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SENSOR SYSTEM AND PROCESS FOR

MEASURING ELECTRIC ACTIVITY OF THE BRAIN,

INCLUDING ELECTRIC FIELD ENCEPHALOGRAPHY

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) of U.S.

Provisional Patent Application No. 61/837,692, filed June 21, 2013, entitled Novel

Sensors for Electric Field Encephalography, the disclosure of which is incorporated

by reference herein.

BACKGROUND

The gold standard for locating and measuring electrical activity in the human

brain is the use of intracranial electrodes, as in electrocorticography (eCOG). This

technique is expensive and risky. It is used only in rare clinical cases and is limited to

configurations that have been approved by the FDA.

Thus, there is a need for non-invasive and affordable tools that can approach

eCOG is terms of spatial and temporal resolution. The human brain emits electric and

magnetic signals that can be detected outside of the head, provided instruments with

sufficient sensitivity are available. Non-invasive brain signal monitoring is an integral

tool in a variety of research and clinical settings. Current methods include

electroencephalography (EEG), magnetoencephalography (MEG), functional

magnetic resonance imaging (fMRI), and functional near infrared spectroscopy

(fNIRS).

While fMRI provides high spatial resolution over the whole head volume, it is

limited in temporal resolution (1 to 10 seconds), convenience, and portability. Also, it

does not provide a direct measure of neuronal activity.

EEG samples electric potential across the scalp and MEG samples the

magnetic field several centimeters from the scalp's surface. With these techniques, a

large number of sensors, such as 64 to 256, are applied to a subject's scalp.

Miniaturization of EEG sensors is severely impeded by the need to

compensate for degradation in signal quality. Electrode separation in EEG ranges



from 10 cm to 3 cm, which is still insufficient for high resolution measurements. EEG

utilizes a global reference, and accordingly, local measurements are contaminated by

global brain activity, such that local measurements at high resolution are not feasible.

The global reference electrode and the grounding electrode require wiring across the

scalp. EEG also suffers from time and difficulty in setting up the electrodes on a

subject's skull and subsequently removing the electrodes. Some popular high-density

EEG systems use liquid electrolytes, which decreases the setup time to several

minutes. Additionally, liquid electrolytes can lead to conductive bridges, which

significantly increase cross-talk between nearby electrodes and further limit EEG's

spatial resolution. Dry electrodes are severely noise limited. Also, present electrodes

do not work well with very thick and curly hair types.

Typical scalp electric potentials produced by brain activity are extremely

weak, on the order of several microvolts, which are comparable with the internal

noise of amplifiers used for EEG (0.1 to 0.5 microvolts). This, in combination with

external sources of noise, makes raw EEG signals very noisy. With the exception of

strong brain rhythms, such as alpha and beta, EEG signals have to be averaged over

dozens of repeated trials in order to average out the noise and to obtain a usable

signal-to-noise ratio (SNR). For many applications, however, such as brain-computer

interfaces, sleep research, epilepsy research, and many other practical cases of EEG-

based biometrics, EEG averaging is impossible, because of the unique nature of each

event.

Magnetoencephalography (MEG) overcomes some of the problems of EEG,

notably that of reference and grounding. However, MEG faces other problems with

noise reduction, necessitating expensive infrastructure that precludes any mobility of

the subject.

SUMMARY OF THE INVENTION

The present invention relates to a sensor system and process for measuring

electromagnetic activity of the brain, including electric field activity. Unlike electric

potential, measured by electroencephalography (EEG), electric fields associated with

brain activity have not generally been studied because the signals are weak. The

electric field vector is given by the negative gradient of the electric potential

(measured by EEG) and can provide additional information. The present system can

measure local electric fields, referred to as electric field encephalography (EFEG), as



well as electric potentials and higher order derivatives of the potential, such as the

Laplacian, on a human scalp. By averaging over a large number of sensors in a small

measuring area, an acceptable signal-to-noise ratio (NSR) can be achieved.

In one aspect, the system includes a sensor assembly for measuring electric

field and potential activity of a brain, comprising a plurality of electrodes supported

by a support plate. The electrodes are arranged in a closely spaced arrangement, and

one of the plurality of electrodes comprises a reference electrode. A plurality of

amplifiers, each associated with one of the plurality of electrodes, are arranged on the

second side of the support plate. A microcontroller is also supported by the support

plate in communication with the amplifiers. The microcontroller includes a processor

operative to determine a weighted average of the signals indicative of an electric field

generated by electromagnetic activity of the brain.

In other aspects, the microcontroller can determine an electric potential

indicative of electromagnetic activity of the brain and can determine a higher order

spatial derivative of the electric potential. The sensor assembly of the system can

include a transceiver for sending and receiving signals between the microcontroller

and an external device and can include a wireless data transmission port.

The sensor assembly can include a housing attached to the support plate, with

the plurality of amplifiers and the microcontroller disposed within the housing. In

further aspects, the plurality of electrodes can be arranged with an interspacing of 1

cm or less, or with an interspacing of 4 mm or less, or with an interspacing of 3 mm

or less, and can be arranged in a variety of patterns, including a hexagonal pattern, a

circular pattern, a triangular pattern, a square pattern, or in no regular pattern.

In another aspect, a process for measuring electromagnetic activity of a brain

comprises placing a plurality of electrodes in an arrangement on a scalp, each of the

electrodes in electrical communication with an associated amplifier; defining a

reference electrode among the plurality of electrodes; measuring a potential difference

between active electrodes of the plurality of electrodes and the reference electrode;

and determining a weighted average of the potential differences, the weighted average

indicative of electrical activity of the brain.

In other aspects, the process includes determining an electric potential

indicative of electromagnetic activity of the brain and determining a higher order

derivative of the electric potential. The process can include generating an image of

brain activity of the subject.



In still further aspects, a method for improving a signal-to-noise ratio of

measurements of electromagnetic activity of a brain is provided, comprising placing a

plurality of electrodes in an arrangement on a scalp, each of the electrodes in

electrical communication with an associated amplifier; defining a reference electrode

among the plurality of electrodes; measuring a potential difference between each of

the plurality of electrodes and the reference electrode; and determining a weighted

average of the potential differences, the weighted average indicative of electrical

activity of the brain. The plurality of electrodes can be supported on a support plate

and a plurality of amplifiers can be supported on the support plate in close proximity

to the electrodes.

In further aspects, a method for concurrently measuring electric potentials and

electric fields of a brain is provided, comprising placing a plurality of electrodes in an

arrangement on a scalp, each of the electrodes in electrical communication with an

associated amplifier; defining a first reference electrode among the plurality of

electrodes; defining a further reference electrode spaced remotely from the plurality

of electrodes; switching between measuring a potential difference between active

electrodes of the plurality of electrodes and the first reference electrode and

measuring a potential difference between each of the plurality of electrodes and the

further electrode; and determining a weighted average of the potential differences and

a weighted average of the potentials, the weighted averages indicative of electrical

activity of the brain.

In still further aspects, a method for measuring brain activity of a subject is

provided, comprising placing a plurality of electrodes in an arrangement on a scalp,

each of the electrodes in electrical communication with an associated amplifier;

defining a reference electrode among the plurality of electrodes; measuring a potential

difference between active electrodes of the plurality of electrodes and the reference

electrode; determining a weighted average of the potential differences, the weighted

average indicative of electrical activity of the brain. The method can include

generating an image of brain activity of the subject. The subject may suffer from a

neurological condition; or from Alzheimer's disease, Parkinson's disease,

amyotrophic lateral sclerosis, stroke, traumatic brain injury, autism, depression, or

epilepsy. In a still further aspect, the method includes treating the subject for the

neurological condition. In a still further aspect, the method includes comparing the

brain activity of the subject to the brain activity of a normal subject, and detecting a



neurological condition of the subject based on the comparison of the brain activity of

the subject to the brain activity of the normal subject.

In a further aspect, a system for providing a medical body area network of a

subject includes one or more sensor assemblies for measuring electromagnetic activity

of a brain of the subject, each sensor assembly including a support plate, a plurality of

electrodes protruding from the support plate, the electrodes arranged in a closely

spaced arrangement, one of the plurality of electrodes comprising a reference

electrode, a plurality of amplifiers supported by the support plate, each amplifier of

the plurality of amplifiers associated with one of the plurality of electrodes to receive

signals from the associated ones of the electrodes indicative of electric field activity

of a brain, and a microcontroller in communication with the amplifiers to receive

signals from the amplifiers, the microcontroller operative to determine a weighted

average of the signals indicative of an electric field generated by electromagnetic

activity of the brain. One or more additional sensors for monitoring physiological

parameters of the subject are provided, the other sensors comprising at least one of a

GPS device, an accelerometer, a gyroscope, a magnetometer, a microphone, and a

camera. A processor is operative to receive data from the one or more sensor

assemblies and the one or more additional sensors and to synchronize the data.

The processor and the one or more of the additional sensors can reside within

a smartphone. The system can include a database of sensor readings indicative of one

of a variety of activities, such as include watching TV, sitting, eating, walking, or

exercising. The system can transmit the synchronized data to a host processor, a cloud

computing facility, or an external computer.

DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood form the following detailed

description taken in conjunction with the accompanying drawings in which:

Fig. 1 is a top perspective view of a sensor assembly according to an

embodiment of the invention;

Fig. 2 is a bottom perspective view of the sensor assembly of Fig. 1;

Fig. 3 is a bottom perspective view of a further embodiment of a sensor

assembly;

Fig. 4 is a side view of a sensor assembly in use applied to a subject's scalp;

Fig. 5A is a schematic front view of a headband supporting a sensor assembly;



Fig. 5B is a schematic isometric view of the headband and sensor assembly of

Fig. 5A;

Fig. 6 is a schematic diagram of electronics in the sensor assembly;

Figs.7A-7D are graphs illustrating the improvement in signal-to-noise ratio

(SNR) of EEG and EFEG from an embodiment of a 19-pin sensor array compared to

a traditional EEG sensor;

Fig. 8 is a schematic illustration of an image of brain activity generated from

EFEG data obtained from a sensor assembly;

Fig. 9 is a graph of a proportion of correct classifications and corresponding

signal-to-noise ratio (SNR) from an experiment testing a 4x4 sensor array;

Fig. 10 is a graph of SNR as a function of sensor density;

Fig. 11 illustrates an example from one subject of visually evokes responses

averaged over epochs across an ultra-dense EEG array;

Fig. 12 illustrates in the top panel, snapshots of dVEP variation across an

ultra-dense EEG array for five subjects; in the middle panel, a time course of an

electrode closest to a hotspot, and in the bottom panel, snapshots of dVEPs

interpolated using only the corner electrodes;

Fig. 13 are graphs of an EEG signal and an EFEG signal over time from an

embodiment of a sensor array tested on three subjects;

Figs. 14A and 14B are maps of EFEG signals of electric fields from a local

area of a brain obtained during testing of an embodiment of a sensor array;

Fig. 15 is a schematic illustration of an embodiment of a sensor assembly in

wireless communication with a network of devices;

Fig. 16 is a schematic illustration of an embodiment of several sensor

assemblies in a medical body area network;

Fig. 17 is a graph of acceleration over time from a smartphone accelerometer

showing a sudden fluctuation indicating a potential fall;

Fig. 18 is a graph of rotation over time of a smartphone showing a sudden

fluctuation indicating a potential fall;

Fig. 19 is a graph comparing a fall detection technique of the present invention

to three other fall detection apps, showing the number of false alarms and the number

of missed detections;

Fig. 20 is a schematic illustration of a Hidden Markov Model used to infer

neurological states from sensor data; and



Fig. 2 1 is a graph comparing the time delay of the site of data processing on a

smartphone to an external computer.

DETAILED DESCRIPTION OF THE INVENTION

The present sensor system and process are capable of electric field

encephalography (EFEG) as well as EEG. The sensor system employs a sensor

assembly utilizing a plurality of sensors closely spaced in an array. For each sensor,

the system can determine the electric potential (EEG), the electric field components

(EFEG), and higher order derivatives of the potential, such as its surface Laplacian.

From the measured electric field data, an estimate of the location of the electric field

sources can be made and an image of brain activity can be generated.

The system employs a number, N, of sensors, each associated with an active

independent amplifier. By averaging over multiple noisy sensors, rather than over

multiple noisy trials, an acceptable signal-to-noise ratio (SNR) can be achieved.

Assuming independent noise for each sensor's amplifier pair (the active amplifier and

a reference amplifier), the associated SNR increase is given by the square root of the

convergence ratio.

Referring to Figs. 1-4, the sensor system includes a sensor assembly 20

supporting a plurality of individual sensors 30 arranged in an array 32. Each sensor is

an electrode 34 having a suitable configuration for making good electrical contact

with the scalp. In some embodiments, each electrode is in the form of an electrically

conductive pin 35. The end or tip of each pin can be, for example, convexly rounded

(Fig. 2), cup-shaped or concave, or waffle-shaped (Fig. 3). The configuration of the

tip or end can depend on the hair type (for example, curly, straight, fine, thick) and

amount (for example, heavy, thin, balding) of the subject. The electrodes can be

pressed into contact with the scalp if desired, for example, with a spring mechanism.

Suitable electrode materials include silver, gold, copper, and alloys thereof. In one

embodiment, the electrodes are formed with a silver core and a Ag/Cl coating on the

surface to prevent or minimize DC polarization at the scalp-electrode interface. Other

electrode or electric field sensor configurations can be used if desired. Other sensor

configurations can include electro-optical sensors such as photonic crystals made of

lithium niobate.

In some embodiments, the sensor assembly 20 includes a support plate 36 or

other structure for mounting or supporting the electrodes 34. The pins 35 of the



electrodes extend through the support plate to protrude from a first side 37. Electronic

components 42 that interface with the electrodes (described further below) are

mounted on or supported by the other, second side of the support plate 36. (See

Fig. 1.) Connections between the electrodes and the electronic components are made

on the second side of the support plate. The sensor assembly also includes a housing

or cover 38 to enclose the electronic components. The housing is sized to attach to an

area of the scalp of a subject 40 with the protruding electrodes in electrical contact

with the scalp. See Fig. 4. The housing or cover can be grasped by a user when

placing the sensor assembly on a subject's scalp. The sensor assembly is sufficiently

small such that several sensor assemblies can be attached to the subject's scalp if

desired.

The electrodes 34 supported by a sensor assembly 20 can be arranged in any

suitable array 32, and any suitable number, N, of electrodes can be provided. The

electrodes can be more closely spaced than the electrodes used in traditional EEG.

Electrode density can be, for example, 0.3 cm 2 , 1.0 cm 2 , 4.0 cm 2 , or greater. Lesser

electrode densities can also be used, if desired, depending on the application. For

example, in one embodiment, 19 electrodes are arranged in a hexagonal array (Figs. 2,

3) with an interspacing of 3 to 4 mm. The array is 2 cm in diameter at its widest

dimension. The combined area of the 19 electrodes, when applied to a scalp surface,

is a few square centimeters. In another example, 16 electrodes are arranged in a

square 4x4 array. The electrode interspacing is 1 cm. It will be appreciated that the

electrodes can be arranged in other patterns, such as circular, triangular, or the like, or

in no regular pattern, and the term "array" can encompass all such patterns or no

pattern.

The sensor assembly 20 including the housing 38 can be sufficiently

miniaturized that it can be attached to a scalp relatively unobtrusively. The sensor

assembly can be formed with a lower profile than the profile of currently used EEG

sensors. The sensor assembly can be attached to the scalp in any suitable manner. For

example, in some embodiments, the sensor assembly can be attached with tape or an

adhesive suitable for use on skin and hair. In other embodiments, the sensor assembly

can be held in place with a device such as a headband or a headset. The sensor

assembly can be integrally formed with the headband or headset. The headband or

headset can be adjustable to fit a variety of head sizes and shapes. The headband or

headset can be configured to support more than one sensor assembly, such as 2, 3, 4,



or more sensor assemblies. See, for example, Figs. 5A and 5B, which illustrate a

headset supporting a sensor assembly 20 supported by a band 64 on a subject's head.

In most cases, setup time can be 5 minutes or less. In most cases, reliable electrical

contact with the scalp can be made without the use of liquid or gel electrolytes, which

can create electrical bridges and severely reduce the spatial resolution of dry electrode

EEG.

As noted above, electronic components 42 forming the circuitry connected to

the electrodes are located within the housing. In particular, each electrode 34 is

electrically connected to an associated amplifier 44. See Fig. 6. The amplifier

amplifies the potential difference between its associated electrode 34 and a reference

electrode. The output of each amplifier is fed into an associated analog to digital

converter (ADC) 46, which in turn transmits the digital signal representative of the

potential difference to a microcontroller 50 for further data processing, described

further below.

In the EFEG mode, one of the electrodes in the sensor array is a reference

electrode. Generally, the central electrode is selected as the reference electrode 37 to

simplify the geometrical considerations, but any other electrode could be selected

instead. The potentials on the remaining N-l electrodes are measured with reference

to the reference electrode by the associated amplifiers. In this way, local electric field

components can be estimated via local gradients of the potential.

In the EEG mode, the reference electrode can be a traditional EEG electrode,

for example, attached at another location on the scalp or to the earlobe, or it can be an

electrode on a different sensor assembly placed at a different location on the scalp.

Unlike traditional EEG sensors, the sensor assembly described herein can be

used simultaneously in EEG and EFEG regimes. Both EEG and EFEG can be

sampled concurrently by dynamically switching each amplifier's reference between

the remote reference electrode for EEG mode and the local reference electrode for

EFEG mode, for example, with a multiplexer at the inputs to the amplifiers .

The EEG regime is most useful when global activity of the brain is of interest,

such as alpha rhythm. The EFEG and Laplacian regimes are most useful when

estimating local brain activity in the vicinity of the sensor assembly. The Laplacian is

the curvature of the potential proportional to the skull-scalp current density. Scalp

electric field patterns are more focused than the corresponding EEG patterns, and,

unlike EEG, EFEG is free from the ambiguity of choosing the potential reference.



Laplacian patterns are even more focused, but the Laplacian measure, being the

second derivative of the potential, is also more affected by the measurement noise

than EFEG.

In the EFEG regime, one electrode, for example, the central electrode, is used

as a local potential reference with respect to which potentials on the remaining N-l

electrodes, the active electrodes, are measured by the associated amplifiers. In this

way, local electric field components can be estimated via local gradients of the

potential. To calculate the two components of the electric field tangential to the scalp

from the N-l gradient measures, their weighted sum is computed as follows:

_ ∑
x V- 1 2

where F stands for the potential signal from the i-th electrode and F stands for the

(amplified) potential difference between the i-th electrode sensor and the reference

electrode. N is the number of electrodes and X stands for the x-coordinate of the

electrode with respect to the center of the array. An analogous formula gives the y-

component of the field. A radial component can be similarly measured if desired, but

is generally not necessary, as the tangential components are dominant. If a different

electrode is the reference electrode, the equations can be appropriately weighted to

reflect the geometry of the location of the reference electrode.

In EEG mode, the amplified EEG potentials are averaged by the sensor

assembly:

where F stands for the potential signal from the i-th electrode in reference to the first

electrode, and N is the number of electrodes.

Similarly, in the Laplacian regime, the curvature L of the potential

proportional to the skull-scalp current density is computed as follows:

γ - 1 4

where r stands for the distance from the electrode to the center of the array.

The calculations implement optimal probability summation, in which each

electrode's signal is weighted by the inverse of its noise variance, thus achieving the

highest possible SNR. The resulting SNR increase compared to a single EFEG

channel implemented as a bipolar EEG pair is given by V(N-3) for EFEG and V(N-l)



for the Laplacian. For example, for a sensor array with 19 electrodes, the SNR

increase for EFEG is V(19-3) = Vl6 = 4. For the Laplacian, the SNR increase = V(19-

1) = Vl8 ~ 4.243. For EEG, assuming independent amplifier noise, the expected

increase in SNR compared to a single amplifier channel is given by N . For example,

for a sensor assembly having 19 electrodes, the SNR = Vl9 ~ 4.559.

The sensor system can employ additional techniques to improve the SNR.

Active amplifiers greatly improve the signal quality by reducing the capacitive

coupling between an output cable and the possible sources of interference. For active

amplification to work efficiently, the amplifiers need to be as close to the sensors as

possible. The first stage amplification is done using active amplifiers 44 that are

mounted close to the sensors, within the sensor assembly 20. In particular, the

electrodes 34 are fixed within through holes in the support plate 36 and are connected

very closely to their associated amplifiers 44, which are disposed on a chip that is also

supported on the second side of the support plate. See Fig. 1.

In one embodiment, one or more ADS 1298 or ADS 1299 chips 48

commercially available from Texas Instruments can be used. These chips are

multichannel and employ simultaneous sampling, 24-bit, delta-sigma analog-to-digital

converters (ADCs) with built-in programmable gain amplifiers (PGAs), internal

reference, and an onboard oscillator. Each chip can provide amplification for 8

independent channels. For example, for an embodiment of the sensor assembly

employing 19 electrodes, three of these chips are used, which gives 24 available

independent channels. The outputs from the electrodes connect to one of the eight

inputs of each of the chips. It will be appreciates that future generations of similar

chips can also be used.

The ADS 1298 or 1299 can sample data at 24 bits with an ADC rate of 3 bytes

per sample per channel. This sampling resolution and rate are adjustable to get the

highest SNR and adequate data quality. A typical point sampling rate is 1 kHz, and

this gives a data sampling rate of 3 kB/s per channel. For 700 channels, this gives a

data rate of 2.1 MB/s. It will be appreciated that higher rates may be achievable with

other chips now or in the future.

Each chip 48 outputs the data in a digital form through its serial peripheral

interface (SPI) channel 49 (channels 1, 2 , and 3). To reduce common mode

interference, the driven right leg (DRL) of each chip is merged into a single DRL

output, and the analog differential negative inputs end up as the common reference



(V ref) input to the microprocessor. All the input signals are sampled in digital form

and the information is processed in the microcontroller 50.

The microcontroller 50 can also be supported by the support plate 36 of the

sensor assembly 20. It receives the output signals from the ADCs for continuous

monitoring and additional signal processing. The microcontroller contains a

microprocessor, input and output control, and memory (RAM, ROM, etc.) with

instructions to perform signal pre-processing resulting in EFEG time-series. The

sensor assembly can also include a power supply, such as a battery, for example, a

lithium polymer battery. Power consumption is relatively low, generally less than 200

mW. The microcontroller and other chips can be stacked if desired to fit within a

small footprint within the housing 38 of the sensor assembly 20.

The on-board microprocessor is used to compute the electric field components

from the individual electrode voltages, as described above, and also can be used for

more involved computations in-situ, for example, to reduce data redundancy, for

example, to mitigate effects of noise through additional signal processing, and to

compute the signal field strengths, before the data is communicated to a transceiver 52

for transmission to another device. If exact timing or real-time data is required,

FPGAs can be used.

As one example of additional SNR improvement, the bias drive circuitry

provides a path for the current (common-mode signal) from the reference and into the

differential inputs of the amplifiers 44 to actively cancel electromagnetic interference

(EMI) and improve the common-mode rejection. The microprocessor actively

monitors each of the programmable gain amplifiers. If it senses any of the electrodes

has loosened (by comparing the signal amplitude with the dynamic range), then it can

dynamically open the switch of the associated amplifier and eliminate it from the

closed-loop gain of the bias drive signal. This can improve the common-mode

rejection of the entire sensor assembly.

Figs. 7A-7D illustrate SNR improvements for EEG and EFEG signals

obtained in a simulation, where SNR for a single EEG channel was set to 1. The

sensor array employed a 19-pin geometry as shown in Fig. 2 and a simulated electric

field of a constant magnitude of 1 µν /cm rotating at 4 Hz. Fig. 7B indicates a Vl9

improvement in the SNR of EEG potential detected with the 19-pin sensor array over

a traditional EEG in Fig. 7B. Fig. 7D indicates a 4-fold improvement in SNR for the

associated electric field measurements.



From the measured electric field and potential data, an estimate of the

locations of the electric field and potential sources can be made and an image of brain

activity can be generated. Various algorithms and head models to estimate the

locations from the data and to generate brain activity images and image maps can be

used. For example, Fig. 8 is a schematic illustration of an image of brain activity

generated using a software suite known as Harmony. See Petrov, Y., Harmony:

EEG/MEG Linear Inverse Source Reconstruction in the Anatomical Basis of

Spherical Harmonics. PLOS ONE, Oct. 2012, Vol.. 7, Issue 10, e44439.

Example

An embodiment of a sensor assembly was tested to determine if EFEG

provides additional information on brain activity compared to conventional and high-

density EEG, and to determine if the closer electrode spacing, that is, an ultra-dense

electrode density, within the sensor assembly is capable of providing additional EEG

information compared to the sensor spacing or electrode density of traditional and

high-density EEG.

In particular, a sensor array with an ultra-dense array of electrodes was used in

which a square 4x4 grid of small diameter electrodes had an inter-electrode separation

of 1 cm, or a density of 1.0 cm 2 . For comparison with existing high-density EEG

systems, the electrode density of several 128-sensor EEG nets from Electrical

Geodesies Inc. was estimated as 0.167 cm 2 . The electrode density of EEG nets with

64 sensors was estimated to be 0.084 cm 2 ; and the electrode density of a net with 256

sensors, currently the densest EEG nets commercially available, was estimated to be

0.269 cm 2 .

The approach used a signal classification paradigm in which a classification

algorithm was used to carry out binary classification of individual trials based on their

EEG data. It was hypothesized that the amount of functional information I captured

by the array is a monotonically increasing function of the algorithm's classification

accuracy p . The advantage of this approach is that (i) it gives an estimate of

functional brain information compared to mere spatial variation of EEG, and (ii)

given a "hotspot" of the functional information relevant to the classification task on

the scalp, it is sufficient to estimate I at this location as a function of sensor density,

1(d), to obtain a reliable estimate of the full-scalp I(n).

In this paradigm, eleven subjects viewed images of words presented one by

one on a computer monitor. On each trial, a word appeared on the screen for half a



second followed by a blank screen for another half a second The words displayed

were of two types: common English nouns printed in capitals, such as TABLE, and

"Hebrew" words: nonsense words produced by substituting Latin characters in the

English words with Hebrew characters with the same ASCII codes. The subjects were

either native speakers or fluent speakers of English. The subjects did not speak or read

Hebrew and were not familiar with the Hebrew alphabet. Over the course of a ten-

minute long EEG session, each subject viewed 236 different words of each type

randomly interleaved. The timing of the presentation of the words was correlated with

the timing of the data gathered from the electrodes, so that the brain response could be

correlated with each word presentation.

In a preliminary experiment, a common "informative" location was chosen in

the parieto-occipital scalp region, approximately 6 cm above and left of the inion. The

4x4 ultra-dense sensor array was applied to this location for all subjects. Recorded

visually evoked potential (VEP) epochs were separated into two sets, English and

Hebrew, based on which stimulus was presented in a given epoch. Part of the data

was used for training a classification algorithm, while the remaining data were used

for testing the performance of the trained algorithm, using the Naive Bayes approach.

The percentage of correctly classified trials (p ) varied among subjects from

52% to 78%. The percent correct values were converted to d' values, i.e., to the

signal-to-noise ratio (SNR) of the classification analysis using d' = 2 norminv(pc),

where norminv( ) stands for inverse of the cumulative density function (cdf) for

normal distribution with zero mean and unit variance. The SNR and p for each

subject are plotted along the y-axes in Fig. 9; error bars show one standard deviation.

When all 16 electrodes (full 4x4 array) were used, the SNR was 0.47 + 0.02 on

average. When only the 4 corner electrodes of the array were used for the same

analysis, the average SNR dropped to 0.27 + 0.02. Hence, sampling EEG at 1 cm

scale on average offers almost twice the amount of functional brain signals as

compared to sampling at 3 cm scale. Individually, the improvement was significant

for 10 of the 11 subjects. The corner electrodes, at 0.11 cm 2 sensor density, emulate a

full-scalp EEG array with approximately 84 sensors. This is comparable with the 64-

and 128-sensor high-density EEG systems most common today. The full 4x4 array, at

1 cm 2 sensor density, emulates an ultra-dense EEG scalp array with 766 sensors.

SNR for two intermediate sensor densities was estimated by interpolating the 4x4

array data to square arrays with 5 and 9 electrodes, thus emulating full-scalp EEG



arrays of 168 and 336 sensors respectively. SNR as a function of the sensor density

grew approximately logarithmically (Fig. 10). An adequate fit (χ2 = 3.69, p < 0.3) was

obtained by linear least squares and is given by the following formula:

SNR = 0.476 + 0.086 log(d),

where d is the density of sensors: 0.11, 0.22, 0.44, and 1 cm 2 for 4, 5, 9, and 16-

electrode ultra-dense EEG array configurations, respectively.

To understand the SNR increase due to the ultra-dense EEG sampling, the

spatial distribution of the evoked responses was examined. VEPs for a representative

subject are shown in Fig. 11. Data were averaged over stimulation epochs,

interpolated between electrodes in the 4x4 array, shown here by a varying grayscale,

although usually represented by color maps. The electrode locations are marked by

black dots. Responses to English and Hebrew stimuli are shown on the left and right

respectively. Snapshots for the two time points, as indicated by the time arrow,

demonstrate functional variation of the responses between the two conditions: while

evoked responses were alike at 200 ms from the stimulus onset, they became quite

different 80 ms later. The VEP differences between English and Hebrew stimuli,

dVEP = VEPsngiish - E P ebrew, are shown in the top panel of Fig. 12 for the five

subjects with the strongest effects of electrode density on the classification accuracy.

The dVEP time course of the electrode with the largest observed dVEP is plotted

below each snapshot. The dot above each plot indicates when the corresponding

snapshot was taken. The observed dVEP variations across the ultra-dense EEG array

are highly significant and formed local hotspots: the potential variations between

English and Hebrew stimuli were as high as 2 µν /cm for some subjects. Time courses

of the hotspots have well-defined peaks. This indicates that the hotspots reflect

evoked brain responses rather than measurement-related noise. The hotspots are made

particularly conspicuous by their absence in dVEPs interpolated using corner

electrodes only. This is shown in the bottom panel of Fig. 12. Note also that the

shown data reflects local variation of VEP measured with respect to the array's

average and thus may look different from conventional VEPs recorded using global

reference.

The observed classification SNR improvement of ultra dense EEG on high

density EEG may result from: (i) an increased number of independent signals, as

reflected by the dVEP hotspots in Fig. 12, or (ii) decreased noise due to noise

averaging among nearby ultra dense EEG electrodes. In order to test this latter



mechanism, the classification analysis was repeated while limiting the number of

classifiers to the single most informative electrode. This precluded any noise

averaging between nearby electrodes. The average SNR for the full 4x4 array dropped

from 0.47 + 0.02 to 0.25 + 0.02, but the 4-corner SNR decreased proportionally from

0.27 + 0.02 to 0.15 + 0.02. This demonstrates that noise averaging cannot explain the

observed improvement in classification accuracy.

One could also argue that the improvement might be due to some artifact of

the classification algorithm benefiting from a larger number of input signals, even if

the number of independent signals remained constant (i.e., when VEP is

oversampled). The "most informative electrode" analysis described above also applies

here to refute this argument, since only one electrode was used in both cases.

However, a more straightforward test was also carried out, in which raw VEP data on

the corner electrodes was interpolated over the remaining 12 electrodes of the 4x4

array and the classification analysis was applied to the interpolated 16-electrode data

set. There was no significant increase in average classification accuracy across

subjects between the interpolated 4x4 dataset (p = 0.58 + 0.04). Hence, the higher

classification accuracy for the full 4x4 array appears to be a genuine advantage of

sampling EEG at 1 cm resolution.

Further, Fig. 13 illustrates the measured EFEG and EEG at one location within

the brain for three of the subjects, indicating that EFEG provides information in

addition to that provided by EEG. The spatial variation of the potentials and the fields

are shown in Fig. 14A for an English stimulus and in Fig. 14B for a Hebrew stimulus.

This study demonstrates that the high spatial frequency variations of electric

potential captured by ultra-dense EEG provide practically significant information on

brain states. The observed twofold improvement in the SNR of the classification

paradigm is immediately relatable to many brain computer interface (BCI)

applications. Similarly, significant improvements may be expected for the localization

of EEG sources. This study also shows that EFEG provides additional useful

information beyond the information provided from EEG alone.

One or more of the sensor assemblies as described herein can be part of a

sensor system. Referring to Fig. 15, the data for a sensor assembly 20 can be

transmitted to a peripheral device for further analysis. Transmission of signals from

the sensor assembly can be wired or wireless, for example, via connection standards



such as Bluetooth, Zigbee, WiFi, 802.15.4, WLAN, RFID and other wireless

standards. With a wireless system, AC noise can be reduced further, because a length

of cable is eliminated. The output data can be saved locally on a flash drive

continuously and can be transmitted to a host system or cloud storage wirelessly in

real time with certain latency.

In one embodiment, a sensor system 80 is provided in which one or more the

sensor assemblies can communicate with a device 85 such as a smartphone, tablet

computer, laptop computer, or other device. The device 85 can in turn transmit the

data to another host system, for example, via the internet 90. For example, the sensor

assembly can transmit data wirelessly to the subject's smartphone, which can in turn

transmit the data to another external computer 82, a processor device 84 employed by

a physician, clinician, or researcher, or another networked facility 86 located remotely

from the subject. Thus, the subject can be continuously monitored in a location, such

as his or her home, that is remote from a hospital or other medical facility or a

laboratory. For example, an epilepsy patient can be continuously monitored for

signals indicative of an epileptic seizure while maintaining a normal routine at home,

rather than being admitted to a hospital for such continuous monitoring. Messages

from the clinician can be transmitted back to the subject as necessary.

The data from the sensor system 80 can be used by, for example, a trained

researcher conducting investigations into brain electromagnetic activity or a clinician

diagnosing neurological conditions. The system can be used to diagnose and treat

animals, including mammals and, in one embodiment, human subjects. For example,

the system can be used for functional brain imaging at high temporal and spatial

resolution, for pattern recognition and cognition, or for comparing the brain activity of

a subject to the brain activity of a normal subject or to a database of the brain activity

of many subjects. The system can be used to investigate neural correlates of vision

and speech, aging, sleep, or diseases such as epilepsy, Alzheimer's disease,

Parkinson's disease, amyotrophic lateral sclerosis (ALS), stroke, autism, depression,

and traumatic brain injury. For example, the data can be analyzed for source

localization for epilepsy or for detecting correlations between EFEG and EEG

patterns with seizures or silent events. As another example, the system can be used to

detect correlations between gait and attention in movement disorders during the aging

process and/or in Parkinson's disease. The system can be used during movement



rehabilitation of stroke patients, for patient-driven neurorehabilitation, mobile

brain/body imaging, gait research and gait rehabilitation and neuroergonomics.

The system can be used for investigating or utilizing human-machine and

brain-computer interfaces. Currently, brain-computer interfaces require an active

stimulus, often in the form of a flickering pattern, which the user is expected to focus

on for extended durations of time. The sensor array, in contrast, directly picks up and

transmits in real time the brain activities of the subject in normal settings, without the

need for specialized equipment. For example, signals from a sensor array can be

transmitted to a host processor and used to control an external device, for example, to

turn a device on or off, move a cursor, control the volume of an audio output, control

a prosthetic device, control a wheel chair, control a speech synthesizer, make a phone

call, or provide a sound or vibration to awaken a sleepy driver. The host processor can

make a comparison of the transmitted signals representative of an emotion or an

intentional thought with a database, look-up table, or brain map. A training regimen

can be performed by which a user can learn use of brain activity to control a device.

In one embodiment, a sensor system can include one or several sensor

assemblies 120 worn by a subject 140 to gather brain activity data. See Fig. 16. Other

sensors that currently exist within a smartphone 160, such as a GPS device 162, an

accelerometer 164, a gyroscope 166, and a magnetometer 168, can be used to provide

context data when the smartphone is worn or carried by the subject. (It will be

appreciated that such sensors can be provided on any other form of wearable device in

addition to a smartphone and references to a smartphone herein can include any such

other device.) Other devices 180 that use cameras and microphones to capture

movement and speech of a subject can be used to provide context data as well. These

sensors and devices can be integrated into a medical body area network 190 (MBAN)

for the subject 140. Data from the brain activity sensor assemblies can be

synchronized with data from the other sensors and devices that provide context, so

that the subject's brain activity can be associated with the activity that the subject is

performing. In this way, factors that trigger a particular neurological state, such as

mood, anxiety, stress, cognitive functioning, or sleep, may be identified, which may

help in recommending treatment.

For example, sudden falls can potentially indicate serious problems, such as

Parkinson's disease, cognitive problems, dementia, or the onset of a stroke. Sensors

on a smartphone can collect data on acceleration, linear acceleration, angular velocity



and orientation when a subject who is walking normally suddenly falls. In particular,

a total acceleration can be calculated from the accelerations in three orthogonal axes.

Figs. 17 and 18 show the acceleration, linear acceleration, angular velocity and

orientation data collected by a smartphone when a person is walking normally but

suddenly falls down. The accelerations in all three axes are combined to find the total

acceleration:

IA TI=(a2 +a2 + a 2 ) 1 2

The individual traces are shown in Fig. 17. The angular velocity can be collected

using the hardware-based tri-axial gyroscope. A smartphone' s coordinate system is

defined relative to the phone and the axes remain static throughout. That is, the axes

are not appropriately rotated when the smartphone' s orientation changes. Thus, the

geometric mean value is more useful and can be calculated from the velocities in three

orthogonal directions:

The traces are shown in Fig. 18. Similarly, the orientation of the phone is determined

by the azimuth, the pitch (the angle around one axis, e.g., the x-axis) and the roll (the

angle around another axis, e.g., the z-axis). A fall detection technique compares the

total acceleration against an empirically measured threshold obtained from multiple

subjects and checks if the rotation sensor registers a simultaneous change of more

than 90°. Coordinating the fall data with the subject's electromagnetic brain activity

may lead to an evaluation of the cause of the fall and possibly a diagnosis and course

of treatment. The present fall detection technique has been found to result in lower

false alarms and missed detection errors compared to other commercially available

apps, as shown in Figs. 19A and 19B. In these figures, Nos. 1, 2, and 3 represent

commercially available smartphone fall detection apps. No. 4 represents the present

fall detection technique described above. The data analysis can occur on the

smartphone, or the smart phone can transmit the data to another computer for

analysis. When the detected context is the action of the user falling down, it may

indicate an urgent notification event. For example, the data collection from the sensor

array and the event of the fall, when taken together, may point to a possibility of a

stroke. Thus, the data are immediately transmitted by the smartphone to alert

necessary caregivers.

The system can include a database of sensor readings that are indicative of

particular activities, such as watching TV, sitting, eating, walking, or exercising. As



an example, simple daily activities, such as watching TV, may introduce temporary

changes in the stress level and the mental state of a subject, depending on the TV

program's content. The system can include a map of the living space or other

environment of the subject with coordinates of elements, such as facilities and

equipment, for example, the locations of a TV, washroom, exercise machine, dining

table, and the like. The assisted GPS (AGPS) capability of the smartphone can be

used to determine the location of the subject within a room or within a facility. The

accelerometer can be used to detect if the subject is undergoing continuous motion,

suggesting a vigorous physical activity. If not, then the orientation of the smartphone

and hence, the subject, with respect to the Earth's magnetic axis is determined using

the smartphone' s magnetometer. The point location of the AGPS as well as the

orientation along the line of sight to the TV can indicate with a high probability that

the subject is watching TV.

As a further example, a device that captures movement and speech of a

subject, such as the KINECT®, available from Microsoft and developed initially for

the gaming field, provides the capability of producing a digital representation of

skeleton-figures of a subject without the privacy invasion that accompanies a visual

confirmation from continuous monitoring by another person. These skeleton figures

are expressed as a graph of vertices and edges that correspond to the joints and limbs

of the subject under study. The device also returns information on depth estimation,

which provides additional location information within the room. Using such a device,

instances can be captured in which the subject does not physically change location,

hence recording zero variations by the smartphone accelerometer, but still engages in

limited motion that impacts the neurological data. For example, while eating, the

movement of the subject's lower jaw can introduce noise into the sensed data by the

sensor assembly for monitoring brain activity, which may result in a sudden spike.

The skeleton figure data can be used to check if the loci of the vertex and edge

movements are regular, perhaps corresponding to that of a moving arm during eating.

As another example, the movement capture device can be activated if the sensors on

the smartphone indicate a potential fall by the subject.

A database of patterns engaged in by the subject can be provided to establish a

comprehensive context-aware framework. The smartphone can be placed in a master

role to poll slave nodes, such as one or more brain activity sensor assemblies and

other external devices, such as movement and sound capture devices. The smartphone



can timestamp and aggregate the data from all the sources, including the sensors on

board the smartphone itself. The smartphone can continuously monitor the sensor data

and if deviations from a known or predicted pattern are detected, it can increase the

duty cycle for the affected sensors. In some embodiments, the smartphone can send

the data, for example, in a compressed format, to a host processor or to a cloud

computing facility for subsequent data analysis. In other embodiments, the

smartphone can transmit the data to an external computer, such as a laptop computer,

for data analysis. In still further embodiments, the data processing and analysis can

occur on the smartphone itself. As one example, if the data analysis on the

smartphone suggests that the subject may have fallen, the smartphone can activate a

movement capture device and/or transmit an alert to other personnel for a visual

check.

Experiments have also been undertaken to determine the latencies involved in

sharing the data processing load between the smartphone and an external computer,

when the sensors on a smartphone are used to gather data on acceleration, rotation and

orientation. The phone establishes a TCP connection to the computer for reliable

delivery, which introduces a few milliseconds of initial handshaking delay, after

which the data is transmitted with regular acknowledgments over the wireless

channel. In one approach, a continuously running MATLAB script on the external

computer reads these sensor values and executes the fall detection technique

described above to determine if the subject with the smartphone has suddenly fallen

down. If a fall is detected, peripheral sensors, such as the Microsoft KINECT®, device

can be activated, which can capture visuals of the monitored patient. For comparison,

the data analysis, that is, the fall detection technique, is performed on the smartphone.

If a fall is detected, the smartphone sends a trigger to the computer using a TCP

connection and activates the KINECT® device.

Fig. 2 1 compares the delay for these two approaches at different data sampling

rates of 25 Hz, 50 Hz, 75 Hz, and 100 Hz. In Fig. 21, the computer-based approach is

indicated by "C", and the smartphone-based approach is indicated by "S." The total

delay is composed of the times it takes to (i) analyze the data (Tproc), (ii) connect to

the TCP server running on the computer (Tconn), (hi) send the data (Ttrans), and (iv)

trigger the KINECT® device (TK) . As can be observed from the results, from the

viewpoint of latency, it is much better to analyze the data on the smartphone and

trigger the KINECT® device if a fall is detected.



Smartphones not only serve as personal communication devices and a

convenient way to access to the Internet, but also as powerful processing platforms.

The latest commercially available models provide computational capability in the

range of 1.5 GHz dual-core processors and 1-2 GB of RAM, depending on the

handset maker. The smartphone can act as a central gateway between the sensor

assembly or assemblies and a computing cloud, capable of relaying data and

inferences back and forth, as well as selecting the computational resource appropriate

for the processing tasks. In one embodiment, for the end to end implementation, the

Amazon Elastic Compute Cloud (Amazon EC2) can be used. The elastic nature of this

service allows the system to instantly scale to meet spikes in traffic or demand.

Parameters that are used in this decision framework are the energy cost of processing,

the overhead of transmitting data over the wireless channel in terms of bandwidth use,

and the processing latency to complete the task.

While higher sample rates generate less error during the prediction, lower

sample rates are better in terms of battery consumption. That is, the phone uses less

battery power when collecting data from the sensors every 40ms (25Hz), than when

polling the sensors every 10ms (100Hz). Thus, the smartphone can continuously track

and predict the sensor data from the sensor array(s), and when marked deviations are

observed, increase the duty cycles of those particular sensors.

As one example of a processing function that occurs for real-time monitoring

of neurological information, using only the sensor assembly data, the smartphone

processor can perform electric field encephalography (EFEG) data pre-processing,

artifact removal, raw and averaged data visualization, including causality,

classification, and source reconstruction analyses.

As another example, using data from an entire neural network, including one

or more sensor assemblies, smartphone sensors, and a motion capture device, such as

the KINECT®, the smartphone can timestamp and synchronize the data from the

multiple sensor streams, and undertake a first round of data aggregation and

compression. It can also undertake cross-correlation among the sensor data to identify

matches of neural activity spikes with the observed sensor data, such as changes in

accelerometer or orientation readings.

In a further example, using, for example, the Amazon Elastic Compute Cloud,

time series analysis and autocorrelation studies can be performed on massive volumes

of historical data that are collected by the smartphone and stored in the cloud. One



such study that requires large computational capability of the cloud processing is a

time series decomposition where the temporal data for each of the sensors in the

neural network for a given activity is broken down into long-term trends, sudden

spikes, and cyclical components. This can help in identifying how neural activity

changes with age, and its fluctuations over the short and long-term time scales.

The information from the sensor arrays, nearby detected sensors, such as the

Microsoft KINECT®, and sensors within the smartphone can be provided as inputs to

Hidden Markov Models (HMMs) to raise contextual awareness of the raw sensor

data. A HMM includes a Markov chain whose states are hidden, as opposed to

observable variables that are resultants of hidden states. In the neural network, the

neurological states {normal, Si, S2} form a Markov chain as shown in Fig. 20.

Considering a given sensor type, the range of the sensor measurements can be defined

as the boundary values {[Omini , Oma i], [Omin
2, Oma

2],..., [Omin
N, Oma

N] } for the N

classes of observations. The HMM allows the probabilistic mapping of a given

observation to each of the neurological states, one of which is responsible for causing

these observations to occur.

Simple daily activities, such as watching TV, may introduce temporary

changes in the stress level and the mental state of the patient depending on the

program content, and it can be helpful to identify the context of sudden changes in the

neural signal, if any, to distinguish more serious conditions, such as stroke. At the

time of initialization, the smartphone can request an estimation of the living space of

the patient with coordinates of key facilities and equipment, such as TV, washroom,

exercise machine, dining table, among others, for example, through a drop-down

menu. The assisted GPS capability (AGPS) of the smartphone helps in localization of

the patient within a room in the facility of interest. Consider as an example a subject

watching TV. The accelerometer can detect if the subject is undergoing continuous

motion, suggesting a vigorous physical activity. If no continuous motion is detected,

then the orientation of the phone (and hence, the subject) with respect to the Earth's

magnetic axis is checked using the magnetometer. The point location of the AGPS as

well as the orientation along the line of sight to the TV can indicate with high

probability that the patient is watching TV. Thus, the HMM output in this scenario is

weighted down as a non-risk stage, given that sudden changes in neurological states

are likely due to the visual sensory inputs.



As noted above, in one embodiment, the sensor system employs Bluetooth

technology as the underlying channel access method, which is a low-energy standard,

suitable for wireless connectivity over short distances (typically < 10 m). Bluetooth

accommodates 7 active connections (slave devices) for a single master device, and

additional devices can be placed in a low-power parked mode. The master, for

example, the smartphone, is responsible for polling the slaves nodes, aggregating the

data, and sending a compressed set of readings to the Internet cloud for

comprehensive processing. It will be appreciates that alternative communication

technologies, such as using radio, can be employed.

The sensor assembly can be configured to transmit signals in the medical body

area network transmission band of 2360 to 2400 MHz recently specified by the

Federal Communications Commission. Because this frequency band is heavily used,

the system can employ a statistical activity model to identify the best frequency bands

for transmission. These activity models are also used to formulate channel access

schemes with interference avoidance with higher priority users, and ensure that data

reporting requirements of the neurological signals are met with acceptable latency

overhead.

The system can use a channel hopping pattern for avoiding portions of the

frequency within the MBAN band that exhibit high levels of interference. Moreover,

whenever there is a statistically high possibility of higher priority users within the

MBAN band, a sensor array can pause an ongoing transmission, and lower the

probability of selecting that subchannel in the next round of its hopping sequence. For

other lower priority/peer-level users, however, the system can continue to include that

particular subchannel in its hopping sequence, thereby allowing more numbers of

distinct hopping sequences within the system's neural network. The core operational

technique is first identifying a distribution function that gives the probability of

spectrum being available at a given frequency f and for time duration t , which evolves

with time, weighting recent measurements higher than those obtained earlier for the

same external conditions. This distribution is used for selecting the set of channels for

the hopping sequence.

The present system involves the dynamic leveraging of channel selection

under different priority transmitters in the MBAN band. Extensive investigations have

been carried out on the impact of coexisting users with different priorities within the

wireless medical telemetry service (WMTS) band, which has been re-served by the



FCC in the (i) current digital television (DTV) channel 37 between 608-614 MHz, (ii)

lower-L band (1395-1400 MHz), and the (iii) upper-L band (1427-1432 MHz).

Military and governmental agencies have a priority access in the lower-L band

spectrum with a number of operational radars. In addition, the upper-L band and the

lower-L bands are used by non-medical telemetry companies on a priority access and

equal-access basis, respectively. As an example case, these studies have revealed that

the lower-L band has intermittently transmitted signals displaced by 0.5 MHz from

the center-frequency. Thus the channel is not available for continuous use by the

medical telemetry sensors. Hence, there is a need to identify these higher priority

signals and select portions of the spectrum that have higher likelihood of being

available for longer durations of time. Various channel selection schemes based on

pre-determined activity patterns can be used. See, for example, R. Doost-

Mohammady and K. R. Chowdhury, "Enhancing Wireless Medical Telemetry through

Dynamic Spectrum Access," Proc. of IEEE ICC, June 2012; R. Doost-Mohammady

and K. R. Chowdhury, "Transforming Healthcare and Medical Telemetry through

Cognitive Radio Networks", IEEE Wireless Communications Magazine, Vol. 19, No.

4, August 2012.

The system and process for measuring electromagnetic activity of the brain as

described herein can provide a number of advantages. The EFEG measurement

modality results in high resolution local measurements, while also providing for

globally referenced EEG measurements. The sensor system provides significant

improvement in the signal-to-noise ratio. The sensor assembly of the sensor system is

unobtrusive, has a small footprint, is self-contained, can be operated wireless, and

locally referenced.

The sensor assembly can be quickly placed on a subject's head and similarly it

can be quickly removed. The sensor array works with a variety of hair types. The

electrodes of the sensor assembly can be used dry or with an electrolyte gel. The

sensor system can be used for continuous monitoring, for example, 24/7, of a

subject's brain activity to provide low-profile, real-time monitoring of brain activity.

The sensor system can communicate with a variety of processors or other

devices, such as a smartphone, laptop computer, or tablet computer. Communication

can be via a wired connection or a wireless connection. The sensor system includes a

measurement system including hardware and algorithms for data transfer, data

preprocessing and analysis.



The present system is applicable in a variety of fields. The system can be used

for functional brain imaging at high temporal and spatial resolution, for pattern

recognition and cognition. The system can be used for conducting brain research, for

example, to investigate neural correlates of vision and speech, aging, sleep, diseases

such as epilepsy, Alzheimer's disease, Parkinson's disease, ALS, stroke, autism,

depression, and traumatic brain injury. The system can be used for investigating

human-machine and brain-computer interfaces.

The system can include one or several sensor assemblies worn by a subject to

gather brain activity data along with other sensors, such as those found in a

smartphone or other devices, such as an image and/or sound capture device. The

system can be used as a neural network and can be used to provide context data for a

subject. The system can be integrated into a medical body area network for the

subject.

It will be appreciated that the various features of the embodiments described

herein can be combined in a variety of ways. References to a smartphone herein

include other devices that may be worn or carried by the subject.

The present invention has been described with reference to the preferred

embodiments. It is to be understood that the invention is not limited to the exact

details of construction, operation, exact materials or embodiments shown and

described, as obvious modifications and equivalents will be apparent to one skilled in

the art. It is believed that many modifications and alterations to the embodiments

disclosed will readily suggest themselves to those skilled in the art upon reading and

understanding the detailed description of the invention. It is intended to include all

such modifications and alterations insofar as they come within the scope of the

present invention.



CLAIMS

What is claimed is:

1. A sensor assembly for measuring electromagnetic activity of a brain of a

subject, comprising:

a support plate having first and second sides;

a plurality of electrodes protruding from the first side of the support plate

orientable toward the subject's scalp, the electrodes arranged in a spaced array, one of

the plurality of electrodes comprising a reference electrode;

a plurality of amplifiers arranged on the second side of the support plate, each

amplifier of the plurality of amplifiers associated with one of the plurality of

electrodes to receive signals from the associated ones of the electrodes indicative of

electric field activity of the brain; and

a microcontroller in communication with the amplifiers to receive signals from

the amplifiers, the microcontroller including a processor operative to determine a

weighted average of the signals indicative of an electric field generated by

electromagnetic activity of the brain.

2. The sensor assembly of claim 1, wherein the microcontroller is operative to

determine the weighted average from a sum of potential signals from each active

electrode relative to the reference electrode multiplied by a component of a distance

to the reference electrode, the sum divided by a further sum of the square of the

distance components.

3. The sensor assembly of claim 1, wherein the microcontroller is further

operative to determine a weighted average from a sum of potential signals from each

electrode divided by the number of electrodes.

4. The sensor assembly of claim 1, wherein the microcontroller is further

operative to determine a weighted average from a sum of potential differences from

each electrode relative to the reference electrode multiplied by a component of a



distance to a center of the arrangement of electrodes, the sum divided by a sum of the

distance to the center of the arrangement to the fourth power.

5. The sensor assembly of claim 1, wherein the microcontroller is further

operative to determine a higher order derivative of the electric potential.

6. The sensor assembly of claim 1, further comprising a transceiver for sending

and receiving signals between the microcontroller and an external device.

7. The sensor assembly of claim 1, further comprising a wireless data

transmission port.

8. The sensor assembly of claim 1, wherein the plurality of electrodes are

arranged with an interspacing of 1 cm or less, or with an interspacing of 4 mm or less,

or with an interspacing of 3 mm or less.

9. The sensor assembly of claim 1, wherein the plurality of electrodes are

arranged in a hexagonal pattern, a circular pattern, a triangular pattern, a square

pattern, or in no regular pattern.

10. The sensor assembly of claim 1, wherein the plurality of electrodes are

arranged in a density of at least 0.3 electrodes per square centimeter.

11. The sensor assembly of claim 1, wherein each of the plurality of electrodes

comprises a conductive pin.

12. The sensor assembly of claim 1, further comprising a housing attached to the

support plate, the plurality of amplifiers and the microcontroller disposed within the

housing.

13. The sensor assembly of claim 1, further comprising a further sensor assembly,

the sensor assembly and the further sensor assembly formed with a headband to

mount to a head of the subject.



14. The sensor assembly of claim 1, wherein each of the plurality of amplifiers is

in electrical communication with its associated electrode and with the reference

electrode.

15. The sensor assembly of claim 1, wherein each amplifier is in electrical

communication with an associated analog to digital converter, each analog to digital

converter in electrical communication with the processor of the microcontroller.

16. The sensor assembly of claim 1, wherein the subject comprises an animal, a

mammal, or a human.

17. A process for measuring electromagnetic activity of a brain of a subject,

comprising:

placing a plurality of electrodes in an arrangement on a scalp, each of the

electrodes in electrical communication with an associated amplifier, wherein one of

the plurality of electrodes comprises a reference electrode;

measuring a potential difference between active electrodes of the plurality of

electrodes and the reference electrode;

determining a weighted average of the potential differences, the weighted

average indicative of electrical activity of the brain.

18. The process of claim 17, wherein the microcontroller is further operative to

determine a weighted average from a sum of potential signals from each electrode

divided by the number of electrodes.

19. The process of claim 17, wherein the step of determining a weighted average

further comprises determining a weighted average from a sum of potential differences

from each electrode relative to the reference electrode multiplied by a component of a

distance to a center of the arrangement of electrodes, the sum divided by a sum of the

distance to the center of the arrangement to the fourth power.

20. The process of claim 17, further comprising generating an image of

electromagnetic brain activity of the subject.



21. The method of claim 17, further comprising arranging the plurality of

electrodes on a support plate and supporting a plurality of amplifiers by the support

plate in proximity to the plurality of electrodes.

22. The method of claim 17, further comprising wirelessly transmitting signals

indicative of the electrical activity of the brain to an external device.

23. The method of claim 17, further comprising transmitting signals indicative of

the electrical activity of the brain to an external device to provide a control of the

external device.

24. A method for concurrently measuring electric potentials and electric fields of a

brain of a subject, comprising:

placing a plurality of electrodes in an arrangement on a scalp of the subject,

each of the electrodes in electrical communication with an associated amplifier;

defining a first reference electrode among the plurality of electrodes;

defining a further reference electrode spaced remotely from the plurality of

electrodes;

switching between measuring a potential difference between active electrodes

of the plurality of electrodes and the first reference electrode and measuring a

potential difference between each of the plurality of electrodes and the further

electrode; and

determining a weighted average of the potential differences and a weighted

average of the potentials, the weighted averages indicative of electrical activity of the

brain.

25. The method of claim 24, further comprising determining a higher order

derivative of the electric potential.

26. A method of diagnosing a neurological condition of a subject, comprising:

placing a plurality of electrodes in an arrangement on a scalp of the subject,

each of the electrodes in electrical communication with an associated amplifier,

wherein one of the plurality of electrodes comprises a reference electrode;



measuring a potential difference between active electrodes of the plurality of

electrodes and the reference electrode;

determining a weighted average of the potential differences, the weighted

average indicative of electrical activity of the brain.

27. The method of claim 26, further comprising generating an image of brain

activity of the subject.

28. The method of claim 26 or 27, wherein the subject suffers from a neurological

condition.

29. The method of claim 28, wherein the subject suffers from Alzheimer's

disease, Parkinson's disease, amyotrophic lateral sclerosis, stroke, traumatic brain

injury, autism, depression, or epilepsy.

30. The method of claim 28 or 29, further comprising treating the subject for the

neurological condition.

31. The method of claim 26, further comprising comparing the brain activity of

the subject to the brain activity of a normal subject.

32. The method of claim 18 or claim 26, wherein the subject comprises an animal,

a mammal, or a human.

33. A system for providing a medical body area network of a subject comprising:

one or more sensor assemblies for measuring electromagnetic activity of a

brain of the subject, each sensor assembly comprising a sensor assembly according to

claim 1;

one or more additional sensors, remote from the one or more sensor

assemblies, for monitoring physiological parameters of the subject; and

a processor, remote from the one or more sensor assemblies, operative to

receive data from the one or more sensor assemblies and the one or more additional

sensors and to synchronize the data.



34. The system of claim 33, wherein the remote processor is disposed within a

smartphone or a wearable device.

35. The system of claim 34, wherein the one or more additional sensors comprise

at least one of a GPS device, an accelerometer, a gyroscope, a magnetometer, a

microphone, and a camera.

36. The system of claim 33 or 34, wherein one or more of the additional sensors

are disposed with a smartphone or a wearable device.

37. The system of claim 33 or 34, wherein the one or more additional sensors are

disposed within a movement capture device.

38. The system of claim 33, further comprising a database of sensor readings

indicative of one of a variety of activities.

39. The system of claim 38, wherein the variety of activities include watching TV,

sitting, eating, walking, or exercising.

40. The system of claim 33, further comprising a database of facilities and

equipment in an environment of the subject.

41. The system of claim 40, wherein the database includes locations of one or

more of a TV, a washroom, an exercise machine, and a dining table.

42. The system of claim 33, wherein the remote processor is operative to detect a

fall or a potential fall by the subject.

43. The system of claim 42, wherein the processor is operative to detect

acceleration and orientation data from the one or more additional sensors, to compare

the detected acceleration and orientation data to threshold acceleration and orientation

data, and to transmit a signal in response to detected data greater or lesser than a

predetermined threshold.



44. The system of claim 43, wherein the signal announces a fall event or activates

a movement capture device.

45. The system claim 33, wherein the remote processor is operative to poll the one

or more sensor assemblies and the one or more additional sensors to obtain data

therefrom, to time stamp and aggregate the data, and to transmit the data to a host

processor, a cloud computing facility, or an external computer.

46. The system of claim 45, wherein the remote processor is operative to increase

a duty cycle of polling a selected sensor of the sensor assemblies or the additional

sensors, if a deviation in the data from a predetermined value is detected from the

selected sensor.

47. The system of claim 33, wherein the remote processor is operative to transmit

the data within a medical body area network transmission band.

48. The system of claim 47, wherein the remote processor is operative to identify

frequency bands within the medical body area network transmission band to avoid

interference with higher priority users.

49. The system of claim 33, wherein the remote processor is operative to map

sensor data to one of a variety of classifications, each of the classifications

representative of a neurological state of the subject.

50. The system of claim 49, wherein the remote processor is operative to

determine a probability that a sensor measurement falls within one of the variety of

classifications.






































	abstract
	description
	claims
	drawings

