
(19) United States
US 20120330934A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0330934 A1
DubOue et al. (43) Pub. Date: Dec. 27, 2012

(54)

(75)

(73)

(21)

(22)

(63)

(60)

PROVIDING QUESTION AND ANSWERS
WITH DEFERRED TYPE EVALUATION

Publication Classification

USING TEXT WITH LIMITED STRUCTURE (51) Int. Cl.
G06F 7/30 (2006.01)

Inventors: Pablo A. Duboue, Montreal (CA); (52) U.S. Cl. 707/722; 707/736; 707/E17.014
James J. Fan, Parsippany, NJ (US);
David A. Ferrucci, Yorktown Heights, (57) ABSTRACT
NY (US); James W. Murdock, IV,
Millwood, NY (US); Christopher A.
Welty, Hawthorne, NY (US); Wlodek
W. Zadrozny, Tarrytown, NY (US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 13/605,231

Filed: Sep. 6, 2012

Related U.S. Application Data
Continuation of application No. 13/239,165, filed on
Sep. 21, 2011.
Provisional application No. 61/386,017, filed on Sep.
24, 2010.

QUERY ANALYSIS CANDIDATE

A system, method and computer program product for con
ducting questions and answers with deferred type evaluation
based on any corpus of data. The method includes processing
a query including waiting until a “Type' (i.e. a descriptor) is
determined AND a candidate answer is provided. Then, a
search is conducted to look (search) for evidence that the
candidate answer has the required Lexical Answer Type (e.g.,
as determined by a matching function that can leverage a
parser, a semantic interpreter and/or a simple pattern
matcher). Prior to or during candidate answer evaluation, a
process is provided for extracting and storing collections of
entity-type pairs from semi-structured text documents. Dur
ing QA processing and candidate answer scoring, a process is
implemented to match the query LAT against the lexical type
of each provided candidate answer and generate a score judg
ing a degree of match.

ANSWER

20
29 ANSWER PRIMARY SOURCES

GENERATION STRUCTURED AND
UNSTRUCTURED

RANKING
60

30

19 19

22

11

EVIDENCE GATHERING
AND ANSWER SCORING

ANSWER SOURCE
KNOWLEDGE BASE

TYPEDLISTS, PRECISE
UNARY BINARY, NARY
RELATION EXTRACTED

99

US 2012/0330934 A1 Dec. 27, 2012 Sheet 1 of 10 Patent Application Publication

09

Patent Application Publication Dec. 27, 2012 Sheet 2 of 10 US 2012/0330934 A1

100

RECEIVE INPUT QUERYIQUESTION 112

COMPUTE LEXICAL ANSWERTYPE 115
(LAT) ONTOLOGICALMARKER

PERFORMAQUERYANALYSISTO 120
DETERMINE ALTERNATIVEWAYS
OF EXPRESSING OUERYTERMS

SEARCHFOR CANDIDATE 122
ANSWERDOCUMENTS AND,
RETURNISTORE RESULTS

USING LAT, ANALYZINGEACH 128
DOCUMENT FOR A CANDIDATE ANSWER

EACH CANDIDATE ANSWER IN THE 132
DOCUMENT SCHECKED AGAINST

THE LATE RECUREMENT

RETURN ANSWERS 133

FIG. 2

Patent Application Publication Dec. 27, 2012 Sheet 3 of 10 US 2012/0330934 A1

CANDIDATE

CANDIDATES MATCHED AGAINST 132a
INSTANCES IN THE KNOWLEDGE BASE

INSTANCES

TYPES ASSOCATED WITH 132b
INSTANCES INKBARE RETRIEVED

TYPES, LAT(s)

ATTEMPT TOMATCHLAT(s) WITH 132C
TYPES, PRODUCING SCORE FOR

DEGREE OF MATCH

SCORE

FIG. 3

(„SELVIS GEL?ND EHI WOHH SIHOd, '„OILSOHH NEMO) (SELVIS GEL?ND EHI WOHH SIBOd,

US 2012/0330934 A1 Dec. 27, 2012 Sheet 4 of 10

ZLZ

Patent Application Publication

Patent Application Publication Dec. 27, 2012 Sheet 5 of 10 US 2012/0330934 A1

300

CANDIDATE
302 QUESTION LAT ANSWER LEXICAL 312

TYPE

TEXT PROCESSING |

PROCESSED

ESER CANDIAEANSWER 340 LEXICALTYPE

PHASE ITERM
MATCH

OUTPUT MATCH
SCORE 346

FIG. 5

330

345

US 2012/0330934 A1 Dec. 27, 2012 Sheet 6 of 10 Patent Application Publication

TWOLLITOCHOEIS)

EAILIW|}}dSELVØETEC?-SWH SSWTOETSSSVT108|[^S 999(JEHO LWW WYJElORHONWQWEIH ELWOFITEOI-SWHETCHW\/XE
/98

US 2012/0330934 A1 Dec. 27, 2012 Sheet 7 of 10 Patent Application Publication

US 2012/0330934 A1 Dec. 27, 2012 Sheet 8 of 10 Patent Application Publication

999 699

TWO||||TOCHOES)

999 | VT NOILSETTO CESSE|00}}d Z08

9/10
099

| 18

TOWN 0/18 999

US 2012/0330934 A1 Dec. 27, 2012 Sheet 9 of 10 Patent Application Publication

(OBdS LTDSEN) SSBOOM!d()SWO?96
(XHOMBWVHH-IO IHWd) }|ETTO? || NOO

(OBdS SITTISEM) SSBOOM!d09
(SINEWETdWI

HE?OTEAEG HOLWIONNW)(XHOMBWVHH-IO IHWd)

US 2012/0330934 A1 Dec. 27, 2012 Sheet 10 of 10 Patent Application Publication

X!!!OMA LEIN

007

| || ?

| || 7

US 2012/0330934 A1

PROVIDING QUESTION AND ANSWERS
WITH DEFERRED TYPE EVALUATION

USING TEXT WITH LIMITED STRUCTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present invention relates to and claims the ben
efit of the filing date of commonly-owned, co-pending U.S.
patent application Ser. No. 13/239,165 filed Sep. 21, 2011
which claims the benefit of United States relates to and claims
the benefit of the filing date of commonly-owned, co-pending
U.S. Provisional Patent Application No. 61/386,017, filed
Sep. 24, 2010, the entire contents and disclosure of which is
incorporated by reference as if fully set forth herein.

BACKGROUND

0002 1. Field of the Invention
0003. The invention relates generally to information
retrieval systems, and more particularly, the invention relates
to a novel query/answer system and method for open domains
implementing a deferred type evaluation of candidate
answers using text with limited structure.
0004 2. Description of the Related Art
0005. An introduction to the current issues and approaches
of question answering (QA) can be found in the web-based
reference http://en.wikipedia.org/wiki/Ouestion answering.
Generally, QA is a type of information retrieval. Given a
collection of documents (such as the World Wide Web or a
local collection) the system should be able to retrieve answers
to questions posed in natural language. QA is regarded as
requiring more complex natural language processing (NLP)
techniques than other types of information retrieval Such as
document retrieval, and it is sometimes regarded as the next
step beyond search engines.
0006 QA research attempts to deal with a wide range of
question types including: fact, list, definition, How, Why,
hypothetical, semantically-constrained, and cross-lingual
questions. Search collections vary from Small local document
collections, to internal organization documents, to compiled
newswire reports, to the World WideWeb.
0007 Closed-domain QA deals with questions under a
specific domain, for example medicine or automotive main
tenance, and can be seen as an easier task because NLP
systems can exploit domain-specific knowledge frequently
formalized in ontologies. Open-domain QA deals with ques
tions about nearly everything, and can only rely on general
ontologies and world knowledge. On the other hand, these
systems usually have much more data available from which to
extract the answer.
0008 Alternatively, closed-domain QA might refer to a
situation where only a limited type of questions are accepted,
Such as questions asking for descriptive rather than proce
dural information.
0009. Access to information is currently dominated by
two paradigms. First, a database query that answers questions
about what is in a collection of structured records. Second, a
search that delivers a collection of document links in response
to a query against a collection of unstructured data, for
example, text or html.
0010. A major unsolved problem in such information
query paradigms is the lack of a computer program capable of
accurately answering factual questions based on information
included in a collection of documents that can be either struc

Dec. 27, 2012

tured, unstructured, or both. Such factual questions can be
either broad, such as “what are the risks of vitamin K defi
ciency?', or narrow, such as “when and where was Hillary
Clinton’s father born?
0011. It is a challenge to understand the query, to find
appropriate documents that might contain the answer, and to
extract the correct answer to be delivered to the user. There is
a need to further advance the methodologies for answering
open-domain questions.

SUMMARY

0012. The present invention addresses the need described
above by providing a dynamic infrastructure and methodol
ogy for conducting question answering with deferred type
evaluation using text with limited structure.
0013 An aspect of the invention provides a system imple
menting machine processing for answering questions
employing a processing step in which semi-structured infor
mation, for example information with limited structure, is
extracted from the knowledge and database sources and re
represented in a form Suitable for machine processing.
0014 Particularly, a system and method is provided for
extracting answer-typing information from Sources with lim
ited structure and using that extracted type information for
scoring candidate answers.
0015 Thus, in one aspect, there is provided a system and
method for providing content to a database used by an auto
matic QA system. The method includes automatically iden
tifying semi-structured text data from a data source: auto
matically identifying one or more entity-type relations from
said semi-structured text data, said entity-type relation
including one or more entities associated with a type; auto
matically extracting said identified entity-type relations; and,
storing said extracted entity-type relations as entity-type data
structures in said database, wherein a processing device is
configured to perform said automatic identifying of semi
structured text and entity-type relations, said extracting and
said storing.
0016 Further to this aspect, the semi-structured textcom
prises item-delimited markup, said automatically identifying
of semi-structured text data comprising parsing content of
said data source to identify said item-delimiting markup, said
item delimited mark-up specifying said type information and
entities forming an entity-type data structure.
0017. Further, the item-delimiting markup includes a title,
a header, a recitation of the word “list of entities of a speci
fied type, bullet markers, parentheses, a hypertext link, a
Uniform Resource Locator, or a table in said data source.
0018. In a further aspect, there is provided computer
implemented system and method for automatically generat
ing answers to questions comprising the steps of determining
a lexical answer type (LAT) associated with an input query;
obtaining one or more candidate answers to the input query
using a data source having semi-structured content; determin
ing a lexical type (LT) for each the one or more obtained
candidate answer from the semi-structured content; compar
ing the query LAT with the candidate answer LT; and gener
ating a score representing a degree of match between the
compared query LAT with the candidate answer LT, the score
indicative of a quality of the obtained candidate answer,
wherein a processing device automatically performs one or
more of the determining a query LAT, computing candidate
answers, determining a LT, comparing and generating.

US 2012/0330934 A1

0019. In this further aspect, the computer-implemented
method further comprises: identifying, in the semi-structured
content, one or more entities and associated lexical type infor
mation; and, storing, in a data storage device in communica
tion with a QA System, entity-type structures, each entity
type structure representing the one or more entities and
associated lexical type information, wherein said determin
ing a lexical type includes accessing said stored entity-type
structures to identify a lexical type (LT) from a type associ
ated with said one or more entities stored in said entity-type
data structures.
0020. In this further aspect, the comparing comprises
parsing each respective the query LAT and the candidate
answer LT to obtain respective terms or phrases for each; the
comparing further comprising one or more of matching indi
vidual terms of respective query LAT and candidate answer
LT, or matching entire phrases of each respective query LAT
and candidate answer LT.
0021. A computer program product is provided for per
forming operations. The computer program product includes
a storage medium readable by a processing circuit and storing
instructions run by the processing circuit for running a meth
od(s). The method(s) are the same as listed above.

BRIEF DESCRIPTION OF THE DRAWINGS

0022. The objects, features and advantages of the inven
tion are understood within the context of the Detailed
Description, as set forth below. The Detailed Description is
understood within the context of the accompanying drawings,
which form a material part of this disclosure, wherein:
0023 FIG. 1 shows a high level logical architecture 10 of
a question/answering method in which the present invention
may be employed;
0024 FIG. 2 is a flow diagram of a method for conducting
questions and answers with deferred type evaluation in a QA
system;
0025 FIG. 3 is a flow diagram illustrating score produc
tion performed at step 132 of the flow diagram of FIG. 2;
0026 FIG. 4 depicts the method for automatically identi
fying pages, documents and other content including text of
limited structure (“semi-structured) that can be imple
mented at step 132b of FIG.3:
0027 FIG. 5 illustrates a LATTE process 300 applying
phase and term matching functions that can be implemented
at step 132c of FIG. 3:
0028 FIG. 6 depicts a block diagram of the phrase and
term processing functions 345 of FIG. 5
0029 FIG. 7 illustrates an example flow of control 500 for
the LATTE process and score production among the compo
nents depicted in FIG. 6;
0030 FIG. 8 illustrates an example flow control for the
LATTE process of FIGS. 5-6
0031 FIG. 9 depicts an aspect of a UIMA framework
implementation for providing one type of analysis engine for
processing CAS data structures; and
0032 FIG. 10 illustrates an exemplary hardware configu
ration to run method steps described in FIGS. 2-8 in one
embodiment.

DETAILED DESCRIPTION

0033 Commonly-owned, co-pending U.S. patent applica
tion Ser. No. 12/126,642, titled “SYSTEMAND METHOD
FOR PROVIDING QUESTION AND ANSWERS WITH

Dec. 27, 2012

DEFERRED TYPE EVALUATION', incorporated by refer
ence herein, describes a QA System and method in which
answers are automatically generated for questions. More par
ticularly, it involves comparing the lexical types determined
from the question to the lexical types associated with each
candidate answer that is derived from a search. The lexical
answer type requested by the question is referred to herein as
a “lexical answer type' or “LAT.” The lexical types that are
associated with each candidate answer is referred to herein as
a lexical type or “LT.
0034. The QA system utilizes the system and methodol
ogy described below with respect to FIG. 1. Evidence gath
ering and answer scoring functions 50 are programmed pro
cessing components that receive (1) a “lexical answer type
(LAT), e.g., a text string describing some concept and (2)
“candidate answer input(s), e.g., a text string describing
Some entity. The programmed processing components gener
ate an output including a judgment (e.g., a score) representing
to what degree the entity is an instance of the concept. As
described in FIGS. 2 and 3 below, this is used as part of
answer scoring functions, for example, based on computed
candidate answer lexical types (LTS).
0035. As described below with respect to FIG. 3, after
processing an input query to determine a LAT and searching
and obtaining one or more candidate answers, there is per
formed for each candidate answer received the steps of
matching the candidate against instances in a database which
results in generating an output data structure, including the
matched instances 132a; looking (searching) for evidence
that the candidate answer has the required LAT and retrieving
LT(s) associated with those instances in the knowledge base
(KB) 132b; and attempting to match LAT(s) with LTCs) (e.g.,
as determined by a matching function that using a parser, a
semantic interpreter and/or a simple pattern matcher) and
producing a score representing the degree of match 132c.
More particularly, the candidate answer LT and query LAT(s)
are represented as lexical strings. Production of the score,
referred to as a “TyCor' (Type Coercion) score, is comprised
of the three steps: (1) candidate answer to instance matching,
(2) instance to type association extraction, and (3) LAT to
type matching. The score reflects the degree to which the
candidate may be “coerced to the LAT, where higher scores
indicate a better coercion.

0036. In one embodiment, as will be described herein with
respect to FIG. 4, the present disclosure extends and comple
ments the effectiveness of the system and method described
in co-pending U.S. patent application Ser. No. 12/126,642 by
automatically providing a source of information that associ
ates “entities', e.g., candidate answers for questions, to lexi
cal types. Programmed components build or populate a
repository of information, e.g., a database or knowledge base
(KB) that can be used to accomplish the task of computing
one or more lexical types (LT) for each candidate answer by
facilitating automatic retrieval of “types' associated with
answer instances (answer-typing) in a KB as described with
respect to step 132b in FIG. 3. That is, given an instance (e.g.,
a word Such as a noun) the method automatically evaluates the
LT specified where the answer-typing data exists in a form
that has a limited amount of explicit structure, i.e. semi
structured. In one aspect, the system and method produces a
knowledge base of instances and types used in matching.
0037. Furthermore, as will be described herein with
respect to FIGS. 5-7, a system and method is provided that
can be used to automatically perform the task of “matching

US 2012/0330934 A1

query LATs to candidate answer LTS Such as when perform
ing an answer scoring function in the QA System of FIG. 1
that can be implemented at step 132c in FIG.3. For candidate
answer to instance matching, the candidate answer is matched
against an instance or instances within the knowledge
resource (e.g., a database or KB, or webpage), where the form
the instance takes depends on the knowledge resource, and
lexical types (LT) associated with those instances are
retrieved from the knowledge base (KB).
0038. The system and method for extracting and using
typing information from Sources with limited structure and
using that extracted type information for answering questions
is now described. In practice, the method is generally per
formed during the build of the KB, typically as off-line pro
cesses; however, can be performed during real-time running
of QA invocations, such as described in U.S. patent applica
tion Ser. No. 12/126,642.
0039. The system and method utilizes machine processing
for answering questions that employs special processing
steps in which information with limited structure is automati
cally extracted from the various data sources and databases
and re-represented in a form suitable for machine (auto
mated) processing. The results may then be used in question
answering as specified in commonly-owned, co-pending U.S.
patent application Ser. No. 12/126,642, whereby given an
input query LAT, an output is a judgment whether an entity is
an instance of a concept, e.g., by evaluating whether a thing,
e.g., noun, or a word, or entity, is of or has the Lexical Answer
Type specified.
0040. An embodiment of the process for extracting collec
tions of entity-type pairs from semi-structured text is now
described with reference to FIG. 4. As shown in FIG. 4, the
computer-implemented method at 202 includes automati
cally identifying pages (e.g., documents, lists, and other data
content) having limited structure (i.e., "semi-structured) that
can be stored, accessed or obtained from a data source or
database, etc. The data sources may include, but are not
limited to, e.g., public or private databases or knowledge
bases, Intranets, the Internet, web-pages, which can be
searched and/or crawled for content, e.g., using a search
engine, Web-based crawler, or other search tools. Further
Sources can include a memory storage device Such as a hard
disk drive including content such as, for example, a knowl
edge base, which can be searched and iterated through to
identify stored semi-structured content to be processed.
0041. The process for extracting collections of entity-type
pairs from semi-structured text may be done either as a pre
processing step, or on-demand at the time that the question is
received as input to the system.
0042. One kind of limited structure the computer-imple
mented method identifies is pages or documents that are
explicitly labeled as having a list (i.e., a labeled list of ele
ments). For example, WikipediaR) (a registered service mark
of Wikimedia Foundation, Inc.) pages that are titled “List of
followed by a noun phrase). Lists refer to lists of instances of
a specified “type. For example, http://en.wikipedia.org/
wiki/List of poets presents a list of poets; there is an entry in
this list for Robert Frost, which implies that Robert Frost is a
poet.
0043. Another type of limited structure is a tag, such as a
category in WikipediaR) or a Uniform Resource locator
(URL) such as a Social bookmark (e.g., from http://delicious.
com/). For example, the Wikipedia page for Robert Frost has
an explicit Wikipedia category of “English-language poets'

Dec. 27, 2012

which is a subcategory of “Poets by language' which is a
subcategory of “Poets.” Thus one might conclude that Robert
Frost is a poet. Documents of this sort are typically designed
to facilitate comprehension by a human reader, unlike fully
structured text Sources which are designed for machine pro
cessing.
0044) Next, as shown in FIG. 4, the computer-imple
mented method at 205 includes automatically identifying
item-delimiting markup. That is, the lists (input) have a
markup, e.g., that my be found using a parsing function, for
example, including, but not limited to, a title, header or reci
tation of the word “list, bullet markers, parentheses, a hyper
text link which may be an indicator of a list, at table column/
row, or any marker which can be identified.
0045. The identified list elements (content) may be
tagged, flagged or otherwise identified in the knowledge base
or memory e.g., in the disk, Volatile or non-volatile memory
storage, for Subsequent access of the identified contents, e.g.,
during QA processing in one embodiment or prior to QA
processing as a preprocessing step in another embodiment.
This includes discerning what might not be desired list con
tent, i.e. not part of list entry. For example, in the list of US
Poets, the content that would include the year (e.g., 1852)
would not be relevant if the list is of poets, and thus may not
be output or flagged.
0046. The next automated step 210 shown in FIG. 4
includes extracting Entity Lexical-type Pairs. That is, besides
identifying pages or documents having delimited items (e.g.,
a bulleted list of contents) the identifying step further includes
identifying the lexical type of the delimited items that may be
obtained from the content, e.g., a title or header, in front of the
list items. In one embodiment, each lexical type and corre
sponding identified item(s) are then paired and the pair is
stored in the knowledge-base using its internal mechanism for
storing pairs, e.g., in a relational data-base management sys
tem or a more specialized combination of arrays and/or linked
list structures. The output of the processing of FIG. 4 is stored
in the KB 21 of FIG. 1.
0047 One publicly-available example of such a list page
that is identified in step 202, 212 is http://en.wikipedia.org/
wiki/List of poets from the United States. That page (as
of July, 2010) includes on it a bulleted list 213 with poet
names and some years in which they lived in parentheses.
This list page may be identified by a search engine or crawler,
via a web or Internet-search, or a search at a local networked
or attached hard disk drive providing an information base
having documents with semi-structured text.
0048 Thus, in the example, as shown in FIG. 4 at 212, a
page may be identified as having content such as a title "List
of Poets from the United States' 218. Further, the identified
list page may include delimited mark-up 215 which may be
searched and identified, for example, bullets, as shown in
front of each of the items (entities) in the list 213. In the
example, as shown in FIG. 4, at 215, those entities that can be
recognized as items of the list 213 are marked in italicized
text. In this example, a candidate answer LT is assigned
“poets from the United States', for example, from the “list of
title 218.
0049. At 220 in FIG. 4, implemented functions perform
identifying and extracting of pairs of the entities and their
lexical types, inferred from the fact that instances in the list
are instances of the lexically expressed “type' derived from
the title of the list. In this case, the instances include “Robert
Frost' and others, and the lexically expressed type is “poets

US 2012/0330934 A1

from the United States. In one embodiment, the LT may be
stored in or flagged in a “Type' field with the identified and
extracted candidate answer instances (entities or items) relat
ing to the type or contents are stored as linked structures in an
“Entity” field. These fields are encoded in a knowledge-base,
which may be implemented using a relational database man
agement system or a more specialized combination of arrays
and/or linked list structures. The knowledge base thus stores
the identified, extracted entity-type relations including a lexi
cal type associated with one or more candidate answer enti
ties as a searchable content structure 220.
0050. In some cases, precise extraction of the lexical type
requires distinguishing between the lexical type from the
organizational information. For example, "List of novels by
point of view” provides elements with lexical type “novel
and organizes those elements by point of view. In contrast, a
“List of novels by Henry James' would provide elements
with lexical type “novel by Henry James' and does not give
any information about the organization of the list. On the
other hand, it may not be necessary to make Such precise
judgments, depending on the specific LAT to Type Matching
(LATTE) configuration used; for example the “headword”
passage matcher (see below), that will recognize “novel” as
the headword in either case.
0051. Thus, example processing elements implemented
by programmed methods stored in a non-transitory storage
medium, e.g., a memory storage device, for handling "list of
pages include functionality for: 1. Identifying the “type' that
the list is enumerating.: 2. Identifying the elements (entities)
of the list (using the text of the list elements, hyperlinks on the
elements, titles of the documents that those hyperlinks point
to, etc.); and, 3. Inferring that each element (identified in #2)
is of the type (identified in #1).
0052. In FIG.4, the first step in the automatic extraction of
entity/lexical-type pairs method, in one embodiment, imple
ments a search tool to simply select all of the text following
"List of...' documents, e.g., from an encyclopedic database
source. That is, step 202 above is the identification of list
bearing pages within the resource which process can include
filtering pages whose title starts with “List of or, can involve
an automatic classifier. In one embodiment, the classifier is
trained using statistical machine learning: the learning pro
cess is given a set of examples of list bearing pages and
examples of non-list bearing pages and one or more algo
rithms that generate features and the classifier identifies some
combination of those features that Suggest that a page is or is
not list bearing. Features that are useful for this purpose
include structural elements (e.g., tables or bulleted lists) and
lexical elements (e.g., the presence of the word “list on the
page).
0053. In one embodiment, higher precision extraction
requires additional logic. For example, many list names pro
vide additional information about the organization of the list.
0054) In one embodiment, step 205 in FIG. 4, is the
abstraction of the mark-up contained in the original pages
into two elements related to the extraction task: headers and
bullets. Headers refer to section markers, while “bullets', for
example, designate a set of mark-up elements that are used
within the page to delimit list elements. Other delimiters
include but are not limited to: bullets, table rows, etc.
0055. The second step further addresses many different
ways that list membership can be indicated in semi-structured
text (lists, tables, etc.). For example, many lists include not
only the elements but also context and commentary regarding

Dec. 27, 2012

the elements along with functionality implemented for sepa
rating the elements from the other text. Furthermore, associ
ating the extracted elements with instances in a fixed knowl
edge-base may be non-trivial. In some cases, the semi
structured content explicitly provides that information (e.g.,
the entries in WikipediaR) “List of pages are usually hyper
links, and the URLs that they link do can be interpreted as
unique identifiers for knowledge-base instances). In other
cases, an explicit instance lookup step may be required, using
the same mechanism that implements step 132a in FIG. 3.
That step is applied to candidate answers, and it is also
applied to extracted elements from a list.
0056. In a further embodiment, explicit lookup may not be
needed, as the system may map names of instances to lexical
types. The process further addresses cases in which the list
name includes a conjunction. For example, any element of a
“List of cities and towns along the Ohio River' is a city or a
town that is near the Ohio River. In one embodiment, a list
title in which the lexical type is conjoined is split into two
distinct lexical types and a distinct entry in the knowledge
base is added for each. In another embodiment, the entire
lexical type including the conjunction may be included in the
knowledge-base and special logic for handing the conjunc
tion would be employed at phrase matching time (as
described herein below with respect to FIG. 8 processing at
350).
0057. In FIG. 4, step 210 is the extraction of the actual
entity/lexical-type pairs. The lexical type is extracted from
the title of the page (e.g., by dropping the “List of at the
beginning of the title, if any). Each entity is extracted with the
aid of the abstract bullet mark-up added in the prior step. For
each bullet, instances of a hyperlink closer to the bullet are
searched for and, if there are no hyperlinks between the bullet
and the next one, no entity is extracted for that bullet. The
target for that hyperlink will be the entity of the extracted
entity/lexical-type pair. In the event of missing hyperlinks,
the technique is expanded to extract entities as the most
salient phrase (usually the subject) in the bullet text, as deter
mined by an automatic salience annotator.
0058. The three-step process shown in FIG. 4 for handling
“list of pages is a specialization of a more general process for
extracting entity-type pairs from Sources with limited struc
ture:

0059 A more general formalism applies to sources that
may not include "list of pages. The process steps employed
in such cases would include: 1. Identifying text that the lim
ited structure implies is a type; 2. Identifying text that the
limited structure implies is an entity; 3. Inferring that entities
(identified in #2) are instances of types (identified in #1). For
example, one could identify a category in a Wikipedia docu
ment from the existence of the string “Category: before the
text and the string “I” after the text; the category may be a
useful lexical type or it may require normalization or infer
ence to produce alexical type. For WikipediaR) categories, the
entity that has the type is the one that the page is about; its
name is the title of the page. Thus one extracts the title from
the page in step #2 and associates it with the type in step #3 by
adding the title and the extracted lexical type into a knowl
edge base. For example, the WikipediaR) page with title “Rob
ert Frost' has the following text in its source: “Category:
Sonneteers’. In step #1, the word “Sonneteers' is extracted
as a lexical type using the pattern described above. In step #2,

US 2012/0330934 A1

the string “Robert Frost' is extracted from the document title.
In step #3, the pair (“Sonneteers”, “Robert Frost') is added to
the knowledge base.
0060. The results of the extraction process may further
comprise pairs of strings corresponding to entities and types.
Pairs of this sort may be used to answer questions using
deferred type evaluation. One step in deferred type evaluation
is matching the lexical answer type (LAT) to the known types
of some candidate answer. That step then becomes relatively
easy if the candidate answer is an entry in a fully-structured
knowledge-base, because knowledge-base entries (by defini
tion) have formal, unambiguous types whose relationships
are known.

0061. In one embodiment, matching the LAT to the type of
Some candidate answer accounts for cases where the entities
and types were taken directly from text. For example, given a
question asking for a person, and a candidate answer that
appears on a list of poets, one can only conclude that the
candidate has a valid type if one can determine that all poets
are people. This may be possible using some dictionary or
thesaurus resource, which is more reliable if the LAT and the
known types are disambiguated to specific word senses.
Logic for using resources such as dictionaries or thesauri to
determine whether terms like person and poet are consistent
with each other is encoded in Primitive Term Matchers,
described below.

0062. In a further aspect, the function or process for
matching that can be implemented at 132C in FIG. 3, is now
described in connection with the process 300 described in
connection with FIG. 5.

0063. In one aspect, the evidence gathering and answer
scoring module 50 of QA system 10 is programmed to receive
inputs including a question LAT 302, obtained from process
ing of the query, and an input including the candidate answer
lexical type 312 obtained, for example, from the KB. As
shown in FIG. 5, in one embodiment, a text processing func
tion 325 is invoked, and, in one embodiment, one or more
computer-implemented processes for “LAT to Type Match
ing (LATTE) may be performed including: 1. Matching
individual terms (e.g., matching "country’ to “nation'); and
2. Matching entire phrases (e.g., matching "country with a
national currency' to “nation with its own currency'). The
latter (phrase matchers) are composed of the former (term
matchers) plus control logic implemented to determine which
terms to try to match and how to combine the scores of the
term matches into a score for the phrase match.
0064. As shown in FIG. 5, in one embodiment, this text
processing 325 may be implemented by an off the shelf text
processor including functionality for breaking the received
question LAT 302 and candidate lexical type 312 phrases into
tokens, and determining the grammatical relationships
amongst the tokenized words or phrases, or grammatical roles
therebetween.

0065. More particularly, the text processing component
325 divides each of the inputs into distinct terms (e.g., via a
tokenization process). In one embodiment, the component
further applies syntactic and/or semantic analysis as required
by the phrase matcher or term matchers using established
state-of-the-art natural-language processing technologies;
for example, it may use a parser to identify the head word of
its input, for use by the head-word passage matcher. For
example, breaking down aphrase grammatically leaves a root

Dec. 27, 2012

word and word(s) that modify or relate to the word (modifier
(e.g., adjective) of a noun phrase including a head-word (the
noun)).
0066. In one aspect, as referred to herein and shown in
FIG. 5, this text processing applied to produce both question
LAT results 330 and the processed candidate answer lexical
type (LT) results 340. These results 330, 340 may be orga
nized as linked nodes in a database which may be then subject
to one or more matching components embodied as pro
grammed phrase and term matcher components 345 in FIG.5.
These components generate a matching score 346 indicating
a degree of match.
0067 FIG. 6 depicts a block diagram of an example phrase
and term matching methodology 345. These functions are
embodied as (1) a phrase match and (2) a term matcher. A
computer-programmed phrase matcher component 350
implements processing to receive an input pair of phrases
(each of which consists of one or more terms) and produce as
output a judgment regarding the degree of match between the
two phrases. A term matcher 355 takes as input of pair of
terms and produces as output a judgment regarding the degree
of match between the two terms.
0068. In one aspect, the phrase matching component 350
provides functionality to decide which pairs of terms to com
pare using the term matcher 355 and how to combine the
conclusions of the term matcher into a conclusion regarding
the degree of match of the phrases. The term matcher is a
“delegate' of the phrase matcher. The term “delegate' refers
to a relationship among two functional units in which one of
the units invokes the other to provide an implementation of
Some of its functionality.
0069. In view of FIG. 6, one example of a phrase matcher
350 is a headword phrase matcher 351, which treats each
phrase as a headword plus a collection of modifiers and
attempts to match headwords to headwords and modifiers to
modifiers. That is, a headword phrase matcher 351 compo
nent applies its specified term matcher to the grammatical
head-word of the LAT and the grammatical head-word of the
candidate answer lexical type. For example, Such a matcher
configured with a 'string-equals' term matcher would give a
high match score to “European nation' and “nation on Earth’
because both phrases have the head-word “nation.”
0070. In one embodiment, shown in FIG. 6, there are two
broad Sub-classes of term-matching components imple
mented: 1. Primitive term matchers 355a employ a single,
specific matching strategy and provide a score based on the
degree of match; and, 2. Aggregate term matchers 355b com
bine multiple matchers (which may be primitive or aggre
gate).
0071 A Primitive term matcher 355a employs a strategy
to determine the extent to which the input pair(s) of terms
match each other. A simple example of a primitive term
matcher is a “text-equals’ primitive term matcher 356 which
considers a pair of terms with identical text to match and any
other pair of terms to not match. For example, text-equals
primitive term matcher 356 provides a score of 1.0 to strings
that are identical and 0.0 to strings that are not identical. A
more complex example of a primitive term matcher is the
“geopolitical term matcher 366, which applies only to pairs
of terms that are both geopolitical entities and gives high
scores when the terms are equivalent (e.g., “U.S. and
“America) and/or closely related (e.g., “U.S. and “Texas').
A more complex example of a primitive term matcher 355a is
a “thesaurus synonym term matcher (not shown), which

US 2012/0330934 A1

provides a high score to terms that are synonyms in a known
thesaurus; such a matcher may be more precise if it uses the
Surrounding context to disambiguate the terms. Another
example of a primitive term matcher 355a is a “string-edit
distance' term matcher (not shown), which gives a high score
to terms that have approximately the same letters (e.g.,
elephant ~-elephand), which can be very useful in contexts
where minor spelling errors are common.
0072. In FIG. 6, an aggregate term matcher 355b employs
one or more “delegate' term matchers each of which may be
primitive 355a or aggregate 355b. If a delegate term matcher
is an aggregate, it will also have delegates, which will also be
primitive or aggregate. Each aggregate term matcher invokes
one or more of its delegates according to its control logic. The
aggregate term matcher implements functionality for com
bining the score of those delegates according to its combina
tion logic. Each primitive term matcher employs internal
logic for computing a score and returning the score.
0073. In one embodiment, the matchers that are combined
together by a single aggregate term matcher 355b are del
egates of that matcher. Each aggregate term matcher imple
ments a control flow as described in FIG. 7 among its del
egates and some strategy for combining the results of the
delegates into a single score.
0.074 Aggregate term matcher combining functionality
includes flow control among its delegates and implements
strategy for combining the results of applying the delegate
term matchers into a final conclusion regarding the degree of
match between the pair of terms. In one embodiment, the
combined results of the delegates generate a single score. For
example, an aggregate term matcher 355b runs all of its
delegates and then returns the sum of all of the scores of all the
delegates. An example of an aggregate term matcher 355b is
a maximum score aggregate term matcher 367, which takes
an input pair of terms, applies each of its delegates to that pair
of terms, and returns the maximum score across all of the
delegates. In another embodiment, an aggregate term matcher
355b includes a product of scores aggregate term matcher 368
which takes an input pair of terms, applies each of its del
egates to that pair of terms, and multiplies together all of the
scores of all of the delegates. In one embodiment, an aggre
gate term matchers may use a statistical model derived from
machine learning to combine the scores of the delegates into
a score for the aggregate. In one embodiment, logistic regres
sion is the machine learning method that takes labeled train
ing instances with numerical features and produces a statis
tical model that can be used to classify instances with
numerical features; it does so by assigning a numerical
weight to each feature, and then computing a score by mul
tiplying the numerical feature scores by the weights.
0075 FIG. 7 illustrates an example flow of control 500 for
the LATTE process and score production among the compo
nents depicted in FIG. 6. At 505, after receiving as input text
strings representing the phrases to be matched, the Phrase
matcher 350a1 at 510 implements logic to choose pairs of
terms, one from each of the two input phrases—the phrases
comprising: question terms and passage terms to match. At
510, after the phrase matcher 350a1 determines which terms
to invoke, and if any terms are delegate terms, will determine
whether a delegate term is aggregated (i.e., includes multiple
terms). At 510, if a delegate term is aggregated, the phrase
matcher invokes its delegate term aggregate matcher imple
menting functions 355a1; otherwise, will invoke a primitive
term matcher 355b. At 512, aggregate term matcher functions

Dec. 27, 2012

355a1 selects one of its delegates to match that pair of terms:
that delegate is either a primitive 355b or the lower-level
aggregate matcher implementing functionality 355a1.
(0076. At 514, primitive term matcher 355b uses its single,
atomic term matching logic to compute a score indicating
how well the pair of terms match. In one embodiment, atomic
algorithms may determine whether a pair of terms mean the
same thing (e.g., using a dictionary with synonyms). The
result is returned to whichever component invoked it; that
component including a higher level aggregate matcher func
tionality 355a2, or the phrase matcher functionality 350a2.
(0077. At 516, the aggregate term matcher functions 355a2
checks to see if it has any additional delegate term matchers to
try to apply to the given pair of terms in which case it returns
to either the lower level aggregate matcher functions 355a1 or
a higher level aggregate matcher functionality 355a3.
0078. At 518, with no more delegate term matchers to
apply, the aggregate term matcher functions 355.a3 computes
a final match score for the pair of terms by combining results
from all of its delegates. That result is returned to whatever
component invoked the aggregate term matcher, either the
higher-level aggregate functionality 355a2 or the phrase
matcher functions 350a2.

(0079. At 520, the phrase matcher functions 350a2 checks
to see if there are any other pairs of terms that it needs to
match in order to determine how well the phrase matches.
Thus the phrase matcher 350a2 invokes phrase matcher func
tions 350a1; otherwise, will invoke further phrase matcher
functionality 350a3. That is, at 525, with no more pairs of
terms to match, the phrase matcher functions 350a3 computes
a final score for the two input phrases by combining results
from each call to its delegate term matcher. That result is
returned as the final output of the phrase matching process
which ends at 530.

0080 Utilizing matching process as described in FIG. 7,
FIG. 8 illustrates an example flow control for the LATTE
process of FIGS. 5-6 applied for a non-limiting example of an
initial query or question “What American poet published his
first book in 1913 while living in England?' A question analy
sis component identifies “American poet as a LAT in this
question according to common QA System processing Such as
described in U.S. patent application Ser. No. 12/126,642. A
candidate answer generation component of the question
answering system identifies, for the example, a search candi
date answer: e.g., Robert Frost. In one embodiment, the
method determines whether this candidate answer is an
instance of the LAT (i.e., is “Robert Frost' an American
poet) using semi-structured resources such as obtained in the
real-time or off-line manner described above with respect to
FIG. 4.

I0081. In the flow control for the example matching process
of FIG. 7 applied for the non-limiting example, when the
LATTE process (LAT to lexical type matching process) is
automatically run as part of the QA System process, a specific
question LAT 302 and a specific candidate answer lexical
type 312 is available. In the example, the question LAT that
was extracted is “American poet 368. The example candi
date answer is “Robert Frost.” The pairs extracted in FIG. 4
include a pair relating “Robert Frost' to the lexical type
“poets from the United States, which is a candidate-answer
lexical type 369. In the example embodiment described with
respect to processing of FIG. 6, the question LAT 302
“American poet 368 and the candidate answer lexical type

US 2012/0330934 A1

312 “poets from the United States' 369 are received as inputs
to text processing component 325.
0082 In FIG. 8, text processing 325 by a text processor
provides outputs (e.g., splitting into tokens, labeling with
grammatical roles) including versions of the received ques
tion LAT 330 and the candidate answer lexical type 340. The
phrase matcher 350 will then receive these inputs and com
pare them against each other. It does so by applying its speci
fied term matcher to the terms it selects from its inputs. The
algorithm for selecting terms is specific to any specific instan
tiation of a phrase matcher; for example, the head-word
phrase matcher selects the head-word of each phrase to match
and also attempts to match each modifier of the head-word in
the first input phrase to each modifier of the second phrase.
0083. In this non-limiting example, the text processing
325 includes performing an analysis to identify head-word
and provides lemma forms for terms and grammatical rela
tionships among those terms; a natural-language parser, pro
vides all of that information. For the example processing of
FIG. 6, the results 330 of processing the example question
LAT include, for example, the identified head-word for the
example question LAT—a root or lemmatized head-word
“Poet'370 (e.g., “poets” is lemmatized to head-word “poet’),
and further detecting that “American 371 is acting as noun
modifying adjective as indicated by connector 373 labeled
“nad' indicating a grammatical relations amongst the terms,
e.g. an adjective modifying the noun "poet'). Likewise, text
processing results 340 of the candidate answer lexical type
312 includes: the lemmatized result head-word “Poet' 342
(e.g., “poets' is lemmatized to head-word “poet'). The pro
cessing further includes automatically detecting the preposi
tional phrase “from the United States' 347 where it is deter
mined the preposition “from, object of preposition “United
States', and determiner “the for the processed candidate
answer lexical type 312 (typically this information would be
provided by a natural-language parser). The root or head
word and all grammatical relationships may be represented in
Software program as nodes interconnected by labeled connec
tors, e.g., connector 343a labeled “prep” pointing head-word
342 to the preposition “from': the connector 343b labeled
“obj’ pointing the preposition “from to the object “United
States'; and, the connector 343c labeled “det” pointing the
object “United States' to the determiner “the indicating a
grammatical relations amongst the phrase terms, including
determiner “the 344.
0084. The phrase matcher 350 then automatically applies
a specified term matcher to compare processed results (terms)
330 in the questions lexical answer type 302 to results
(terms) 340 in a lexical type of the candidate answer 312.
I0085. First, the phrase matcher 350 determines which
terms in the question’s lexical answer type to attempt to
match to terms in the candidate answers lexical type. For
example, the phrase matcher determines that the head-word
(i.e., the root node for each graph, in both cases, labeled
'poet') is in the same logical position; this graph is derived
from the output of the natural-language parser. The phrase
matcher 350 also determines that the noun-adjective modifier
371 (e.g., “American”) fills a comparable role to the object of
the preposition 345 in the processed candidate answer lexical
type 345 (e.g., “United States'). The aggregate term matcher
355 is then responsible for determining if those terms do
actually match. In this example, two delegate primitive term
matchers 355 are used: a “text-equals' term matcher 356 that
receives the inputs and implements functions to determine

Dec. 27, 2012

and conclude that “poet' 370 from the question LAT and
“poet'342 from the candidate answer lexical type are exactly
equal and a specialized geopolitical matcher 366 that deter
mines from the input that “American 371 and “United
States' 345 are consistent with each other.

0086 More particularly, a programmed processing system
is configured with a headword phrase matcher 351 that is
configured with a term matcher, e.g., the maximum score
aggregate term matcher 355a. The maximum score aggregate
term matcher 355a is configured with two delegate term
matchers: the text-equals primitive matcher 356 and the geo
political term matcher 366. This phrase matcher 351 receives
as input two phrases: “American poet'368 and “poet from the
United States' 369. Prior to executing the phrase matcher,
text analysis has been run that has identified “poet as the
headword 342,370 of each of these phrases. It also indicates
grammatical relationships among the terms, e.g., that
“American modifies poet in the first phrase and that “United
States' modifies poet in the second. The phrase matcher takes
pairs of terms from each results 330,340 and uses the results
of text analysis to decide to compare “poet' in the first phrase
to “poet' in the second phrase (because each is the headword
of its phrase). Consequently, it invokes the aggregate term
matcher 355b on this pair of terms. The aggregate term
matcher 355b then invokes the text-equals primitive term
matcher, which observes that the strings are identical and
gives the pair of terms a high score. The aggregate term
matcher also invokes the geopolitical primitive term matcher,
which does not provide an opinion because it only applies to
geopolitical entities. The aggregate term matcher 355b then
computes the maximum of these results, which is the high
score from the text-equals primitive term matcher. Thus it has
a high score for the pair (“poet”, “poet’). Next, the phrase
matcher 351 decides to compare “American to “United
States' because both are modifiers of the headword. It does so
by invoking the aggregate term matcher 355b. The aggregate
term matcher invokes the text-equals primitive term matcher
356, which observes that the strings are not identical and
gives the pair of terms a 0 score. The aggregate term matcher
also invokes the geopolitical primitive term matcher 366
which uses a knowledge-base of geopolitical entities which
asserts that “American and “United States' refer to the same
place; the geopolitical primitive term matcher 366 thus
returns a high score for this pair of terms. The aggregate term
matcher takes these two results (a 0 score from text-equals
and a high score from geopolitical) and takes the maximum
among them, which is a high score.
I0087. It returns this high score to the phrase matcher,
which now has high scores for both the headword (“poet’)
and the modifier (“American”) in the first phrase matching
corresponding terms in the second phrase. It combines these
and returns a conclusion indicating that the two phrases match
very well.
I0088. Having found the question LAT and the candidate
answer lexical type match, and the system concludes that the
candidate answer “Robert Frost meets the type require
ments for this question.
I0089. Thus, the two components: the process for extract
ing collections of entity-type pairs from semi-structured text
of FIG. 4; and, the process for matching in FIGS. 5-7 are
tightly integrated and complement each other when used in
QA system, and further also be used in radically different
devices.

US 2012/0330934 A1

0090 FIG. 1 shows a system diagram described in U.S.
patent application Ser. No. 12/126,642 depicting a high-level
logical architecture 10 and methodology in which the system
and method for deferred type evaluation using text with lim
ited structure is employed in one embodiment.
0091 Generally, as shown in FIG. 1, the high level logical
architecture 10 includes a Query Analysis module 20 imple
menting functions for receiving and analyzing a user query or
question. The term “user” may refer to a person or persons
interacting with the system, or refers to a computer system 22
generating a query by mechanical means, and where the term
“user query refers to Such a mechanically generated query
and context 19'. A candidate answer generation module 30 is
provided to implement a search for candidate answers by
traversing structured, semi structured and unstructured
Sources contained in a Primary Sources module 11 and in an
Answer Source Knowledge Base (KB) module 21 containing
collections of relations and lists extracted from primary
sources. All the sources of information can be locally stored
or distributed over a network, including the Internet.
0092. The Candidate Answer generation module 30 of
architecture 10 generates a plurality of output data structures
containing candidate answers based upon the analysis of
retrieved data. In FIG. 1, an Evidence Gathering and answer
scoring module 50 interfaces with the primary sources 11 and
knowledge base 21 for concurrently analyzing the evidence
based on passages having candidate answers, and scores each
of candidate answers, in one embodiment, as parallel process
ing operations. In one embodiment, the architecture may be
employed utilizing the Common Analysis System (CAS) can
didate answer structures as is described in commonly-owned,
issued U.S. Pat. No. 7,139,752, the whole contents and dis
closure of which is incorporated by reference as if fully set
forth herein.
0093. As depicted in FIG. 1, the Evidence Gathering and
Answer Scoring module 50 comprises a Candidate Answer
Scoring module 40 for analyzing a retrieved passage and
scoring each of candidate answers of a retrieved passage. The
Answer Source Knowledge Base (KB) 21 may comprise one
or more databases of structured or semi-structured sources
(pre-computed or otherwise) comprising collections of rela
tions (e.g., Typed Lists). In an example implementation, the
Answer Source knowledge base may comprise a database
stored in a memory storage system, e.g., a hard drive.
0094. An Answer Ranking module 60 provides function
ality for ranking candidate answers and determining a
response 99 returned to a user via a user's computer display
interface (not shown) or a computer system 22, where the
response may be an answer, or an elaboration of a prior
answer or request for clarification in response to a question—
when a high quality answer to the question is not found. A
machine learning implementation is further provided where
the “answer ranking module 60 includes a trained model
component (not shown) produced using a machine learning
techniques from prior data.
0095. The processing depicted in FIG. 1, may be local, on
a server, or server cluster, within an enterprise, or alternately,
may be distributed with or integral with or otherwise operate
in conjunction with a public or privately available search
engine in order to enhance the question answer functionality
in the manner as described. Thus, the method may be pro
vided as a computer program product comprising instructions
executable by a processing device, or as a service deploying
the computer program product. The architecture employs a

Dec. 27, 2012

search engine (e.g., a document retrieval system) as a part of
Candidate Answer Generation module 30 which may be dedi
cated to searching the Internet, a publicly available database,
a web-site (e.g., IMDB.com) or, a privately available data
base. Databases can be stored in any storage system, non
Volatile memory storage systems, e.g., a hard drive or flash
memory, and can be distributed over the network or not.
0096. As mentioned, the system and method of FIG. 1
makes use of the Common Analysis System (CAS), a sub
system of the Unstructured Information Management Archi
tecture (UIMA) that handles data exchanges between the
various UIMA components, such as analysis engines and
unstructured information management applications. CAS
Supports data modeling via a type system independent of
programming language, provides data access through a pow
erful indexing mechanism, and provides Support for creating
annotations on text data, Such as described in (http://www.
research.ibm.com/journal/si/433/gotz.html) incorporated by
reference as if set forth herein. It should be noted that the CAS
allows for multiple definitions of the linkage between a docu
ment and its annotations, as is useful for the analysis of
images, video, or other non-textual modalities (as taught in
the herein incorporated reference U.S. Pat. No. 7,139,752).
(0097. In one embodiment, the UIMA may be provided as
middleware for the effective management and interchange of
unstructured information over a wide array of information
Sources. The architecture generally includes a search engine,
data storage, analysis engines containing pipelined document
annotators and various adapters. The UIMA system, method
and computer program may be used to generate answers to
input queries. The method includes inputting a document and
operating at least one text analysis engine that comprises a
plurality of coupled annotators for tokenizing document data
and for identifying and annotating a particular type of seman
tic content. Thus it can be used to analyze a question and to
extract entities as possible answers to a question from a col
lection of documents.

0098. As further shown in greater detail in the architecture
diagram of FIG. 1, the “Query Analysis” module 20 receives
an input that comprises the query 19 entered, for example, by
a user via their web-based browser device. An input query 19
may comprise a text string. The query analysis block 20
includes additionally a Lexical Answer Type (LAT) block 200
that implements functions and programming interfaces to
provide additional constraints on the answer type (LAT). The
computation in the block 20 comprises but is not limited to the
Lexical Answer Type. The LAT block 200 includes certain
functions/sub-functions (not shown) to determine the LAT.
0099. As mentioned above, a LAT of the question/query is
the type (i.e. the descriptor) of the referent of the entity that is
a valid answer to the question. In practice, LAT is the descrip
tor of the answer detected by a natural language understand
ing module comprising a collection of patterns and/or a parser
with a semantic interpreter. With reference to the Lexical
Answer Type (LAT) block 200, in the query analysis module
20 of FIG. 1, the LAT represents the question terms that
identify the semantic type of the correct answer. In one
embodiment, as known, a LAT may be detected in a question
through pattern LAT detection rules. These rules are imple
mented and can be encoded manually or learned by machine
automatically through association rule learning. In this case,
the natural language understanding model can be limited to
implementation the rules.

US 2012/0330934 A1

0100 FIG. 2 is a flow diagram of a computer programmed
method for conducting questions and answers with deferred
type evaluation in one embodiment as described in Ser. No.
12/126,642. Generally, in the method of “deferred type evalu
ation' depicted in FIG. 2, a first processing step 112 repre
sents the step of receiving, at a processing device, an input
query, and generating a data structure, e.g., a CAS structure,
including a question string and context for input to a Lexical
Answer Type (LAT) processing unit block 200 (FIG. 1)
where, as indicated at step 115, the Query is analyzed and
lexical answer type (LAT) is computed. As a result of pro
cessing in the LAT processing component, as run at Step 115,
there is generated an output data structure, e.g., a CAS struc
ture, including the computed LAT and possibly additional
terms from the original question.
0101. As result of processing in the LAT block 200 then, as
typified at step 120, there is generated an output data struc
ture, e.g., a CAS structure, including the computed original
query (terms, weights) (as described in co-pending U.S.
patent application Ser. No. 12/152,441 the whole contents
and disclosure of which is incorporated by reference as if
fully set forth herein.
0102 Returning to FIG. 2, at processing step 122, there is
performed the step of searching for candidate answer docu
ments, and returning the results.
0103) As a result of processing in a candidate answer
generation module, as typified at Step 122, there is generated
an output data structure, e.g., a CAS structure, including all of
the documents found from the data corpus (e.g., primary
Sources and knowledge base).
0104. In FIG. 2, step 128, there is depicted the step of
analyzing each document for a candidate answer to produce a
set of candidate answers which may be output as a CAS
structure using LAT (the lexical answer type).
0105 For the example questions discussed herein, as a
result of processing in the candidate answer generation mod
ule 30, as typified at step 132, FIG.2, those candidate answers
that are found in the document is checked against the query
LAT requirement and will be returned as answer(s) at step 133
(based on their scores).
0106 FIG. 3 described herein above, is a flow diagram
illustrating score production performed at step 132 of the flow
diagram of FIG. 2.
0107. In particular, as shown in FIG. 3, step 132 imple
ments the following steps: for each candidate answer
received, there is performed matching the candidate against
instances in the database (step 132a) which results in gener
ating an output data structure, e.g., a CAS structure, including
the matched instances; retrieving lexical types (LT) associ
ated with those instances in the knowledge base (KB) (step
132b); and, at step 132c attempting to match LAT(s) with
lexical types (LT), producing a score representing the degree
of match.
0108 More particularly, the candidate answer LT and
query LAT(s) are represented as lexical strings. Production of
the score, referred to herein as the “TyCor' (Type Coercion)
score, is comprised of three steps: candidate to instance
matching, instance to type association extraction, and LAT to
type matching. The score reflects the degree to which the
candidate may be “coerced to the LAT, where higher scores
indicate a better coercion.
0109. In candidate to instance matching, the candidate is
matched against an instance or instances within the knowl
edge resource, where the form the instance takes depends on

Dec. 27, 2012

the knowledge resource. With a structured knowledge base,
instances may be entities, with an encyclopedic source Such
as Wikipedia instances may be entries in the encyclopedia,
with lexical resources such as the WordNet(R) lexical database
(A trademark of the Trustees of Princeton University)
instances may be Synset entries (sets of synonyms), and with
unstructured document (or webpage) collections, instances
may be any terms or phrases occurring within the text. If
multiple instances are found, a rollup using an aggregation
function is employed to combine the scores from all candi
dates. If no suitable instance is found, a score of 0 is returned.
0110. Next, instance association information is extracted
from the resource. This information associates each instance
with a type or set of types. Depending on the resource, this
may take different forms; in a knowledge base, this corre
sponds to particular relations of interest that relate instances
to types, with an encyclopedic source, this could be lexical
category information which assigns a lexical type to an entity,
with lexical resources such as WordNet(R), this is a set of
lexical relations, such as hyponymy, over Synsets (e.g. "artist'
is a “person'), and with unstructured document collections
this could be co-occurrence or proximity to other terms and
phrases representing type.
0111. Then, each LAT is then attempted to match against
each type. A lexical manifestation of the type is used. For
example, with encyclopedias, this could be the string repre
senting the category, with a lexical resource Such as Word
Net(R), this could be the set of strings contained within the
Synset. The matching is performed by using string matching
or additional lexical resources such as Wordnet(R) to check for
synonymy or hyponymy between the LAT and type. Special
logic may be implemented for types of interest; for example
person matcher logic may be activated which requires not a
strict match, synonym, or hyponym relation, but rather that
both LAT and type are hyponyms of the term “person’. In this
way, “he” and “painter, for example, would be given a posi
tive score even though they are not strictly synonyms or
hyponyms. Finally, the set of pairs of Scores scoring the
degree of match may be resolved to a single final score via an
aggregation function.
0112 Thus, in an implementation set forth in steps 132a
132c of FIG. 3, for the example question described herein,
each candidate answer type (LT) in the document is automati
cally checked against the LAT requirement. This may be
performed by the Candidate Answer Scoring block 40, shown
in FIG.1, as part of the evidence gathering and answer scoring
module 50, and particularly, a Candidate Answer Type Analy
sis module 400 that produces a probability measure that Can
didate Answer is of the correct type based, e.g., on a gram
matical and semantic analysis of the document with which the
Candidate Answer appears. In one embodiment, this process
ingentails using an automated scoring function that compares
candidate answer lexical types (LTS) to the query LAT and
producing a score for each candidate answer. The a scoring
function can be expressed as a weighted combination of dif
ferent typing scores, and, in one embodiment it may be
expressed as

TyCorScore=0.2.*TyCorWordNet+0.5*TyCorKB+0.
4*TyCorDoc

0113. This expresses the preferences for more organized
sources such as knowledge bases (KB), followed by type
matching in a retrieved document, and synonyms being least
preferred way of matching types.

US 2012/0330934 A1

0114. Other combinations of scores are possible, and the
optimal scoring function can be learned as described in the
co-pending U.S. patent application Ser. No. 12/152,411
entitled SYSTEM AND METHOD FOR PROVIDING
ANSWERS TO QUESTIONS, filed May 14, 2008, the con
tent and disclosure of which is incorporated by reference as if
fully set forth herein.
0115 The scoring function itself is a mathematical expres
Sion, that—in one embodiment—could be based on the logis
tic regression function (a composition of linear expressions
with the exponential function), and may be applied to a much
larger number of typing scores.
0116. The output of the “Candidate Answer Scoring
module 40 is a CAS structure having a list of answers with
their scores given by the processing modules in the answer
scoring modules included in the Candidate Answer Scoring
block 40 of the evidence gathering and answer scoring mod
ule 50. In one embodiment, these candidate answers are pro
vided with TyCor matching score as described herein above.
0117 Finally, returning to FIG. 2, at step 133, the top
candidate answers (based on their TyCor scores) are returned.
0118. In one embodiment, the above-described modules
of FIGS. 1, 4, 5-7 can be represented as functional compo
nents in UIMA is preferably embodied as a combination of
hardware and Software for developing applications that inte
grate search and analytics over a combination of structured
and unstructured information. The software program that
employs UIMA components to implement end-user capabil
ity is generally referred to as the application, the application
program, or the software application.
0119) The UIMA high-level architecture, one embodi
ment of which is illustrated in FIG. 1, defines the roles,
interfaces and communications of large-grained components
that cooperate to implement UIM applications. These include
components capable of analyzing unstructured source arti
facts. Such as documents containing textual data and/or image
data, integrating and accessing structured sources and stor
ing, indexing and searching for artifacts based on discovered
semantic content.

0120 Although not shown, a non-limiting embodiment of
the UIMA high-level architecture includes a Semantic Search
Engine, a Document Store, at least one Text Analysis Engine
(TAE), at least one Structured Knowledge Source Adapter, a
Collection Processing Manager, at least one Collection
Analysis Engine, all interfacing with Application logic. In
one example embodiment, the UIMA operates to access both
structured information and unstructured information to gen
erate candidate answers and an answer in the manner as
discussed herein. The unstructured information may be con
sidered to be a collection of documents, and can be in the form
of text, graphics, static and dynamic images, audio and vari
ous combinations thereof.

0121 Aspects of the UIMA are further shown in FIG. 7,
where there is illustrated a Analysis Engine (AE) 600 that can
be a component part of the Text Analysis Engine (TAE).
Included in the AE 600 is a Common Analysis System (CAS)
610, an annotator 620 and a controller 630. A second embodi
ment of a TAE (not shown) includes an aggregate Analysis
Engine composed of two or more component analysis
engines as well as the CAS, and implements the same external
interface as the AE 600.

Dec. 27, 2012

Common Analysis System 610
0.122 The Common Analysis System (CAS) 610 is pro
vided as the common facility that all Annotators 620 use for
accessing and modifying analysis structures. Thus, the CAS
610 enables coordination between annotators 620 and facili
tates annotator 620 reuse within different applications and
different types of architectures (e.g. loosely vs. tightly
coupled). The CAS 610 can be considered to constrain opera
tion of the various annotators.
I0123. The CAS 610 principally provides for data model
ing, data creation and data retrieval functions. Data modeling
preferably defines a tree hierarchy of (data) types, as shown in
the exampleTable 1 provided below. The types have attributes
or properties referred to as features. In preferred embodi
ments, there are a small number of built-in (predefined) types,
Such as integer (int), floating point (float) and string, UIMA
also includes the predefined data type Annotation'. The data
model is defined in the annotator descriptor, and shared with
other annotators. In the Table 1, some “Types” that are con
sidered extended from prior art unstructured information
management applications to accommodate question answer
ing in the preferred embodiment of the invention include:

TABLE 1

TYPE's PARENT
TYPE (or feature) (or feature type)

Query Record Top
Query Query Record
Query Context Query Record
Candidate Answer Record Annotation
Candidate Answer Candidate Answer Record
Feature: Candidate AnswerScore Float
Query Lexical Answer Type Annotation
Candidate Answer LT Annotation
Feature: TyCorScore Float

0.124. In Table 1, for example, all of the question answer
ing types (list in the left column) are new types and extend
either another new type or an existing type (shown in the right
column). For example, both Query and Query Context are
kinds of Query Record, a new type; while Candidate Answer
Record extends the UIMA type Annotation, but adds a new
feature Candidate AnswerScore which is a Float. In addition,
Table 1 describes the query LAT as having a UIMA Annota
tion type; Candidate AnswerLT is also an Annotation, but with
an additional featue TyCorScore of type Float.
(0.125 CAS 610 data structures may be referred to as “fea
ture structures.” To create a feature structure, the type must be
specified (see TABLE 1). Annotations (and feature struc
tures) are stored in indexes.
0.126 The CAS 610 may be considered to be a collection
of methods (implemented as a class, for example, in Java or
C++) that implements an expressive object-based data struc
ture as an abstract data type. Preferably, the CAS 610 design
is largely based on a TAE Feature-Property Structure, that
provides user-defined objects, properties and values for flex
ibility, a static type hierarchy for efficiency, and methods to
access the stored data through the use of one or more iterators.
I0127. The abstract data model implemented through the
CAS 610 provides the UIMA 100 with, among other features:
platform independence (i.e., the type system is defined
declaratively, independently of a programming language);
performance advantages (e.g., when coupling annotators 610
written in different programming languages through a com

US 2012/0330934 A1

mon data model); flow composition by input/output specifi
cations for annotators 610 (that includes declarative specifi
cations that allow type checking and error detection, as well
as Support for annotators (TAE) as services models); and
Support for third generation searching procedures through
semantic indexing, search and retrieval (i.e. semantic types
are declarative, not key-word based).
0128. The CAS 610 provides the annotator 620 with a
facility for efficiently building and searching an analysis
structure. The analysis structure is a data structure that is
mainly composed of meta-data descriptive of Sub-sequences
of the text of the original document. An exemplary type of
meta-data in an analysis structure is the annotation. An anno
tation is an object, with its own properties, that is used to
annotate a sequence of text. There are an arbitrary number of
types of annotations. For example, annotations may label
sequences of text in terms of their role in the documents
structure (e.g., word, sentence, paragraph etc), or to describe
them in terms of their grammatical role (e.g., noun, noun
phrase, verb, adjective etc.). There is essentially no limit on
the number of, or application of annotations. Other examples
include annotating segments of text to identify them as proper
names, locations, military targets, times, events, equipment,
conditions, temporal conditions, relations, biological rela
tions, family relations or other items of significance or inter
est

0129. Typically an Annotator's 620 function is to analyze
text, as well as an existing analysis structure, to discover new
instances of the set of annotations that it is designed to rec
ognize, and then to add these annotations to the analysis
structure for input to further processing by other annotators
620.

0130. In addition to the annotations, the CAS 610 of FIG.
7 may store the original document text, as well as related
documents that may be produced by the annotators 620 (e.g.,
translations and/or Summaries of the original document).
Preferably, the CAS 610 includes extensions that facilitate the
export of different aspects of the analysis structure (for
example, a set of annotations) in an established format. Such
as XML.

0131 More particularly, the CAS 610 is that portion of the
TAE that defines and stores annotations of text. The CASAPI
is used both by the application and the annotators 620 to
create and access annotations. The CAS API includes, pref
erably, at least three distinct interfaces. A Type system con
trols creation of new types and provides information about the
relationship between types (inheritance) and types and fea
tures. One non-limiting example of type definitions is pro
vided in TABLE 1. A Structure Access Interface handles the
creation of new structures and the accessing and setting of
values. A Structure Query Interface deals with the retrieval of
existing structures.
0132) The Type system provides a classification of entities
known to the system, similar to a class hierarchy in object
oriented programming. Types correspond to classes, and fea
tures correspond to member variables. Preferably, the Type
system interface provides the following functionality: add a
new type by providing a name for the new type and specifying
the place in the hierarchy where it should be attached; add a
new feature by providing a name for the new feature and
giving the type that the feature should be attached to, as well
as the value type; and query existing types and features, and
the relations among them, such as “which type(s) inherit from
this type'.

Dec. 27, 2012

0.133 Preferably, the Type system provides a small num
ber of built-in types. As was mentioned above, the basic types
are int, float and string. In a Java implementation, these cor
respond to the Java int, float and string types, respectively.
Arrays of annotations and basic data types are also supported.
The built-in types have special API support in the Structure
Access Interface.

I0134. The Structure Access Interface permits the creation
of new structures, as well as accessing and setting the values
of existing structures. Preferably, this provides for creating a
new structure of a given type; getting and setting the value of
a feature on a given structure; and accessing methods for
built-in types. Feature definitions are provided for domains,
each feature having a range.
0.135. In an alternative environment, modules of FIGS. 1,
2 can be represented as functional components in GATE
(General Architecture for Text Engineering) (see: http://gate.
ac.uk/releases/gate-2.0alpha2-build484/doc/userguide.
html). Gate employs components which are reusable Software
chunks with well-defined interfaces that are conceptually
separate from GATE itself. All component sets are user-ex
tensible and together are called CREOLE a Collection of
REusable Objects for Language Engineering. The GATE
framework is a backplane into which plug CREOLE compo
nents. The user gives the system a list of URLs to search when
it starts up, and components at those locations are loaded by
the system. In one embodiment, only their configuration data
is loaded to begin with; the actual classes are loaded when the
user requests the instantiation of a resource.). GATE compo
nents are one of three types of specialized Java Beans: 1)
Resource: The top-level interface, which describes all com
ponents. What all components share in common is that they
can be loaded at runtime, and that the set of components is
extendable by clients. They have Features, which are repre
sented externally to the system as “meta-data in a format
such as RDF, plain XML, or Java properties. Resources may
all be Java beans in one embodiment. 2) ProcessingResource:
Is a resource that is runnable, may be invoked remotely (via
RMI), and lives in class files. In order to load a PR (Processing
Resource) the system knows where to find the class orjar files
(which will also include the metadata); 3) LanguageRe
Source: Is a resource that consists of data, accessed via a Java
abstraction layer. They live in relational databases; and, Visu
alResource: Is a visual Java bean, component of GUIs,
including of the main GATE gui. Like PRs these components
live in class or jar files.
0.136. In describing the GATE processing model any
resource whose primary characteristics are algorithmic. Such
as parsers, generators and so on, is modelled as a Processing
Resource. A PR is a Resource that implements the Java Run
nable interface. The GATE Visualisation Model implements
resources whose task is to display and edit other resources are
modelled as Visual Resources. The Corpus Model in GATE is
a Java Set whose members are documents. Both Corpora and
Documents are types of Language Resources (LR) with all
LRs having a Feature Map (a Java Map) associated with them
that stored attribute? value information about the resource.
FeatureMaps are also used to associate arbitrary information
with ranges of documents (e.g. pieces of text) via an annota
tion model. Documents have a DocumentContent which is a
text at present (future versions may add Support for audiovi
Sual content) and one or more AnnotationSets which are Java
Sets.

US 2012/0330934 A1

0.137 ASUIMA, GATE can be used as a basis for imple
menting natural language dialog systems and multimodal
dialog systems having the disclosed question answering sys
tem as one of the main Submodules. The references, incorpo
rated herein by reference above (U.S. Pat. Nos. 6,829,603 and
6,983,252, and 7,136,909) enable one skilled in the art to
build Such an implementation.
0138 FIG. 10 illustrates an exemplary hardware configu
ration of a computing system 400 in which the present system
and method may be employed. The hardware configuration
preferably has at least one processor or central processing
unit (CPU) 411. The CPUs 411 are interconnected via a
system bus 412 to a random access memory (RAM) 414,
read-only memory (ROM) 416, input/output (I/O) adapter
418 (for connecting peripheral devices such as disk units 421
and tape drives 440 to the bus 412), user interface adapter 422
(for connecting a keyboard 424, mouse 426, speaker 428,
microphone 432, and/or other user interface device to the bus
412), a communication adapter 434 for connecting the system
400 to a data processing network, the Internet, an Intranet, a
local area network (LAN), etc., and a display adapter 436 for
connecting the bus 412 to a display device 438 and/or printer
439 (e.g., a digital printer of the like).
0.139. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0140. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with a system, apparatus, or device running an
instruction.

0141. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and

Dec. 27, 2012

that can communicate, propagate, or transport a program for
use by or in connection with a system, apparatus, or device
running an instruction.
0.142 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc. or any Suitable combination of the foregoing.
0.143 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
run entirely on the user's computer, partly on the user's com
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).
0144 Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which run via the proces
sor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0145 The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process Such that the instructions which run on the
computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0146 The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more operable instruc
tions for implementing the specified logical function(s). It
should also be noted that, in some alternative implementa

US 2012/0330934 A1

tions, the functions noted in the block may occur out of the
order noted in the figures. For example, two blocks shown in
Succession may, in fact, be run Substantially concurrently, or
the blocks may sometimes be run in the reverse order, depend
ing upon the functionality involved. It will also be noted that
each block of the block diagrams and/or flowchart illustra
tion, and combinations of blocks in the block diagrams and/or
flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.
0147 The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.
What is claimed is:
1. A system for generating answers to questions compris

ing:
a memory storage device;
one or more processing devices, each operatively con

nected to said memory device and configured for per
forming a method comprising:
determining a lexical answer type (LAT) associated with

an input query received at an automated questions and
answer (QA) system;

obtaining one or more candidate answers to the input
query using a data source having semi-structured con
tent;

determining a lexical type (LT) for each said one or more
obtained candidate answers from said semi-struc
tured content;

comparing, at said one or more processing devices, said
query LAT with said candidate answer LT; and

generating a score representing a degree of match
between said query LAT with said candidate answer
LT, said score indicative of a quality of said obtained
candidate answer.

2. The system of claim 1, wherein said processor device is
further configured to:

identify, in said semi-structured content, one or more enti
ties and associated lexical type information; and

store, in a data storage device in communication with said
QA System, entity-type structures, each entity-type
structure representing said one or more entities and asso
ciated lexical type information, wherein said determin
ing a lexical type (LT) includes accessing said stored
entity-type structures to identify a lexical type (LT) from
a type associated with said one or more entities stored in
said entity-type data structures.

3. The system of claim 2, wherein said identifying and
storing are performed off-line as a pre-processing step.

Dec. 27, 2012

4. The system of claim 2, wherein said identifying and
storing are performed on-demand by a QA System at a time
the input query is received.

5. The system of claim 2, wherein said processor device is
configured to parse each respective said query LAT and said
candidate answer LT to obtain respective terms or phrases for
each.

6. The system of claim 1, wherein said comparing com
prises matching individual terms of respective query LAT and
candidate answer LT, or matching entire phrases of each
respective query LAT and candidate answer LT.

7. The system of claim 5, wherein processing device is
further configured to:

determine which terms of respective said query LAT and
candidate answer LT are to be used for said term match
ing:

obtain individual scores based on degree of match between
terms of respective said LAT and candidate answer LT:
and

combine obtained scores of said matches determined for
said phrase matching.

8. A system for providing content to a database used by an
automatic question and answering (QA) system comprising:

a memory storage device;
one or more processing devices, each operatively con

nected to said memory device and configured for per
forming a method to:
automatically identify semi-structured text data from a

data source:
automatically identify one or more entity-type relations

from said semi-structured text data, said entity-type
relation including one or more entities associated with
a type;

automatically extract said identified entity-type rela
tions; and

store said extracted entity-type relations as entity-type
data structures in said database,

wherein a processing device is configured to perform said
automatic identifying of semi-structured text and entity
type relations, said extracting and said storing.

9. The system as claimed in claim 1, wherein said semi
structured text comprises item-delimited markup, said auto
matically identifying of semi-structured text data comprising:

parsing content of said data source to identify said item
delimiting markup, said item delimited mark-up speci
fying said type information and entities forming an
entity-type data structure.

10. The system as claimed in claim 9, wherein said item
delimiting markup includes a title, aheader, a recitation of the
word “list of entities of a specified type, bullet markers,
parentheses, a hypertext link, a Uniform Resource Locator, a
table in said data source.

k k k k k

