一种2,4-二氯-5-氟苯甲酰氯的制备方法

摘要

本发明公开了一种2,4-二氯-5-氟苯甲酰氯的制备方法，属于有机合成领域。本发明采用2,4-二氯氟苯为原料，经过傅克反应、水解后生成中间体2,4-二氯-5-氟苯甲酰氯，并且将反应产生的副产物即二聚物(III)经过水解，氧化和酰化转化为最终产物化合物(II)，总收率达到88%以上。本发明使得原料转化率80%以上，改变了目前原料来源困难、利用率低的缺点，节约资源，降低了生产成本，并且操作简单，易于放大生产。
1. 一种2,4-二氯-5-氟苯甲酰氯的制备方法，其特征在于：

(1) 傅克反应：将2,4-二氯氟苯在路易斯酸的作用下和四氯化碳反应，得到中间体 (I) 和副产品化合物 (III)；
(2) 水解反应：中间体 (I) 在三氯化铁作用下水解得到中间体 (II)；
(3) 水解反应：中间体 (III) 在三氯化铁作用下水解得到中间体 (IV)；
(4) 氧化反应：中间体 (IV) 与氧化剂反应得到中间体 (V)；
(5) 酰化反应：中间体 (V) 与二氯亚砜反应得到中间体 (II)。

2. 根据权利要求1所述的制备方法，其特征在于：步骤 (1) 中，2,4-二氯氟苯与四氯化碳的摩尔比为 1:0.95-1:1；温度为 40℃-70℃；所述的路易斯酸为三氯化铁、三氯化铝中的一种。

3. 根据权利要求1所述的制备方法，其特征在于：步骤 (2) 中，三氯化铁与中间体 (I) 的质量比为 1:20-1:10，中间体 (I) 与水的摩尔比为 1:0.95-1:1.0。

4. 根据权利要求1所述的制备方法，其特征在于：步骤 (3) 中，三氯化铁与中间体 (III) 的质量比为 1:100-1:20，中间体 (III) 与水的摩尔比为 1:1.0-1:1.1。

5. 根据权利要求1所述的制备方法，其特征在于：步骤 (3) 在温度为 80℃-120℃的条件下进行反应。

6. 根据权利要求5所述的制备方法，其特征在于：步骤 (3) 在温度为 90℃-100℃的条件下进行反应。

7. 根据权利要求1所述的制备方法，其特征在于：步骤 (4) 中的氧化剂为浓硫酸、硝酸、
高锰酸钾、重铬酸钾、高氯酸钾、双氧水、次氯酸钠中的一种。

8. 根据权利要求1所述的制备方法，其特征在于：所述的步骤(4)在溶剂中进行反应，所述的溶剂为丙酮、N,N-二甲基甲酰胺、1,4-二氧六环、甲醇、乙醇或者异丙醇中的一种。

9. 根据权利要求1所述的制备方法，其特征在于：步骤(5)中中间体(V)与二氯亚砜的摩尔比为1:1.0~1.1,在温度为0℃~100℃的条件下进行反应。
一种2,4-二氯-5-氟苯甲酰氯的制备方法

技术领域：
[0001] 本发明属于有机合成领域，涉及制备氟喹诺酮类中间体2,4-二氯-5-氟苯甲酰氯的方法。

背景技术：
[0002] 喹诺酮类是人工合成的含4-喹诺酮母核为基本结构的抗菌药物，从20世纪70年代后期诺氟沙星问世以来，第三代喹诺酮类-氟喹诺酮类药物的研究和开发引起了抗菌药物的革命，出现了很多有临床价值的新药，如氟呱沙星，环丙沙星，罗美沙星，氟罗沙星等，成为临床主要的抗感染药物之一，仅次于头孢菌素类和青霉素类药物。氟喹诺酮类药物的结构特点是在6-位有氟原子，在7-位有取代氨基，文献报道的合成路线很多，但这些原料来源困难，且价格高。
[0003] 大部分是将氟苯乙酮(2,4-二氯-5-氟苯乙酮)为起始原料，与磷酸二乙酯缩合，再与原甲酸三乙酯进行乙氧亚甲基化，不同胺胺化，最后杂环合和不同的哌嗪取代完成。该路线主要缺点是路线中步骤使用了活性高的钠氢，存在安全隐患。
[0005] 目前用2,4-二氟氟苯作为原料，制备2,4-二氯-5-氟苯甲酰氯中间体，与不同的胺基丙烯酸甲酯缩合，经环合、取代得到氟喹诺酮类，此合成路线较短，安全性高，操作简单。
[0006] 随着沙星类药物需求量不断大，其合成中的中间体2,4-二氯-5-氟苯甲酰氯的需求量也日益增加，关于它的合成方法也有很多，安永彬等人以2,4-二氯氟苯等为原料，以三氯化铝为催化剂，NaClO溶液为氧化剂，在70-80℃反应，总收率为78.4%，该方法使用次氯酸钠等高污染、高风险的原料，且次氯酸钠需大大过量，污染大，成本高(中国抗生素杂质29(2004):529-530)。
[0008]
温新民等人提出了使用2,4-二氯氟苯与乙酰氯在三氯化铝的存在下反应制备2,4-二氯-5-氟苯乙酮，然后在硝酸作用下氧化成酸，经过酰化的2,4-二氯-5-氟苯甲酰氯，该制备方法氧化反应需要过量的硝酸，造成成本的浪费，且酰化反应需要绝对无水，不适合放大生产（济宁医学院学报23(2000):21-22）。

Selsaku.K等人使用2,4-二氯氟苯在AlCl₃催化下与四氯化碳反应引入三氯甲基，经酸性水解得到2,4-二氯-5-氟苯甲酸，再与二氯亚砜酰化得到2,4-二氯-5-氟苯甲酰氯。该制备方法第一步有约20%-30%的副产物（FC₁₂C₁₂H₂）₃CCl₂，使得原料的利用低，造成成本高，难以实现工业化生产（US52241111）。

为了降低2,4-二氯氟苯与四氯化碳反应时产生二聚物的比例，吴政杰等人发明了固体催化剂SnCl₂-SnCl₆(z-SnCl₆-Al₂O₃)以及李乙刚等人发明了固体催化剂S₃Cl₆-γ-Al₂O₃，在这些催化剂的作用下，生成2,4-二氯-5-氟-(三氯甲基)苯，再经FeCl₃催化水解即得。该方法虽然降低了二聚物的比例，但无法避免二聚物的生成，并且合成催化剂步骤繁琐，成本高，且活化温度高达到600℃，存在安全隐患，不适合放大生产（CN104725221, CN104649890）。

发明内容：

为克服现有技术中的上述原料利用率低，有副产物二聚物产生的缺点，本发明提供了一种将二聚物继续转化合成2,4-二氯-5-氟苯甲酰氯的方法，使得原料转化率80%以上，改变了目前原料来源困难，利用率低的缺点，节约资源，降低了生产成本，并且操作简单，易于放大生产。

本发明提供了一种合成氯喹诺酮类药物关键中间体（II）即2,4-二氯-5-氟苯甲酰氯的方法，采用2,4-二氯氟苯为原料，经过傅克反应，水解后生成中间体2,4-二氯-5-氟苯甲酰氯，并且将反应生成的副产物即二聚物（III）经过水解，氧化和酰化转化为最终产物化合物（II），总收率达到88%以上。
说明书

[0017]

[0018] 本发明提供了一种合成2,4-二氯-5-氟苯甲酰氯的合成方法，所述方法包括以下步骤：

[0019] 1. 酰氯反应：将2,4-二氯氟苯在路易斯酸三氯化铝的作用下和四氯化碳反应，得到中间体(I)2,4-二氯-5-氟三氯甲苯；

[0020] 2. 水解反应：中间体(I)在三氯化铁的作用下解中得到中间体(II)；

[0021] 本发明提供了一种合成2,4-二氯-5-氟苯甲酰氯的合成方法，所述方法包括以下步骤：

[0022] 3. 水解反应：中间体(III)加热至熔融状态，加入催化量三氯化铁，缓慢滴加水，反应得到中间体(IV)；

[0023] 4. 氧化反应：中间体(IV)在20℃-40℃下，与氧化剂反应得到中间体(V)。

[0024] 5. 酰化反应：中间体(V)与二氯亚砜在50-100℃下进行酰化反应，得到2,4-二氯-5-氟苯甲酰氯。

[0025] 步骤(1)中，2,4-二氯氟苯与四氯化碳的摩尔比为:1:0.95-1:1.0，温度为0℃-70℃，优选40℃-70℃；路易斯酸为三氯化铁和三氯化铝中的一种；

[0026] 步骤(2)中，三氯化铁与中间体(I)的质量比为1:20-1:10，中间体(I)与水的摩尔比为1:0.95-1:1.0。

[0027] 步骤(3)中，温度为80℃-120℃，温度过高，会导致水分损失，从而导致收率降低，优选90℃-100℃，三氯化铁与中间体(III)的质量比为1:100-1:20，中间体(III)与水的摩尔比为1:1.0-1:1.1。
步骤(4)中的氧化剂有常见的具有强氧化性酸；浓硫酸和硝酸，考虑到硝酸的安全性问题，优选浓硫酸；具有氧化性的酸，高锰酸钾，重铬酸钾，高氯酸钾，优选成本低，污染小的高锰酸钾；过氧化物酰化剂；双氧水，过氧化氢，过氧化氢，后处理操作简单，收率高；
在强氧化剂中，采用的溶剂为大极性溶剂，丙酮，N,N-二甲基甲酰胺，1,4-二氧六环等，中性
氧化剂可以选择醇类作为溶剂，甲醇，乙醇或异丙醇等。
步骤(5)中，该反应采用无溶剂反应，中间体(V)与氯化亚砜的摩尔比为1:1.0-1:1.1，引发剂为N,N-二甲基甲酰胺，温度0℃-100℃。
有益效果
1、采用简单易制备的方法合成出关键中间体(II)，避免使用高污染、高风险原料，
未使用任何破坏性溶剂，污染物排放少；
2、第一步副产物重新利用转化为产物，使得原料的转化率升至为80%以上，突破了卤代芳烃与四氯化碳反应副产物转化的技术瓶颈；
3、本发明的工艺路线简洁，原料易得，成本低，反应条件温和，操作简便，制备出的
2,4-二氯-5-氯苯甲酰氯纯度高且收率高达88%以上。
说明书附图
图1为实施例1中的化合物I的1H NMR谱图
图2为实施例1中的化合物II的1H NMR谱图
图3为实施例1中的化合物V的1H NMR谱图
具体实施方式
实施例1：一种2,4-二氯-5-氯苯甲酰氯的制备方法，总收率为89.3%。

![化学结构式](image)

将原料2,4-二氯氯苯(100g,0.606mol)加入到四氯化碳(107.4g,0.667mol)中，搅
拌溶解后，加入三氯化铁(1.52g,9.3mmol)，升温至70℃并维持2小时，液相检测原料基本消
失，降至室温，加入2.5M HClaq (500ml)淬灭反应，搅拌至澄清后分层，取下层有机相减压蒸
馏，得化合物I(128.5g,75.1%)和异丙酮化合物III(25.3g,20.3%)。

1H NMR (CDCl₃ 300MHz): δ7.548-7.646 (d, 1H), 8.024-8.115 (d, 1H)。

将无水三氯化铁(1g)加入到化合物I(20g,70.9mmol)中，加热至145℃后，缓慢滴
加水(1.27g,70.9mmol)，加完继续搅拌30分钟，气相检测原料消失，减压蒸馏得化合物II
(15.8g,98.1%)。

1H NMR (CDCl₃ 300MHz): δ7.600-7.736 (d, 1H), 7.688-7.957 (d, 1H)。
向第一步的釜残即化合物III (17g, 39.7mmol) 加入FeCl₃ (0.17g), H₂O (0.75g, 41.7mmol), 加热至120℃, 搅拌至无气体产生, 反应结束。将反应液冷却至室温, 缓慢滴入冰水中 (250ml), 边滴加边搅拌, 有白色析出, 过滤烘干的化合物IV (14.5g, 98%)。

H NMR (CDCl₃, 300MHz): 6.718 - 7.23 (d, 2H), 7.914 - 7.918 (d, 2H).

化合物IV (10g, 26.8mmol) 加入乙醇 (30ml) 中, 搅拌澄清后, 加入30%双氧水 (5ml, 44.1mmol), 加热回流过夜, 反应完全。加入100ml水, 6N盐酸水溶液调至PH=1-2, 有大量固体析出, 过滤烘干的化合物V (4.5g, 80.3%)。

H NMR (CDCl₃, 300MHz): 6.783-7.862 (d, 1H), 7.921-7.943 (d, 1H).

于反应瓶中加入化合物V (65.3g, 0.312mol), 二氯亚砜 (40g, 0.336mol) 和1滴DMF, 加热至80℃, 搅拌1小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物II (69.5, 98%)。

实施例2: 一种2,4-二氯-5-氟苯甲酰氯的制备方法, 总收率为92.1%

步骤(1): 步骤与实施例1相同, 所不同的地方在于步骤1, 本实施例的步骤1为将原料2,4-二氯氟苯 (10g, 60.6mmol) 加入到四氯化碳 (9.27g, 57.6mmol) 中, 搅拌溶解后, 加入三氯化氮 (0.124g, 0.93mmol), 升温至40℃并维持2小时, 液相检测原料基本消失。降至室温, 加入2.5M HClaq (50ml) 混灭反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物I (13.1g, 76.6%) 和釜残即化合物III (2.8g, 22.6%)。

步骤(2): 步骤与实施例1相同, 将无水三氯化铁 (2g) 加入到化合物I (40g, 141.8mmol) 中, 加热至140℃后, 缓慢滴加水 (2.54g, 141.8mmol), 加完继续搅拌30分钟, 气相检测原料消失, 减压蒸馏得化合物II (31.9g, 99%)。

步骤(3): 步骤与实施例1相同, 向第一步的釜残即化合物III (17g, 39.7mmol) 加入FeCl₃ (0.17g), H₂O (0.75g, 41.7mmol) 加热至120℃, 搅拌至无气体产生, 反应结束。将反应液冷却至室温, 缓慢滴入冰水中 (250ml), 边滴加边搅拌, 有白色析出, 过滤烘干的化合物IV...
(14.5g, 98%)。

步骤 (4): 步骤与实施例1相同, 所不同的地方在于步骤 (4), 化合物Ⅳ (10g, 26.8mmol) 加入丙酮 (30ml) 中, 搅拌澄清后, 加入高锰酸钾 (8.47g, 53.6mmol), 加热回流过夜, 反应完全。加入100ml水, 6N盐酸水溶液调至PH＝1-2, 有大量固体析出, 过滤烘干的化合物Ⅳ (4.3g, 76.7%)。

步骤 (5): 步骤与实施例1相同, 只在反应瓶中加入化合物Ⅴ (120g, 0.574mol), 二氯亚砜 (73.6g, 0.618mol) 和1滴DMF, 加热至100℃, 搅拌2小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物Ⅱ (125.3g, 96.1%)。

实施例3: 一种2,4-二氯-5-氟苯甲酰氯的制备方法, 总收率为88.5%

步骤 (1): 与实施例1相同, 将原料2,4-二氯氟苯 (100g, 0.606mol) 加入到四氯化碳 (107.4g, 0.667mol) 中, 搅拌溶解后, 加入三氯化铁 (1.52g, 9.3mmol), 升温至70℃并保持2小时, 液相检测原料基本消失。降至室温, 加入2.5M HC1aq (500ml) 淹灭反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物I (128.5g, 75.1%) 和釜残即化合物Ⅲ (25.3g, 20.3%)。

步骤 (2): 与实施例1相同, 所不同的地方在于步骤 (2), 本实施例的步骤 (2) 将无水三氯化铁 (3g) 加入到化合物I (30g, 106.3mmol) 中, 加热至145℃后, 缓慢滴加水 (1.52g, 101.0mmol), 加完继续搅拌30分钟, 气相检测原料消失, 减压蒸馏得化合物Ⅳ (14.5g, 98%)。

步骤 (3): 步骤与实施例1相同, 向第一步的釜残即化合物Ⅲ (17g, 39.7mmol) 加入FeCl₃ (0.17g), H₂O (0.75g, 41.7mmol), 加热至120℃, 搅拌至无气体产生, 反应完全。将反应液冷却至室温, 缓慢滴入冰水中 (250ml), 边滴边加搅拌, 有白色析出, 过滤烘干的化合物Ⅳ (14.5g, 88.8%)。

步骤 (4): 步骤与实施例1相同, 所不同的地方在于步骤 (4), 化合物Ⅳ (50g, 134mmol) 加入丙酮 (150ml) 中, 搅拌溶解后, 加入高锰酸钾 (268g, 53.6mmol), 加热回流过夜, 反应完全。加入500ml水, 6N盐酸水溶液调至PH＝1-2, 有大量固体析出, 过滤烘干的化合物Ⅳ (24.9g, 88.8%)。

步骤 (5): 步骤与实施例1相同, 只在反应瓶中加入化合物Ⅴ (120g, 0.574mol), 二氯亚砜 (73.6g, 0.618mol) 和1滴DMF, 加热至100℃, 搅拌2小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物Ⅱ (125.3g, 96.1%)。

实施例4: 一种2,4-二氯-5-氟苯甲酰氯的制备方法, 总收率为89.6%

步骤 (1): 将原料2,4-二氯氟苯 (100g, 0.606mol) 加入到四氯化碳 (107.4g, 0.667mol) 中, 搅拌溶解后, 加入三氯化铁 (1.52g, 9.3mmol), 升温至70℃并保持2小时, 液相检测原料基本消失。降至室温, 加入2.5M HC1aq (500ml) 淹灭反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物I (128.5g, 75.1%) 和釜残即化合物Ⅲ (25.3g, 20.3%)。

步骤 (2): 将无水三氯化铁 (2g) 加入到化合物I (40g, 141.8mmol) 中, 加热至140℃后, 缓慢滴加水 (2.54g, 141.8mmol), 加完继续搅拌30分钟, 气相检测原料消失, 减压蒸馏得化合物Ⅱ (31.9g, 99%)。

步骤 (3): 步骤与实施例1相同, 所不同的地方在于步骤 (3), 本实施例的步骤 (3) 向第一步的釜残即化合物Ⅲ (25g, 58.4mmol) 加入FeCl₃ (1.25g), H₂O (1.155g, 64.2mmol), 加热
至120℃，搅拌至无气体产生，反应结束。将反应液冷却至室温，缓慢滴入冰水中(350ml)，边滴加边搅拌，有白色析出，过滤烘干的化合物IV(21.2g, 97.8%)。

步骤(4)：步骤与实施例1相同，不同的地方在于步骤(4)，本实施例的步骤(4)。化合物IV(20g, 53.6mmol)加入浓硫酸(50ml)中，加热至90℃，搅拌澄清后，即反应完全。加入100ml水，有大量固体析出，过滤烘干的化合物V(8.9g, 80.1%)。

步骤(5)：于反应瓶中加入化合物V(120g, 0.574mol)，氯化亚砜(73.6g，0.618mol)和1滴DMF，加热至100℃，搅拌2小时，液相检测反应结束。常压蒸馏除去二氯亚砜，减压蒸出产品的化合物II(125.3g, 96.1%)。

实施例5：一种2,4-二氯-5-氟苯甲酰氯的制备方法，总收率为92.1%。

步骤(1)：步骤与实施例1相同，不同的地方在于步骤(1)，本实施例的步骤(1)为将原料2,4-二氯氟苯(10g, 60.6mmol)加入到四氯化碳(9.27g, 57.6mmol)中，搅拌溶解后，加入三氯化铝(0.124g, 0.933mmol)，升温至40℃并维持2小时，液相检测原料基本消失。降至室温，加入2.5M HClaq(50ml)淬灭反应，搅拌至澄清后分层，取下层有机相减压蒸馏，得化合物I(13.1g, 76.6%)和升华的化合物II(2.8g, 22.6%)。

步骤(2)：步骤与实施例1相同，将无水三氯化铁(2g)加入到化合物I(40g, 141.8mmol)中，加热至140℃后，缓慢滴加水(2.5g, 141.8mmol)，加完继续搅拌30分钟，气相检测原料消失，减压蒸馏得化合物II(31.9g, 99%)。

步骤(3)：步骤与实施例1相同，不同的地方在于步骤(3)，本实施例的步骤(3)向第一步的釜残即化合物III(21.5g, 50.2mmol)加入FeCl₃(2.15g, 0.9g, 50.2mmol)，加热至90℃，搅拌至无气体产生，反应结束。将反应液冷却至室温，缓慢滴入冰水中(300ml)，边滴加边搅拌，有白色析出，过滤烘干的化合物IV(18.3g, 98.1%)。

步骤(4)：步骤与实施例1相同，不同的地方在于步骤(4)，化合物IV(10g, 26.8mmol)加入丙酮(30ml)中，搅拌澄清后，加入高锰酸钾(8.47g, 53.6mmol)，加热回流过夜，反应完全。加入100ml水，6N盐酸水溶液调至PH＝1-2，有大量固体析出，过滤烘干的化合物V(4.3g, 76.7%)。

步骤(5)：步骤与实施例1相同，于反应瓶中加入化合物V(120g, 0.574mol)，氯化亚砜(73.6g, 0.618mol)和1滴DMF，加热至100℃，搅拌2小时，液相检测反应结束。常压蒸馏除去二氯亚砜，减压蒸出产品的化合物II(125.3g, 96.1%)。

实施例6：一种2,4-二氯-5-氟苯甲酰氯的制备方法，总收率为88.7%。

步骤(1)：与实施例1相同，将原料2,4-二氯氟苯(100g, 0.606mol)加入到四氯化碳(107.4g, 0.667mol)中，搅拌溶解后，加入三氯化铁(1.52g, 9.3mmol)，升温至70℃并维持2小时，液相检测原料基本消失。降至室温，加入2.5M HClaq(500ml)淬灭反应，搅拌至澄清后分层，取下层有机相减压蒸馏，得化合物I(128.5g, 75.1%)和釜残即化合物II(25.3g, 20.3%)。

步骤(2)：与实施例1相同，不同的地方在于步骤(2)，本实施例的步骤(2)将无水三氯化铁(3g)加入到化合物I(30g, 106.3mmol)中，加热至145℃后，缓慢滴加水(1.52g, 101.0mmol)，加完继续搅拌30分钟，气相检测原料消失，减压蒸馏得化合物II(22.96g, 95.2%)。

步骤(3)：步骤与实施例1相同，向第一步的釜残即化合物III(17g, 39.7mmol)加入
FeCl₃(0.17g), H₂O (0.75g, 41.7mmol), 加热至120℃, 搅拌至无气体产生, 反应结束。将反应液冷却至室温, 缓慢滴入冰水中 (250ml), 边滴边加搅拌, 有白色析出, 过滤烘干的化合物 IV (14.5g, 98%)

[0081] 步骤 (4): 重复实施例 1 相同, 所不同的地方在于步骤 (4), 化合物 IV (10g, 26.8mmol) 加入 DMF (30ml) 中, 搅拌澄清后, 加入高氯酸钾 (7.4g, 53.6mmol), 加热回流过夜, 反应完全。加入100ml水, 6N盐酸水溶液调至 pH=1~2, 有大量固体析出, 过滤烘干的化合物 V (5.1g, 91%)。

[0082] 步骤与实施例 1 相同, 所不同的地方在于步骤 (5), 本实施例的步骤 (5) 于反应瓶中加入化合物 V (100g, 0.478mol), 二氯亚砜 (56.9g, 0.478mol) 和 1 滴 DMF, 加热至 80℃, 搅拌 1 小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物 II (103.5g, 95.2%)。

[0083] 实施例 7: 一种 2, 4-二氯-5-氯苯甲酰氯的制备方法, 总收率为 88.6%。

[0084] 步骤 (1): 将原料 2, 4-二氯氟苯 (100g, 0.606mol) 加入到四氯化碳 (107.4g, 0.667mol) 中, 搅拌溶解后, 加入三氯化铁 (1.52g, 9.3mmol), 升温至 70℃并维持 2 小时, 液相检测原料基本消失, 降至室温, 加入 2.5ml HClaq (500ml) 溶液反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物 I (128.5g, 75.1%) 和 釜残即化合物 III (25.3g, 20.3%)。

[0085] 步骤 (2): 将无水三氯化铁 (2g) 加入到化合物 I (40g, 141.8mmol) 中, 加热至 140℃后, 缓慢滴加水 (2.54g, 141.8mmol), 加完继续搅拌 30 分钟, 气相检测原料消失, 减压蒸馏得化合物 II (31.9g, 99%)。

[0086] 步骤 (3): 步骤与实施例 1 相同, 所不同的地方在于步骤 (3), 本实施例的步骤 (3) 向第一步的釜残即化合物 III (25g, 58.4mmol) 加入FeCl₃(1.25g), H₂O (1.155g, 64.2mmol), 加热至 120℃, 搅拌至无气体产生, 反应结束。将反应液冷却至室温, 缓慢滴入冰水中 (350ml), 边滴加边搅拌, 有白色析出, 过滤烘干的化合物 IV (21.2g, 97.8%)。

[0087] 步骤 (4): 步骤与实施例 1 相同, 所不同的地方在于步骤 (4), 本实施例的步骤 (4), 化合物 IV (20g, 53.6mmol) 加入浓硫酸 (50ml) 中, 加热至 90℃, 搅拌澄清后, 即反应完全, 加入 100ml水, 有大量固体析出, 过滤烘干的化合物 V (8.9g, 80.1%)。

[0088] 步骤 (5): 步骤与实施例 1 相同, 所不同的地方在于步骤 (5), 本实施例的步骤 (5) 于反应瓶中加入化合物 V (20g, 95.6mmol), 二氯亚砜 (11.38g, 100.4mmol) 和 1 滴 DMF, 于冰浴下反应 1 小时后升至室温搅拌, 继续搅拌 1 小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物 II (19.5g, 90%)。

[0089] 实施例 8: 一种 2, 4-二氯-5-氯苯甲酰氯的制备方法, 总收率为 94.8%。

[0090] 步骤 (1): 步骤与实施例 1 相同, 所不同的地方在于步骤 (1), 本实施例的步骤 (1) 为将原料 2, 4-二氯氟苯 (10g, 60.6mmol) 加入到四氯化碳 (9.27g, 57.6mmol) 中, 搅拌溶解后, 加入三氯化铁 (0.124g, 0.93mmol), 升温至 40℃并维持 2 小时, 液相检测原料基本消失, 降至室温, 加入 2.5ml HClaq (50ml) 溶液反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物 I (13.1g, 76.6%) 和 釜残即化合物 III (2.8g, 22.6%)。

[0091] 步骤 (2): 步骤与实施例 1 相同, 将无水三氯化铁 (2g) 加入到化合物 I (40g, 141.8mmol) 中, 加热至 140℃后, 缓慢滴加水 (2.54g, 141.8mmol), 加完继续搅拌 30 分钟, 气相检测原料消失, 减压蒸馏得化合物 II (31.9g, 99%)。
步骤 (3): 步骤与实施例1相同,向第一步的釜内加入化合物III (17g,39.7mmol) 加入FeCl₃ (0.17g), H₂O (0.75g,41.7mmol) 加热至120℃,搅拌至无气体产生,反应完毕,将反应液冷却至室温,缓慢滴入冰水中 (250ml), 边滴边搅拌, 有白色析出, 过滤烘干的化合物IV (14.5g, 98%)

步骤 (4): 步骤与实施例1相同, 所不同的地方在于步骤 (4), 化合物IV (10g, 26.8mmol) 加入丙酮 (30ml) 中, 搅拌澄清后, 加入高锰酸钾 (15.7g, 53.6mmol) 加热回流过夜, 反应完全。加入100ml水, 6N盐酸水溶液调至PH=1-2, 有大量固体析出, 过滤烘干的化合物V (5.0g, 89.1%)

步骤 (5): 步骤与实施例1相同, 所不同的地方在于步骤 (5), 向反应瓶加入化合物V (120g, 0.574mol), 二氯亚砜 (73.6g, 0.618mol) 和一滴DMF, 加热至100℃, 搅拌2小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物II (125.3g, 96.1%)

实施例9: 一种2,4-二氯-5-氟苯甲酰氯的制备方法, 总收率为87.7%。

步骤 (1): 与实施例1相同, 将原料2,4-二氯氟苯 (100g, 0.606mol) 加入到四氯化碳 (107.4g, 0.667mol) 中, 搅拌溶解后, 加入三氯化铁 (1.52g, 9.3mmol), 升温至70℃并维持2小时, 液相检测原料基本消失, 降至室温, 加入2.5M HClaq (500ml) 油浴反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物I (128.5g, 75.1%) 和釜残即化合物III (25.3g, 20.3%)

步骤 (2): 与实施例1相同, 所不同的地方在于步骤 (2), 本实施例的步骤 (2) 将无水三氯化铁 (3g) 加入到化合物I (30g, 106.3mmol) 中, 加热至145℃后, 缓慢滴加水 (1.52g, 101.0mmol), 加完继续搅拌30分钟, 气相检测原料消失, 减压蒸馏得化合物II (22.96g, 95.2%)

步骤 (3): 步骤与实施例1相同, 向第一步的釜内加入化合物III (17g, 39.7mmol) 加入FeCl₃ (0.17g), H₂O (0.75g, 41.7mmol), 加热至120℃, 搅拌至无气体产生,反应结束。将反应液冷却至室温, 缓慢滴入冰水中 (250ml), 边滴边搅拌, 有白色析出, 过滤烘干的化合物IV (14.5g, 98%)

步骤 (4): 步骤与实施例1相同, 所不同的地方在于步骤 (4), 本实施例的步骤 (4), 化合物IV (10g, 26.8mmol) 加入丙酮 (30ml) 中, 搅拌澄清后, 加入高锰酸钾 (8.47g, 53.6mmol), 加热回流过夜, 反应完全。加入100ml水, 6N盐酸水溶液调至PH=1-2, 有大量固体析出, 过滤烘干的化合物V (4.8g, 85.6%)

步骤与实施例1相同, 所不同的地方在于步骤 (5), 本实施例的步骤 (5) 于反应瓶中加入化合物V (100g, 0.478mol), 二氯亚砜 (56.9g, 0.478mol) 和一滴DMF, 加热至80℃, 搅拌1小时, 液相检测反应结束。常压蒸馏除去二氯亚砜, 减压蒸出产品的化合物II (103.5g, 95.2%)

实施例10: 一种2,4-二氯-5-氟苯甲酰氯的制备方法, 总收率为88.5%。

步骤 (1): 将原料2,4-二氯氟苯 (100g, 0.606mol) 加入到四氯化碳 (107.4g, 0.667mol) 中, 搅拌溶解后, 加入三氯化铁 (1.52g, 9.3mmol), 升温至70℃并维持2小时, 液相检测原料基本消失, 降至室温, 加入2.5M HClaq (500ml) 油浴反应, 搅拌至澄清后分层, 取下层有机相减压蒸馏, 得化合物I (128.5g, 75.1%) 和釜残即化合物III (25.3g, 20.3%)
后，缓慢滴加水 (2.54g, 141.8mmol)，加完继续搅拌30分钟，气相检测原料消失，减压蒸馏得化合物 II (31.9g, 99%)。

[0104] 步骤 (3): 步骤与实施例1相同，所不同的地方在于步骤 (3)，本实施例的步骤 (3) 向第一步的釜残即化合物 III (25g, 58.4mmol) 加入FeCl3 (1.25g) 、H2O (1.155g, 64.2mmol)，加热至120℃，搅拌至无气体产生，反应结束。将反应液冷却至室温，缓慢滴入冰水中 (350ml)，边滴加边搅拌，有白色析出，过滤烘干的化合物IV (21.2g, 97.8%)。

[0105] 步骤与实施例1相同，所不同的地方在于步骤 (4)，本实施例的步骤 (4) 化合物IV (20g, 53.6mmol) 加入浓硫酸 (50ml) 中，加热至90℃，搅拌澄清后，即反应完全。加入100ml水，有大量固体析出，过滤烘干的化合物 V (8.9g, 80.1%)。

[0106] 步骤 (5): 步骤与实施例1相同，所不同的地方在于步骤 (5)，本实施例的步骤 (5) 于反应瓶中加入化合物 V (20g, 95.6mmol)，二氯亚砜 (11.38g, 100.4mmol) 和1滴DMF，于冰浴下反应1小时后升至室温搅拌，继续搅拌1小时，液相检测反应结束。常压蒸馏除去二氯亚砜，减压蒸出产品的化合物 II (19.5g, 90%)。
图1
图2
图3