IEEE New Orleans,
LA, USA, pp. 1927-1932, Mar. 13-17, 2005, 6 Pages.
Israeli Patent Office, Office Action with mail date of Dec. 10, 2015, re
Israeli Application No. 219,906. 12 Pages. (With Translation).

* cited by examiner

U.S. Patent Jun. 14, 2016 Sheet 1 of 14 US 9,367,693 B2

input Data DFD., D. 100

101
Generate NonCe N

102
Compute H = h(N)

r 103

Compute KMEssacE = Kroot, H, using Key Tree

Encrypt data segment(s): Compute key and 104
ciphertext hash chaining on D-D., D using
KMEssac, yielding ciphertext EFE,..., E.

Compute H=h(E) 105

106
Using Key Tree, compute

Output N, V, E=E.E. 107

Figure 1: Verifiable leak-resistant encryption using ciphertext hash
chaining

U.S. Patent Jun. 14, 2016 Sheet 2 of 14 US 9,367,693 B2

202

PATH = PP, ...

Apply fe), then f(), etc. through fell

KSTART.P.P., Po

f f Po

2O6 KSTART PATH, KSTART.P.P., Po

Figure 2: Leak-resistant key-tree based key
derivation process from the key Ksar

U.S. Patent Jun. 14, 2016 Sheet 3 of 14 US 9,367,693 B2

301

KMESSAGE

Figure 3: Leak-resistant, key and ciphertext
hash chaining process for encryption

U.S. Patent Jun. 14, 2016 Sheet 4 of 14 US 9,367,693 B2

Input N, V, E=E., E. 400

Compute H = h(N) 401

402
Compute H=h(E)

Compute KMEssace KRooth 403
using Key Tree

Compute V. KMEssage, H, 404
using Key Tree

405 406
no STOP

error

yes

407
Set i = 1
Set K = g(KMEssage)
Set H = H

no STOP
error

yes

40 Apply DEC() to E with K,
yielding D, and purported h(E).

Set H-purported h(E).

411 413 414

yes no STOP <><G
O 412 y

Set i = i+1 415

Figure 4: Verifiable leak resistant decryption using ciphertext hash chaining

U.S. Patent Jun. 14, 2016 Sheet 5 of 14 US 9,367,693 B2

500
Obtain D, Nonce N

501 502 3 504

X) (B) ...

50

D. he D, he
B, B s B L-1

506 507 508
505 g() g() g()

510 511 512
509 O

E. Encke.
513

Z= h(N ||E|... I E|| h(B))
Vs h(KRootz)

514
Output E (which equals E.,E), h(B), N, V

Figure 5: Verifiable leak-resistant encryption using plaintext hash chaining

U.S. Patent Jun. 14, 2016 Sheet 6 of 14 US 9,367,693 B2

Receive E, h(B), V, N.
Divide E into E.E. 600
Set i=1, H = received h(B)

605 1. Compute Z = h(NIIE ||... I EIH).

610 611

Compute
h(KRooz) and compare)" St.

With V

success (match)
620

Compute KF KRoot, h(N)
Set it 1

630

Apply DEC() to E with
key K to obtain B,

Compare
hash from B, with:

h(X) if i=1, or
h(B) if i-1,

success (match)

Add D. from B, to output.
Compute K = g(K)

Set i=i-1

yes

fail. STOP
H=hash(BL)2 eO

success (match)
680

Output D-D, ...,D

Figure 6: Verifiable leak resistant decryption using plaintext hash chaining

U.S. Patent Jun. 14, 2016 Sheet 7 of 14 US 9,367,693 B2

700

702 701
Storage for secret state: RAM

(KRoot) (e.g., SRAM)
Decrypted
Software

704

ROM W/
BOOtFW

708
PLS Clk e.g. AES

Key tree processing 707
POWer in

706 Untrusted interface

Encrypted Software
External flash,
Hard drive, etc.

Figure 7: Firmware loading

U.S. Patent Jun. 14, 2016 Sheet 8 of 14 US 9,367,693 B2

800

801
Internal secret state (KRoo)

Insecure Insecure
Flash RAM

Figure 8: Secure CPU

U.S. Patent Jun. 14, 2016 Sheet 9 of 14 US 9,367,693 B2

900

902
Internal Secret State:

Key(s) in fuses,
battery-backed RAM...

KRoot

Block Decryption Status
Processind 904 registers Status out

AES, hash,
key tree processing 910

905
Encrypted Block Buffer

906

FPGA Slices

Bitstream load/F

907

Encrypted bitstream

External Flash, CPU, etc.

Figure 9: FPGA bitstream loading

U.S. Patent Jun. 14, 2016 Sheet 10 of 14 US 9,367,693 B2

DEVICE A

1002
OS, Application, etc.

1003
Plaintext Packet Buffer

Block Encryption 1 Decryption Processing

AES, Hash, Key Tree Processing

1001 1005

Ciphertext Packet Buffer

Network I/F 1006

1004

Keystore with
Root Key Table

NETWORK
1030

Device B

1040
DEVICESC, D, E...

Figure 10: Network communication devices

U.S. Patent Jun. 14, 2016 Sheet 11 of 14 US 9,367,693 B2

Input Packet D, Shared key Koo 1100

Use D and/or packet identifier to
to generate message identifier N 1101

1102
Compute h(N)

1103 Compute KMEssage F KRooth(N) using Key Tree

Apply ENC() to D With KMEssao yielding 1104
encrypted data E.

Compute h(E) 1105

1106
Compute Validator V = KMEssace he using Key Tree

Output Packet: N, V, E 1107

Figure 11: Verifiable packet level Leak-Resistant Encryption

U.S. Patent Jun. 14, 2016 Sheet 12 of 14 US 9,367,693 B2

1200
Input packet (N, V, E), Shared Key Koo

12.01

Compute h(N)

1202
Compute h(E)

Compute KMEssaGE KRoot,h(N) 1203
using Key Tree

Compute V - KMEssaGE.hte) 1204
using Key Tree

1205 1206

no STOP
error

yes

1207
Apply DEC() to E using key

KMEssaGE yielding D.

Figure 12: Verifiable packet level leak resistant decryption

U.S. Patent Jun. 14, 2016 Sheet 13 of 14 US 9,367,693 B2

Figure 13: Exemplary ENC() CBC method with intra-segment key changes

U.S. Patent Jun. 14, 2016 Sheet 14 of 14 US 9,367,693 B2

E.

1TY 1Y 1N
V

AA

AESAESAES

D.

1430

Figure 14: Exemplary DEC() CBC method with intra-segment key changes

US 9,367,693 B2
1.

BITSTREAM CONFIRMATION FOR
CONFIGURATION OF A PROGRAMMABLE

LOGIC DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This is a Continuation of pending U.S. patent application
Ser. No. 14/737,154, filed Jun. 11, 2015, which is a Continu
ation of U.S. patent application Ser. No. 14/617.437, filed
Feb. 9, 2015, which is a Continuation of U.S. patent applica
tion Ser. No. 14/201,539, filed Mar. 7, 2014, which issued on
Mar. 10, 2015 as U.S. Pat. No. 8,977,864, which is a Con
tinuation of U.S. patent application Ser. No. 13/762.703, filed
Feb. 8, 2013, which issued on Apr. 22, 2014 as U.S. Pat. No.
8,707,052, which is a continuation of U.S. patent application
Ser. No. 12/958,570, filed Dec. 2, 2010, which issued on Feb.
26, 2013 as U.S. Pat. No. 8,386,800, which claims priority to
U.S. Provisional Patent Application Ser. No. 61/266,948,
filed Dec. 4, 2009, each of which is incorporated by reference
herein in their entirety.

FIELD

This patent relates to techniques for processing encrypted
data inputs, and more specifically, to protecting Such systems
and data against external monitoring attacks.

BACKGROUND

Systems that operate on sensitive data need to protect
against the unauthorized access to, or disclosure or alteration
of Such data by attackers. Attackers who gain access to cryp
tographic keys and other secrets could steal or tamper with the
sensitive data, leading to severe consequences such as Sub
version of critical operations of the system through the intro
duction of unauthorized commands and the exposure of con
fidential or proprietary information. One compromised
element may also be used to mount further attacks, endanger
ing other elements of a system. More specifically, previous
research has shown that an attacker can monitor a device's
external characteristics such as operation timing, power con
Sumption and/or electromagnetic radiation and use this addi
tional information to extract the secret keys being used within
the device. For example, as described by Kocher et al (see P.
Kocher, J. Jaffe, B. Jun, “Differential Power Analysis.”
Advances in Cryptology Crypto 99 Proceedings, Lecture
Notes. In Computer Science Vol. 1666, Springer-Verlag,
1999), it is well known in the art that external monitoring of
a device performing a sequence of cryptographic operations
using the same set of keys with different data can result in the
leakage of the key.

Because external monitoring attacks are typically passive
and non-invasive, traditional tamper resistance defenses
which are based on thwarting physical access or detecting
improper usage are insufficient or impractical to provide pro
tection against Such attacks. For example, methods for man
aging secret keys using physically secure, well-shielded
rooms are known in the background art. However, in many
applications, requiring cryptographic systems to remain in
physically isolated facilities is not feasible, given the envi
ronments in which they are expected to operate. In addition,
Such facilities are expensive to build and operate, and may
still be imperfect in their ability to prevent small amounts of
information from leaking to adversaries.
Of course, other methods are known in the background art

that can mitigate the problem of information leakage from

10

15

25

30

35

40

45

50

55

60

65

2
monitoring attacks without necessarily relying on physical
shielding. These include methods for reducing the amount (or
rate) of information leaking from transactions, modifying
cryptographic algorithm implementations to randomize com
putational intermediates, and/or introducing noise in power
consumption and operation timing.

For example, U.S. Pat. No. 6,539,092, entitled “Leak-Re
sistant Cryptographic Indexed Key Update.” provides meth
ods for converting a shared master key and an index value
(e.g., a counter) into a transaction key, where the derivation is
protected against external monitoring attacks. Those methods
work well in applications where the device(s) being protected
against external monitoring attacks can contribute to the deri
vation of the transaction key. For example, the '092 patent
describes how a Smartcard can maintain an index counter
which increments with each transaction, then use the index
counter in the key derivation.

There are applications, however, where the participant(s)
in a protocol should be protected against external monitoring
attacks, but lack the ability to store sequence counters and
updated keys, as described in the 092 patent. For example,
consider the case where a device needs to regularly process
the same input data, such as a device which contains a fixed
and unchanging embedded key that is repeatedly used to
decrypt ciphertexts in arbitrary order. Firmware encryption is
an example of Such an application; a microprocessor may be
manufactured having an embedded key infuses, and on every
reboot the microprocessor needs to re-decrypt its firmware
image loaded from an untrusted external flash. The firmware
image may occasionally be updated, but the same ciphertext
may also be decrypted repeatedly. Thus, both the application
requirements and the physical manufacturing limitations
(such as the inability to modify stored keys due to the use of
one-time-programmable fuses to hold keys) can make it
impractical for the device to limit the number of times the
decryption key will be used. The firmware publisher could
use the methods described in the '092 patent with a new index
value each time a new encrypted firmware image is released,
but the decrypting device cannot use a different index value
on each reboot, since changing the index value to a value other
than the one used by the encrypting device would result in an
incorrect decryption. Thus, an attacker can potentially supply
the decryption device with tampered data sets, then attempt to
recover the secret key by monitoring external characteristics
while the device processes (e.g., decrypts, etc.) these cipher
texts. Statistical side channel attacks, such as differential
power analysis (DPA), can deduce a secret key from a set of
measurements collected when a device uses the same key
repeatedly to operate on different input values (such as the
different firmware ciphertexts or tampered versions of the
same firmware ciphertexts in the foregoing examples). Mea
Surements from a single long message (e.g., comprising many
block cipher inputs) or a collection of legitimate messages
(such as multiple firmware versions) may also provide suffi
cient data for a side channel attack, even if ciphertext mes
sages are not tampered.
Of course, in some situations where a device uses the same

key for every transaction, the device could theoretically
implementalock-out (e.g., by self-destructing ifa transaction
or failure threshold is exceeded) to limit the number of trans
actions an adversary can observe. Lock-out mechanisms,
however, introduce numerous practical problems, however,
such as reliability concerns and the difficulties associated
with storing a failure counter (e.g., many semiconductor
manufacturing processes lack secure on-chip nonvolatile
storage, and off-chip storage is difficult to secure).

US 9,367,693 B2
3

In light of all the foregoing, a method that provides a
Verifiably secure way for devices to communicate and
exchange data, with protection against external monitoring
attacks and the ability for devices to reject non-genuine data,
would be advantageous.

SUMMARY

This patent describes ways to secure devices which utilize
secret cryptographic keys against external monitoring
attacks, as well as to provide improved security against con
ventional cryptanalysis and other attacks (such as DPA and
other forms of external monitoring attacks) which gather
information correlated to the device's internal operations.
Various exemplary embodiments for encrypting sensitive
data are disclosed in the specification.

While these various embodiments may vary considerably
in their details, they are all encompassed within the following
general technique, as may be readily Verified with respect to
the various embodiments described in the specification: With
respect to encryption, each set of data to be encrypted is
associated with a message identifier (such as a transaction/
message counter, a hash of the plaintext, a random value, or
another unique or semi-unique value). The encryption device
derives a message key using the message identifier and an
initial secret internal state that is shared with the decryption
device(s). This derivation is performed in an iterative manner
through a Succession of one or more intermediate keys, start
ing from at least a portion of the shared secret internal state
and leading up to the message key, where, in each iteration,
the next key depends on at least one prior key and at least a
portion of the message identifier. The plaintext may be
decomposed into one or more segments. Each plaintext seg
ment is encrypted with one or more secret keys that can
include the message key, or keys further derived from the
message key, to create the corresponding encrypted segment.
Typically, a different key (or a different set of keys) is used for
each segment.
The encrypting device then uses a secret key shared with

the decrypting device (such as the message key, the secret
internal secret, a different key, keys derived from the forego
ing, etc.) to compute at least one validator. Derivation of the
validator may be performed using an iterative process similar
to that used to produce the message key, whereby a sequence
of transformations are applied to the secret key to produce
Successive values (for example, where the generation of each
intermediate includes hashing its parent value).
The encrypting device outputs the one or more encrypted

segments and one or more validators. Additional information
may also be output as needed to enable the recipient to deter
mine the message identifier.

During the corresponding decryption process, a decrypting
device receives the one or more encrypted segments, one or
more validator(s), and the message identifier corresponding
to the encrypted segment(s). It then uses one or more valida
tors to verify that at least the first encrypted segment to be
decrypted has not been modified. Verification of the validator
may include computing a sequence of Successive intermedi
ate values, starting with a secret shared with the encrypting
device and where each intermediate is the hash of its parent
(and the specific hash operation depends on a portion of the
hash of said encrypted segment(s)). Typically, the decryption
process for an encrypted segment is only permitted to proceed
if it is verified that the segment is not modified. If verification
is successful, the decrypting device computes the message
key (if not already derived), using the secret internal state that
it shares with the encryption devices, by following the same

10

15

25

30

35

40

45

50

55

60

65

4
iterative key derivation process followed by the encrypting
device (i.e., starting from at least a portion of the shared secret
internal State, leading to the final message key, through a
sequence of intermediate keys, where at each step the next
key depends on at least a portion of the message identifier and
at least one prior key). Each encrypted segment (if determined
to be unmodified) is decrypted with the one or more corre
sponding secret keys derived from the message key to recover
the corresponding plaintext segment.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an exemplary embodiment of the overall
process for verifiable, leak-resistant encryption using key and
ciphertext hash chaining.

FIG.2 shows an exemplary embodiment of a leak resistant,
key-tree-based key derivation process starting from a shared
cryptographic secret, KSTART, and continuing through a
path P1 ... PQ. The key derivation process of FIG. 2 is usable
in connection with the first exemplary encryption process of
FIGS. 1 & 3 and the first exemplary decryption process of
FIG. 4. It is also usable in connection with the other exem
plary encryption processes of FIGS. 5, 11 & 13, and the other
exemplary decryption processes of FIGS. 6, 12 & 14.

FIG.3 shows an exemplary embodiment of a leak-resistant
key and ciphertext hash chaining process for encryption (e.g.,
comprising part of the overall encryption process shown in
FIG. 1).

FIG. 4 shows an exemplary embodiment of a verifiable,
leak-resistant decryption process using key and ciphertext
hash chaining corresponding to the encryption process of
FIG. 1 (and FIG. 3).

FIG. 5 shows an exemplary embodiment of a process for
Verifiable, leak-resistant encryption using key and plaintext
hash chaining.

FIG. 6 shows an exemplary embodiment of a process for
Verifiable, leak-resistant decryption using key and plaintext
hash chaining corresponding to the encryption process of
FIG.S.

FIG. 7 shows an environment in which verifiable, leak
resistant cryptographic operations are used for loading firm
ware onto a system on a chip.

FIG. 8 shows an environment in which verifiable, leak
resistant cryptographic operations are used within a secure
CPU chip, where external memory such as flash and/or RAM
is untrusted.

FIG. 9 shows an environment in which verifiable, leak
resistant cryptographic operations are used for loading a bit
stream image on to a field programmable gate array.

FIG. 10 shows an environment in which verifiable, leak
resistant cryptographic operations are used in a packet based
network communication device.

FIG. 11 shows an exemplary embodiment of a process for
verifiable packet-level leak-resistant encryption that can be
used with the environment described in FIG. 10, as well as in
other embodiments.

FIG. 12 shows an exemplary embodiment of a process for
verifiable packet-level leak-resistant decryption correspond
ing to the encryption process described in FIG. 11.

FIG. 13 shows an exemplary embodiment of an exemplary
ENC() operation, using cipher block chaining (CBC) with
intra-segment key changes.

FIG. 14 shows an exemplary embodiment of an exemplary
DEC() operation, using cipher block chaining (CBC) with
intra-segment key changes, corresponding to the encryption
operation of FIG. 13.

US 9,367,693 B2
5

DETAILED DESCRIPTION

The techniques described in this patent enable parties to
communicate cryptographically-protected sensitive data with
increased security against external monitoring attacks. 5
Although exemplary embodiments are described involving
two parties, typically referred to as an “encrypting device'
and a “decrypting device', the term “device' is chosen for
convenience and need not necessarily correspond directly to
any particular role in a system design. The devices may, but 10
are not required to, utilize differentform factors or implemen
tations. For example, the encrypting and decrypting devices
could both be portable hardware devices. Alternatively, the
encrypting device could be a software application running on
a server operating in a facility, while the decrypting device 15
could be a portable hardware device (or vice versa). Further
more, although most cryptographic operations involve two
parties, the techniques of this patent can, of course, be applied
in environments involving only one party (such as in secure
memory or storage systems in which both roles are under a 20
single party's and/or device's control, e.g., in the exemplary
environment illustrated in FIG. 8) or in environments involv
ing more than two parties and/or devices (such as the exem
plary embodiment which is illustrated in FIG. 10).
Entropy Redistribution Operations 25
As used herein, an “entropy redistribution operation’ (or

“entropy distribution operation') is an operation which mixes
its input(s) Such that unknown information about input bits is
redistributed among the output bits. For example, Suppose an
X bit cryptographic key KO is processed repeatedly with an 30
entropy redistribution operation f such that key Ki-f(Ki-1)
for each is 1. Next, suppose an adversary obtains y bits of
information (e.g., obtained as part of an attempted external
monitoring attack) about each of n different keys Ki, provid
ing more than enough information to solve for key KO (e.g., 35
y*n->x). The use of the entropy distribution operation f can
make Such solution computationally infeasible. A crypto
graphic hash function H is an example of an operation that
may be used as an entropy redistribution operation. For
example, consider a strong hash function H that produces a 40
256-bit result. Given a random 256-bit initial key KO, let
Ki=H(Ki-1) for each is 1. An adversary with knowledge of
(for example) the least-significant bit of each KO. . . K999,
999 has 1,000,000 bits of data related to KO. A hypothetical
adversary with infinite computing power could find KO by 45
testing all possible 2256 values for KO to identify a value
which is consistent with the known sequence of least-signifi
cant bits. Actual adversaries have finite computational power
available, however, and the entropy redistribution operation
prevents there from being a computationally practical way to 50
solve for KO (or any other Ki) given the information leaked
through attempted external monitoring attacks.

Entropy redistribution operations may be implemented,
without limitation, using cryptographic hash functions,
operations constructed using block ciphers (such as AES), 55
pseudorandom transformations, pseudorandom permuta
tions, other cryptographic operations, or combinations
thereof. As a matter of convenience, certain exemplary
embodiments are described with respect to a hash, but those
skilled in the art will understand that, pursuant to the forego- 60
ing, other entropy redistribution functions may also be used
instead or in addition.

Multiple entropy redistribution operations can also be con
structed from a base operation. By way of example, if two
256-bit entropy redistribution operations fo() and fl() are 65
required, f()() could comprise applying the SHA-256 cryp
tographic hash function to the operation identifier string “fo

6
concatenated with the input to fo() while fl() could comprise
applying SHA-256 to the operation identifier string “fl” con
catenated with the input to fl(). Entropy redistribution opera
tions can be construed using the well-known AES block
cipher. For example, to implement fo()...fb-1 (), each fi()
can use its input as an AES-256 key to encrypt a pair of
128-bit input blocks that are unique to the choice of i within
0...b-1, yielding 256 bits of output. A wide variety of block
cipher based hash function and MAC constructions are also
known in the background art and may also employed.
Shared Cryptographic Values and Operations

This section describes certain cryptographic value(s) and/
or operation(s) shared by both the encryption device, and its
corresponding decryption device, used to perform verifiable
leak-resistant cryptographic operations as described in this
patent.
The encrypting device and decrypting device are set up so

that each has access to a base shared secret cryptographic
state value, such as a secret key denoted as KROOT. This
secret state may, for example, be stored in one or more of
EEPROM, flash, fuses, or other storage on a tamper-resistant
chip, and may be derived in whole or in part from other values
or processes, or may be obtained externally. The method by
which each of these devices obtained KROOT could include,
without limitation, each being manufactured with KROOT,
the devices negotiating KROOT directly with each other or
via third parties (e.g., using protocols utilizing RSA, Diffie
Hellman, or other public key cryptographic techniques, or
symmetric techniques), by receiving of KROOT via a physi
cal keying interface, randomly generating KROOT (e.g., if
the encrypting and decrypting device are the same), etc.

In addition, the encrypting device and decrypting device
also are both able to compute a set of non-linear crypto
graphic entropy redistribution operations fo() f1().
fb-1 () where b>1 is a positive integer. These b entropy
redistribution functions can be configured in a tree structure.
For example, a simple b-ary tree structure of height Q (i.e.,
having Q+1 levels, from 0 through Q) can be created by using
b distinct entropy distribution functions, fo() . . . fb-1 () to
represent the b possible branches of this b-ary tree at each
node of the tree, each node representing a possible derived
key. In Such a tree, starting from a root cryptographic key
KSTART (which is at level 0), b possible derived keys can be
computed at level 1: f()(KSTART) for the leftmost branch;
fl(KSTART) for the next branch; and continuing until fb-1
(KSTART) for the rightmost branch. At level 2, b2 possible
keys can be derived, since each of fo() . . . fb-1 () could be
applied to each of the b possible level 1 keys. Of course,
computing a specific level 2 node only requires two, not b2,
computations (i.e., the nodes not on the path are not com
puted). The tree continues for successive levels 1 through Q,
where each possible key (i.e., a different node) of a prior level
can be processed by applying fo()...fb-1 () in turn to derive
b additional possible derived keys. The entire key tree has
Q+1 levels, starting with a single node at level 0, continuing
with binodes at level i, and ending with bO nodes at level Q.
Thus, there are bO possible paths from the root node at level
0 to the bO final nodes at level Q. Each such possible path,
corresponding to a unique the sequence of functions applied
at the different levels, can be represented as a sequence of Q
integers, each integer being selected from (0...b-1).

For example, in an exemplary embodiment, b=2. Thus, two
entropy redistribution operations, f()() and fl() are used (and
may be constructed from a base operation, e.g., as described
above). If Q=128 (i.e., the height is 128), 2128 paths are

US 9,367,693 B2
7

possible and 128 entropy redistribution function computa
tions are required to derive the level Q key from the level 0
node (i.e., the starting key).
As a variation, embodiments can involve more variety in

the choice of b, such as varying the value ofb among levels,
and/or varying b based on the route taken to a particular level.
Likewise, the entropy redistribution operations can also be
varied, such as by making the entropy redistribution opera
tions fi() differ at different levels or making these operations
depend on the sequence taken to a particular level.
The encrypting and decrypting devices are also able to

perform a cryptographic, non-linear key chaining operation
g(), which may be (but is not necessarily) distinct from the
functions fi(). For example, in one embodiment, g() consists
of a cryptographic hash operation. Variant embodiments can
use different functions for different applications of g(),
including variants constructed from a base function (e.g., by
hashing the input data with a counter or another value repre
senting the application of g()).
The encrypting device and decrypting device also have a

cryptographic, collision-resistant, one-way hash function h()
(e.g., employed as a segment hashing function), which may
be (but is not necessarily) distinct from the operations fi() and
from g().

In an exemplary embodiment, each of the operations fi(),
g(), and h() is constructed from a common cryptographic
hash function by computing each operation as the crypto
graphic hash of an operation identifier and the input data. The
operation identifier may, for example, be a Zero-terminated
string consisting of “fif', ''g'' or “h” where it is the value of i
for a given fi() such that the operation identifier for fo()
would be “fo”. The HMAC of an operation identifier using the
input as a key may also be used to implement these opera
tions. Hash functions usable with the techniques of this patent
include, without limitation, MD5, SHA-1, SHA-256, SHA
512, any SHA3 candidate operation, as well as combinations
of the foregoing and constructions using the foregoing (Such
as HMAC). As used herein, each of the functions BLAKE,
Blue Midnight Wish, CubeHash, ECHO, Fugue, Grostl,
Hamsi, JH, Keccak, LANE, Luffa, Shabal, SHAvite-3,
SIMD, and Skein is a “SHA3 candidate operation”. In other
embodiments, the hash function is derived using other well
known constructions such as, without limitation, Matyas
Meyer-Oseas, Davies-Meyer, Miyaguchi-Preneel, Merke
Damgard, etc., that convert block ciphers such as AES, DES
or other ciphers into a hash function. Transformations that are
not collision-resistant (such as MD5, reduced-round variants
of hash transformations, or other mixing operations) can also
redistribute entropy present in the input, but would be less
attractive for use as the one-way function h().

Still other embodiments may utilize stream ciphers, poten
tially including lightweight and potentially cryptographically
weak stream ciphers, in implementing entropy redistribution
operations fo...b-1 (). For example, the stream cipher RC4
may be employed, where the entropy redistribution operation
input is used as the RC4 key and the RC4 output bytes are
used as (or used to form) the entropy redistribution operation
output.
The encrypting device and decrypting device have a secret

key encryption function (or set of functions) ENC() with a
corresponding decryption function DEC(). In some embodi
ments, such as those with fixed-length messages, ENC() and
DEC() may utilize conventional cipher constructions such as
AES in ECB or CBC mode. Constructions of ENC() and

10

15

25

30

35

40

45

50

55

60

65

8
DEC() for other embodiments are described later with
respect to FIG. 13 and FIG. 14, respectively.

Exemplary Embodiment in FIGS. 1 and 2

This section describes an exemplary embodiment of the
general technique for verifiable leak-resistant encryption and
decryption. This first exemplary embodiment uses key chain
ing and ciphertext hash chaining.
Encryption

For convenience, following the traditional nomenclature in
cryptography, we use the term “plaintext to refer to the data
to be encrypted. As those skilled in the art will understand,
this does not necessarily mean that the input data is human
readable, and indeed, nothing precludes such data from itself
being compressed, encoded, or even encrypted, prior to its
being protected with the techniques of this patent. Similarly,
those skilled will understand that the term “data encom
passes any quantity being processed, and could include, with
out limitation, content, data, Software, code, and any other
type of information.

Given a sensitive plaintext data message D to be protected,
and with knowledge of a shared base secret cryptographic
value KROOT, the encrypting device performs the following
steps, as outlined in FIG. 1. First it decomposes the sensitive
plaintext data D into a sequence of L segments D1, ..., DL
(step 100), where (L. 1), each of which is small enough to fit
into the memory for incoming segments in the receiver(s). In
addition, the size of each of these segments should be suffi
ciently small to meet the leakage requirements of the appli
cation and implementation. The segments can be, but are not
necessarily, the same size. In addition, other variants can also
Support segments of unlimited size by changing keys (e.g.,
within ENC() and DEC() as will be shown below with
respect to FIGS. 13 and 14.
The encrypting device also generates (step 101) a nonce N

which (as will be shown below) may be used as a message
identifier (or a precursor thereto) for use in connection with
the encryption of D. For example, the nonce could be gener
ated using a true random number generator, a pseudorandom
number generator, some combination of true and pseudoran
dom number generators, a counter value or other (preferably
unique or seldom-repeating) parameter, or by deriving N
from keys and/or data (including without limitation D, e.g.,
by setting N to the hash of part or all of D) available to the
encryption device. In FIG. 1, for a given KROOT, the value of
Nused to encrypt a particular message is preferably not used
to encrypt any other message (or if so, any reuse should be
limited, unlikely and/or infrequent).

In the exemplary embodiments that follow, a message iden
tifier H1 is formed using nonce N. In the most straightforward
implementation, in which N serves as the message identifier,
H1 may simply equal N. As another example, in which N
serves as a precursor to the message identifier, the encrypting
device could compute H1 (step 102) as the hash of Nusing the
function h(). Hashing is useful in situations where one wishes
to produce a fixed-size message identifier, for example, to
permit the incorporation of longer data values (such as text
strings) while operating on shorter quantities for computa
tional efficiency, or to convert variable-length data values to a
uniform length message identifier for computational simplic
ity, or to reduce any ability adversaries may have to influence
the selection of H1. Of course, hashing is only one way to
produce the message identifier, and those skilled in the art will
appreciate that functions other than h may be employed to
produce H1.

US 9,367,693 B2
9

After computing H1, the encrypting device computes a
message key, KMESSAGE, using the shared base secret
cryptographic value KROOT and H1 (103) as input to a leak
resistant, key-tree-based key derivation process. For conve
nience of discussion, the key derivation process is presented
here in the context of encryption (e.g., performed by the
encrypting device), and more specifically, in the context of
the first exemplary encryption process of FIG. 1. However,
the same key derivation process will also be used in the first
exemplary decryption process of FIG.4, in which case it will
be performed by the decrypting device. Similarly, the key
derivation process will also be used in connection with other
processes, including the exemplary encryption processes of
FIGS. 5, 11 & 13, and the exemplary decryption processes of
FIGS. 6, 12 & 14.
An exemplary key derivation process is diagrammed in

FIG. 2. The process begins with a starting point of the tree,
which is denoted KSTART (201), and a path P1 ... PQ (202).
For example, in FIG. 1 step 103 above, KSTART is the value
of the shared secret key KROOT and path P1 ... PQ (202) is
determined by H1. (The conversion of H1 into P1 ... PQ is
discussed below.) The path specifies a succession of entropy
redistribution operations to be applied to KSTART.

In an exemplary implementation, message identifier H1 is
decomposed into Q parts P1, P2, ..., PQ. In an exemplary
decomposition, each part Pi is an integer from 0 thru (b-1)
(e.g., if b–4 then each Pi is a two-bit value (0, 1, 2, or 3)).
Likewise, if b–2, each Pi is a single bit (0 or 1). Hence, the
path parts P1 ... PQ can be used to specify a specific path from
KSTART to KSTART. PATH by applying functions fo(),
f1(),..., fb-1 () to produce a plurality of intermediate keys
leading to KSTART PATH as follows. First, the function fP1
is applied to KSTART (203) to yield an intermediate key
KSTARTP1, followed by the application offP2 on KSTART,
P1 to yield the intermediate key KSTARTP1, P2 (204) and so
on, until the final application offPQ on the intermediate key
KSTART, P1, P2,..., PQ-1 (205) to yield the final derived
key, KSTART, P1, P2,..., PQ (206). Note that the derivation
of each intermediate key depends on at least one predecessor
key (e.g., in the case of FIG. 2, its immediate parent) and the
relevant portion of the message identifier. For convenience,
we shall denote this final derived key with the notation
KSTARTPATH (indicating the key that was reached by start
ing with KSTART and following PATH). Likewise, in the
case of FIG. 1 step 103, the final derived key (the message key
which is assigned to KMESSAGE) is denoted KROOTH1
since the starting key is in fact KROOT, and the path is in fact
P1, P2,..., PQ which is simply the decomposition of H1. (In
alternate embodiments, KMESSAGE may be derived from
KROOTH1, e.g., by hashing KROOTH1. Either way,
KMESSAGE is based on KROOTH1.)

At step 104, the data segment(s) are encrypted using at
least one cryptographic key based on said message key
KMESSAGE, producing ciphertext E=E1,..., EL is from the
input segment(s) DD1,..., DL. An exemplary embodiment
for step 104 is shown in FIG. 3, which depicts the steps and
states involved in computing the encrypted segments
E1, ..., E.L.
The process of FIG. 3 uses KMESSAGE to compute L

individual segment encryption keys, Ki (i-1 to L), each key
being used to encrypt a corresponding segment Di (i-1 to L)
of the secret message data D. First, the function g() is applied
to KMESSAGE to yield K1 (302), the encryption key to be
used for the first segment. Then, the function g() is applied to
the key K1 to yield K2, the encryption key for the second
segment (303), and so on. Finally, the function g() is applied
to key KL-1 to produce KL the encryption key for the final

10

15

25

30

35

40

45

50

55

60

65

10
segment (305). We refer to this type of process as key chain
ing because the encryption keys are chained to one another.

After the L keys K1,..., KL for encrypting the L segments
have been determined, the encryption of the segments pro
ceeds as follows. The final (L'th) segment is processed first,
where the plaintext input (306) to the ENC() function is the
L'th data segment DL, concatenated with message integrity
value computed by cryptographically hashing the entire
plaintext D1 ... DL. (The inclusion of the hash of D1 ... DL
is optional; embodiments may omit this, or concatenate other
data such as sequence of 0 bytes or some other form of
padding). This L'th plaintext segment is encrypted by the key
KL to yield the encrypted segment EL (307).

Next, the L-1th segment is processed at (308) by applying
the hash function h() to EL, appending this hash value to data
segment DL-1, and using the result as the encryption input to
the L-1th segment. At (309), the L-1th plaintext segment is
then encrypted using the key KL-1 to yield encrypted seg
ment EL-1. This process is repeated for the other segments.
For instance, the encryption input (310) corresponding to the
second plaintext segment is composed of the second data
segment D2 followed by h(E3), the hash of the third
encrypted segment, and input (310) is then encrypted using
the key K2 to yield the encrypted segment E2 (311). Finally,
the encryption input (312) corresponding to the first plaintext
segment is composed of the first data segment D1 followed by
h(E2), the hash of the second encrypted segment (311), and
input (311) is then encrypted using the key K1 to yield the
encrypted segment E1 (313). (As a variant of the foregoing,
the Subsequent segment hashes do not need to be encrypted,
e.g., Ei could be formed by encrypting Dithen concatenating
the encryption result with the hash of Ei-i-1.)
The encrypted segments E1 ... EL form the ciphertext E.

Step 104 in FIG. 1 is then completed. Using the hash of each
Ei-1 in the computation of Ei effectively chains together the
encrypted values, which serves to enable decrypting devices
to detect modified (or defective) ciphertext segment(s) prior
to decrypting the defective segment(s). We refer to this as
"ciphertext hash chaining. In the example shown above, each
ciphertext segment Ei(1<i>L) depends on the hash of the next
ciphertext segment, e.g., a validator V is used to authenticates
the hash of the first ciphertext segment (E1), then E1 yields
(after decryption to D1 if necessary) the expected hash of E2.
Likewise, E2 yields (after decryption if necessary) the hash of
segment E3, and so forth.
Note that the process of FIG.3 can still be performed where

all the data is in one segment (i.e., L-1) (e.g., because the
input message is Small or an encryption process ENC() Such
as the process shown in FIG. 13 is employed). For the L=1
case, only K1 is required and K1-g(KMESSAGE). Alter
nately, KMESSAGE may be used directly as K1, in which
case the operation go can be omitted altogether. As described
above, inclusion of the hash of D1 ... DL (which, in this case,
would just be D1 since L=1) is optional. The result of the
process E=E1, since this is the only segment.

Referring back to FIG. 1, after the data segments Di have
been computed, a validator V is computed that will enable
authorized recipients of the encrypted message to authenti
cate the ciphertext prior to decryption. First, a value H2 is
calculated (105) as the hash of the first encrypted segment E1.
Recall that the first segment E1 incorporates the hashes of all
other segments. Thus, the hash of E1 actually reflects the
contents of all the segments, including segment E1, and can
be used to Verify that none of the segments has been changed.
(Optionally, in addition to E1, the input to the hash producing

US 9,367,693 B2
11

H2 may also include additional information about the mes
sage, such as the length, version number, sender identity,
value of N, etc.).

Next, the encrypting device uses a secret key to compute V
(106), which is a validator of the message identifier and
ciphertext segment(s) Ei. Validator V is computed using the
hash of at least one ciphertext segment (e.g., the hash H2=h.
(E1)) and an initial secret (e.g., KMESSAGE, or other values
as described in the following paragraph). Computation of V
may be performed using the leak resistant, key-tree-based key
derivation process described in FIG. 2, with the starting key
KSTART being KMESSAGE and the path being determined
using H2 (106). Thus, the derivation of Vincludes computing
a plurality of Successive intermediate values leading to V.
where each depends on at least one predecessor (e.g., in the
case of FIG. 2, its parent value) and the relevant portion of the
hash (e.g., H2). Note that the functions fi() the value b, etc.
may be (but are not required to be) the same as were used in
(103). This process results in the derivation of the key KMES
SAGE.H2 which is (or is further processed to form) the vali
dator V.
The foregoing description commenced with KMESSAGE

in deriving the validator, but alternate embodiments may start
with a different value. For example, the key KMESSAGE at
step 104 and the key KMESSAGE at step 106 may be differ
ent from each other but both derived from KROOTH1. Like
wise, the key used at step 106 may be derived from the
KMESSAGE used at step 104, or vice versa, or a different
base key (besides KROOT) may be employed as KSTART. Of
course, KROOT itself may even be used as KSTART (e.g., if
H2 is a hash of N and/or H1 and one or more ciphertext
segments).
The validator, as utilized in this patent, is a verifiable cryp

tographic proof that Some putative ciphertext is an unmodi
fied version of an encryption of some plaintext message data
associated with a particular message identifier, and was pro
duced by an entity with access to a secret cryptographic value.
The validator constructed at step 106 can be conveniently
validated by a recipient, such as a decryption device, in a
manner that avoids susceptibility to differential power analy
sis and related external monitoring attacks. In addition, the
validator creation process (i.e., the performance of step 106)
also enables the encryption device to avoid susceptibility to
differential power analysis and related external monitoring
attacks.

After computing the validator, the encryption process is
complete. At step 107, the result is output. The output data
consists of the information (if any, e.g., nonce N) required to
enable a recipient to derive the message identifier, the valida
tor V, and the encrypted result E (comprising encrypted seg
ments E1, ..., EN). By combining key chaining and cipher
text hash chaining, this type of encryption process is able to
yield cryptographically-strong output with message authen
tication, while avoiding the re-use of secret keys located in the
encrypting device in ways that would facilitate differential
power analysis and related attacks against the encrypting
device. The encryption result is created in a form which
enables a decryption device to perform the decryption with
out re-using secret keys in ways that would facilitate differ
ential power analysis and related attacks against the decryp
tion device. The key-tree process limits the re-use of keys in
the formation of KMESSAGE and the validator V, while the
ciphertext hash chaining method limits the use of keys used in
the data encryption.

The next section explains how the output data can be Sub
sequently decrypted by the decrypting device.

5

10

15

25

30

35

40

45

50

55

60

65

12
Decryption

FIG. 4 shows an exemplary decryption process corre
sponding to the exemplary encryption process of FIGS. 1 and
3. As stated earlier, this requires that both the decryption
device and the encryption device have the ability to derive the
same message identifier (e.g., because each device knows
nonce N it can compute H1), base secret cryptographic value
KROOT, cryptographic functions f() g() and h(). The exem
plary decryption process will use the same key derivation
process (and key chaining) depicted in FIG. 2.
The exemplary decryption process begins at step 400 with

obtaining (e.g., over an untrusted digital interface) the puta
tive result of the encryption (namely, the message identifier
(e.g., nonce N), the validator V, and the encrypted result E
comprising segments E1, EN). At step 401, the device
next computes the value H1 by hashing the received nonce N.
Note that, unless the nonce was received incorrectly, the
derived H1 will equal the H1 used in the encryption process.
At step 402, the decrypting device computes the value H2 by
hashing the segment E1 (and, if previously used during the
encryption, other information about the message that was
incorporated into the derivation of H2). At step 403, the
device attempts to compute the message key, KMESSAGE,
using the leak resistant, key-tree-based key derivation process
described in FIG. 2, with KSTART=KROOT and PATH=H1.
At step 404, the device computes the expected validator V", by
using the same leak resistant, key-tree-based key derivation
process as the encrypting device (e.g., the process in FIG. 2
using the key KSTART-KMESSAGE and PATH=H2). At
step 405, the computed value V is compared with the received
validator V. If the expected validator V" does not match the
provided validator V, the process terminates with an error
(step 406) since the provided data may have been corrupted or
maliciously modified, or some other error has occurred.

If the check at step 405 is successful, then the process
moves to step 407 where a counteri is initialized to the value
1, a key register K is initialized to the result of computing
g(KMESSAGE) which is the key for decrypting the first
encrypted segment E1 (i.e., the value of K1 which is labeled
302 in FIG. 3). Also at step 407, a variable H is initialized to
H2. The following operations are then performed in a loop as
shown FIG. 4. First, the hash of the next ciphertext segment to
be decrypted (i.e., h(Ei)) is computed and compared with the
expected hash H (step 408). If the comparison fails, the
encrypted segment has been altered, so the process terminates
with an error (409) and no further decryption is performed. If
the comparison Succeeds at Step 408, the segment Ei is
decrypted at step 410, using the decryption function DEC(),
with the key K to yield the decrypted segment, which is
interpreted as containing the plaintext Di followed by the
purported hash of the next ciphertext segment. His set to this
purported hash value. Next, at step 411, a check is performed
to see if all the L segments have been decrypted (i.e., whether
the counter i equals L). If the counter has not yet reached L.
then in step 412, the counteri is incremented and the register
K is updated to the decryption key for the next segment by
computing K g(K), and the process is repeated from step 408
onwards. If step 411 determines that i has reached L, a check
is performed at step 413 to see if H equals the expected pad
data (e.g., the hash of D1 . . . DL). If this check fails, the
decryption ends with a failure condition (414). If the check
Succeeds, then the decryption process is successful and the
recovered decrypted output D-D1,..., DL is returned at step
415.

Note that in this embodiment, the decryption process can
be done in a streaming manner (i.e., the decryption device
could initially obtain N. V and E1 and then receive the

US 9,367,693 B2
13

remaining segments E2, ..., EL one at a time), and still be
able to carry out the steps outlined above. Streaming opera
tion is, for example, useful if the decrypting device lacks
Sufficient memory to hold the entire message, or if initial
portions of the decrypted data need to be available before the
all of the data has been received and decrypted.

Second Exemplary Embodiment

This section describes a second exemplary embodiment of
the general technique for verifiable leak-resistant encryption
and decryption. In contrast to the first exemplary embodiment
which used ciphertext hash chaining, the second exemplary
embodiment uses plaintext hash chaining. However, in both
cases, the re-use of keys is controlled at both the encrypting
device and the decrypting device to prevent differential power
analysis and related attacks.
Encryption
The second exemplary embodiment of encryption by the

encrypting device is shown in FIG. 5 which, for the sake of
conciseness, is depicted as a combined process diagram and
state diagram. The encrypting device creates or obtains the
message to encrypt, D, and a message identifier N, which may
be a counter, randomly-generated value, plaintext hash, etc.

The input message D is divided into a sequence of seg
ments D1, ..., DL (although L=1 is permitted), and these
segments are used to create the plaintext segments B1,..., BL
as follows. First, segment B1 (501) is formed by concatenat
ing message segment D1 with the hash of any desired mes
sage data (denoted as X, which may include elements such as
length L. message identifier N, a transaction identifier or
counter, etc.) Next, B2 (502) is formed by concatenating D2
with h(B1) (i.e., the hash of B1). Each subsequent Bi up to
BL-1 is then formed by concatenating Di with the hash of
Bi-1. Finally, the last plaintext segment BL (504) is formed
by concatenating DL with h(BL-1).

The next steps of the process (505-508) generate encryp
tion keys for each of the plaintext segments using a key
chaining process so that, similar to the first exemplary
embodiment, each encryption key is directly or indirectly
based on the message key. In the second exemplary embodi
ment, the first encryption key K1 is simply set to the value of
message key KMESSAGE derived (505) by computing h(N)
and then K1=KMESSAGE=KROOT, h(N) using the leak
resistant, key-tree-based key derivation process as described
in FIG. 2 with KSTART=KROOT and PATH=h(N). Key Ki
for i>1 is computed as g(Ki-1), where g(). Thus, the second
key K2 is the result of computing g(K1) (506). This process is
repeated so that the L-1th key (KL-1) is computed as g(KL
2) (507), and the final segment key KL is computed as g(KL
1)(508).) Thus, every key Ki is based on (e.g., equal to or
derived using) the message key KMESSAGE.
The next step in the process is the encryption of each of the

plaintext segments B1, ..., BL with the corresponding keys
K1, ..., KL to yield the encrypted segments E1,..., EL. For
instance, encrypted segment E1 is created by encrypting B1
with K1 (509), E2 is created by encrypting B2 with K2 (510),
and so on, with EL-1 created by encrypting BL-1 with KL-1
(511), and EL is created by encrypting BL with KL (512). The
encrypted result E consists of the segments E1, ..., E.L.
The next step in the process is the computation of the

validator V for the encryption (513). First, the hash function
h() is used to compute h(NE1 ... ||EL)h(BL)), where “0”
denotes concatenation. Next, Z=h(NE1 ... ELh(BL)) is
computed, then KROOT, Z is computed using leak resistant
key-tree-based key derivation process (e.g., as described in
FIG. 2, with KSTART-KROOT and the PATH=Z). The vali

5

10

15

25

30

35

40

45

50

55

60

65

14
dator V is then computed as the hash of the key tree result (i.e.,
h(KROOTZ)). Finally, the result of the encryption process is
provided, comprising N, h(BL), E, and the validator V (514).
The encryption process above can be employed in systems

where the input data Darrives by streaming, or where for
other reasons D cannot be processed all at once (e.g., because
of memory limitations). In this case, the encrypting device
commences by obtaining N. hCX), and K1. In addition, a
running hash computation is initialized with N.

1. Create or obtain N
. Initialize running hash calculation
. Let H=h(X)
. Let KKRoozlov
. Update running hash calculation with N
. Let i=1
. Receive input data D. (e.g., streaming in)
. Create B, concatenation of D, and H

9. Let H=h(B)
10. Create E-ENC(K, D.)
11. Update running hash calculation with E,
12. Output E,
13. Increment i
14. If more there is input data, go to step 7
15. Update running hash calculation with H
16. Finalize running hash calculation and store in Z
17. Compute V=h(Koozz)
18. Output H (which equals h(B), N. V

Decryption
The process of decryption is illustrated in FIG. 6. At step

600, the decrypting device receives (typically from an
untrusted interface) the purported results of the encryption
process, namely E, h(BL), nonce N, and validator V. The
decrypting device divides E into E1, . . . , EL, initializes a
counteri to be 1, and sets a register H to be the received value
hash h(BL). The length of the message L is also received or
determined (e.g., if a segment size of 1 kilobyte is used for all
but the last segment, which may be less than 1 kilobyte, then
L is the length of the message in kilobytes, rounded up). At
step 605, the decrypting device computes Z=h(NE1 ELIH),
where “0” denotes concatenation. At step (610), the decrypt
ing device computes the value of KROOTZ using the leak
resistant key-tree-based key derivation process described in
FIG. 2, with the root being KSTART-KROOT and the
PATH-Z, and then hashes the result to yieldh(KROOTZ). At
step 620, it compares the computed h(KROOTZ) with the
received validator V. If the result does not equalV, there is data
corruption and the process is stopped at 611 without perform
ing any decryption. If the check Succeeds, then at Step 620 the
decrypting device computes h(N), then initializes key register
K with the result of computing KROOT, h(N) using the leak
resistant key-tree-based key derivation process described in
FIG. 2, with KSTART-KROOT and PATH=h(N) and sets a
counter i to be 1.

Next, the following operations are performed in a loop: At
step 630, the segment Ei is decrypted with the key in key
register K to produce a plaintext segment Bi which consists of
a data segment Diandahash value. At step 640 the hash from
of the decrypted current segment is checked. For the first
segment (i.e., i=1), the hash is compared against h(X), where
X consists of the same fields as X during encryption. For
segments after the first one (i.e., id1), the hash from Bi is
compared against the hash of the prior segment (i.e., h(Bi
1)). If the comparison fails, the decryption process fails at step
641. Otherwise, at step 650, the message portion of Bi (i.e.,
Di) is added to the output buffer (e.g., in RAM), and key
register K is advanced to the next segment key by computing
g(K) then storing the result in K. The counter i is also incre

US 9,367,693 B2
15

mented by 1. At step 660, the value of i is compared with L
and, if the value of i does not exceed L, the decryption process
loops back to step 630. Otherwise, the decryption process is
complete and at step 670, where the hash of the last plaintext
segment (i.e., h(BL)), is compared to the received hash H. If
the comparison at Step 670 fails (i.e., the values are not equal),
an error has occurred and the decryption fails (step 671).
Otherwise the result data D1,..., DL are output in step 680.

In this embodiment, the hashes of the plaintext are chained,
with plaintext segment Bi containing the hash of the plaintext
Bi-1. This chaining, while not strictly necessary for leakage
resistance, provides the additional property that any faults
that occur during the decryption process can be detected
because the plaintext is verified to be that same as what was
encrypted. Thus, this embodiment is advantageous for use in
environments where there is potential for corruption the
decryption process.
Systems, Applications, and Variants
Up to this point, this patent has described a general tech

nique for leak-resistant encryption and decryption, together
with some exemplary embodiments of that technique. This
section will describe some exemplary systems and/or appli
cations in which the foregoing can be utilized, as well as
additional variants of aspects of the exemplary embodiments
described above.
Secure Firmware Loading

FIG. 7 shows the application of verifiable leak-resistant
cryptography for securely loading sensitive firmware on a
central processing unit (CPU), e.g., as part of a so-called
system on a chip (SoC). For convenience, depending on con
text, the reference numerals may refer to steps in a process,
and/or to quantities used (or produced) by such process steps.
In this embodiment, the SoC consists of a single integrated
circuit (700), containing a CPU (703), and various types of
memory. The memories may include, without limitation, ran
dom access memory (RAM) (701) from which code may be
executed, read-only-memory (ROM) (704) containing
trusted bootstrap code, and a secret state storage memory
(702) that holds a shared cryptographic secret KROOT. The
key storage memory could be implemented using a variety of
techniques, such as, without limitation, fuses/antifuses, bat
tery backed RAM, and EEPROM. The SoC may have an
external power input (707) which may receive power from an
untrusted Source (e.g., potentially under the control and/or
observation of adversaries). An externally supplied clock
(708) may also be received (and may be used with PLLs to
form additional clocks). The SoC has a cryptographic hard
ware component (705) with an AES engine for data encryp
tion and decryption, a hash function engine, such as, without
limitation, a SHA-1 or SHA-256 or a AES based hash func
tion engine, and an implementation of the leak resistant,
key-tree-based key derivation process based on FIG. 2, with
functions fo() . . . , fb-1 () implemented using the hash
function and/or the AES function or their variants. It should
be obvious to those skilled in the art that, in other embodi
ments, the entire functionality of the cryptographic hardware
component (705), or some subset thereof could be performed
by in software (e.g., by the CPU).
Upon bootstrap from the trusted bootstrap code in ROM,

the SoC loads its sensitive software/data, over an untrusted
interface (706), from an external, untrusted storage device,
which in this embodiment is flash memory (709). To protect
the sensitive software/data from disclosure or unauthorized
modification, it is encrypted using the verifiable leak-resistant
techniques (e.g., as shown in FIG. 1 or 5) by a device manu
facturer or other code issuer using the shared secret crypto
graphic value KROOT. The encryption result is stored in the

5

10

15

25

30

35

40

45

50

55

60

65

16
flash memory (709). The SoC first loads the encrypted code/
data from the flash memory (709) to its internal RAM (701).
It then performs the leak resistant decryption (e.g., as shown
in FIG. 4), where the process is implemented in the trusted
bootstrap code store in ROM (704) cryptographic hardware
component (705), and is performed using the shared secret
key KROOT from keystore (702). If successful, this process
creates a validated and decrypted sensitive code/data image
within RAM memory (701), which may then be executed. In
case the decryption process fails, the encrypted code/data
(and any partially decrypted code/data) in RAM is flushed
and the operation restarted from the beginning when required.

In an optional enhancement to this embodiment, security is
complemented by storing a minimum acceptable Software
version number in fuses, battery backed memory, or other
local storage of the device onto which the software is to be
loaded. All software to be loaded into the device would carry
a version number, and the device would only accept Software
with a version number greater that the minimum. In addition,
some software versions might specifically instruct the SoC to
update the minimum acceptable software version number,
thereby preventing malicious rollback of software to a prior
version that was deemed unacceptable. The foregoing anti
rollback methods could be implemented independently of
(i.e., as an adjunct to) the verifiable leak-resistant operations.
Alternatively, the anti-rollback methods could be imple
mented as part of the message identifier, the validator, or the
other secured quantities used in the verifiable leak-resistant
operations.

Those with ordinary skill in the art will easily recognize
that SoC applications are not limited to the specific architec
ture presented herein, and SoCs or other devices with a dif
ferent internal architecture and/or components from the
embodiment presented in FIG.7 may be protected.

For example, FIG. 8 shows the application of verifiable
leak-resistant cryptography to a secure processor architecture
(800). For convenience, depending on context, the reference
numerals may refer to steps in a process, and/or to quantities
used (or produced) by Such process steps. In this setting, the
device contains a CPU, a keystore that holds internal secret
state including a base secret cryptographic key KROOT. Non
Volatile storage. Such as, without limitation, fuses (801) may
be employed for storing the internal Secret state. The crypto
graphic hardware Subcomponent (804) encrypts and/or integ
rity protects and/or replay protects all data moving out of the
on-chip data/instruction cache (803) to external insecure
RAM memory (806), and decrypts and/or integrity checks
and/or replay checks all data being fetched from external
insecure RAM memory. In addition, all code is stored in
encrypted and integrity protected form in the insecure flash
(805) and is decrypted and integrity checked when brought
into the on-chip data/instruction cache (803). Exemplary pro
cessor architectures of the background art whose security
could be improved through the addition of verifiable leak
resistant cryptography include, without limitation, the Secure
Blue design from IBM (announced in an IBM press release
entitled “IBM Extends Enhanced Data Security to Consumer
Electronics Products” on Apr. 6, 2006) and the AEGIS design
from MIT (described in AEGIS: Architecture for Tamper
evident and Tamper-resistant Processing, Proceedings of the
17th Annual International Conference on Supercomputing,
pages 160-171, 2003).
The use of Verifiable leak-resistant cryptography Substan

tially improves the Security of existing processor designs by
providing protection against monitoring attacks. In particular,
this embodiment enhances the cryptographic hardware Sub
component (804) to include a hash function and a key tree

US 9,367,693 B2
17

processing capability that reuses the (e.g., AES) encryption
capability of an existing secure processor design and imple
ments the steps and method of the first exemplary embodi
ment to create a secure leak-resistant secure processor. In
particular, any data written from cache (803) to the RAM
memory (806) is encrypted using the leak resistant encryption
process (e.g., as shown in FIG. 1) and any code read from
untrusted flash (805) and untrusted RAM is decrypted using
the leak resistant decryption process outlined in FIG. 4. When
data are written to a particular segment, a counter correspond
ing to the segment is incremented, and the counter value is
incorporated in the encryption and/or integrity check creation
process for the segment, thereby enabling the detection of
attacks that involve substitution of old data.
FPGA Bitstream Loading
The logic to be loaded into a field programmable gate array

(FPGA) often contains highly sensitive trade secrets, crypto
graphic secrets, and/or other sensitive information that needs
to be protected from disclosure or copying. This loaded logic,
or upgraded logic is typically supplied to the FPGA as a
bitstream from an external source. Such as, without limitation,
a flash memory device or a CPU or some other source (907).
Some FPGAs contain nonvolatile memory for storing con
figuration data, while others must be re-loaded each time the
chip is powered on. Existing FPGAs have the ability to
decrypt bitstreams, typically using a key that is held a battery
backed memory or stored locally (such as using on-chip flash,
EEPROM, or fuses). The FPGA decrypts the supplied
encrypted bitstream before (or while) installing it into the
programmable slices present within the FPGA. Differential
power analysis attacks and related external monitoring
attacks can be attempted against the bitstream decryption
processes, posing a serious security risk as a Successful attack
can result in disclosure of the bitstream decryption key and/or
the bitstream itself.

Referring to FIG.9, verifiable leak-resistant cryptography
can be used to create a secure bitstream decryption capability
on an FPGA. Prior to decryption, the sensitive bitstream is
encrypted by an external device (using Software, hardware or
Some combination thereof) using a leak-resistant encryption
process (e.g., as described in the first exemplary embodi
ment), producing the encrypted bitstream. The encrypted bit
stream may be located (907) in an untrusted memory, such as
an external flash or hard drive, or retrieved from an untrusted
source such as a CPU etc.

Within the FPGA, the cryptographic secret KROOT for
leak-resistant decryption is kept in the keystore (902) which
stores the internal secret state, and which may be imple
mented using technologies such as, without limitation, fuses,
battery-backed RAM (902, 903), EEPROM, flash, etc. The
FPGA (900) receives the encrypted bitstream over interface
(906). This bitstream could, for example, have been
encrypted using either of the first embodiment or the second
exemplary embodiment (corresponding to FIGS. 1 and 5).

If the embodiment of FIG. 1 was used for encryption, the
FPGA first receives nonce N, validator V. length L, and initial
segment E1. E1 is stored in encrypted segment buffer (905).
Using a leak-resistant decryption process as described above
(e.g., see FIG. 4), the hash of E1 is computed, and validatorV
is verified, with KROOT, L, and the hash, yielding (if suc
cessful) KMESSAGE or a fatal error (in which case the pro
cess halts). If successful, the FPGA uses the segment decryp
tion processing component (904) to perform the leak resistant
decryption process on E1. The decryption of E1 yields the
hash of segment E2, which is loaded, verified, and decrypted.
The process continues one segment at a time, until the final
segment is decrypted and verified. If an error occurs, the

10

15

25

30

35

40

45

50

55

60

65

18
process halts and all partial FPGA decrypted data are wiped.
(Upon failure the process can be re-started again from the
beginning.) One or more status registers 910 are used to track
the status of the bitstream loading process (e.g., tracking
whether the process is in-progress, failed, or complete). The
status can also be exported for diagnostic purposes and foruse
by external components. Once all segments have been loaded
successfully, the FPGA is now configured and can be used
(e.g., the FPGA can now permit I/O, clocking, etc. to be
applied to the loaded bitstream image). FPGA operation can
be prevented until the bitstream is fully loaded (e.g., to avoid
revealing information about an incomplete FPGA image and
to avoid unpredictable behavior of the overall circuit arising
from incorrect FPGA configuration).

If the second embodiment of FIG. 5 was used for encryp
tion, the FPGA first receives E. V. N. and h(BL), and stores E
in a buffer. The FPGA's segment decryption processing com
ponent 904 then uses the method described in FIG. 6 to
validate and decrypt the provided encrypted segments. Status
register(s) 910 are used to track the status of the bitstream
loading, validation, and decryption processes, and any seri
ous error results in the halting of the process and the wiping of
any partial decrypted data.
Network Communications and Other Packet-Based Applica
tions

FIG. 10 shows the application of verifiable leak-resistant
cryptography to protecting network communications from
external monitoring attacks. In this embodiment, multiple
network devices, such as Device A (1000), Device B (1030)
and Devices C, D, E, etc. (1040) communicate with each
other over a network (1020). Some or all of these communi
cations may contain sensitive information, making it useful to
encrypt and authenticate the data. Moreover, some of these
devices (such as Device A in this embodiment) are required to
protect their cryptographic computations and keys from
external monitoring attacks.

Device A has a keystore (1001) to store a table of shared
cryptographic root keys with other devices it needs to com
municate with. These keys may have been previously stored,
or may be negotiated (e.g., using public key cryptography).
Methods for using public key cryptosystems to negotiate keys
are well known in the background art, and are utilized in
protocols such as SSL and IPSEC. This embodiment could
easily be integrated into these or other protocols.
Outbound packets or data segments to be encrypted origi

nate from an application, operating system, driver, or other
component (1002) and enter plaintext packet buffer (1003).
Each packet is then processed using the segment encryption/
decryption processing component (1004), where it is
encrypted using a verifiable leak resistant encryption method
(e.g., as described in FIG. 1). The root key for this encryption
is the shared key between Device A and the destination
device, which is obtained from the keystore (1001). For this
processing, the message identifier nonce N may be any (pref
erably) unique value, including a counter. For example, the
nonce could equala packet identifier, a TCP sequence number
with possibly the incorporation of additional most-significant
bits to prevent overflows), the hash of a value, a random value,
etc. For each packet, the leak resistant encryption operation
produces an encrypted segment and a validator V. The nonce
may be transmitted or may be implicit (e.g., based on the
number of packets received previously). The encrypted seg
ment, V, and any other required data are assembled into an
outgoing packet and moved to the network interface compo
nent (1006) and then to the network (1020) for routing to the
appropriate destination device.

US 9,367,693 B2
19

For inbound encrypted packets, it is assumed that the send
ing device has performed the encryption as described above.
These packets are received from the network (1020) by the
network interface component (1006) and then moved to the
ciphertext packet buffer (1005). Each packet is then pro
cessed by segment encryption/decryption processing compo
nent (1004), where a leak-resistant decryption process (e.g.,
as described in FIG. 4) is performed. For this decryption
process, (i) the shared key between the receiving and sending
device (e.g., KROOT or a precursor used to derive KROOT)
is obtained from keystore (1001), (ii) the nonce N is recovered
from the packet or otherwise determined, (iii) the validator is
verified against N and the encrypted packet, and (iv) if the
validator is correct, the packet data are decrypted. The shared
cryptographic secret between Device A and the sending
device may be used as KROOT. If the decryption or validation
fails, the packet is dropped. Otherwise, upon Successful
decryption, the decryption result can be provided to the appli
cation, operating system, driver, etc.

This process is outlined in FIGS. 11 and 12. FIG. 11 illus
trates the verifiable packet level leak-resistant encryption pro
cess and FIG. 12 illustrates the corresponding decryption
process. The verifiable packet level leak-resistant encryption
process is the following: Given an input packet data D (1100)
with the Source and destination sharing a base cryptographic
value KROOT, a message identifier N is generated in step
1101 (e.g., using a random source and/or information present
in the packet D and/or some packet identifier Such as a
sequence number associated with the communication proto
col). For TCP/IP communications, Ncan be constructed from
a session identifier, the sequence number (optionally with
additional most significant bits appended to prevent rollover),
the source port, the destination port, and/or other values.
Next, in step 1102, the hash of N is computed. (Optionally,
this step may be omitted and N may be used instead of h(N) in
deriving KMESSAGE.) Subsequently, in step 1103, message
key KMESSAGE=KROOT, h(N) is computed using the leak
resistant key-tree-based key derivation process described in
FIG. 2, with KSTART=KROOT and PATH=h(N). The input
packet data D is encrypted with the key KMESSAGE to yield
the encrypted result E (1104).

Next the hash of E is computed (1105) (e.g., using SHA
256). Then the validator V for the encryption is computed as
KMESSAGE.h(E) (1106) using the leak resistant key-tree
based key derivation process outlined in FIG. 2, with
KSTART-KMESSAGE and PATH=h(E). Finally the output
packet is formed to include V, E, and N (or any other infor
mation, if any, required to enable the recipient to recover N)
(1107). The output data E is then transferred to a remote
device (such as a remote computer over the Internet) in a
packet.
As an optional optimization, if the encrypting device has

multiple packets buffered for sending, it can encrypt multiple
packets simultaneously such that only a single validator is
required for all packets. For example, the encryption process
may be performed as shown in FIG.3, where each segment Di
is a packet. Combining packets in this manner reduces the
number of key tree operations required for both the sender
and the recipient.
A corresponding verifiable packet level leak resistant

decryption process is illustrated in FIG. 12. Given an
encrypted packet including V, E, N (or data sufficient to
recover N, e.g., a sequence number), and the shared crypto
graphic secret KROOT (1200), the decryption process pro
ceeds as follows: First, the value of h(N) is computed (1201)
is computed (or, if the encrypting device used N directly, then
this step is omitted). Then the hash of E is computed (1202).

10

15

25

30

35

40

45

50

55

60

65

20
Next KMESSAGE=KROOT, h(N) is computed at step 1203
using the leak resistant key-tree-based approach diagrammed
in FIG. 2 with KSTART-KROOT and PATH=h(N). Next
V=KMESSAGE, h(E) is computed using the leak resistant
key tree process outlined in FIG. 2, with
KSTART-KMESSAGE and PATH=h(E) (1204). Subse
quently, the decryption device checks whether V-V (1205).
If they are not equal, processing is stopped for this packet and
the packet is discarded (1206). If the check succeeds, then E
is decrypted with KMESSAGE to yield D, the plaintext
packet (1207) (e.g., using the DEC() process shown in FIG.
14).
Smart Card Applications

Verifiable leakage-resistant encryption and decryption can
be implemented in Smart-cards (e.g., in connection with pro
tocols where the Smart-card is required to perform encryption
and/or decryption in a manner that is secure from differential
power analysis and related external monitoring attacks).
Examples of Such systems and protocols include, without
limitation, the derivation of keys (control words) for the
decryption of pay television signals, payments (including
off-line payments), identity verification/network login,
mobile telephone SIM cards, and transit passes. The exem
plary cryptographic techniques disclosed in this patent can be
used to ensure that the secret keys within Smart-cards are
protected from external monitoring attacks while performing
Such protocols. Smart cards (or other security chips) can also
be used to implement part or all of the leak resistant encryp
tion or decryption processes utilized in a larger system, Such
as if the Smart card implements the key-tree based key deri
vation process of FIG.3 so that KSTART never needs to leave
the smart card.
Mutual Authentication Applications

In many applications, two or more devices need to authen
ticate each other and/or exchange sensitive information
amongst them. Example applications of Such protocols
include, without limitation: (i) authentication between a
printer and a cartridge to ensure that both devices are genuine
and not counterfeit; (ii) authentication between a set-top box
and a Smart-card to ensure that components are authentic
(e.g., to prevent the introduction of stolen video decryption
keys); (iii) authentication between a garage door and an
opener; (iv) keyless entry systems (such as may be used in
cars) which authenticate keys (e.g., prior to unlocking doors
or starting the engine); (V) authentication protocols per
formed by frequently stolen items (such as car radios, GPS
units, cellphones, etc.) to prevent stolen or tampered devices
from being operated; and (vi) entry systems such as those
found in secure buildings that authenticate keyS/tokens prior
to permitting entry. In these applications, challenge response
protocols between the devices have traditionally been used
both for mutual authentication and to set up a shared secret
key for the exchange of sensitive information. Simple proto
cols to perform these authentications while resisting DPA can
be constructed by using the methods of this patent to perform
any required encryption or decryption operations. For
example, a device can demonstrate its authenticity using tech
niques disclosed in this patent through its ability to Supply a
valid validator and/or decrypt a message.
Segment Encryption and Decryption with Intra-Segment Key
Changes

This section describes exemplary variants of the ENC()
and DEC() operations which can be used in place of conven
tional encryption processes (such as AES in ECB or CBC
mode) in implementing the exemplary embodiments (e.g., as
shown at step 320 of FIG. 3, step 410 of FIG. 4, step 509 of
FIG.5, step 630 of FIG. 6, step 1104 of FIG. 11, and step 1207

US 9,367,693 B2
21

of FIG. 12). In the ENC() and DEC() variants shown in FIGS.
13 and 14 respectively, the cryptographic keys are changed
frequently, for even greater security. Specifically, additional
cryptographic key updates occur within the encryption of a
data segment Dito Ei(or vice versa). Accordingly, we refer to
these variants as implementing intra-segment key changes.

Other than the changes to ENC() and DEC() the remainder
of the operations in the first and second exemplary embodi
ments can be implemented as previously described. For
example and without limitation, the operations involving the
initial message key KMESSAGE, the validator V, and so
forth, need not be changed.

FIG. 13 shows an exemplary embodiment of an ENC()
operation for encrypting data segments. FIG. 14 shows a
corresponding exemplary embodiment of a DEC() operation.
In this embodiment, these operations are built using the block
cipher AES in cipher block chaining (CBC) mode, but it
should be clear to those skilled in the art, that other block
ciphers or encryption/decryption primitives or encryption
modes could be used as well.
The inputs to the encryption process for segment i are

segment key Ki (1301) and data segment Di (1310). The input
data segment Di (1310) is divided into sub-segments Di, 1
(1311), Di.2 (1312), etc. FIGS. 13 and 14 show the data
segment D being divided into sub-segments of 3 AES blocks,
although other sizes can also be used and algorithms other
than AES may, of course, also be employed. (Smaller sub
segments increase computational overhead, while larger Sub
segments cause keys to be used in more operations, increasing
the potential for information to leak.) Segment key Ki is
transformed with a hash operation m() yielding Ki, 1 (1302)
which is the key for the first sub-segment Di, 1. If an initial
ization vector (IV) (1314) is to be used, it is XORed with the
first AES block of Di, 1. (If no IV is to be used, this XOR step
may be omitted. If an IV is used, it can be authenticated, e.g.,
by incorporating it into the validator computation, or by
deriving the IV from a validated value Such as a message
identifier.) The first bits of (Di XOR IV) are encrypted with
AES (1315) using the segment key Ki, 1 (1302), forming the
first portion of ciphertext sub-segment Ei, 1 (1320). This
ciphertext portion is also XORed with the next bits of sub
segment Di, 1 (1311), yielding another AES input which is
Subsequently encrypted using segment key KO (1302) to pro
duce the next portion of sub-segment Di, 1 (1311). A similar
cipher block chaining operation is performed to form the
input to the third AES encryption, which is also performed
with key Ki, 1. The results of the three AES operations is the
ciphertext sub-segment Ei, 1 (1320). The fourth AES opera
tion is performed on the first block of the next data sub
segment Di.2, (1312), and a new key is used, notably Ki.2
(1303), which is derived by applying m() to Ki, 1 (1302). The
last ciphertext from processing Di, 1 becomes the IV (1317)
for the first portion of Di2 (1312). The encryption process
continues until all blockSofalls data Sub-segments have been
encrypted, ultimately yielding the encrypted Sub-segments
Ei.2 (1321),..., Eis (1322), and where a new key is derived
using m() for each sub-segment. Finally, the ciphertext Sub
segments are assembled to form the final ciphertext segment
Ei (1330).

Referring to FIG. 14, the decryption process DEC() is the
reverse of the ENC() process. The subkeys Ki, 1 (1402), Ki.2,
(1403), etc. are derived from the segment key Ki (1401) using
m() via the same process as for encryption above. The
encrypted segment Ei is divided into Sub-segments, each
comprising one or more AES inputs, which are decrypted
with the Subkeys. After each decryption operation, the appro
priate IV (if any) or prior ciphertext is XORed with the data.

10

15

25

30

35

40

45

50

55

60

65

22
The final data are assembled to form the sub-segments (1420,
1421, 1432, etc.), which are in turn assembled to form Di
(1430).
The ENC() and DEC() process above are examples which

involve rapid key changes so as to provide greater leakage
tolerance. Other segment encryption and decryption methods
can be used, including the application of stream ciphers and/
or block ciphers (such as RC4, SEAL, AES, DES, triple DES,
etc.) in ECB, CBC, or counter (e.g., Galois counter) modes.
For such operations where the same key is applied to all the
data in a segment, it may be advantageous to limit the size of
each segment (e.g., by dividing up the data into Sub-segments
as shown in FIG. 3) prior to encryption so as to limit that the
number of operations performed with each key, thereby
reducing the number of operations an adversary can observe
being performed with each key.
Communications Channels

Data exchanges described herein may be accomplished in
a wide range of possible manners. For example, and without
limitation, conventional buses/interfaces (such as I2C, JTAG,
PCI, serial I/O (including USB), PCI Express, Ethernet, etc.),
wireless protocols (such as 802.11 family, Bluetooth, cellular
telephony protocols, ISO14443, etc.), and intra-chip connec
tions (such as APB, direct connections with other flip flops,
etc.) may all be used. For each of the foregoing, the sending
device(s) and receiving device(s) would have appropriate
interfaces (e.g., interfaces of the foregoing types) with can
send, receive, or send and receive (as appropriate).
Alternate Forms of Data Validation Prior to Decryption
The exemplary embodiments presented thus far, have uti

lized the leak-resistant key-tree-based key derivation process
(e.g., as illustrated in FIG. 2) to compute a validator of the
ciphertext which can be verified safely prior to decryption.
While this process is well suited to a broad range of applica
tions, other techniques for creating a value that could serve a
similar role, and may be adequate in certain settings. For
example, in some embodiments the encryption process is not
required to be resistant to external monitoring (but the
decryption process does require Such resistance) and/or algo
rithm-level countermeasures for public key digital signing
processes (such as those described in U.S. Pat. No. 6,304,658)
may be present. For these systems, digital signing (digital
signature) operations may be used to construct a value which
can be verified at decryption time to ensure that the ciphertext
is unmodified. For example, the digital signature could
authenticate the message identifier and at least one encrypted
segment. Examples of public key digital signing algorithms
include, without limitation, RSA, DSA, and elliptic curve
DSA variants (including without limitation EC-DSA). The
Verification of a digital signature does not require any sensi
tive information, and accordingly may be performed prior to
decryption. However, this flexibility comes at the cost of
requiring public key signing logic within the encrypting
device and public key verification logic within the decrypting
device. It is also possible for a validator (or validator substi
tute) to be comprised of multiple symmetric validators, public
key signatures, or other elements.
Non-Sequential Segment Key Derivation

Segment keys (e.g., K1, K2, ... KL in FIG. 3) and sub
segment keys (Ki.1, Ki.2, etc. in FIG. 13) are not required to
be derived sequentially. For example, keys can be derived in
a hierarchical tree pattern, or more generally each key can be
a function of any prior key(s), or could be independently
derived from KROOT using the key tree construction, or keys
could be derived using some combination of other keys and
the key tree construction.

US 9,367,693 B2
23

Reordering of Data Transmissions and Calculations
The ordering of data transmissions and operations can be

altered. For example, the first exemplary embodiment
described in FIGS. 1, 3 and 4 shows the encryption process
proceeding from the last segment DL to the first segment D1
with each segment Di containing the hash of the encryption
result, Ei-i-1, of the i+1th segment. A separate validator is
computed for the first encrypted segment E1 (e.g., see step
106). This approach can be advantageous for the decrypting
device as shown in FIG. 4, since it does not need to buffer the
entire encryption result before decrypting, whereas the
encrypting device has to do so.

Alternatively, the encrypting device could encrypt the seg
ments starting from D1 and ending with DL, with each seg
ment Di-1 containing the hash of the encryption Ei of the
previous segment. In this example, the segment D1 is (for
example) extended by a string of 0s of size equal to the output
length of the hash function to indicate it is the first segment. A
validator, created using the key-tree is then computed using
PATH=h(EL). For this variant, the decryption process is simi
lar to FIG. 4, but proceeds in the reverse direction starting
from the last encrypted segment to the first. Thus, the encrypt
ing device no longer has to buffer the data segments, although
the decrypting device now has to do so.
Substitution of Additional Validators for Hashes

Although some examples show hashes in data segments
which authenticate Subsequent encrypted segments, the Sub
sequent segments can alternatively carry their own indepen
dent validator. For example, FIG. 3 shows first data segment
(312) carrying a hash h(E2) to validate that segment E2 was
not changed. However, Such hash is not always required, and
in Some cases could be omitted (e.g., if the next segment
instead carries a validator). This simplifies encryption some
what, but increases computation time since more validators
need to be computed and checked. In streaming applications
or if storage/memory are limited, the additional computa
tional effort may be justified given the benefit of avoiding the
need to have the subsequent data available and buffered.
Variations in Hashing

In some diagrams, a single operation, such as h() in FIG.3,
is applied multiple times and/or is used for different uses. It is
generally not required that these all be the same function. For
example, different steps could employ different hash func
tions.

The output of hash function may be truncated, combined
with other hash function outputs, or otherwise modified
through post-processing. For example, SHA-2 produces a
256-bit output hash, but a shorter message identifier (such as
160- 128-, 80- or 64-bits) may be desired. The function h()
may use SHA-2 internally and return only some bits of its
result.
Variations in Order of Operations
Some of the exemplary embodiments designate a specific

order in which data elements are concatenated or combined.
For instance, in FIG. 3, steps 303-312, the data Di is concat
enated with the hash h(Ei-1). Other examples where data
segments are concatenated in sequence before being hashed
include FIG. 5, elements 501-504 & 513, in step 306 of FIG.
3. These specific orderings are just one example of a possible
ordering, and a variety of other data orderings could be uti
lized in alternate embodiments.
Variations in Tree-Based Key Derivation

If operations (such as fi) are invertible, it is possible to use
a value other than the top of the tree as the starting value.
Similarly, computed values can be cached (e.g., if the mes

10

15

25

30

35

40

45

50

55

60

65

24
sage identifier is a counter, the initial operations will usually
not change from one message to the next and therefore do not
need to be recomputed).
Error Detection and/or Correction

It is well known in the art that incorrect outputs produced as
a result of injecting faults in a cryptographic device's opera
tion can yield information about sensitive data and keys.
When practical, cryptographic operations can be checked to
help prevent the release of incorrect computations which can
compromise secrets. For example, a simple and effective
technique is to perform cryptographic operations twice, ide
ally using two (or more) independent hardware processors
and implementations, with a comparator to verify that both
(orall) produce identical results. If the results produced by the
units do not match, the comparator will prevent either result
from being used and/or trigger other error conditions. Within
individual cryptographic operations (such as hashing steps),
error-detection and/or error-correction logic can also be
employed to help prevent or detect situations where crypto
graphic operations are performed incorrectly.
The techniques disclosed in this patent may additionally

provide Some inherent resistance against certain types of fault
injection attacks on the encryption and decryption processes.
During the encryption process, a limited or partial fault intro
duced during the key tree based key derivation process would
produce random, unpredictable results due to the usage of
entropy redistribution functions within this process. In par
ticular, corrupted intermediates will typically be mixed by
subsequent entropy redistribution functions, which will limit
adversaries’ ability to mount attacks utilizing defective
results.

Likewise, during decryption, faults or errors introduced
within the ciphertext or the message identifier processing will
generally resulting the validator being rejected. The second
embodiment, with plaintext hash chaining, provides further
resistance since the plaintext segments are independently
authenticated for correctness prior to being output. Ofcourse,
the checking of operations and other well known fault-detec
tion techniques may additionally be utilized.

Self-diagnostic functions such as a POST (power-on-self
test) and random number testing may also be incorporated to
Verify that cryptographic functions and random numbergen
eration capability has not been damaged.
Additional Host Environments and Form Factors

Several exemplary systems and applications for the utili
Zation of Verifiable leak-resistant cryptography were
described above. However, as those skilled in the art will
appreciate, the techniques described above are not limited to
particular host environments or form factors. Rather, they can
be used in a wide variety of applications, including without
limitation: application-specific integrated circuits (ASICs),
field programmable gate arrays (FPGAs), systems on chip
(SoC), microprocessors, secure processors, secure network
devices, cryptographic Smartcards of all kinds (including
without limitation Smartcards Substantially compliant with
ISO 7816-1, ISO 7816-2, and ISO 7816-3 (“ISO 7816-com
pliant Smartcards”)); contactless and proximity-based Smart
cards and cryptographic tokens (including without limitation
smartcards substantially compliant with ISO 14443); stored
value cards and systems; cryptographically secured credit
and debit cards; customer loyalty cards and systems; crypto
graphically authenticated credit cards; cryptographic accel
erators; gambling and wagering systems; secure crypto
graphic chips; tamper-resistant microprocessors; Software
programs (including without limitation programs for use on
personal computers, servers, etc. and programs that can be
loaded onto or embedded within cryptographic devices); key

US 9,367,693 B2
25

management devices; banking key management systems;
secure web servers; defense systems; electronic payment sys
tems; micropayment systems and meters; prepaid telephone
cards; cryptographic identification cards and other identity
Verification systems; systems for electronic funds transfer,
automatic teller machines; point of sale terminals; certificate
issuance systems; electronic badges; door entry systems;
physical locks of all kinds using cryptographic keys; systems
for decrypting television signals (including without limita
tion, broadcast television, satellite television, and cable tele
vision); systems for decrypting enciphered music and other
audio content (including music distributed over computer
networks); systems for protecting video signals of all kinds;
content protection and copy protection systems (such as those
used to prevent unauthorized copying or use of movies, audio
content, computer programs, Video games, images, text, data
bases, etc.); cellular telephone scrambling and authentication
systems (including telephone authentication Smartcards);
secure telephones (including key storage devices for Such
telephones); cryptographic PCMCIA cards; portable crypto
graphic tokens; and cryptographic data auditing systems.

All of the foregoing illustrates exemplary embodiments
and applications of the Verifiable leak-resistant cryptography,
from which related variations, enhancements and modifica
tions will be apparent in the context of the spirit and scope of
the disclosure. Therefore, the invention(s) protected by this
patent should not be limited to the foregoing disclosure, but
rather construed by the claims appended hereto.

What is claimed is:
1. A method comprising:
receiving a bitstream for configuration of a programmable

logic device, the bitstream comprising a data segment
and authentication data associated with the data seg
ment;

computing, by the programmable logic device, a hash of
the data segment;

comparing, by the programmable logic device, the com
puted hash of the data segment with the authentication
data;

halting configuration of the programmable logic device
responsive to a determination that the computed hash of
the data segment does not match the authentication data;
and

continuing configuration of the programmable logic device
using the data segment responsive to a determination
that the computed hash of the data segment matches the
authentication data.

2. The method of claim 1, wherein the authentication data
comprises an expected hash of the data segment.

3. The method of claim 1, wherein the programmable logic
device comprises a field programmable gate array (FPGA).

4. The method of claim 1, wherein the bitstream further
comprises an additional data segment, the method further
comprising:

configuring the programmable logic device using the data
Segment,

determining whether the additional data segment has been
altered using the authentication data;

halting configuration of the programmable logic device
responsive to a determination that the additional data
segment has been altered; and

continuing configuration of the programmable logic device
using the additional data segment responsive to a deter
mination that the additional data segment has not been
altered.

10

15

25

30

35

40

45

50

55

60

65

26
5. The method of claim 4, wherein the bitstream comprises

a plurality of data segments that include the data segment and
the additional data segment, the method further comprising:

preventing operation of the programmable logic device
until all of the plurality of data segments have been
Successfully used to configure the programmable logic
device.

6. The method of claim 1, wherein computing the hash of
the data segment is performed using an SHA-256 message
authentication code (MAC) algorithm.

7. The method of claim 1, further comprising:
decrypting the data segment based on use of a shared

symmetric key stored at the programmable logic device.
8. The method of claim 7, wherein the decrypting is per

formed using an advanced encryption standard (AES) block
cipher.

9. The method of claim 7, wherein comparing the com
puted hash of the data segment with the authentication data is
performed prior to decrypting the data segment.

10. A programmable logic device, comprising:
a plurality of programmable regions;
an interface to receive a bitstream for configuration of the

plurality of programmable regions of the programmable
logic device, the bitstream comprising a data segment
and authentication data associated with the data seg
ment; and

a processing component, coupled to the interface, to:
compute a hash of the data segment;
compare the computed hash of the data segment with the

authentication data;
halt configuration of the programmable logic device

responsive to a determination that the computed hash
of the data segment does not match the authentication
data; and

continue configuration of the programmable logic
device using the data segment responsive to a deter
mination that the computed hash of the data segment
matches the authentication data.

11. The programmable logic device of claim 10, wherein
the authentication data comprises an expected hash of the data
Segment.

12. The programmable logic device of claim 10, wherein
the programmable logic device comprises a field program
mable gate array (FPGA).

13. The programmable logic device of claim 10, wherein
the bitstream further comprises an additional data segment,
and wherein the processing component is further to:

configure the programmable logic device using the data
Segment,

determine whether the additional data segment has been
altered using the authentication data;

halt configuration of the programmable logic device
responsive to a determination that the additional data
segment has been altered; and

continue configuration of the programmable logic device
using the additional data segment responsive to a deter
mination that the additional data segment has not been
altered.

14. The programmable logic device of claim 13, wherein
the bitstream comprises a plurality of data segments that
include the data segment and the additional data segment, and
wherein the processing component is further to:

prevent operation of the programmable logic device until
all of the plurality of data segments have been success
fully used to configure the programmable logic device.

US 9,367,693 B2
27

15. The programmable logic device of claim 10, wherein
an SHA-256 message authentication code (MAC) algorithm
is used to compute the hash of the data segment.

16. The programmable logic device of claim 10, further
comprising:
A memory to store a shared symmetric key, wherein the

processing component is further to decrypt the data seg
ment based on use of the shared symmetric key.

17. The programmable logic device of claim 16, whereinto
decrypt the data segment the processing component uses an
advanced encryption standard (AES) block cipher.

18. The programmable logic device of claim 16, wherein
the processing component is to compare the computed hash
of the data segment with the authentication data prior to
decrypting the data segment.

19. A non-transitory computer readable medium compris
ing instructions that, when executed by a programmable logic
device, cause the programmable logic device to perform
operations comprising:

10

15

28
receiving a bitstream for configuration of the program

mable logic device, the bitstream comprising a data seg
ment and authentication data associated with the data
Segment,

computing, by the programmable logic device, a hash of
the data segment;

comparing, by the programmable logic device, the com
puted hash of the data segment with the authentication
data;

halting configuration of the programmable logic device
responsive to a determination that the computed hash of
the data segment does not match the authentication data;
and

continuing configuration of the programmable logic device
using the data segment responsive to a determination
that the computed hash of the data segment matches the
authentication data.

20. The non-transitory computer readable medium of claim
19, the operations further comprising:

decrypting the data segment based on use of a shared
symmetric key stored at the programmable logic device.

k k k k k

