
US 20020010714A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2002/0010714 A1

Hetherington (43) Pub. Date: Jan. 24, 2002

(54) METHOD AND APPARATUS FOR Publication Classification
PROCESSING FREE-FORMAT DATA

(51) Int. Cl." ... G06F 7700
(76) Inventor: Greg Hetherington, Kareela (AU)

(52) U.S. Cl. .. 7071505; 707/508
Correspondence Address:
DAVIS & BUJOLD, P.L.L.C.
500 NORTH COMMERCIAL STREET
FOURTH FLOOR (57) ABSTRACT
MANCHESTER, NH 03101 (US)

A method and apparatus for processing free-format data
(21) Appl. No.: 09/898,948 (301) to produce a “text object' associated with the free

1-1. format data. The text object comprises a plurality of “com
(22) Filed: Jul. 3, 2001 ponent nodes” (302-312) containing attribute-type identifi

Related U.S. Application Data ers for elements of the free-format text and other data
facilitating access to the text object to obtain information

(62) Division of application No. 09/117,776, filed on Aug. and/or change or add the free-format data. This arrangement
6, 1998. obviates the need for the provision of Separate database

fields for each element of the information. Free-format data
(30) Foreign Application Priority Data can therefore be processed in a similar manner to the way a

human being processes free-format data. All elements can be
Apr. 22, 1997 (AU).. PPO439 accessed via the constructed text object.

109 104 102
108

Application
Software

User
interface

101 l
106

110 Domain
Definition
Data files

Application
Data

Patent Application Publication Jan. 24, 2002 Sheet 1 of 20 US 2002/0010714 A1

102 104 109

108

User
interface

101 l/

Application
Software

106

Domain
Definition
Data files

Application
Data

Figure 1

Patent Application Publication Jan. 24, 2002 Sheet 2 of 20 US 2002/0010714A1

201 76 Box Rd Townsville OLD

2O2 PO Box 92 Geelong VIC

2O3 39 Main St Box Hill WIC

204 8 Box Ave Devonport TAS

2O5 Cnr Box and Wolger Rds Townsville QLD

2O6 76 Box St Townsville NSW

2O7 231 Box Road Townsville OLD

208 53 3rd Ave, Townsville 4321. QLD

209 35 Third Avenue, Townsville Queensland 4321

210 333 Mt Pleasant Road, Springvale

211 191 Springvale Road, Mt Pleasant

212 123 Sydney Ave, Melbourne VIC

Figure 2

Patent Application Publication Jan. 24, 2002. Sheet 3 of 20 US 2002/0010714 A1

313

air-st
303 304 305

306 Street Street Street 08 309 Geo w 310
Number Name Type Term

Os313

Patent Application Publication Jan. 24, 2002. Sheet 4 of 20 US 2002/0010714 A1

Address

Address 1
Address 2

Address 3

Address 4

Address 5

Address 1

Address 2

Suburb

State

Postcode

Unit i

Street Name
House if

TOWn

State

Postcode

Figure 4

Patent Application Publication Jan. 24, 2002 Sheet 5 of 20 US 2002/0010714 A1

502 503

Append this
node to
result list

For each
Sub-component

node

Return
to Caler

Call this
procedure

Figure 5

Patent Application Publication Jan. 24, 2002 Sheet 6 of 20 US 2002/0010714 A1

Multiple
Name 602

• - - - - - - - - - r rr is - - - - - - - - - - - - - - - - -ss- en - a sa- - - - - - - - - - as a raiser r - a -s are as a r"

Figure 6

Patent Application Publication Jan. 24, 2002. Sheet 7 of 20 US 2002/0010714 A1

-702 - 703
Only

Matching one node No
Node ound

705
Yes Substract length l/

of old string from Condition
new giving Diff

707

Copy new - 709
string to start
address of old

710

Epic Set Error
o e See Condition
with new

712

-71 714.
For each node Adjust node's

in new start address
subtree

Figure 7

Patent Application Publication Jan. 24, 2002 Sheet 8 of 20 US 2002/0010714 A1

801 N 803 802 N

aaaaa ibb bbbbb CCC cc diddd did

804 805 806 807

Figure 8

i Unit Sash Street Street Street Word
i Number Number Name Type :

------------------------------ 2 M 38 Main St : Townsville
, -------------------------------

N String to be replaced

Figure 9

Patent Application Publication Jan. 24, 2002. Sheet 9 of 20 US 2002/0010714 A1

r street street street Level
: Number Name Type i

i Level level WOrd
: Type Number

Level 2 38 Mayne Street

Replacement String

Figure 10

Patent Application Publication Jan. 24, 2002 Sheet 10 of 20

Level Street Street Street
Number Nanne Type

Level Level
Type Number

Figure 11

US 2002/0010714 A1

Patent Application Publication

for each pair of
sub-components
with same type

For each
sub-component

Sum all
resulting node

values

Divide total value
by sum of all

Jan. 24, 2002. Sheet 11 of 20

String
Comparison

Call this
procedure to
get Match
Confidence

Record best
match

confidence

Multiply best
confidence level &
matching Weight

Return
Matching
Confid.

US 2002/0010714 A1

1210

Patent Application Publication Jan. 24, 2002 Sheet 12 of 20 US 2002/0010714A1

1302

1303 1306 Street Town 1307
1305 1. 1308 sta

30 1309 1304 Street Hyphen Street Street Street Word
Number Number Name Type

1310 1311 1312
Number Word

- - - - -ss --- -- - - - - - - - seers - - - - - as as a r was a se r n e s - so - a vs sea as a ss ssa -

- sees as a s - - -n so a so a ress - so or - - - - - - - as a sessss as -

(20:100) (OO) (10*O) (60*80) (10100) (40*100)

14 Catherine Street Townsville

(30.100) (6080) (10*100) (40*100)

Figure 13

Patent Application Publication Jan. 24, 2002 Sheet 13 of 20 US 2002/0010714 A1

1401 1402
/ Relocate 143

if Diff > Yes ext Data --
free space free space

No

1405 1. 1404
Calculate Text
Object Space
Requirements

- 14O7
Relocate

Text Object
+ free space

Yes

1406
ext Obj

has enough
Space?

1409
Yes /1

Shift "after"
string by Diff
postitions

1408

Yes

1410 -141
For each Add Diff to
node after start address

- 1413 /1 1415

Set Error

1412
For each

other node
which

Contains new

Adjust node's
length by Diff Condition

1416
Adjust

Text Object
free space
by Diff “

Figure 14

Patent Application Publication Jan. 24, 2002 Sheet 14 of 20 US 2002/0010714 A1

1501

1507

1601

s

character
Definition -10 1602

N

N- Construct
Domain
Process Regular

Expression
1603
N

1607 N
Free-format

Data

Attribute
Type Name

1608 l/

Figure 16

Patent Application Publication Jan. 24, 2002. Sheet 15 of 20 US 2002/0010714 A1

Standard Japanese Katakana Transliteration

Figure 17

Patent Application Publication Jan. 24, 2002. Sheet 16 of 20 US 2002/0010714 A1

Sample Regular Expression Definition.
Action alpha digit

try

Error

start

empty
initial

initial space+

O

1

4.

2

3

initial space 5
Word- 2

Word+ space 3
7

2

2

3

8

2

3

Word+ space

l 0-9+ space
1 2 0-9+ space
1 3 Sym

1 4. Syn Space

5 sym space 10

1 6 eot space" 3
1 7 eol+ space
1 8 eoi

* Action
O

Action Description
Error in Table

Bypass leading spaces
Append this character to character buffer
Append traiting space to character buffer
Empty string

Create "initial" token; go back 1 char, set state to 1
Create "word" token; go back 1 char, set state to 1
Create "number token, go back 1 char, set state to 1
Create "end of input" token; go back 1 char, set state to 1

10 Create "symbol" token; go back 1 char, set state to 1
Create "end of Fine" token; go back 1 char, set state to 1

Figure 18

Patent Application Publication Jan. 24, 2002 Sheet 17 of 20 US 2002/0010714 A1
Address

-> StreetAddr, Town 2ipcode State Special Switbols:
PostBox, Town 2ipcode State ;

StreetNunn Street
| AptType AptNun StreetNunn Street
! StreetNum Street Apt'Type AptNum

Street

-> StreetName StreetType StreetDir :-2
StreetName StreetType ;

StreetName

-> word word word ;
StreetNun -> nor ; Zero Matching
Apturn -> nor ; a 4 w a Significance
StreetType =-4=

-> "Ave" "Avenue" ("Ave") Parsing
"Rd" "Road" ("Rd") Significance
"st" "Street" ("st")

StreetDir

-> Ged

Reserved Words:
-> "North" "N" ("North")

"East" "E" ("East")

-> "Apt" "Apartment"
"Unit" one digit
r y

ipcode
-> 99999 99999 "-" 9999

Postbox

-> PostPref PostBoxNura
PostPref =-9s

-> "PO Box" "Box" ;
PostBoxNull

-> nor nbir A . A nbr ;
CW

-> word word word
Geo word Geo word word ;

State

-> "ALABAMA" ("AL") "AL"
"ALASKA" ("Ak") "AK"
"ARI2ONA" ("Az") "Az" --

"ARKANSAS" ("AR") "AR" Figure 19
"cALIFORNIA" ("CA") "CA"

Patent Application Publication Jan. 24, 2002. Sheet 18 of 20 US 2002/0010714 A1

2002
Load Character
Definition Data

2001 /
/ 2003

Load Regular
Expression

Definition Data

For each Rule
s Grammar in Grammar

Rule

For each
symbol in

Symbol table
Check if
defined

2009 2011

Yes 1 -
Create Parse

For each
Symbol in

Symbol table
Set Error
Condition

Store Parse table
reference in

corresponding
Symbol table

/ 2012

Figure 20

Patent Application Publication Jan. 24, 2002. Sheet 19 of 20 US 2002/0010714 A1

21 O2 / 2101 /
Create new
rule in Rule

Table

2103
/ Add LHS

Symbol to
Symbol able

2104

For each
Symbol in
RHS of rule

21 O6

2105 \ N
Add entry to
Dictionary

Yes

2108 N

Yes Do nothing Expression

2109
No N

Add symbol to
Symbol Table

Figure 21

Patent Application Publication Jan. 24, 2002 Sheet 20 of 20 US 2002/0010714 A1

SQL Database Implementation Example

l. CREATE DOMAINOBJECT US ADDRESS
2. UPDATE US ADDRESS

SET LANGUAGE = EXTERNAL Path/English. txt
GRAMMAR = EXTERNAL Path/US Addr.txt ;

3. CREATE TEXTOBJECT ADDRESS ;

4. UPDATE US ADDRESS
SET DOMAIN = US ADDRESS,

TYPE = Address' ;

5. CREATE TABLE PERSONS (

Nate CHAR (20)

Home Addr ADDRESS) ;

6. INSERT INTO PERSONS (Name, Home Addr)
VALUES (

John Smith',
123 Cathy Street, Apt 5, Huntsvale, CA, 98765") ;

7. SELECT FROM PERSONS

WHERE Home Addr = Unit 5 123 Cathy St, Huntsvale, CA'

8. SELECT FROM PERSONS

WHERE Home Addr. State = California" ;

9. SELECT FROM PERSONS

WHERE Home Addr. Street MATCHES Kathie St" > 0.80 ;

New Reserved Words:

DOMAINOBJECT, TEXTOBJECT, LANGUAGE,
GRAMMAR TYPE MATCHES

Figure 22

US 2002/0010714 A1

METHOD AND APPARATUS FOR PROCESSING
FREE-FORMAT DATA

0001. The present invention relates generally to the pro
cessing, Storage and analysis of information in the form of
free-format data, and particularly, but not exclusively, to a
method and apparatus for interpreting free-format text.

BACKGROUND OF THE INVENTION

0002 One of the main purposes of computer systems is
to manage information. This management of information is
performed internally by data management Systems. Gener
ally, data management Systems may be divided into two
categories: 1) Database management Systems; and 2) Text
Search and retrieval Systems.
0003. The first type of data management system imports
and manipulates data into internal representations So that the
data may be located and modified. When required, these
Systems generate a Suitable representation of this data which
is read by humans or used by another System. This category
of data management System includes: hierarchical, network,
relational, object-oriented database management Systems
and knowledge based management Systems.

0004. Within hierarchical, network and relational data
bases, information about an entity (a transaction, a stock
item, a person, a company, an address etc.) is usually
referred to as a “record” (although Sometimes a record may
contain information about many entities). Within each
record the various “attributes” of the entity are usually
classified into "fields'.

0005 Within object-oriented database management sys
tems and knowledge based management Systems these basic
units may have other names Such as “object' and the
information regarding the object may have names Such as
“slot or “member”. Each of the attribute fields/slots has a
format which can be, for example, integer, real number,
boolean, character etc. Others are records/objects. Some
fields/slots have specific formats (e.g., date, time), but yet
others are free-format text.

0006 Once the database has been constructed, it may be
used to perform the following operations:

0007 Add a record/object
0008 Locate and change a record/object
0009 Locate and delete a record/object
0010 Retrieve information

0.011 These operations will be referred to as “normal
database operations'.
0012 Storing of information about an entity in fields/
Slots is Suitable for many types of data. There are however,
Some types of data which do not have a Suitable Standard
Structure. One best example of data which does not have a
Standard Structure is "address' data. AS most databases Store
people's address information in one, two or three free
format fields, performing normal database operations on
individual attributes of the address is very difficult. Note that
the term “attribute” is used in this specification to refer to a
property of an “element” of data.
0013 For example, the free-format data “35 Pitt Street,
NORTH SYDNEY” has a number of “elements'. Each

Jan. 24, 2002

element has an associated "attribute”. An attribute of the
element “NORTH” is that it is a “geographical indicator”.
An attribute of the element “12' is that it is a “number'.
Note that the “low level elements correspond to the
“tokens' of data i.e., the element "NORTH is a token of the
data. The data also includes higher level elements, however,
e.g., “NORTH SYDNEY” is an element which includes two
tokens and this element has the attribute of being a “town'.
An attribute of the entire data “12 Pitt Street, NORTH
SYDNEY”, i.e., the total “element” is that it is an “address'.
An alternative term for element is “component'.
0014 For each element of this free-format data to be
provided with its own field for the associated attribute would
increase the Size and complexity of the database quite
Significantly, even for this simple example of addresses.
Where the database includes information on people, together
with their addresses, for example, in order to avoid com
plexity, and particularly with older databases, address data
may be stored in a single field labelled “address”. This field
contains the address in free-format form and it is therefore
not possible with present database technology to perform
normal database operations on individual elements of the
address-those elements cannot be accessed separately
(apart from the total combination of elements which makes
up the address, which can of course, be accessed as a whole,
as “address”).
0015 This problem is to some extent addressed by the
Science of database Scrubbing/cleansing. This field of com
mercial endeavour applies parsing processes to free-format
text with the objective of creating new database fields for the
attributes of the free-format text and entering into those
fields completely Standardised data. This Standardising of
data includes converting all spelling variations into one
consistent set. (eg “Street”->“St”.) The above example
would produce the following:

House Number Street Name Street Type City

12 Pitt St Sydney

0016. The new database fields are then used to perform
normal database operations. An entire industry is devoted to
this field, applying large, complex and expensive Software
packages to take information Stored in databases, analyse
and process the information to produce new databases
including more fields for the attributes of the information
records, thus providing more flexibility for operations which
can be applied to the records.
0017. Much has been written about the field of database
cleansing/Scrubbing (see e.g., “Dealing with Dirty Data”
DBMS Magazine, September, 1996). The process is expen
Sive -a complete cleansing operation for a large database
can cost millions of dollars, as it is So time consuming and
the Software packages that have been developed to cleanse
databases are very complex-and it is still limited by the
fundamental requirement that to perform database opera
tions on an element, the element must have a field to itself.
0018. This brings us to the second major problem which
afflicts the present methods of Storing computerised infor
mation in commercial databases. Practically all commercial
data is Stored within hierarchical, relational databases or flat

US 2002/0010714 A1

data files which have a structure which is fixed at time of
design, but information by its very nature is complex and
can have almost an infinite number of different attributes. To
create a database containing fields for each and every
attribute for each and all types of different information is just
not practical, if not totally impossible, and certainly the cost
of any attempt to produce a database containing fields for all
the types of information available to humanity would be cost
prohibitive.
0019 Even a fairly trivial (although very important)
example illustrates the Scale of the problem. Consider inter
national addresses, i.e., addresses the World over. Although
four or five free-format fields can contain any address, to
design a database table which has a data field for every
possible attribute of all international addresses would con
tain hundreds, if not thousands of data fields. England has
counties, USA and Australia have States, Japan has districts
and different orders of addresses, etc.
0020. The field of database cleansing/scrubbing is there
fore a partial Solution at best. It still requires the same
fundamental database Structure of a field for each data
attribute. One can build more and more complex databases
but this problem can never be completely resolved, and
limits the computerised handling of information signifi
cantly.
0021 Natural language processing Systems are known
that employ “Semantic Grammars' to encode Semantic
information into a Syntactic grammar. These Systems are
mainly used to provide natural language interface to other
Systems. Such as a data base management System. The
following description comes from a book by Patterson, D.
W. “Artificial Intelligence and Expert Systems”.

“. . . They use context-free rewrite rules with non
terminal semantic constituents. The Constituents are
categories or metasymbols such as attribute, object,
present (as in display or print), and ship, rather then
NP (Noun Phase), VP (Verb Phase), N (Noun), V (Verb), and
so on. . . . Semantic grammars have proven to be
successful in limited applications including LIFER, a
data base query system distributed by the US Navy . . .
and a tutorial system named SOPHIE which is used to teach
the debugging of circuit faults.
Rewrite rules in these systems essentially take the forms
S-> What is OUTPUT PROPERTY of CIRCUITPART
OUTPUT PROPERTY - the OUTPUT PROP
OUTPUT PROPERTY - OUTPUT PROP
CIRCUITPART - C23
CIRCUITPART -> D12
OUTPUT-PROP-> voltage
OUTPUT PROP-> current
In the LIFER system, there are rules to handle numerous
forms of wh-queries such as
What is the name of the carrier nearest to New York?
Who commands the Kennedy?
etc . . .

These sentences are analyzed and words matched to
metasymbols contained in lexicon entries. For example,
the input statement Print the length of the Enterprise
would fit with the LIFER top grammer rule (LTG) of the form
<G> -> <PRESENTs the &ATTRIBUTEs of &SHIPs
where print matches <PRESENTs, length matches
<ATTRIBUTE>, and the Enterprise matches <SHIPs. Other
typical lexicon entries that can match <ATTRIBUTE>
include CLASS, COMMANDER, FUEL, BEAM, LENGTH, and
so on.'

Jan. 24, 2002

0022. These types of systems receive information in
structured or free-format form and converts it to its own
representations.
0023 Although the interface is flexible the database they
interface to has a fixed Structure and these Systems are
unable to perform changes on the original (human readable)
data.

0024 Indeed there are many prior art systems which
provide “Natural Language' interfaces to structured data
bases. All of these systems provide translation from “Natural
Language' into Some form of Structured data and Suffer from
the same problems described above.
0.025) Refer to U.S. Pat. No. 4,787,035, Bourne, D.
“META-INTERPRETER'' and U.S. Pat. No. 5,454,106,
Burns, L., Malhotra, A., “Database retrieval System using
natural language for presenting understood components
of for examples of Such Systems.
0026 AS discussed earlier, one type of database manage
ment Systems are knowledge based management Systems
(KBMS).
0027. These systems employ the concept of attribute
“slots' on an object. Slots provide or change information
regarding the object either directly onto the Stored values or
indirectly through procedures. A simple example of "slots'
will illustrate the concept: a “Square” object has two
attribute slots “Length” and “Area'. The “Area” slot does
not need to Store a value because its value can calculated by
Squaring the "Length value.
0028. Although these types of systems do not require
fixed database Structures, they do however, need to trans
form the original data into internal data representations
which must be put through a very process intensive “lan
guage generation' process to produce information that is
understandable by humans. If these types of Systems were
required to maintain the original data for use by other
Systems and humans, a Small change would require the
whole text String to regenerated.
0029. The text search and retrieval category of data
management System does not import the data but builds
Searchable indices which point to the original data. This
category includes: document Storage & retrieval Systems,
and Internet Search engines.
0030 These types of systems have very successful
because they leave the original information in human read
able form. This basic principle means that unlike the prior art
database System described above, the underlying data can be
very easily shared with many Systems of this type. Another
reason for their Success is that improvements in technology
can be implemented without requiring conversion of the
original data. Data conversion is not only extremely expen
Sive, but it is also a major Source of data errors.
0031. There are however, major drawbacks in using this
type of System to manage data. Compared with the database
systems described above. The major limitation is that the
data cannot be manipulated-it cannot be modified, it must
remain as it is. Other database functions which are very
difficult to perform include:

0032 Cross checking and validating the data
0033 Integrating the data with database systems
0034 Sorting and classifying the text data

US 2002/0010714 A1

0035. From these limitations, we can see that this cat
egory of data management System is Suited to unstructured
data which does not need to be changed.
0036). In text search and retrieval systems, it is known to
process a documentation collection to identify Specific
attributes of each document such as its “subject' topic. The
types of documents which have been processed by this type
of System include books, newspapers, reports, manuals and
e-mail messages.
0037 Most of these types of systems, however, only look
for individual words to match and do not look at words in
context. Some others identify words that are nouns but do
not classify the type of noun. Both are unsuitable for data
Such as address data, which contains a large portion of
proper nouns.

0.038 Further, the original data cannot be changed within
COnteXt.

0.039 For more information regarding this area, refer to
the works published by Gerald Salton.
0040. Note that the term “text object” as used in the
following description should not be confused with the
terminology "text object' which has been used in Systems to
describe Software techniques which assist in the Storage and
transfer of pieces of text data between computer Systems by
encapsulating the text String. Techniques which have used
the term “text object' range from the “String” object
employed within Apple Computer's operating Systems
(where the object contains a leading two byte “length” value
and the text string) to the “Compound String” object
employed by the X-Windows operating system (where the
object encapsulates multiple encodings, language transla
tions and font styles of one piece of information.)

SUMMARY OF THE INVENTION

0041. From a first aspect the present invention provides a
method of processing free-format data Stored in a computing
System, comprising the Steps of examining elements of the
data to determine attributes of the data, by examining the
content of the elements and the contextual relationships of
elements to each other, to determine Semantic and Syntactic
information (attributes) about the data, producing additional
data relating to this information, in the form of a text object
which includes pointer means enabling access to the ele
ments of the free-format data, and the additional data being
accessible by a query processing means to provide answers
to queries relating to the Semantic and Syntactic information
about the data and/or to access the data to manipulate the
data.

0042. The term “text object” as used in the current
Specification does not encapsulate text String, as discussed
above. The text object in the terms of the present invention
provides a “semantic layer between the actual text data and,
for example, an application Software System which may
need to acceSS and/or manipulate the text data.
0043. In its simplest form, as defined above, the text
object is the additional data, related to the Semantic and
Syntactic information obtained from examination of the data
elements, and a pointer means (Such as a key) which can lead
back to the elements of the free-format data (e.g., back to the
text string which forms the free-format data).

Jan. 24, 2002

0044) The additional data preferably allows identification
of the attributes of the data which have been obtained by the
examination of the data. For example, in the “12 Pitt Street,
NORTH SYDNEY” example given in the preamble, the
various attributes of the data, e.g., “street' equals “12 Pitt
Street”; “street number” equals “12”; “town' equals
“NORTH SYDNEY”, etc., are identified by the additional
data and the pointer means preferably allows access to the
elements of the data which are associated with those
attributes. The additional data effectively provides “virtual
data fields'-the data fields do not exist as they do in a
normal database which would have a column field head for
each attribute. Nevertheless the free-format data can be
accessed on an attribute by attribute basis using the present
invention, as ifactual fields for those attributes did exist. The
preferred embodiment of the invention thus operates to
create “virtual data fields” which, preferably, allow all
normal database operations on free-format text, without
having to create actual database fields for the free-format
text. The free-format text can remain Stored as it is in the
same location (usually database).
004.5 The significance of this becomes apparent when
one considers the processing of many records of free-format
data, for example international address data. AS discussed
above, although four or five address fields could store all
international address data in free-format form, each data
record can have many attributes, which differ from attributes
of other addresses e.g., England has counties, the USA has
States. To produce actual conventional database fields for all
the attributes for international addresses would be an almost
impossible task. However, with the present invention, each
record of free-format data can be taken and processed to
produce a (small) number of virtual data fields for that
particular record in the form of a text object. The text object
for each record can then be queried Separately by an appro
priate query processing means to provide all the normal
database operations for that record. The data itself may stay
in place. As a separate text object is created for each record,
there is no problem with having different virtual data fields
for each record. We do not have to create a large database
with many fields, instead we leave the database records as
they are and create many text objects, one for each record,
to give many virtual fields overall, but few virtual fields for
each text object.

0046) The step of examining preferably includes the step
of parsing the free-format data.
0047 A text object preferably enables manipulation of
the data to carry out all the normal database operations, Such
as changing the record, locating an element of the record,
retrieving information from the record, etc. The information
which may be provided by the text object preferably
includes information on the elements of the data. In a
preferred embodiment, the information may also include
matching information (such as phonetics) to facilitate com
parison of one record of data with another record of data,
parsing priority information to assist in the processing of
ambiguous free-format text, etc.

0048. It is believed that this new approach will lead to
computers being able to manipulate free-format data in
much the same way as human beings do. There is no need
disassemble the data record according to its attributes and
place Standardised values for each attribute type into an

US 2002/0010714 A1

appropriate field in a database (as is conventional practise),
once the appropriate column names for the database have
been determined. Each text object for each data record
provides all the processing and information the computer
needs to provide all the normal database operations. The
attribute types of, for example, international addresses can
be compared, manipulated, etc., without it being necessary
to provide a complex database with many fields.
0049. The text object preferably includes attribute-type
identifiers accessible to enable identification of attributes of
the free-format data and pointer means for locating elements
of the data having the particular attribute.
0050. In a preferred embodiment, the text object com
prises a plurality of parts in the form of “component nodes'.
Preferably, a plurality of component nodes may be associ
ated together in a text object in a predetermined hierarchy.
For example, a plurality of component nodes may be con
sidered to be “nested” together in the form of a “text node
tree' which may have a plurality of branches associating
various component nodes with each other in a predetermined
hierarchy. Each component node may comprise:

0051 an attribute type identifier (for the classifica
tion of an attribute of the free-format data which is
asSociated with that component node);

0052 a pointer to the beginning of a sub-string
within the text object's text string (i.e. beginning of
the element associated with the component node).

0053 an integer containing the character length of
the element Sub-string (of the data).

0054 zero, one or more other component nodes
(nested within this component node or otherwise
asSociated with the component nodes So that the
other component nodes can be accessed via the
component node) preferably stored as an array;

a matching Wei o indicate the relative 0055 tching ght (to indicate the relat
importance of this element when performing com
parisons with other text objects);

0056 a boolean variable indicating whether this
attribute type identifier is a low level matching
element; and

0057 depending on time/space considerations, one
or more values to assist in the matching process. (See
Section on "text String operations' below for more
details.)

0.058 a parsing priority value (giving a notional
“priority” to the elements of the free-format data
asSociated with the component node So that a priority
may be allocated and used in the determination of the
best interpretation of free-format text when ambigu
ities exist).

0059) Other component nodes may not be physically
nested within the component node but each component node
may just contain a list of pointers to Subordinate component
nodes So that the Subordinate component nodes can be
“found” from the component node which includes the list.
0060 Each component node preferably relates to one
particular attribute of the free-format data, as identified by
the attribute type identifier in the component node. Compo

Jan. 24, 2002

nent nodes which are relatively high in hierarchy may
contain or point to a plurality of other component nodes,
whereas those component nodes which are the lowest in the
hierarchy may not contain or point to any other component
nodes as the next Step down in the hierarchy is the associated
element of the free-format data.

0061 The hierarchy is determined by the parsing of the
free-format data. E.g., one attribute of a record of address
data may be a <Streets, e.g. “12 Pitt Street'. Sub attributes
of the <Streets component are <Street numbers" 12", <Street
name> “Pitt” and <Street types “Street”. The <Streets
component node will therefore list three other Sub compo
nent nodes, having attribute type identifiers <Street num
berd, <Street name> and <Street typed.
0062 Preferably, each component node could be consid
ered to be text objects themselves. This recursive definition
allows all the functions of the text object of the present
invention to be applied to each attribute.
0063. The text object may also comprise other data
Structures which assist in the quick location of Specific
component nodes. An example of Such a structure is a
lookup table containing all the attribute type identifiers and
a pointer to their associated component nodes.
0064. The query processing means is preferably a soft
ware application engine which is configured to be able to use
the text object to answer questions on the data and access the
data to manipulate it (e.g., correct it if it is in error).
0065. The method preferably also includes the further
Step of preparing an “index' which facilitates comparison of
elements of a plurality of records of free-format data. The
index is preferably in the form of a table (termed by the
inventors a "text object index') including columns, column
headings and data, Very much in the same way as a con
ventional database, except that it is prepared from the
additional data for each of the plurality of data records.
0066. The text object index preferably includes a table
with a column for the attribute type identifier, a column for
representative value keys and a column for user Supplied
record identifiers. The representative value key preferably
provides a value representative of a feature of the element
asSociated with the appropriate component type identifier,
e.g., a phonetic value for elements which are proper nouns
(e.g., Smith) or a numeric identifier for common words (e.g.,
Street). The Section on text String matching below contains
more details regarding the values of the representative key
value. The user supplied record identifier will identify to the
user which record of free-format data is being compared or
accessed i.e., is a pointer which enables access to the record.
0067. Where a text object index is prepared, a text object
having a plurality of component nodes containing attribute
type identifiers and other data may not be necessary. All that
may be required to access the data and carry out database
operations is the query processing engine and the text object
index. The text object indeX may be prepared directly from
the examination of the data and the text object index
includes text objects for a plurality of records (i.e., addi
tional data plus pointer to record). The text object as a
Separate “component node structure' can therefore be dis
pensed with or is not needed in the first place as a Separate
entity, instead it is incorporated in the text object indeX as
additional data plus pointers.

US 2002/0010714 A1

0068. Where the text object includes “matching values
(or procedures to create these values) for low level matching
elements of the free-format text, it is possible, for example,
to compare records including elements which are in different
written languages. For example, a free-format record con
taining a Street name value in Kanji, may be compared with
a Street name element in Arabic by comparing respective
matching values. The Street name for each record could be
the same Street, but merely being expressed in different
languages in the free-format data. The matching information
provided by this aspect of the present invention therefore
enables comparison of elements of free-format text
expressed in different written languages.
0069. Matching values may be generated during process
ing of text objects, and need not be Stored in the text object.
That is, they can be generated "on the fly via procedures
designated by the query processing engine. See later on in
the description.
0070. In the method of the present invention, the step of
examining the elements of the data to determine the com
ponents preferably comprises the Step of parsing the free
format data in accordance with grammar rules applied by a
domain object. The domain object is preferably constructed
by a domain construction proceSS which uses as input data:
character definition data, regular expression definition data,
and grammar data.
0071. The hierarchy of the component nodes of the text
node tree is preferably determined by the grammar rules for
the particular domain object.
0.072 An embodiment of the present invention may be
implemented by a Software application which includes a
domain object and a query processing means. The domain
object is arranged to examine free-format data to produce a
text object which can be then used by the query processing
means to enable all database operations on the free-format
data. The free-format data may be Stored in any conventional
way, Such as in a conventional database on a computer
System. The free-format data may also be Stored as a String
in the text object. The Software application comprising the
domain object and query processing engine would be used
to process the data without affecting its Storage in the
database. Other Software applications could therefore inter
face with the database as normal, i.e., the database remains
totally unaffected as far as its operation is concerned apart
from the fact that the domain object and query processing
means can be used to enhance the capabilities of the data
base by providing access to all the elements of the free
format data.

0073. As well as allowing access to data in free-format
data fields which has previously been unavailable without
data cleansing and preparation of new databases with more
fields, the present invention also has great potential for the
future Structuring and ordering of data. For example, using
the present invention it may be possible to greatly reduce the
number of fields which are required to Store data in a
database. Considering the example given above, of interna
tional name and address data, at present it is not possible for
a database to deal with international address data in a single
field-because international address data has many different
attributes. With the present invention, however, international
addresses may be kept in Single free-format field containing
all the international address records. Processing by the

Jan. 24, 2002

present invention provides each individual international
address record with its own set of virtual data fields allowing
comparison with other records via the query processing
means, manipulation and access to information of all ele
ments of each data record. Indeed, it is possible to provide
a single domain object for all international addresses. Any
free-format data could be processed in this way. The inven
tion is not limited to address data.

0074. From yet a further aspect, the present invention
provides a method of enabling access to free-format data
Stored in a computing System, including a plurality of
free-format data records, comprising the Steps of Storing
additional data relating to Semantic and Syntactic informa
tion (attributes) about the data for each data record, the
additional data being in the form of a text object associated
with each data record, the text object including pointer
means enabling access to elements of each free-format data
record, the additional data being accessible by a query
processing means to provide answers to queries relating to
the Semantic and Syntactic information about the data and/or
to access the data to manipulate the data.
0075) The text object preferably includes any or all of the
properties of the text object as discussed above in relation to
the first aspect of the invention and the text object is
preferably produced by an examination including any or all
of the features as discussed above. The present invention
further provides a method of enabling access to free-format
data Stored in a computing System, including a plurality of
free-format data records, comprising the Steps of Storing
additional data relating to Semantic and Syntactic informa
tion (attributes) about the data of each data record, the
additional data being in the form of a text object index which
includes attribute-type identifiers for elements of each data
record and pointers to each data record, the text object index
being accessible by a query processing means to provide
answers to queries relating to the Semantic and Syntactic
information about the data and/or to access the data to
manipulate the data.
0076. The text object index preferably includes any or all
of the properties of the text object indeX as discussed above
in relation to the first aspect of the invention. The text object
indeX is preferably produced by process StepS as discussed
above in relation to the first aspect of the invention.
0077. From yet a further aspect, the present invention
provides a processing System for processing free-format data
Stored in a computing System, the apparatus including means
for examining elements of the data to determine attributes of
the data, by examining the content of the elements and the
contextual relationships of elements to each other, to deter
mine Semantic and Syntactic information (attributes) about
the data, means for producing additional data relating to this
information, in the form of a text object which includes
pointer means enabling access to the elements of the free
format data, and a query processing means which is arranged
to access the additional data to provide answers to queries
relating to the Semantic and Syntactic information about the
data and/or to access the data to manipulate the data.
0078 Preferably, the examination means and means for
producing is arranged to produce a text object with any or all
of the features as discussed above in relation to first aspect
of the invention, by applying, preferably, the same methods
of examination.

US 2002/0010714 A1

0079 The present invention further provides a processing
System for enabling access to free-format data Stored in a
computing System, including a plurality of free-format data
records, the processing System comprising additional data
relating to Semantic and Syntactic information (attributes)
about the data for each data record, Stored and accessible by
the processing System, the additional data being in the form
of a text object associated with each data record, the text
object including pointer means enabling access to elements
of each free-format data record, and a query processing
means arranged to access the additional data to provide
answers to queries relating to the Semantic and Syntactic
information about the data and/or to access the data to
manipulate the data.
0080. The present invention further provides a processing
System for enabling access to free-format data Stored in a
computing System, including a plurality of free-format data
records, the processing System comprising the additional
data relating to Semantic and Syntactic information
(attributes) about the free-format data for each data record,
the additional data being in the form of a text object indeX
which includes attribute type identifiers for elements of each
data record and pointers to each data record, and a query
processing means arranged to access the additional data to
provide answers to queries relating to the Semantic and
Syntactic information about the data and/or to access the data
to manipulate the data.
0081. The present invention yet further provides an appa
ratus including a domain object arranged to process free
format data to produce a text object, the text object including
any or all of the features of the text object as discussed above
in relation to previous aspects of the present invention.
0082 In a preferred embodiment, the step of accessing
the text object may comprise querying one or more text
objects for attributes and obtaining the value of the element
corresponding to the queried attribute. For example, where
the free-format data is name and address data, a person may
query the text object or objects to see if there is a <Street>
element, and, if So, obtain the value of the element (e.g., "12
Pitt St”). This is something that cannot be done with present
databases where the “address' field merely includes all the
<address> in free-format form. Other older systems provide
Search facilities which Scan for a particular text String
without regard for the Semantics of the text being Searched.
These systems could be used to find all address with a street
name of “Pitt' by searching for that string. This leads to
problems when the String being Searched for can be used in
different ways.

0083) “76 Box Rd Townsville QLD’
0084) “PO Box 92 Geelong VIC”
0085 “39 Main St Box Hill NSW

0.086 Attempting to locate the all the address with a
street name of “Box” by scan for the string “Box” will lead
to many errors being generated. The present invention, in the
preferred embodiment, will report only addresses contain
the correct term. So, searching for street name of “Box” will
return records Such as:

0087) “8 Box Ave Devonport TAS”
0088 “76 Box Rd Townsville QLD’
0089) “110 Box St Parramatta NSW.”

Jan. 24, 2002

0090 Consider the address examples in FIG. 2 of the
drawings, and a System user wishes to locate all the
addresses on "Box Rd” within this data. If the user searches
for “Box Rd”, the system would return record 201, but miss
records 205 and 207. If the user changes the search text to
“Box”, system would return all the required records, but
would also erroneously return records 202, 203, 204 and
206. Even if the user specified every variation of “Road” in
Separate queries, the correct results would not be obtained.
The problem becomes more difficult if the system user
wishes to allow for errors in the data. e.g., Returning record
206 when specifying “Box Rd”.

0091 Another example where string searching without
considering the Semantics can lead to erroneous results is
when <Street Names> have the same names as <Town
Names>. For example: “123 Sydney Ave, Melbourne VIC”.
String Searching will not allow one to find only records with
“Sydney' as their town name.

0092. The step of accessing the text object may also
include comparing two text objects and ascertaining and
providing a confidence value that indicates how closely the
two text objects match. For example, two Street addresses
may be compared by comparing their respective text objects,
and a confidence value (in percentage points) can be given
depending on how closely they match.

0093. The step of accessing may also include the step of
changing a value associated with a particular component.
Common examples include changing a woman's Surname
after marriage and changing the name of a street or town
name after a mistake has occurred.

0094. There are also many cases where governments
change the names of Street names, postcodes (e.g. Austra
lia's Northern Territory changed their postcode range from
5800-5999 to 0800-0899), or even whole city names (e.g.
Leningrad to St Petersburg).

0095. This ability of the present invention to change a
value of a particular element of the original piece of text has
the benefit that the operations of legacy computer Systems
which use the data directly (i.e. without using text objects)
will not be affected.

0096. Yet a further aspect of the present invention pro
vides a processing System for enabling access to free-format
data processed in accordance with the method of any one of
claims 1 to 19, the processing System including a query
processing means arranged to access the additional data and
provide answers to queries relating to the Semantic and
Syntactic information about the data and/or to access the data
to manipulate the data.

0097. The apparatus may include means for accessing the
text object in accordance with any or all of the method steps
given above.

0098. The present invention yet further provides a pro
cessing System for processing free-format data Stored in a
computing System, comprising means for examining ele
ments of the data to determine attributes of the data, by
examining the content of the elements and the contextual
relationship of elements to each other, to determine Semantic
and Syntactic information (attributes) about the data, and a
query processing means for utilising this information to

US 2002/0010714 A1

provide answers to queries relating to the Semantic and
Syntactic information about the data and/or to access the
data.

0099. The means for examining may comprise a domain
object which examines the elements and produces virtual
data (being data relating to the Semantic and Syntactic
information about the data) which is used by the query
processing means to access the data and obtain information
on attributes of the data.

0100. The present invention yet further provides a
method of processing free-format data Stored in a computing
System, comprising the Steps of examining elements of the
data to determine attributes of the data, by examining the
content of the elements and the contextual relationships of
elements to each other, to determine Semantic and Syntactic
information (attributes) about the data, and querying the data
using this information to provide answers to queries relating
to the Semantic and Syntactic information about the data
and/or to access the data.

0101 From yet a further aspect the present invention
provides a method of processing a plurality of records of
free-format data Stored in a computing System, comprising
the Steps of, for each record examining elements of the data
to determine attributes of the data, by examining the content
of the elements and the contextual relationships of elements
to each other, to determine Semantic and Syntactic informa
tion (attributes) about the data, and producing virtual data
fields enabling access to this information and the associated
elements for each data record, whereby each record is
provided with associated virtual data fields enabling acceSS
to Semantic and Syntactic information about that record and
also access to the associated elements.

0102) The term “virtual data fields” is used in the same
Sense as previously. Unlike prior art conventional databases,
where it is necessary to process the information and produce
actual data fields, no Separate data fields need be produced.
The data may remain in place where it is in the database, and
instead an associated “virtual field” is produced for
attributes of the Semantic and Syntactic information, and the
virtual fields can be queried to obtain all the information
required of the record, and preferably all normal database
operations may be implemented.

0103) The present invention yet further provides a pro
cessing System for processing a plurality of free-format data
records Stored in a computing System, comprising means for
examining elements of the data of each record to determine
attributes of the data, by examining the content of the
elements and the contextual relationships of elements to
each other, to determine Semantic and Syntactic information
(attributes) about each record, and means for producing
Virtual data fields associated with each record enabling
access to this information and the associated elements,
whereby each record is provided with associated Virtual data
fields enabling access to Semantic and Syntactic information
about that record and also access to the associated elements.

DESCRIPTION OF PREFERRED EMBODIMENT

0104. Features and advantages of the present invention
will become apparent from the following description of an
embodiment thereof, by way of example only, with refer
ence to the accompanying drawings, in which:

Jan. 24, 2002

0105 FIG. 1 is a diagram illustrating the architecture of
a System for enabling the processing of free-format data in
accordance with an embodiment of the present invention;
01.06)
0107 FIG. 3 is a more detailed structural view of an
example text object produced by operation of the embodi
ment of the invention on free-format data;
0108)
0109 FIG. 5 is a flow chart illustrating a method for
getting a Sub-component of a Specific type from the text
object of the invention;
0110 FIG. 6 illustrates the results of the get sub-com
ponent method;
0111 FIG. 7 is a flow chart illustrating a method for
modifying a Sub-component of a text object of the invention;
0112 FIG. 8 is an illustration of the mechanics of modi
fying a text object of the invention; FIGS. 9, 10 and 11
provides an example of modifying a text object of the
invention;

0113)
0114
0115 FIG. 11 shows the text object referred to in FIG. 9
after it has been modified;
0116 FIG. 12 is flow chart illustrating the node matching
Subroutine used by other methods,

FIG. 2 illustrates sample “address” data;

FIG. 4 illustrates sample “address' formats;

FIG. 9 shows a text object before modification;
FIG. 10 shows the replacement text object; and

0117 FIG. 13 illustrates examples of text objects in
accordance with embodiments of the present invention for
illustrating a method of comparison of text objects in
accordance with an embodiment of the present invention;
0118 FIG. 14 is flow chart illustrating the “adjust node”
subroutine used by other methods;
0119 FIG. 15 is a diagram illustrating the architecture of
the domain object block of FIG. 1;
0120 FIG. 16 is an illustration of the domain construc
tion process of FIG. 1 in more detail;
0121 FIG. 17 provides two examples of standard trans
literation tables. One for Japanese Katakana and one for
Greek.

0.122 FIG. 18 contains tables illustrating Regular
Expression Definition data;
0123 FIG. 19 illustrates a demonstration grammar data

file;

0124 FIGS. 20 and 21 provide flow charts of the domain
object construction process block of FIG. 1;
0.125 FIG. 22 illustrates an example session with a
implementation of the invention within a SQL relational
database System.
0.126 Although the following descriptions use English
name and address examples, the invention can be equally
applied to any domain of free-format text.
0127. As discussed in the preamble of this specification,
the present invention relates to an entirely new concept and
approach for processing computerised information, in par

US 2002/0010714 A1

ticular free-format data. AS discussed above, the idea is to
produce from the free-format data a “text object” which may
be stored in a computer and which can be used to obtain
information about the free-format data, compare records of
free-format data and manipulate the data. This is achieved
without it being necessary to construct complex databases
having many fields.
0128 FIG. 1 is a diagram showing the configuration of
an entire “virtual data System in accordance with an
embodiment of the present invention. It comprises a user
interface 101, a processor 102. The processor 102 can be a
Standard computer System and has a general configuration
Such as a CPU, a computer memory and mass Storage
device. The user interface 101 can be a standard keyboard
and VDU, and/or an interface to another computer System.
User interfaces like these, along with other equivalent inter
faces, are well known.
0129. For the purposes of the internal storage require
ments of the invention, no distinction will be made between
the computer memory and the mass Storage device and will
be referred to as memory.
0130 Loaded into the memory of the processor 102 is
standard system software well known to those skilled in the
art, Such as a operating System and a database System (not
shown), one or more application Software systems 103 Such
as an accounting package or word processor, and an embodi
ment of the present invention 104, for producing text objects
105 from free-format data. The system 104 comprises a
domain construction process 106 which is arranged to take
a plurality of input data 107 (in this example in the form of
data files) and build a domain object 108 which is used to
produce text objects 105. Each “domain” will include all the
grammar and Syntax rules necessary for that particular
domain of free-format data. For example, one domain may
be international name and addresses and will include all the
information necessary to analyse free-format international
name and address data to produce a text object. Another
domain may be a commodity description knowledge base,
another one may be a transportation industry knowledge
base. Domains may be produced to handle any free-format
data. The domain construction proceSS 106 is essentially an
engine which works on the knowledge bases (input files) for
the particular domain type to produce the domain object 108
for that type.
0131 Referring again to FIG. 1, a text object index 109
may be produced by processing a number of text objects
105, and this will be described later.

0.132. It should noted, as shown in FIG. 1, that the
invention 104 provides a layer between general application
Software systems 103 and their stored data 110. Unlike
“Knowledge Based Management Systems” described above,
this invention allows the free-format data to remain in its
original location and legacy application Software to operate
using the original access paths 111.

0133) Text Object

0134) Structure
0135 FIG. 3 is a schematic diagram of the detailed
Structure of an example text object in accordance with an
embodiment of the present invention, in order to assist with
illustrating the concept.

Jan. 24, 2002

0.136 The example free-format data illustrated in FIG. 3
is a street address, “12 Pitt Street, North Sydney” (desig
nated by reference numeral 301). In prior art databases, this
information may have been Stored in a single "address' field
or may have been divided into a number of Separate fields
corresponding to the various attributes, i.e., Street number,
street name, street type and town. Refer to FIG. 4 for other
examples of common Australian address formats. AS dis
cussed in the preamble, the prior art database format require
ment for a separate field for each attribute gives rise to much
complexity and, where the information is intricate, it is cost
prohibitive and even impossible to produce a field for every
attribute of the free-format data.

0137) The text object (illustrated in FIG. 1) comprises a
plurality of component nodes 302-312. The text object can
be represented as a text node tree, having branches (eg 313)
wherein the component nodes 302-312 are positioned in a
predetermined hierarchy. The “lowest' hierarchy is at the
bottom of the text node tree and the “highest” hierarchy is
at the top of the text node tree. The node 302 at the top of
the node tree will be refer to as the “root” node. It will be
appreciated that components of the text object can be Stored
in any convenient manner in a memory of a processing
means, could be nested within each other, for example, refer
to each other in Some way, etc. The text object is able to be
represented as a text node tree, but that does not mean that
it is Stored in memory in this way. AS long as the components
of the text object can be processed in Such a fashion that the
components act like component nodes of a text node tree as
represented in the figure, then this is Sufficient.
0138) Note that each component node 302-312 could be
considered text objects themselves. This recursive definition
allows all the functions of the present invention to be applied
to each component.
013:9) The architecture of each component node 302-312
includes:

0140. An attribute type identifier (which in this
embodiment is an integer) which identifies an
attribute type of the free-format data 301 associated
with the text object. For example, component node
303 includes the attribute type identifier <Streets,
indicating that this component node 303 is associ
ated with the element of the free-format data which
gives is the Street, i.e., “12 Pitt Street'. Component
node 302 is the main component node for the text
object illustrated in FIG.3 and includes the attribute
type identifier <Address>. The component node 302
is therefore associated with the entire free-format
data record in this case, being “12 Pitt Street, North
Sydney', which is an address. Note that component
node 302 is “higher in the hierarchy in the text node
tree than component 303; the <Address> component
includes within it the <Streetd component. The hier
archy of the component node 302-312 within the text
node tree is in fact determined by the attribute type
identifier of the component node and by grammatical
rules which determine that the attribute should be of
a lower or higher hierarchy.

0.141. A pointer to the starting position of the actual
element Sub-String of the free-format data associated
with a component node. The free-format data is
Stored as a String in memory and the pointerS point

US 2002/0010714 A1

towards the beginning of the character String. In the
example, component node 303 would point to
numeral “1” of the address.

0142. An integer containing the character length of
the element. In the example, component node 303
would have a length of 14 (including space charac
ters after “12” and “Pitt") which would in effect point
to the last letter “t of “Street.

0.143 An array of Subordinate component nodes.
For example, for component node 303, nodes 306,
307, 308 are all directly subordinate in the hierarchy
and nodes 311, 312 indirectly subordinate. This array
enables the component nodes to be related to each
other in the text node tree construction.

0144) a boolean variable indicating whether this
attribute type identifier is for a “low level” matching
element. "Regular expression' terms Such as <WordD
and <nbr> are not matched against each other.
Matching of these term is performed at the next level
up the hierarchy (e.g. <Street Name>307). A node is
flagged as a low level matching component if it
either: is a literal which was located in the dictionary
(e.g. nodes 308,309); or contains “Regular expres
sion” terms (e.g. nodes 306, 307, 305).

0145 an integer representing the element's match
weighting. This indicates the relative importance of
each of the elements when performing comparisons
between text objects. For example: when comparing
“Level 3, 45 Pitt st” with “3rd Floor, 45 Pitt St” the
fact that the elements “Level” and "Floor” are not
equal is insignificant. The “match weighting values
are specified in the grammar rules used to construct
the domain object.

0146 depending on time/space considerations, other
optional data items used to assist the “matching”
processes. Refer the Section on "text String opera
tions' below for more details.

0147 an integer indicating the parsing priority.

0148. This will be described later.
0149 a boolean value indicating whether this com
ponent node is responsible for deleting and moving
the piece of text it points to. The two conditions
when a component is responsible for its text are: 1)
When a outside proceSS requests that the text object
manage the entire text String, the text object "root
node is flagged as being responsible for the text
string. 2) When a implied value is created. See below
for details.

0150 a integer value representing the free space
available at the end of the buffer in which the
free-format text is held. This value is calculated
during the creation of the text object and is usually
only applicable to the “root” node of the text object.

0151. In the text node tree the foot of the hierarchy is a
component node dealing with an element for each token of
the free-format data, in this case being <numbers 311,
<wordd 312, <street types 308, <geographic termd 309,
<words 310.

Jan. 24, 2002

0152. Further up in the hierarchy are component nodes
for more generic attribute type identifiers. For example these
are <street name> 307 for the word “Pitt', zStreets 303 for
the three tokens “12 Pitt Street', (towns 305 for the tokens
“North Sydney' and, at the top of the hierarchy of this
particular free-format data record, the attribute type identi
fier <Address> 302.

0153. Attribute Type Identifier
0154 It will be appreciated that the attribute type iden
tifiers can be Stored in any form, i.e., they need not be Stored
as integers but could be Stored in any representation. A
program engine is provided enabling access to the text node
tree and this engine has the information necessary to identify
the attribute type identifiers as Stored.
O155 Parsing Priority
0156 To assist in the processing of ambiguous free
format data, each component node contains an integer
indicating the "parsing priority of the element. These
values are assigned during construction of the text object
and are used to Select the best text node tree if more than one
exists for a particular ambiguous free-format text. For
example: “12 Pitt St Nth Sydney” contains two interpreta
tions. Although “12 Pitt St Nth' is a valid street address, it
has a lower priority than “Nth Sydney' and therefore not
Selected. These "parsing priority values are specified in the
grammar rules used to construct the domain object (see
below).
O157 Implied Fields
0158 Another feature of the present invention is the
production of extra implied Sub fields in a text object, in the
form of the creation of extra component nodes for informa
tion that is not actually explicit in the original text. For
example, “Mr John Smith' has an implied sub field “sex'
with a value “male'. The text object can be created with an
extra component node dealing with this element and having
the attribute type identifier “sex”.
0159) Normally these implied fields will be created dur
ing the parsing process and are Specified in the grammar, but
they can be added manually if required. See the description
of the “Add Sub-component' function below.
0160
0.161 The text object acts as a “virtual interface”
enabling access to the free-format data and facilitating all
normal database operations on the free-format data. The user
does not "see' the internals of the text object, but can query
the text object via the associated program engine (query
processing means) and, by virtue of the structure of the
Stored text object, the attribute type identifiers and other data
being placed in nodes, can perform all the normal database
operations on the free-format text record.

Interface

0162 All the below operations require that the text node
tree be Searched for Specific attribute types. This Searching
is performed by the engine using recursive procedure calls.
This technique is very well known within computer Science.
Refer to the book “Data Structures and Program Design” by
Robert Kruse (Prentice Hall) for a description of recursion.
0163 Another embodiment of this invention may speed
up the above procedure by performing the above proceSS and
create a lookup table containing every Sub-attribute and

US 2002/0010714 A1

sorting by the attribute type identifier. This technique is well
known to those skilled in the art.

0164) Function Overview
0.165. These operations include:
0166 “Get Sub-component” Requests the text object to
Supply (Zero, one or many) values for the respective attribute
type.

0167 “Compare Text Objects” Compares two text
objects and reports a confidence value that indicates
how closely they match.

0168 “Contains component Tests if a particular text
object contains a Specific value for a particular element and
returns a confidence, e.g., one could obtain all free-format
data records which include Pitt Street as the “street'. This
would be one way of finding how many people on a database
live in Pitt Street where the database includes free-format
data in an address field and without requiring a String Search
(which can often give rise to error).
0169) “Modify Sub-component' Changes the value of a
particular element of a text object to a Specific value. For
example, change “Pitt' to “King'.

0170 “Add Component' Adds extra data to the text
object by appending a new Sub-component node to the
respective node. Future operations will reference this infor
mation.

0171 Get Sub-component
0172. When the “Text Object” is queried, an attribute
type identifier is Supplied and Zero, one or more "Sub
component Nodes' are returned. These “Sub-component
Nodes' point to the text of the required elements. FIG. 5
illustrates this method. Beginning this recursive procedure
with the “root” node of the text object, starting at 501, a
determination is made (502) as to whether the attribute type
of this node is Same as the required attribute type. If it is, a
pointer to this node is appended to the result list at step 503.
Continuing with step 504, for each sub-component node
referenced by this node recursively call this procedure 505.
Then return to caller 506. FIG. 6 illustrates the node tree for
“Mr Fred and Mrs Mary Smith'. Searching the tree for
nodes with attribute type <Given Name> will return a list
containing pointers to two nodes 601, 602. These nodes
point to the sub-strings “Fred”, “Mary' respectively.

0173 Another version of this operation takes a text string
as a parameter. Only nodes containing the same attribute
type and Same text string (ignoring case) are added to the
list. For example: calling this function with an attribute type
<Given Name> and text string “FRED” would return a list
containing one node.

0.174 Yet another version of this operation takes as
parameters a text String and a confidence level. Only nodes
containing the same attribute type and have a text String
which matches the Supplied String with a confidence above
the supplied level are added to the list.
0175 Compare Text Objects
0176) This operation compares two text object and
returns a confidence level indicating how closely they
match. It performs this by:

Jan. 24, 2002

0177) 1. Determining if the “root” nodes of the two text
object have the same attribute type. If they do not, return a
Zero confidence level to the caller.

0178 2. Otherwise, call the “Match Node” subroutine
(described below) with the “root” nodes of the two text
objects and return the result of that operation to the caller.
0179 For example: passing the two following text
objects will return a confidence of 100%.

<Address.>
<Address.>

“12/34 PITT STSYDNEY 2000 NSW
“Unit 1234 Pitt Street,
SYDNEY N.S.W., 2000

0180 Contains Sub-Component
0181. This operation searches one text object for a sub
component which matches a Second text object. If found, it
returns to the caller a confidence level indicating how well
they match. This operation is achieved by first calling the
“Get Component” function (describe above) passing the
component type of the Second text object. If Successful, it
calls the “Match Node” subroutine (described below) with
the “root” node of the second text object and the node of the
result of the “Get Component' function.
0182 For example: passing the two following text
objects will (depending on how the String matching proce
dures are set up) return a confidence of approximately 80%.

<Streets
<Address.>

“Kathryn Street”
“12-14 Catherine St, Dubbo NSW 2830

0183) Add Sub-Component
0.184 This operation appends an extra component node
into the text object. Although the value of this element is not
contained in the original free-format text, queries performed
on the text object return the correct results. For example: a
text object pointing to a record containing “Dr Chris Smith'
may need to modified to indicate that the perSon is a female.
Invoking the Add Component function containing a SeX
attribute type with a value of “female” will append the
respective component node to the text object.
0185. Modify Sub-Component

0186 FIG. 8 illustrates the mechanics of the “Modify”
operation. The text object to be modified is represented by
801. The actual text data consists of the sub-string to be
replaced 805 and the sub-strings before 804 and after 806.
Within the main text object 801, the sub-tree 803 represents
the sub-string to be replaced 805. The replacement text
string 807 is represented by another text object 802.
0187 FIG. 7 provides a flow chart of the “Modify”
procedure. Starting at 701, a call to the “Get Component”
function (described above) is performed to locate the
required component node at step 702. The results of this
function call are tested (step 703) to ensure that one and only
one component node is returned. If Zero or more than one
nodes are returned, a error condition is set 704 and the
procedure returns to the caller 714. Otherwise, the procedure

US 2002/0010714 A1

continues with step 705 by calculating the difference (Diff)
in length between the sub-string to be replaced 805 and the
new replacement sub-string 807. If the difference is not zero
(i.e. the String have unequal lengths) invoke the “Adjust
Node Variables” subroutine 707 (described below). If the
Subroutine 707 is unsuccessful, set a error condition 711 and
return to caller 714. Continuing the procedure at step 708,
copy the new replacement string 807 into the location of the
old string 805. Replace the old node sub-tree 803 with the
new sub-tree 802 at step 710. For each node in the new
sub-tree 712 adjust the node's "text start address' variable
by adding the starting position of the new sub-string 713.1
Then terminate this procedure and return to caller 714.
0188 FIGS. 9, 10 and 11 provides an example of the
“Modify” operation. FIG. 9 shows a text object before
modification. FIG. 10 shows the replacement text object and
FIG. 11 shows the text object referred to in FIG. 9 after it
has been modified.

0189 The extra versions of the “Get Sub-component”
operation described above also apply to this operation.
0190. Subroutines
0191 The operations described below are invoked from
other text object procedures described above.
0.192 Match Node
0193 This procedure compares two elements with the
Same attribute type and returns a confidence level value
indicating how closely they match.

0194 FIG. 12 shows a flow chart for the “Match Node"
operation. Starting a 1201, a determination is made as to
whether the nodes being compared are low level matching
components at step 1202. If the two nodes are low level
matching components, perform the "String Comparison”
procedure (described below) at step 1203 and return to caller
1210. Otherwise, if the two nodes contain sub-component
nodes recursively invoke this procedure 1205 with all com
binations of Sub-component pairs which have the same
attribute type (step 1204). Record the best confidence level
for each 1206. Multiply each node's confidence level by its
respective matching weight value 1207. Sum all the result
ing values into one confidence value 1208. Divide that value
by the sum of the match weighting's 1209 and return to the
caller 1210.

0.195 FIG. 13 contains an example showing the match
ing process. Within the text object's node tree there are three
types of component nodes:

0196) 1) nodes which contain sub-component nodes;
0197) 2) low level matching components near the
foot of the node tree; and

0198 3) nodes which are contained within the low
level matching components and represent Simple
“regular expression' terms. (Refer to the description
of the grammar file for details of the terms.) These
nodes are not used in the matching process.

0199. In this example text object, the nodes 1301, 1302,
1313 and 1314 contain sub-component nodes. The nodes
1304, 1305, 1306, 1307, 1308, 1309, 1315, 1316, 1317 and
1318 are low level matching nodes. The nodes 1309, 1310,
1311, 1312, 1319, 1320 and 1321 are simple “regular
expression' terms.

Jan. 24, 2002

0200. In following calculation, the first number within
the parentheses is the weighting value for that component.
The second number is the best result from the node matching
procedure for that node. The number on top is the node's
reference label in FIG. 13.

0201 To calculate the matching confidence for the
“Street” components:

1304 1305 1306 1307
-- -- -- --

(20: 100) (0 : 0) (10 : 0) (60:80)

1308 1316 1317 1318
-- -- -- = 15400

(10: 100) (30: 100) (60: 80) (10: 100)

(20 + 0 + 10+ 60+ 10+30+ 60 + 10) = 200

15400 1200 = 77%

0202) To calculate the matching confidence for the
“Address' components we perform the same procedure with
the “Street” and “Town” components:

1302 1303 1314 1315
-- -- -- = 8620

(60:77) (40: 100) (60:77) (40: 100)

60+ 40+ 60+ 40 = 100

17240 f 200 = 86.2%

0203 This value indicates the two pieces of text match
“quite closely”. Values greater than 90% indicate a match
that is “very close'.
0204. The above procedure may be improved by applying
"Fuzzy Logic' techniques. Fuzzy logic techniques are well
known to those skilled in the art and many Suitable reference
books are available.

0205 Adjust Node Variables
0206. This subroutine is called from the “Modify Com
ponent' procedure described above. The purpose of this
routine is adjust the actual free-format text and all corre
sponding Sub-component nodes and located after the node
being replaced So that the new replace Sub-String and
sub-tree fit exactly. If the old sub-string and the new
replacement Sub-String are the same length, this Subroutine
is not invoked.

0207 FIG. 14 shows a flow chart of the steps required.
Starting at 1401, a determination is made at step 1402 as to
whether there is enough space in the current text buffer to
accommodate the change. This is done by referring to the
“free space” variable (described above) of the “root” node of
the text object. If there is not enough Space, the "Relocate
Text Data” Subroutine is invoked 1403 to create free space
in the text object. If this routine is unsuccessful 1404, an
error condition is set 1415, the procedure terminates and
return to the caller 1416. Otherwise, the procedure continues
at 1405 and calculate the extra space requirements of the
modified text object by subtracting the size of the old
Sub-tree being replaced from the size of the new replacement
Sub-tree. A Zero or negative value indicates that the text
object has enough Space to accommodate the change. If text

US 2002/0010714 A1

object requires more space 1406, the “Relocate Text Object”
subroutine is invoked 1407 to create free space in the text
object. If this routine is unsuccessful 1408, an error condi
tion is set 1415, the procedure terminates and return to the
caller 1416. If the above steps are successful, the procedure
continues at step 1409 and shifts the “after string 806 in
FIG. 8 by the difference between the old sub-string 805 and
the new replacement sub-string 807. For each node which
refers to components located after the replacement node
1410, add this difference to the node's start address variable
1411. For each node which has the replace node as a
Sub-component 1412, add the difference to the node's length
variable 1413. Adjust the text object’s “free space” variable
by subtracting the difference 1414 and return to caller 1416.
0208 Relocate Text Data
0209. This subroutine is invoked by the “Adjust Node
Variables' to move the current free-format text into a space
large enough to accommodate the required modification.
The ability of this routine to perform this operation depends
on where the text data is Stored. Typically, free-format data
Such as "address' information is Stored in fixed length
database fields and will not be able to be relocated. If this is
the case, this routine will Set an error condition and return to
caller. However, if the text data is stored within moveable
Storage Such as the computer's memory or with a object
oriented database as a non-persistent object, this procedure
will relocate the text data and return to the caller with the
text data's new address.

0210 Relocate Text Object
0211 This Subroutine is invoked by the “Adjust Node
Variables' to move the current text object into a Space large
enough to accommodate the required modification. The
ability of this routine to perform this operation depends on
how this invention is implemented. If the text object is
Stored within moveable Storage Such as the computer's
memory or with a object-oriented database as a non-persis
tent object, this procedure will relocate the text object and
return to the caller with the text object's new address.
0212 For a description of Object-Oriented databases and
object persistence, refer to the book “Object-Oriented Data
bases” by Setrag Khoshafian (Wiley Press).
0213 Get Keys
0214. This operation is used exclusively by the “Text
Object Index” described below. It provides key information
used in updating and querying of the text object index. It
recursively Searches the text object node tree and returns a
list of all the nodes which have been flagged as low level
matching components. See above for a definition of a low
level matching component. Refer to the description of the
Text Object Index below for an example of the output of this
function.

0215 Summary of Text Object Benefits
0216 Many records of free-format text may be processed
in accordance with this embodiment of the present inven
tion, to produce text objects in each case. Different text
objects may have different attribute type identifiers, but it is
not necessary to produce a complex database Structure
having a separate field for each attribute type. Free-format
text is Stored basically as it is, with the associated text object
providing all the facility required to provide all the normal

Jan. 24, 2002

database operations on the free-format data. This essentially
enables a computer to handle information in much the same
way as a human being does.
0217 Text Object Construction Overview
0218. The text object is produced by an examination of
the free-format data by applying natural language processing
techniques, Such as parsing, which is known in the prior art.
Such language processing techniques have been applied to
“clean' or “scrub” databases and large and complex Soft
ware Systems have been applied. In each case in the prior art,
however, the natural language processing has been applied
to analyse the data to enable the creation of new database
fields. The idea of maintaining the free-format data as it is
and creating a text object as described is a totally new
concept.

0219. In this embodiment of the present invention, the
processing of each item of free-format text to produce the
text object involves, firstly, lexical analysis in which regular
expression analyser reads the free-format text and groups the
items of the text into tokens with their associated attribute
type identifier (e.g., word, number, coma, etc). Each token is
then checked against a dictionary for other applicable
attribute type identifiers (e.g., Street type, State, etc).
0220 Syntax analysis is then applied and in the present
embodiment, the position of each of the tokens in the
free-format data is also analysed to provide attribute type
identifiers. For example, in the FIG. 5 example, “Pitt' is a
plain word not found in the dictionary and therefore prob
ably a proper noun. By analysing its position in relation to
the other elements of the free-format data, however, the
embodiment can “imply” that it is a <StreetName>. There
fore, “12 Pitt Street' can be classified as a <Streets from the
relative positioning of the tokens.
0221) Domain Object
0222. The main function of the domain object 108 (FIG.
1) is to create text objects 105. This function is described in
detail below. Other functions the domain object performs
relate to maintaining an attribute type table. This table
contains the information for all the attribute types defined
for its domain.

0223) Structure
0224 FIG. 15 shows the domain object architecture 108
in more detail. It comprises a Series of "look up' tables,
which include the symbol table (e.g., <Street name> NB the
term “symbol' is equivalent to the term “attribute type
identifier”) 1502 and the parse table 1504 (contains rules for
applying the grammar). It also comprises a lexicon 1503
contains a character definition table 1505, regular expression
analyser 1506 and a dictionary 1507 (e.g., NSW, VIC, SA).
All of these parts are used by a modified “Tomita parser”
(described below) to process free-format text to produce text
objects.

0225 Text Object Construction
0226 FIG. 16 gives an overview of the operation of the
domain object 108 creating a text object 105 of FIG. 1.
0227. In operation, the domain object 1605 uses the
attribute type 1608 to locate the respective parsing rules and
then “parses” the free-format data 1607 and produces a text
object 1606.

US 2002/0010714 A1

0228 Parsing is a known technique for analysing free
format data and a skilled person would be able to arrange
appropriate parsing.
0229 Parser Types
0230. The parser may consist of any non-deterministic
parser. The common parsing techniques are listed as follows:

0231)
0232)
0233
0234
0235)
0236
0237)

Top Down Backtracking Parser
Bottom Up Backtracking Parser

Top Down Chart Parser
Bottom Up Chart Parser
Augmented Transition Network Parser
Shift Reduce Parser with Backtracking
Tomita's Graph stack Shift Reduce parser

0238. The main reasons for selecting Tomita's Graph
stack Shift-Reduce parser for the best implementation of the
invention are:

0239). A detailed description of the algorithm is
readily available.

0240 The algorithm processes ambiguous text data
very well.

0241 The resulting data structures represent
ambiguous text data in a very efficient form.

0242. The structure and operation of the parsing process
is described in the book by Tomita, M.. “Efficient Parsing for
Natural Language”, Kluwer 1986. A Summarised copy of
this description is also given in the Appendix to this descrip
tion.

0243 Modifications to Tomita's Parser
0244. In addition to producing the component node tree
described by Tomita, a number of enhancements are
required for the text object. These enhancements allow the
text object to provide the “virtual data” fields.
0245 Modifications to Tomita's Graph-Stack Shift-Re
duce parser for this invention are as follows:

0246 ASSigning parsing priorities to the tokens
returned from the lexical analyser and to the rules in
the parse table. Summing these priorities to obtain
the most Suitable component node tree for a given
free-format text. All of these priorities are specified
in the input grammar file 1603 (FIG. 16).

0247 Classifying the component nodes of the syn
tax tree as either visible or invisible. Low level
“regular expression' terms Such as <WordD are clas
sified as invisible.

0248 ASSigning match weightings to all component
nodes. These values are specified in the grammar
data and are used to determine the relative impor
tance of each of the components when matching two
free-format texts.

0249 Procedure
0250 FIG. 16 gives an overview of the operation of the
domain object 108 creating a text object 105 of FIG. 1.

Jan. 24, 2002

0251 This procedure takes a free-format text string 1607
and an attribute type identifier 1608 and creates a text object
1606.

0252) 1. Using the attribute type identifier 1608,
look up the symbol table 1502 (FIG. 15) to get the
corresponding parse table.

0253 2. Call the parser to create a “shared parse forest”
as defined in Section 2.4 of Tomita's book. A shared parse
forest is used to represent ambiguous parse trees within the
one Structure. It does this by allowing trees to share common
Sub-trees.

0254 3. Recursively accumulate all the “parsing
priorities of all the Sub-component nodes of each
node.

0255 4. Based on the values in the previous step,
Select the best parse tree.

0256 5. Create a new Text Object with the selected
parse tree.

0257 6. Recursively search the parse tree to locate
and flag Specific nodes as “low level matching com
ponents”. (see above for definition)

0258 Refer to FIG. 3 for a simple example of a text
object.

0259 Construction of Domain Object

0260 FIG. 16 shows an overview of the domain con
Struction process.

0261) The input files for the domain construction process
1604 include the following:

0262 Character Definition File 1601

0263. This defines all the valid characters of the domain
and Specifies their usage. The range of usage typically
includes alphabetic, numeric, punctuation, Space. It also
Specifies which characters are Similar for matching pur
poses. It also specifies all information required to perform
the “text string matching” described below.

0264. In the best embodiment of the invention, this file
contains one record per character, and each record contains:

0265)

0266

0267 a base character for case and diacritic match
ing (e.g. “a”, “A”, “a”, “A”->“A”)

0268 a flag indicating the significance of the char
acter. (e.g. Vowels are considered insignificant.)

the character in question

the character's type (alpha, numeric, etc)

0269 one or more characters for standard interna
tional transliteration. (see FIG. 17 for example
tables)

0270. This file could also define how character combi
nations are translated into phonetic representations (e.g.
“PH'->“F”). Phonetics is a known technique and a skilled
person would be able to arrange appropriate translation
tables.

US 2002/0010714 A1

0271 Regular Expression Definition 1602
0272. This defines the structure of the elementary tokens
of the System. For example:

0273 A word consists of two or more alphabetic
characters. These tokens are represented in the gram
mar by the term “word”.
0274) A number consists of one or more numeric
characters. Represented in the grammar by the
term “nbr'.

0275. The structure of the Regular Expression definition
is a basic “state transition table'. This technique is well
known within computer Science. A working Sample is shown
in FIG. 18.

0276 Grammar 1603
0277. The basic premise of the grammar file is to define
all possible tree Structures for the text objects created in its
language domain.
0278. The grammar file consists of a number of grammar
rules in the form “A->B. B. B. Each grammar rule
consists of a LHS symbol <A> and Zero, one or many RHS
symbols . The LHS symbol <A> is the name of the
component type and the RHS symbols defines its
sub-components. Each of the RHS symbols can be one
of the following:

0279 Another component type name
0280 A literal (enclosed in quotes
0281) A reserved word

0282. The reserved words represent simple “regular
expression' terms as follows:

0283 “word'-one or more alphabetic characters
0284) “nbr'-one or more numeric characters
0285 “A” one alphabetic character
0286) “9-one numeric character

0287 Additionally, each attribute type (i.e. LHS symbol)
can be assigned a “match weight adjustment'. This is used
to vary the default match weighting. Match weighting are
used when comparing text objects to indicate the relative
importance of Sub-components during the calculation of the
matching confidence.
0288 Additionally, each grammar rule can be assigned a
"parsing priority'. This is used during the construction of
text objects to assist in Selecting the best Structure for the
text object when two or more ambiguous structures are
available.

0289 All branches at the lowest levels of the hierarchy of
rules and attribute type names defined by the grammar must
end with literals or reserved words. A simple example
grammar is shown in FIG. 19.
0290 Procedure
0291 FIGS. 20 and 21 provide flow charts of the domain
object construction process. Starting 2001, the character
definition data is loaded into memory at step 2002, then the
regular expression definition loaded at step 2003. Processing
continues by reading the grammar definition data and for

Jan. 24, 2002

each rule in the grammar 2004, process the grammar rule
2005 by creating a new rule in the temporary rule table 2102;
using the LHS symbol of the rule to create a new symbol/
component type in the Symbol table if it does not exist
already, and then for each symbol on the RHS of the rule
(step 2104), if it is a literal 2105, then add it to the dictionary
2106, If it is a recognised “regular expression' term Such as
“word” or “nbr”2107, do nothing 2108, otherwise it is
attribute/symbol and it is added as a new symbol/attribute
type to the Symbol table if it does not exist already at step
2109. After all the grammar rules have been processed,
processing continues at Step 2006 by checking that each
symbol/attribute type added to the Symbol table has been
defined. i.e. has appeared at least once on the LHS of a
grammar rule (step 2007). If any are undefined symbols/
attribute types, an error condition is Set at Step 2011, the
procedure terminates and returns to the caller 2012. Other
wise processing continues at Step 2008. Again, for each
symbol/attribute type added to the Symbol table, a parse
table is created at step 2009, and a reference to this new
parse table is recorded in the corresponding Symbol table
entry. After all the required parse tables have been created,
the procedure terminates and returns to the caller 2012.
0292 Building of parse tables is a well known technique
within computer Science. Parse tables were originally devel
oped for programming languages. The algorithm for con
struction of the “LR parsing table' can be found in Aho, A.
V. and Ullman, J. D. “Principles of Compiler Design”
Addison Wesley 1977. Tomita applied these techniques to
“Natural Language Processing” by building parse tables
which are non-deterministic in that each entry in the tables
can have more than one action.

0293) Note the domain object 1605 can be saved to
memory or loaded to operate on a record of free-format data.
0294 Text Object Index
0295) A “text object index”109 (FIG. 1) is used as a
means to perform normal database operations on the “virtual
data' fields of a plurality of text objects and their associated
free-format text.

0296. The basic concept for the text object index is
similar to the concepts published in the book “Human
Associative Memory” by John R. Anderson (Wiley 1973).
This work described how the nouns in a Sentence are used
to reference a database of named objects, and then to match
the “relationship” links between these objects to the implied
relationships in the original Sentence. These relationships
follow the “Actor-Object-Action” model.
0297 Although similar, the text object index differs from
this method in two major ways. 1) All constituent parts of the
free-format text are classified and used to reference the
index. (i.e. not just the nouns). 2) There are no relationship
links between objects.
0298 Looking at the text object index with a different
perspective, one could consider the text object indeX an
array with unlimited dimensions where each dimension is
one of the low level matching attribute types described
above. The text object created from a free-format text String
will provide the low level matching components used to
query the text object index. So that all references to other
text objects which are located at the interSection of the
Supplied components are returned.

US 2002/0010714 A1

0299 Performance improvements to this basic concept
can be provided by applying “fuzzy logic' techniques to the
process. Fuzzy logic techniques are well known to those
skilled in the art and many Suitable reference books are
available.

0300. In the best embodiment of the invention, the main
part of the text object index is a three column table with the
following fields:

0301 Attribute Type Identifier
0302) Representative Value Key
0303 User Supplied Record Identifier

0304. This simple structure allows the text object index to
be implemented using the database technology available on
the respective computer.
0305 The following example demonstrates how the three
column table is used. The basic idea behind the Text Object
Index is that all matching free-format texts have the same
low level matching attribute. For example, assume the
following record has been added to the text object index with
a “user reference” of 123.

“Unit 12 34 Pitt Street, Sydney N.S.W., 2000”
0306 After obtaining the respective text object's low
level matching attributes, the following entries will be added
to the index:

<Unit Numbers c. 12' 123
<Street Numbers “34 123
<Street Name> (PITT 123
<Street Types “ST 123
<Town Name> “SYDNEY 123
<States “NSW 123
<Postcode> “2OOO 123

EXAMPLE 1.

0307. A query is performed to check if the following
address exists in the database.

“12/34PITT STSYDNEY NSW

0308 After creating a text object for this input and
generating the low level matching attributes:

<Unit Numbers c. 12'
<Street Numbers “34
<Street Name> (PITT
<Street Types “ST
<Town Name> “SYDNEY”
<States “NSW

0309 Performing intersection analysis on all index
entries retrieved with the above attributes-type identifiers
and values will yield the record Specified at the beginning of
this Section.

EXAMPLE 2

0310. A query is performed to find all address which
contain the Street:

“PITT ST

Jan. 24, 2002

0311. After creating a text object for this input and
generating the index key Set:

<Street Name> (PITT
<Street Types “ST

0312 Again, performing intersection analysis on all
index entries retrieved with the above attribute-type identi
fier and values will yield the correct subset of records
including the record Specified at the beginning of this
Section.

0313 The above examples have been over simplified to
demonstrate the concept. In a practical System, once the low
level matching key Set has been generated, all the techniques
used in "key word Searching can be applied to each
attribute type subset. For more detailed information on “key
word Searching” techniques, refer to the numerous books
and journal articles published by Gerald Salton.
0314 “Key word search” techniques applicable to this
invention include:

0315 Storing very common terms in a high speed
cache and using this to avoid doing Searches on
indeX with terms that will return too many entries.

0316. Using one or more Representative Value Keys
that allows for common misspellings. Typically this
is the original value with vowels and double con
Stants removed.

0317 Using one or more Representative Value Keys
that encodes the original value into a one or more
phonetic representations.

0318 Using a Representative Value Key that
encodes the original value into a international Stan
dard transliteration representation. (See FIG. 17 for
examples of Greek and Japanese Katakana translit
eration tables.)

03.19 Checking the original value against a dictio
nary of Synonyms to obtain the value which repre
Sents the full Set of Synonyms.

0320
0321) The following operations can be provided by the
text object index.

Interface/Operations

0322 The interface of the text object index is designed to
mirror the standard commands of SOL. SOL is the "Standard
Query Language' of relational databases and is very well
known within the computer industry.
0323)
0324. As shown in the previous examples, this operation
makes all the required changes to the text object indeX So
that the respective text object reference can be located using
any similar free-format text or Subcomponent there of.

Insert Text Object

0325 The steps required by this operation are:

0326 1. Call the “Get Key” function of the respec
tive text object to obtain all of its low level matching
components.

US 2002/0010714 A1

0327 2. For each low level matching component,
add an entry in the text object indeX's three column
table.

0328. 3. Optionally save the respective text object
depending on technical considerations of the current
computer System.

0329 Select Text Objects
0330. This operation returns all references (normally
record identifiers Supplied by the System user) to free-format
texts which contain the Supplied free-format text. For
example: to locate all records which contain “Box Rd”.
0331. This operation proceeds with the following steps:

0332 1. Build a text object from the query input
data.

0333 2. Invoke the “Get Keys” function of the text
object to obtain a list all of its low level matching
components.

0334 3. Use the attribute type identifier and repre
Sentative value of each of the component nodes to
retrieve all references with any common low level
matching items.

0335 4. Perform intersection analysis on the refer
ence returned from the previous Step to Select the
free-format texts which contain all the important low
level matching elements of the query data.

0336 5. Obtain the original text objects.
0337 6. Perform a “Text Object” Comparison on
each to obtain confidences.

0338 7. Sort according to confidences.
0339) 8. Return the results to the caller.

0340 Delete Text Object
0341 This operation takes the user supplied reference
key and deletes all records with that reference key.
0342. Update Text Object
0343. This operation updates the entries for a modified
text object by first deleting all the previous entries and then
reinserting new entries using the “Insert” operation describe
above.

0344) Text String Operations
0345 The techniques used to compare two text string to
obtain a matching confidence are well known within the
computer industry. This Section is provided as a quick
Overview of what text String matching normal involves.
0346 A typical matching procedure could perform the
following Steps:

0347 1. Check for exact character match without
regard to upper and lower case.

0348 2. Check for common spelling mistakes by
removing vowels and double constants, then com
paring the results.

0349 3. Check for any spelling mistakes by per
forming comparison functions which allow for char
acter deletion, insertion and transposition.

16
Jan. 24, 2002

0350 4. Check for similarity after standard interna
tional transliteration. See FIG. 17 for example of
transliteration tables.

0351 5. Check for phonetic similarity after trans
lating the String into a Standard phonetic represen
tation.

0352. In the present invention, text string matching is
performed on certain low level matching component nodes.
The values used in StepS 1, 2, 4 and 5 of the above procedure
may be generated each time the String comparison is done,
or alternatively may be generated once when the text object
is created and Stored within the respective component node.
These values could also be used as the “representative value
key” in the text object index described above.
0353 Steps 4 and 5 of the above procedure allow the
invention to compare free-format data in foreign language
text e.g., Japanese Kanji. A phonetic value can be Stored for
the Kanji Symbols, and can be used to compare the Kanji
with elements of other free-format data which may not be in
Kanji. In other words, this feature facilitates the processing
of free-format data in foreign languages. See FIG. 17 and
previous description

Example Application of Invention
0354 FIG. 22 gives an example of how this invention
could be implemented within a SQL relational database
implementation. A description of the SQL Statements are as
follows:

0355 1. Create a domain object called “US AD
DRESS

0356. 2. Initialise it with a Language definition
(which contains the character definition and regular
expression definition described above and a Gram
mar definition).

0357 3. Create a
“ADDRESS

0358) 4. Set its domain to “US ADDRESS" and its
type to “Address” (the type name must be defined in
the grammar.)

0359) 5. Create a database table called “PERSONS”
with one of the elements being an “ADDRESS' text
object called “Home Addr”.

0360 6. Insert a record into the table.
0361 7. Select all records in the “PERSONS” table
with a specific address.

0362 8. Select all records in the “PERSONS” table
that have the data in “Home Addr” column which
contains a Sub-component “State' with a value
matching “California'

0363) 9. Select all records in the “PERSONS” table
that have the data in “Home Addr” column which
contains a Sub-component “Street' that matches
“Kathie St” with a confidence level greater than
80%.

text object class called

Concluding Remarks
0364 Any free-format data record may be analysed by
applying the present invention and by constructing the

US 2002/0010714 A1

appropriate domain using the appropriate domain construc
tion process and appropriately designed input files. All data
can be analysed by computer in this way to produce text
objects for all free-format descriptions.
0365. It will be appreciated that there are a number of
processing Steps for processing free-format data in accor
dance with embodiments of the present invention. It will be
appreciated that each of these Steps can be done once during
System initialisation and the results Saved, or they can be
performed at execution time only when they are needed
(e.g., every time a query is performed). A Summary of these
StepS is as follows:

0366 Construction of the domain object.
0367 Construction of the text objects text node tree.
0368 Construction of text objects extra implied
Sub-fields.

0369. In addition to this, there are the other related steps
of producing a text object indeX from a plurality of text
objects.
0370. It will be appreciated by persons skilled in the art
that numerous variations and/or modifications may be made
to the invention as shown in the Specific embodiments
without departing from the Spirit or Scope of the invention as
broadly described. The present embodiments are, therefore,
to be considered in all respects as illustrative and not
restrictive.

1. A method of processing free-format data Stored in a
computing System, comprising the Steps of examining ele
ments of the data to determine attributes of the data, by
examining the content of the elements and the contextual
relationships of elements to each other, to determine Seman
tic and Syntactic information (attributes) about the data,
producing additional data relating to this information, in the
form of a text object which includes pointer means enabling
access to the elements of the free-format data, and the
additional data being accessible by a query processing
means to provide answers to queries relating to the Semantic
and Syntactic information about the data and/or to access the
data to manipulate the data.

2. A method in accordance with claim 1, wherein the
free-format data is Stored as a record in a free-format field
of a database.

3. A method in accordance with claim 1 or claim 2,
wherein the data remains Stored in the computing System as
it was originally Stored, whereby it may be accessed by other
applications.

4. A method in accordance with any preceding claim,
wherein the text object includes an attribute-type identifier
which identifies an attribute type of an element of the data.

5. A method in accordance with any preceding claim,
wherein the text object includes a value indicating the
character length of an element of the data.

6. A method in accordance with claim 4 or claim 5,
wherein the text object includes a value indicating whether
an element is low level in a Syntactic hierarchy or higher
level whereby the value may be used for matching purposes
when matching data with other data processed in accordance
with the method.

7. A method in accordance with any preceding claim, the
text object including a match weighting value for an element

Jan. 24, 2002

of the data, which can be used to determine the Significance
of the element when matching with other free format data.

8. A method in accordance with any preceding claim,
wherein the text object comprises a plurality of component
nodes arranged according to the Semantic structure of the
free-format data, the component nodes being arranged in a
hierarchy corresponding to the Semantic Structure of the
free-format data and each component node including addi
tional data relating to the corresponding element of the
free-format data.

9. A method in accordance with any preceding claim,
comprising the further Step of generating matching values
for comparing an element of the free-format data with an
element of other free-format data processed in accordance
with the present method.

10. A method in accordance with claim 9 where the
matching value is a phonetic value for phonetically com
paring elements of free-format data.

11. A method in accordance with any preceding claim,
wherein the text object includes implied data relating to
information implied from the free-format data.

12. A method in accordance with any preceding claim,
wherein a plurality of free-format data records are processed
and a text object associated with each free-format data
record is produced.

13. A method in accordance with claim 12, wherein the
text object is Stored in the computer System whereby it is
available for queries on the associated free-format data
record via the query processing means.

14. A method in accordance with claim 12 comprising the
further Step of producing a text object index including
attribute type identifiers for elements of each data record and
pointers to each data record, whereby the indeX may be
queried by queries relating to Semantic and Syntactic infor
mation about the data and the data may be accessed via the
index.

15. A method in accordance with claim 14 wherein each
entry in the text object indeX includes a representative value
key, which gives a value representative of a feature of the
element associated with the attribute-type identifier.

16. A method in accordance with any preceding claim,
comprising the further Step of carrying out a domain con
Struction process to construct a domain object from domain
definition data files, the domain object being arranged to
carry out the examination process by parsing the free-format
data in accordance with grammar rules.

17. A method in accordance with claim 16, wherein the
domain definition data files include character definition data,
regular expression definition data and grammar data.

18. A method in accordance with any preceding claim,
wherein the free-format data is postal address data.

19. A method in accordance with any preceding claim
wherein the query processing means can carry out normal
database operations on the data via the additional data.

20. A processing System for processing free-format data
Stored in a computing System, the apparatus including means
for examining elements of the data to determine attributes of
the data, by examining the content of the elements and the
contextual relationships of elements to each other, to deter
mine Semantic and Syntactic information (attributes) about
the data, means for producing additional data relating to this
information, in the form of a text object which includes
pointer means enabling access to the elements of the free
format data, and a query processing means which is arranged

US 2002/0010714 A1

to access the additional data to provide answers to queries
relating to the Semantic and Syntactic information about the
data and/or to access the data to manipulate the data.

21. A processing System in accordance with claim 20,
wherein the free-format data is Stored as a record in a
free-format field of a database.

22. A processing System in accordance with claim 20 or
claim 21, wherein the examining means does not affect the
Storage of the data.

23. A processing System in accordance with any one of
claims 20 to 22, wherein the text object includes an
attribute-type identifier which identifies an attribute type of
an element of the data.

24. A processing System in accordance with any one of
claims 20 to 23, wherein the text object includes a value
indicating the character length of an element of the data.

25. A processing System in accordance with claim 23 or
claim 24, wherein the text object includes a value, indicating
whether an attribute-type of an element is low level in a
syntactic hierarchy or high level whereby the value may be
used for matching purposes when matching with other
free-format data processed in accordance with this System.

26. A processing System in accordance with any one of
claims 20 to 25, wherein the text object includes a match
weighting value for an element of the data, which can be
used to determine the Significance of the element when
matching with other free-format data.

27. A processing System in accordance with any one of
claims 20 to 26, wherein the text object comprises a plurality
of component nodes arranged according to the Semantic
Structure of the free-format data, the component nodes being
arranged in a hierarchy corresponding to the Semantic Struc
ture of the free-format data, and each component node
including additional data relating to the corresponding ele
ment of free-format data.

28. A processing System in accordance with any one of
claims 20 to 27, the text object means for generating
matching values for comparing an element of the free
format data with an element of other free-format data
processed by the processing System.

29. A processing System in accordance with claim 28,
wherein the matching value is a phonetic value for phoneti
cally comparing elements of free-format data.

30. A processing System in accordance with any one of
claims 20 to 29, wherein the text object includes implied
data relating to information implied from the free-format
data.

31. A processing System in accordance with any one of
claims 20 to 30, wherein the System is arranged to proceSS
a plurality of free-format data records and produce a text
object associated with each free-format data record.

32. A processing System in accordance with claim 31,
wherein the means for producing additional data is arranged
to produce a text object indeX including attribute-type
identifiers for elements of each data record and pointers to
each data record and wherein the query processing means is
arranged to access the text object indeX to provide answers
to queries relating to the Semantic and Syntactic information
about the data and/or to access the data to manipulate the
data.

33. A processing System in accordance with claim 32,
wherein the text object index includes representative value
keys for entries, which give a value representative of a
feature of the element associated with the attribute-type

Jan. 24, 2002

identifier for the entry for facilitating matching with other
free-format data processed in accordance with this System.

34. A processing System in accordance with any one of
claims 20 to 33, further comprising a domain object, the
domain object being arranged to carry out the examination
process by parsing the free-format data in accordance with
grammar rules.

35. A processing System in accordance with claim 34,
wherein the domain object is produced by a domain con
Struction process from domain definition data files.

36. A processing System in accordance with claim 35,
further comprising a domain constructor for carrying out the
domain construction process.

37. A processing System in accordance with claim 35 or
claim 36, wherein the domain definition data files include
character definition data, regular expression definition data
and grammar data.

38. A processing System in accordance with any one of
claims 20 to 37, wherein the free-format data is postal
address data.

39. A processing System in accordance with any one of
claims 20 to 38, wherein the query processing means is
arranged to carry out normal database operations on the data
via the additional data.

40. A method of enabling access to free-format data stored
in a computing System, including a plurality of free-format
data records, comprising the Steps of Storing additional data
relating to Semantic and Syntactic information (attributes)
about the data for each data record, the additional data being
in the form of a text object associated with each data record,
the text object including pointer means enabling access to
elements of each free-format data record, the additional data
being accessible by a query processing means to provide
answers to queries relating to the Semantic and Syntactic
information about the data and/or to access the data to
manipulate the data.

41. A processing System for enabling access to free
format data Stored in a computing System, including a
plurality of free-format data records, the processing System
comprising additional data relating to Semantic and Syntactic
information (attributes) about the data for each data record,
Stored and accessible by the processing System, the addi
tional data being in the form of a text object associated with
each data record, the text object including pointer means
enabling access to elements of each free-format data record,
and a query processing means arranged to access the addi
tional data to provide answers to queries relating to the
Semantic and Syntactic information about the data and/or to
access the data to manipulate the data.

42. A method of enabling access to free-format data Stored
in a computing System, including a plurality of free-format
data records, comprising the Steps of Storing additional data
relating to Semantic and Syntactic information (attributes)
about the data of each data record, the additional data being
in the form of a text object index which includes attribute
type identifiers for elements of each data record and pointers
to each data record, the text object indeX being accessible by
a query processing means to provide answers to queries
relating to the Semantic and Syntactic information about the
data and/or to access the data to manipulate the data.

43. A processing System for enabling access to free
format data Stored in a computing System, including a
plurality of free-format data records, the processing System
comprising the additional data relating to Semantic and

US 2002/0010714 A1

Syntactic information (attributes) about the free-format data
for each data record, the additional data being in the form of
a text object index which includes attribute type identifiers
for elements of each data record and pointers to each data
record, and a query processing means arranged to access the
additional data to provide answers to queries relating to the
Semantic and Syntactic information about the data and/or to
access the data to manipulate the data.

44. A method of accessing free-format data processed in
accordance with the method of any one of claims 1 to 19
comprising the Steps of accessing the additional data to
provide answers to queries relating to the Semantic and
Syntactic information about the data and/or to access the data
to manipulate the data.

45. A processing System for enabling access to free
format data processed in accordance with the method of any
one of claims 1 to 19, the processing System including a
query processing means arranged to access the additional
data and provide answers to queries relating to the Semantic
and Syntactic information about the data and/or to access the
data to manipulate the data.

46. A processing System for processing free-format data
Stored in a computing System, comprising means for exam
ining elements of the data to determine attributes of the data,
by examining the content of the elements and the contextual
relationship of elements to each other, to determine Semantic
and Syntactic information (attributes) about the data, and a
query processing means for utilising this information to
provide answers to queries relating to the Semantic and
Syntactic information about the data and/or to access the
data.

47. A processing System in accordance with claim 46,
wherein the examining means retains the free-format data as
Stored in the computer System, without affecting it.

48. A method of processing free-format data Stored in a
computing System, comprising the Steps of examining ele
ments of the data to determine attributes of the data, by
examining the content of the elements and the contextual
relationships of elements to each other, to determine Seman
tic and Syntactic information (attributes) about the data, and
querying the data using this information to provide answers

Jan. 24, 2002

to queries relating to the Semantic and Syntactic information
about the data and/or to access the data.

49. A method of processing free-format data in accor
dance with claim 48, wherein the free-format data is unaf
fected by the examining process and remains Stored in the
computing System as it was originally Stored.

50. A computer readable memory storing instructions for
controlling a computer to process free-format data Stored in
a computing System, in accordance with the method of any
one of claims 1 to 19.

51. A computer readable memory Storing instructions for
controlling a computer to process free-format data Stored in
a computing System, in accordance with the method of claim
48.

52. A method of processing a plurality of records of
free-format data Stored in a computing System, comprising
the Steps of, for each record, examining elements of the data
to determine attributes of the data, by examining the content
of the elements and the contextual relationships of elements
to each other, to determine Semantic and Syntactic informa
tion (attributes) about each record, and producing virtual
data fields associated with each record enabling access to
this information and the associated elements, whereby each
record is provided with associated virtual data fields
enabling access to Semantic and Syntactic information about
that record and also access to the associated elements.

53. A processing System for processing free-format data
records Stored in a computing System, comprising means for
examining elements of the data of each record to determine
attributes of the data, by examining the content of the
elements and the contextual relationship of elements to each
other, to determine Semantic and Syntactic information
(attributes) about the data, and means for producing virtual
data fields associated with each record enabling access to
this information and the associated elements, whereby each
record is provided with associated virtual data fields
enabling access to Semantic and Syntactic information about
that record and also access to the associated elements.

