A closure lid is provided for use in covering an opening in a container and engaging a peripheral rim defining the opening. The closure lid includes a body for covering the container opening and a plurality of projecting portions that extend from a periphery of the body. The projecting portions are spaced from one another around the periphery of the body, with each formed to surround a portion of the container rim. A ring is frictionally connected to the projecting portions and surrounds container rim. A plurality of retaining fingers or tabs are provided, with each finger spaced from one another and interleaved within the spacing between adjacent projecting portions. The fingers project inwardly from the ring and engage the external sidewall of the container rim. The engagement of the fingers with the container is visible through the spacing between the projecting portions.
PACKAGE FORMED BY CONTAINER AND OVERCAP

FIELD OF THE INVENTION

The present disclosure relates to a package including the combination of a container and an overcap or closure lid structure. The overcap is formed for sealing an opening defined by a rim within a container. Preferably, the overcap includes structures providing tamper evidence for the container.

BACKGROUND OF THE INVENTION

Containers have been used for a variety of products, including food products, cleaning products, etc. Containers may be constructed of any number of materials. One container example includes a composite body portion and a lip or rim, with the material rolled to form a peripheral bead adjacent an external sidewall. A closure lid or overcap may further be provided for closing the container opening. In an alternative example, the containers rim may include an end ring, fixed to the container body and forming a retaining bead.

OVERCAPS typically fit over the container top end or opening. The overcap serves many functions including, but not limited to, protecting the top of the container from damage, preventing or deterring unwanted access into the container, maintaining the product within the container and preventing spilling, helping to improve stacking of the containers, and increasing the useful life of the product after opening.

Overcaps may also be provided with means for deterring tampering with the container contents prior to use by a consumer and/or may be provided with means for indicating that tampering may have occurred.

U.S. Pat. No. 5,538,154 to Von Holdt shows a snap-on, flexible lid having spaced panel portions on the sidewall flange of the lid having inwardly projecting structures that are positioned to engage the bead of the container rim. Vertically aligned tear lines are provided on the side edges of the panel portions for separation of the panels from the remainder of the lid flange for ease of flexing the panel portions away from engagement with the container bead.

U.S. Pat. No. 4,934,554 to Edwards shows a tamper evident lid structure having an outer ring attached to the sidewall flange of the lid. The tamper evident portions are provided at various locations within an inverted u-shaped channel. The ring is provided with a hook member and includes a barb for retention on the bead of the container rim. An opening in the sidewall is provided at the location of the hook member. The ring may be removable by a tearing action, which also removes the hook members.

U.S. Pat. No. 7,918,360 to Mengue et al shows a container and overcap combination for a microwavable container, wherein the overcap includes a skirt portion having at least one flexible member therein for releasable engagement with a bead on the rim of the container. The members may be flexed outwardly to release engagement with a bead on the container. An opening is provided in the top of the skirt portion, adjacent each member, providing access to the flexible member.

U.S. Pat. No. 6,899,245 to Nelson shows a tamper resistant container lid having a band surrounding the container bead engagement structures. The band forms a tear strip and is separated into a plurality of spaced tabs having spurs formed on the inside, inwardly directed surfaces.

Removal of the band separates the spurs and exposes a bead engagement structure on the lid.

U.S. Pat. No. 4,281,774 to Mumford shows a tamper evident snap-on cap having an outer skirt for engagement of a beaded rim on a container and an integral tear strip for tamper evidence. An inwardly positioned annular wall forms a plug for engagement with the interior surface of the container rim.

SUMMARY OF THE INVENTION

In one aspect of the present invention, a closure lid is defined for use in covering a container having opening defined by a peripheral rim, an external sidewall and an outwardly projecting peripheral bead. The closure lid includes a body formed to cover the container opening. Multiple projecting portions extend from a periphery of the body. The projecting portions are spaced from one another around the periphery of the body with each projecting portion adapted to surround a portion of the container rim and a corresponding portion of the bead. A ring is integrally connected to the plurality of projecting portions. The ring is adapted to surround the container rim. Multiple retaining fingers or tabs are spaced from one another and are interleaved within the spacing between adjacent projecting portions. The fingers project inwardly from the ring and are formed to engage the external sidewall of the container and the bead associated with the container rim. The engagement of the fingers with the container is visible through the spacing between the projecting portions. The engagement of the fingers is removed upon the frangible disconnection of the ring from the projecting portions.

In a further aspect of the closure, the projecting portions may include, on an inwardly facing surface thereof, an inwardly projecting ridge for engaging the bead portion of the container rim. The projecting portions may be curved and further may be formed for wrapping around the container rim.

In a further aspect of the closure lid, the body may be formed for contacting the internal sidewall of the container rim. The body may include a measuring well having a defined volume for measuring product stored within the container. The measuring well is preferably formed on an inside surface of the body. Further, an inner wall may be provided as part of the closure body for engagement with an internal sidewall of the container rim. The measuring well may be spaced inwardly from the inner wall and may include a plurality of sidewalls. The sidewalls may include the well with a substantially flat profile. Two of the opposing sidewalls of the rectangular profile of the measuring well may formed so as to be spaced inwardly from the inner wall at a greater distance than the other two opposing sidewall portions of the rectangular profile.

In a further aspect of the closure lid, the inner wall portion of the body may be formed with a nesting shoulder that is dimensioned to receive a corresponding nesting shoulder of a second lid for the purpose a stacking of two or more lids. Further, a stacking ridge may be formed on an upper surface of the lid for retaining a secondary package stacked on an upper surface of the lid. The stacking ridge is preferably formed by a plurality of ridge members, with the individual ridge members being positioned on a corresponding projecting portion.

In a further aspect of the closure lid, the body portion may be formed with a substantially planer surface. The
body surface extends over the opening and is preferably dimensioned to overlap at least a portion of the container rim.

In a further aspect of the present disclosure, a package is defined from the combination of a container and a closure lid. The container includes an opening providing access to an interior volume of the container. The container opening is preferably defined by an upstanding peripheral rim. The closure lid preferably covers the container opening when engaged on the peripheral rim of the container. The lid includes a body portion formed to cover the container opening and a rim engagement structure. The engagement structure may include a plurality of projecting portions formed to engage the rim and to removably retain the lid in a covering relation with the container opening. A ring is tangibly affixed to projecting portions and encircles the rim of said container. A plurality of tamper-evident tabs project from an inside surface of the ring. The tabs are angled inwardly from the ring and extend a sufficient distance so as to engage the container rim. The tabs are spaced from one another and are interleaved within the spaces between the projecting portions. The tabs are positioned such that the tab and container rim engagement is visible through the spacing of the projections and the tabs form a tamper-evident assembly.

In a further aspect of the package, the container rim includes an outwardly projecting bead on its periphery. The projecting portions may further include an inwardly facing surface, said surfaces each having an inwardly projecting ridge for engaging the bead portion of the container rim. The projecting portions are preferably curved and wrap over the container rim.

In a further aspect of the package, the tabs are formed to project into a contacting engagement with an underside surface of the projecting bead on the container rim. The rim portion of the container may further define an internal sidewall. A well may be formed on one surface of the lid body, with the well having a defined volume for measuring product stored within the container. The well may further be formed on an inside surface of the lid body.

In a further aspect of the package, the lid body may include an inner wall formed for engagement with the internal sidewall of the container rim. The measuring well may be formed in an inwardly spaced relation to the inner wall. The measuring well may further include a plurality of sidewalls formed in a rectangular profile. The two opposing sidewalls of the rectangular profile of the measuring well may be spaced inwardly from the inner wall at a greater distance than the other two opposing sidewall portions of the rectangular profile.

In a further aspect of the package, a stacking ridge may be formed on an upper surface of the lid for retaining a secondary package stacked on an upper surface of the lid. The stacking ridge is preferably formed by a plurality of ridge members, with the individual ridge members formed on a corresponding projecting portion. An inner wall portion of the body of the lid may further form a nesting shoulder, dimensioned to receive a corresponding nesting shoulder on a secondary lid for a stacking of the lids. Alternatively, the lid body may form a substantially planar surface that extends across the container opening and the overlaps with at least a portion of the container rim.

Other features of the present invention and combinations of features will become apparent from the detailed description to follow, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, the drawings show one or more forms that are presently preferred. It should be understood that the invention is not limited to the precise arrangements and instrumentalities shown in the drawings.

FIG. 1 shows a perspective view of a package in a form contemplated by the present disclosure, the package having a container and an overcap/closure lid exploded therefrom.

FIG. 2 shows a top perspective view of an overcap embodiment of the type shown in FIG. 1.

FIG. 3A shows a top plan view of the overcap embodiment of FIGS. 1-2.

FIG. 3B shows a bottom plan view of the overcap embodiment of FIGS. 1-2.

FIG. 4 shows a first cross sectional view of the overcap as taken along line 4-4 in FIG. 3B.

FIG. 5 shows a further cross sectional view of the overcap as taken along offset line 5-5 in FIG. 3B.

FIG. 5A shows an enlarged portion of the cross sectional view in FIG. 5.

FIG. 5B shows an enlarged second portion of the cross sectional view in FIG. 5.

FIG. 6A is an enlarged perspective view of a portion of the package embodiment with a cross section being taken to expose various structures.

FIG. 6B is an enlarged perspective cross sectional view of a further portion of the package embodiment.

FIG. 7A shows an enlarged, partial cross sectional view of two overcaps stacked on top of one another.

FIG. 7B shows an enlarged, partial cross sectional view of a second container stacked on the upper surface of an overcap attached to a first container.

FIG. 8 shows a perspective view of the embodiment of FIGS. 1-7 with a tear strip portion being separated from the other portions of the structure.

FIG. 9 shows a perspective view of the overcap of FIG. 8 with the tear strip fully removed.

FIG. 10 is an enlarged perspective view of a portion of the overcap embodiment with the tear strip removed and a cross section being taken to expose various structures.

DETAILED DESCRIPTION

In the figures, where like numerals identify like elements, there is shown an embodiment of a package formed by the combination of a container and overcap or closure lid.

In FIG. 1, the container is designated by the numeral 10 and the overcap is designated by the number 12. The container 10 includes a sidewall 14 that, along with the bottom wall (see item 72 in FIG. 7B), defines an internal storage volume for a product or the like. An opening 16 is provided at the upper end of the sidewall 14. The opening 16 is defined by a rim 18, which is shown to include an outwardly projecting bead 20 formed thereon. An external surface 22 is formed below the bead 20 and an internal sidewall 24 is provided inside of the rim 18. The overcap 12 is formed to be secured to the rim 18 of the container 10 and to cover the opening 16.

The overcap 12 includes a central body portion 26 and a surrounding skirt 28. The central body portion is preferably dimensioned to extend across and cover the opening 16. The skirt portion 28 includes a rim engagement structure 30 and a tamper evident structure 32. The rim engagement
structure 30 is shown to include a plurality of projections 34 that extend outwardly from the body 26 and that curve over or around the rim 18 of the container 10. The tamper evident structure 32 is formed by a frangible ring 36 and plurality of inwardly directed tabs 38.

[0039] Further specifics of the overcap 12 are shown in detail within FIGS. 2-5. The projections 34 that form the container rim engagement structure 30 as shown are equal in size, are preferably similar in form and are equidistantly spaced from one another. The spaces or openings are labeled with the numeral 40. It is contemplated that the size of the projections and the spacing between adjacent projections may vary as desired for an engagement of the overcap on the container. The material of the overcap and the form and function of the adjacent structures of the overcap are among the factors to be considered in sizing the projections.

[0040] In the top view of the overcap 12 in FIG. 3A, the tabs 38 are shown to be visible through the openings 40 and are located between adjacent projections 34. A similar interleaving of the tabs 38 and projections 34 is shown in the bottom view of FIG. 3B. In the drawings, the tabs are shown each as being similarly formed. It is contemplated that variations in form and dimension of the multiple tabs provided may be utilized for adjusting the engagement force and position on the container by the tabs.

[0041] In the bottom view of FIG. 3B, a ridge structure 42 is shown as being formed on an inside surface of the projections 34. The ridge structures 42 engage underneath the bead 20 of the container rim 18 (see FIG. 1). The ridge 42 engagement of the bead 20 is further shown in FIG. 6A. The flexibility of the projections and the form and dimensions of the ridge structures are among the factors to be considered in defining the amount of force required for removal of the overcap from the rim of the container.

[0042] The cross section of the overcap 12 in FIG. 4 is taken through the skirt 28 at a position of the openings 40 and the tabs 38. As shown, the tabs 38 are attached at their base to the ring 36 and project upwardly at an angle from an inside surface 44 of the ring 36. The different location for the cross section of FIG. 5 shows the formation of the ridge 42 on the inside of the projection 34 on the left (also see FIG. 5A) and the alternate structure on the right of the tab 38 within the opening 40 between the projections 34 (also see FIG. 6B).

[0043] The body 26 of the overcap includes a central measuring well 46 surrounded by an inner wall 48. The inner wall 48 extends upwardly from a base wall 50 and connects to a peripheral flange 52. The plurality of projections 34 extend from the peripheral flange 52. In the form shown, the peripheral flange 52 is relatively short, wrapping over only a portion of the upper surface of the container rim (18), with the projections forming the major portion of the rim engagement structure 30.

[0044] The base wall 50 separates the well 46 from the inner wall 48. In addition, the various side walls of the well 46 as shown are formed to create a generally rectangular profile, as particularly shown in FIGS. 3A and 3B. The first two opposing sidewalls 54, 56 of the well are shown as being relatively straight. The sidewalls 54, 56 are relatively straight and are elongated, as compared to the second set of opposing sidewalls 58, 60. As shown, the second sidewalls 58, 60 are outwardly curved (as seen from the top view of FIG. 3A). The sidewalls 54, 56, 58 and 60 are each tapered such that the base of the rectangular form is larger than the top end. The difference in the sidewall length (and form) results in a difference in form and size of the base wall 50, adjacent the well walls, and further results in different spacing between the well sidewalls and the inner wall 48 of the overcap body 26. The spacing between walls 54, 56 and the inner wall 48 is contemplated to be sufficient for a gripping access on the outer surface of the well 46, for holding of the overcap 12. It should be noted that the sidewalls of the well may have any number of forms, including a straight, curved or complex form. The curvatures in the sidewalls may be either convex or concave. In addition, the well may be circular, elliptical or similarly curved. The well may further be supported on the upper or lower surface of the body, without creating a surrounding trough as shown (see, for example, FIGS. 5A and 5B). In FIG. 3B, the internal volume of the well 46 is more particularly shown. The height and width of the well may also be varied as desired.

[0045] This well volume is defined by the sidewalls 54, 56, 58 and 60 and the central portion 62 of the body 26. The well volume is also defined (in part) by the cross sections of FIGS. 4 and 5. In forming the overcap 12, it is contemplated that the sidewalls be sized and positioned to define a desired volume for measuring a portion of the product (not shown) to be stored in the container (10). The user removes the overcap 12 from the container 10 and inverts the cap 12 to expose the well 46. The well 46 may then be filled with a portion of the product contents within the container 10. The fixed or known volume of the well 46 serves as a measure for further use of the product portion.

[0046] In FIGS. 6A and 6B there is shown in partial cross section the engagement of the skirt 28 of the overcap 12 with the rim 18 of the container 10. In FIG. 6A, the cross section of the overcap 12 is taken through a projection 34. The top surface or chime of the rim 18 is engaged with the upper portion of the projection 34, along with the peripheral flange 52. The projection 34 curves over the rim 18, with its inside surface generally in contact with the bead 20. The ridge 42 formed on the inside surface of the projection 34 is engaged under the bead 18, to secure the overcap 12 on the container rim 18. In FIG. 6A, the ring 36 is shown as attached to the lower edge of the projection 34. In the related view of FIG. 10, the ring 36 is removed from the overcap 12 and thus is separated from the projection 34.

[0047] In FIG. 6B, the cross section of the overcap 12 is taken through the tab 38 formed within the space or opening 40 between adjacent projections 34. The top surface or chime of the rim 18 is engaged by the peripheral flange 52. The opening 40 exposes the outwardly projecting bead 20 on the container rim 18. The tab 38 is formed on the inside surface 44 of the ring 36. The tab 38 is angled upwardly from the ring 36 and extends to a position of engagement with the external surface 22 of the container sidewall 14. The projected end of the tab is chamfered to form a contacting surface for the container surface 22 and further to engage under the bead 20. Preferably, the tab 38 and related structures are formed to provide an engagement force between the tab 38, the sidewall surface 22 and the bead 20.

[0048] In FIG. 6B, the ring 36 is shown attached to the lower edge of the adjacent projection 34. When the ring 36 is removed (see FIGS. 8-10) from the overcap 12, the formed tabs 38 are also removed from engagement with the container 10. Once the ring 36 and tab structures 38 are separated from the remaining portions of the overcap 12, the cap is selectively removable by a user from the rim 18 and container opening (16).
The inner wall 48 of the overcap body 26 is shown as being formed for engagement with the internal sidewall surface 24, opposite of the bead 20 on the container rim 18. In the manner, the inner wall 48 forms a seal with the rim 18 of the container 10 (see, for example, FIGS. 6A and 6B). As particularly shown in FIG. 7A, the inner wall 48 includes an inwardly directed step or shoulder 66, with an additional angled portion 68 connecting to the base wall 50. The step 66 forms means for stacking together two (or more) overcaps 12A, 12B. The dimensional position of the step corresponds to the position of the peripheral flange 52. Hence, the two caps 12A, 12B are nested together, with sufficient spacing for relatively easy separation. This spaced, nesting relationship may have advantages for shipment of a quantity of overcaps for subsequent handling and attachment to containers.

In FIG. 7B there is shown a stacking relationship between a first container 10A and overcap 12 combination and a second container 10B. A retaining ridge 70 is formed on the upper surface of the projection 34, adjacent the peripheral flange 52. The series of ridges on the plurality of projections 34 form a retaining ring on the upper surface of the cap 10A to deter lateral movement of the stacked second container 10B. As shown, the sidewall 14 of the second container 10B is attached to a bottom wall 72 and forms a container base. The base is positioned inside of the retaining ridge and rests on the surface of the cap, created by the projection 34 and flange 52.

In FIGS. 8-10 there is shown the removal of the ring 36 from the plurality of projections. The frangible attachment structure 74 is shown in the various cross sections, such as FIG. 5A, and is essentially a thinned or reduced thickness location at the end of the projection 34. The overcap 12 is contemplated to be integrally molded from a thermoplastic (or thermosetting) polymer material, such that the body 26, projections 34, ring 36 and tabs 38 are formed in a single mold and preferably with a single “shot” of material. As shown in FIGS. 1-7, the ring 36 is attached to each projection 34 and forms a barrier below the openings 40 between spaced projections 34. The thinned material form permits a tearing action between the ring and the projections. However, the formed connection, prior to tearing separation, is contemplated to be strong enough to withstand shipment and handling of the overcap and the package (once the overcap is secured to the container). Further, the overcap is dimensionally formed and is sufficiently flexible such that the tabs will flex into and engaged position on the rim when the overcap is initially placed on the container.

A start-up element or gripping tab 76 is provided on the ring 34, as shown in, for example, FIG. 2. Preferably, the start-up tab 76 is easily separated from the adjacent portion of the ring 36, so as to start the linear separation of the ring 36 from the projections 34, as shown in FIG. 8. The inner tabs 38 are removed with the ring 36, partially releasing the overcap 12 for final removal from the rim 18 of the container. As shown in FIGS. 9 and 10, once the ring (36) is removed, the projections form the skirt 28 for securing the overcap 12 to the container rim 18.

The alignment of the fingers or tabs within the spaces between adjacent projections creates advantages in use of the overcap, as well as in the formation of the overcap. In use, the openings permit visual inspection of the tabs. The tabs are provided to retain the overcap on the container. Preferably, the tabs create a sufficient retention force with the rim (and bead) of the container such that the overcap cannot be readily removed—prior to removal of the ring—without causing visible damage to tabs, overcap or container. The materials used to form the overcap and the dimensions and angular position of the tab members are intended to create an adaptive structure, providing a securing force against the container. The tabs must be separated from the outside wall of the container a sufficient distance to clear the bead of the container rim. In addition, multiple tabs are required to be separated from the container rim, before removal may (potentially) be accomplished. Preferably, the amount of movement required by the tab will cause a plastic deformation of one or more of the tabs, at their base connection to the ring member. Hence, a visible sign of tampering is provided. In addition, in the preferred structure, the engagement force of the tabs against the outside surface of the container, secures the overcap in position, accounting for dimensional variations in the container (and formation of the overcap). In addition, the dimensions of the overcap preferably cause the projected tip (end) of the tabs to engage under the bead of the container rim. Containers having a rolled rim or an added bead structure may include a slot-like formation for receipt of the tips of the tabs for further securing the overcap in position.

The tabs are provided for tamper resistance, maintaining the overcap on the container prior to separation of the ring. In addition, the visibility of the tabs provides an indication of tampering, such as the attempted removal of the overcap from the container. An initial inspection of the tabs at the time of purchase of the package should indicate that the tabs are engaged with the container and that the tabs have not been removed or otherwise distorted. Once the frangible ring has been separated from the overcap, the tabs are also removed. The overcap may then be lifted off of the container rim and access is provided to the contents of the container.

Removal of the overcap from the container, after separation of the ring and the associated tabs, is accomplished by separating the projections from the rim. If an inner wall is provided that engages the inside wall of the container rim, sufficient force is required to overcome any frictional engagement between the two. In addition, the ridge members need to be separated from under the projection of the bead on the rim. The flexing of the projections may be performed as part of lifting the overcap as a whole or the projections may be individually flexed to incrementally separate portions of the overcap around its circumference. The form of the well or body of the overcap may further provide a grasping surface during lifting of the overcap away from the rim. The spacing between the inner wall and the sidewalls of the well member provides finger access to form the grasping task.

In manufacturing the overcap, an injection molding process is preferred. As a result of interleaving the tabs and projections, mold part access is provided from both above and below the cap body. Preferably, no vertical overlap of the parts is provided. This type structure is illustrated in the top view of FIG. 3A. Space is provided around the perimeter of the tabs, which is visible through the openings between the spaced projection portions. This type structure may be formed with two mold parts, without the need for moving mold parts during the formation process. Because of there is no vertical overlap, the two mold halves can be separated from above and below the molded part. In this formation process, the ridge structures provided on the inside surface of the
projections are contemplated to be limited in the amount of inward projection and formable using normal molding techniques.

[0057] The present invention has been described and illustrated with respect to one or more exemplary embodiments. It should be understood by those skilled in the art from the foregoing that various other changes, omissions and additions may be made therein, without departing from the spirit and scope of the present invention, with the scope of the invention being described by the foregoing claims.

1. A closure lid for use in covering an opening, the opening defined by a peripheral rim having an external sidewall and an outwardly projecting peripheral bead, the closure lid comprising:
 a body adapted to cover the opening;
 a plurality of projecting portions extending from a periphery of the body, the projecting portions spaced from one another around the periphery, each projecting portion having an upper surface portion and a connected side surface portion, the upper portions and side portions of the projections adapted to overlap and surround the adjacent portion of a container rim and a corresponding portion of a peripheral bead on the rim;
 a ring frangibly connected to the side portions of the plurality of projecting portions, the ring adapted to surround in a spaced relationship with the external sidewall; and a plurality of retaining fingers, the fingers spaced from one another and interweaved within the spacing between adjacent projecting portions, the fingers projecting inwardly from the ring and having projected ends adapted to engage the external sidewall and the peripheral bead associated with the container rim, wherein the projected ends of the fingers are vertically exposed through the spacing between the upper portions of the projecting portions during formation of the closure lid,
 wherein the engagement of the fingers with the external sidewall and the bead is laterally exposed through the spacing between the side portions of the projecting when the lid is mounted on the container rim, and wherein the fingers are removed along with the ring upon frangible disconnection of the ring from the projecting portions.

2. A closure lid as in claim 1 wherein the projecting portions further comprise an inwardly facing surface formed on the side portions, and wherein one or more of said inwardly facing surfaces having an inwardly projecting ridge for engaging the peripheral bead of the container rim.

3. A closure lid as in claim 1 wherein the upper portions of the projecting portions are curved, with the curvature conforming to the dimensions of the container rim for wrapping around at least a portion of the container rim.

4. A closure lid as in claim 1 wherein the body comprises an inner wall formed for contacting an internal sidewall of the container rim.

5. A closure lid as in claim 1 wherein the body comprises a measuring well having a defined volume for measuring product stored within the container.

6. A closure lid as in claim 5 wherein the measuring well is formed on an inside surface of the body.

7. A closure lid as in claim 6 wherein the body further comprises an inner wall formed for engagement with the internal sidewall of the container rim, and the measuring well being spaced inwardly from the inner wall.

8. A closure lid as in claim 7 wherein the measuring well comprises a plurality of sidewalls formed in a rectangular profile.

9. A closure lid as in claim 8 wherein two opposing sidewalls of the rectangular profile of the measuring well are spaced inwardly from the inner wall at a greater distance than the other two opposing sidewall portions of the rectangular profile.

10. A closure lid as in claim 7 wherein the inner wall portion forms a nesting shoulder, the nesting shoulder dimensioned to receiving a corresponding nesting shoulder of a secondary lid for a nested stacking of the lid and the secondary lid.

11. A closure lid as in claim 1 further comprising a stacking ridge formed on an upper surface of the lid for retaining a secondary package stacked on an upper surface of the lid.

12. A closure lid as in claim 11 wherein the stacking ridge is formed by a plurality of ridge members, with individual ridge members formed on a corresponding projecting portion.

13. A package comprising:
 a container having a defined container opening, the container opening providing access to an interior volume formed by the container, the container opening further defined by an upstanding peripheral rim; and
 a lid removably covering container opening and engaging the peripheral rim on the container, the lid comprising a body portion dimensioned to cover the container opening,
 a rim engagement structure formed by a plurality of projecting portions, the projecting portions each formed to engage the peripheral rim of the container to removably retain the lid in a covering relation with the container opening, the projections having a planar portion for engaging an upper surface of the peripheral rim, a wrapping portion extending around the peripheral rim, and a side portion extending below the peripheral rim,
 a ring frangibly affixed to the side portions of the projecting portions, the ring adapted to substantially encircle the container adjacent the peripheral rim, and
 a plurality of tamper-evident tabs projecting from an inside surface of the ring, each tab angled inwardly and having a projected end aligned within the spacing between both the side portions and the planar portions of the projecting portions, the projected ends of the tabs engaging the peripheral rim when the lid is positioned to cover the container opening, said tabs spaced from one another and positioned within the spacing defined by the projecting portions with the peripheral rim engagement being visible laterally between the side portions to form a tamper-evident assembly.

14. A package as in claim 13 wherein said container rim comprised an outwardly projecting bead on its periphery.

15. A package as in claim 14 wherein the projecting portions further comprise an inwardly facing surface, said surfaces each having an inwardly projecting ridge for engaging an underside surface of the outwardly projecting bead portion of the peripheral rim.

16. A package as in claim 13 wherein the wrapping portions of the projecting portions are curved and conform to the peripheral rim of the container.
17. A package as in claim 14 wherein the projected ends of the tabs an underside surface of the outwardly projecting bead portion of the peripheral rim.

18. A package as in claim 13 wherein the peripheral rim portion of the container defines an internal sidewall, and wherein the body portion of the lid comprises a inner wall for contacting the internal sidewall of the peripheral rim portion when the lid is positioned on the container opening.

19. A package as in claim 13 further comprising a measuring well formed within the lid body, the measuring well having a defined volume for measuring a portion of the product stored within the container.

20. A package as in claim 19 wherein the measuring well is formed within a bottom surface of the lid body, the well facing inwardly towards the interior volume of the container when the lid is positioned on the container opening.

21. A package as in claim 20 wherein the lid body further comprises an inner wall formed for engagement with the internal sidewall of the peripheral rim when the lid is positioned on the container opening, the measuring well being spaced inwardly from the inner wall.

22. A package as in claim 21 wherein the measuring well comprises a plurality of sidewalls formed in a rectangular profile.

23. A package as in claim 22 wherein two opposing sidewalls of the rectangular profile of the measuring well are spaced inwardly from the inner wall at a greater distance than the other two opposing sidewall portions of the rectangular profile.

24. A package as in claim 13 further comprising a stacking ridge formed on an upper surface of the lid for retaining a secondary package stacked on an upper surface of the lid.

25. A package as in claim 24 wherein the stacking ridge is formed by a plurality of ridge members, with individual ridge members formed on a corresponding projecting portion.

26. A package as in claim 13 wherein the lid body further comprises an inner wall formed for engagement with an internal sidewall of the peripheral rim, and a measuring well formed within a bottom surface of the lid body, the measuring well spaced inwardly from the inner wall.

27. A package as in claim 26 wherein the inner wall portion forms a nesting shoulder, the nesting shoulder dimensioned to receiving a corresponding nesting shoulder of a secondary lid for a nested stacking of the lid and the secondary lid.

28. A closure lid for use in covering an opening formed within a container for storing product, the opening defined by a peripheral rim formed on a projecting sidewall and an outwardly projecting peripheral bead formed around the opening, the closure lid comprising:

- a body adapted to cover the opening; the body comprising a measuring well having a defined volume for measuring product stored within the container, the measuring well formed on an inside surface of the body,
- an inner wall formed for engagement with the internal surface of the projecting sidewall of the container,
- the measuring well being spaced inwardly from the inner wall and defined by a plurality of sidewalls formed in a rectangular profile, wherein two opposing side walls of the rectangular profile being spaced inwardly from the inner wall at a greater distance than the other two opposing sidewall portions of the rectangular profile,
- wherein the spacing of the measuring well from the inner wall forms a gripping member on an outside surface of the body for handling the closure lid;
- a plurality of projecting portions extending from a periphery of the body, the projecting portions spaced from one another around the periphery, each projecting portion having an upper surface portion and a connected side surface portion, the upper portions and side portions of the projections adapted to overlap and surround the adjacent portion of the container rim and corresponding portion of the peripheral bead;
- a ring frangibly connected to the side portions of the plurality of projecting portions, the ring adapted to surround in a spaced relationship the external sidewall; and
- a plurality of retaining fingers, the fingers spaced from one another and interleaved within the spacing between adjacent projecting portions, the fingers projecting inwardly from the ring toward the inner wall and each having a projected end adapted to engage the external sidewall and the peripheral bead associated with the container rim,

wherein the engagement of the fingers are laterally exposed through the spacing between the side portions of the projecting portions and the projected ends of the fingers are vertically exposed through the spacing between the upper portions of the projecting portions, and

wherein the fingers are removed along with the ring upon frangible disconnection of the ring from the projecting portions.

* * * * *