
(19) United States
US 20040216030A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0216030 A1
Hellman et al. (43) Pub. Date: Oct. 28, 2004

(54) METHOD AND SYSTEM FOR DERIVING A
TRANSFORMATION BY REFERRING
SCHEMA TO A CENTRAL MODEL

(76) Inventors: Ziv Z. Hellman, Jerusalem (IL);
Marcel Zvi Schreiber, Jerusalem (IL);
Tom Y Yuval, Jerusalem (IL)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 10/053,045

(22) Filed: Jan. 15, 2002

12O

170

190

IMPORT SOURCE DATA SCHEMA
AND TARGET DATA SCHEMA

ONTOLOGY MODEL
TO MPORT

IMPORT NITIAL
ONTOOGY MODEL

INTIAL ONTOLOGY
MODEL SUITABLE TO
EMBED SOURCE AND
TARGET DATA SCHEMA2

O

BUILD COMMON
ONTOLOGY MODEL

GENERATE MAPPINGS OF
SOURCE DATA SCHEMA AND
TARGET DATA SCHEMA INTO
ONTOLOGY MODEL

DERVE
SOURCE-TO-TARGET
TRANSFORMATION

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/866,101,
filed on May 25, 2001.

Publication Classification

(51) Int. Cl. ... G06F 15/00
(52) 715/500; 71.5/513
(57) ABSTRACT
A method for transforming data from one data Schema to
another including receiving a Source data Schema and a
target data Schema, mapping the Source data Schema into an
ontology model, mapping the target data Schema into the
ontology model, and deriving a transformation for trans
forming data conforming to the Source data Schema into data
conforming to the target data Schema, using the ontology
model. A System is also described and claimed.

Patent Application Publication Oct. 28, 2004 Sheet 1 of 47

IMPORT SOURCE DATA SCHEMA
AND TARGET DATA SCHEMA

ONTOLOGY MODEL
TO MPORT2

IMPORT NITIAL
ONTOLOGY MODEL

NITIAL ONTOLOGY
MODEL SUTABLE TO
EMBED SOURCE AND
TARGET DATA SCHEMA2

BUILD COMMON
ONTOLOGY MODEL

GENERATE MAPPINGS OF
SOURCE DATA SCHEMA AND
TARGET DATA SCHEMA INTO
ONTOLOGY MODEL

17O

18O DERVE
SOURCE-TO-TARGET
TRANSFORMATION

US 2004/0216030 A1

US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 2 of 47

TARGET

WWE HOS VIVO 159}}\!|

5) NiddWW BO}}[nOS

Patent Application Publication Oct. 28, 2004 Sheet 3 of 47 US 2004/0216030 A1

IMPORT AT LEAST ONE
DATA SCHEMA

NIMPORT INITIAL
ONTOLOGY MODEL

16O

BUILD COMMON
ONTOLOGY MODEL

31 O

12O

08 #7

BOJÓW Å9OTOLNO
)\5)OTOLNO-- --

DATA SCHEMA #3

DATA SCHEMA #2

DATA SCHEMA 1

Patent Application Publication Oct. 28, 2004 Sheet 4 of 47

if WWHOS WLWO

Patent Application Publication Oct. 28, 2004 Sheet 5 of 47 US 2004/0216030 A1

H

H

-

g
H

3

Patent Application Publication Oct. 28, 2004 Sheet 6 of 47 US 2004/0216030 A1

:

CN
H
L
-
g
r

3


~~~~(_)~~----- 
US 2004/0216030 A1 

BWYN 15,1|| 

?i aelº Disn?gae, ?v. - 10 lips St. † SETIAN?9Nv??a?ii (Laeo, või 

Patent Application Publication Oct. 28, 2004 Sheet 7 of 47 

    

  

  

  

    

  

  

  

  

  

  

  

    

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 8 of 47 

  



US 2004/0216030 A1 

S [6 

016 

w • c • • • 

¿####### 

Patent Application Publication Oct. 28, 2004 Sheet 9 of 47 

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 10 of 47 

SI6 

S06 

  

  

  

  

  

  

  

  

  

  

  

  

  

  



06 "OIH 

r-~~~~ 

US 2004/0216030 A1 

----------- 

| 

time west". . . . . . . . . . . . 

wwI . 

906S86 086 SL6SZ6 

Patent Application Publication Oct. 28, 2004 Sheet 11 of 47 

    

  

  

  



US 2004/0216030 A1 

**** S06----SL6SZ6 
Patent Application Publication Oct. 28, 2004 Sheet 12 of 47 

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 13 of 47 

FRÈT” …… !! !!!!!&##### täiuaiagaera uiguur -?uºrisal 3: S06096 
  



US 2004/0216030 A1 

0 || 0 || 

.5 - ...>.* * *'.* * · · · · · · · · · · · · · -...« • … ··· 

Patent Application Publication Oct. 28, 2004 Sheet 14 of 47 

  

  

  



VI I "OIH 

US 2004/0216030 A1 

| - blaidd | 

Patent Application Publication Oct. 28, 2004 Sheet 15 of 47 

  

  

  

  

  

  

    

  

  

    

  

  

  

  

  

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 16 of 47 

{HI I "OIH 

race As a 

:sasse10 latíns øyenpauluu] 

& 

  

  

    

  

  

  

  

    

  

    

  

  

  

  

  
  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 17 of 47 

• 

¿ † ‡ F) E È 

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 18 of 47 

CII I "OIH 

| 

  

    

      

  

  

  

  

  

  

  

  

          

  

  

  

  

  

  

  

  

  

    

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 19 of 47 

@HI I "OIH 

Jafuassed :sse?o jo s?jue?sui ?sa 1 

  

  

    

  

  

  

  

  

  

    

    

  

  

  

  

    

    

  

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 20 of 47 

HI I "OIH 

öss% 

• × 

2 gir 

    

  

    

  

  

  

  

  

  

    

  

  

  

  

  



US 2004/0216030 A1 

jaoue5 

Patent Application Publication Oct. 28, 2004 Sheet 21 of 47 

£) [ [ "OIH 

Biduessau?u v Lj:uïx100T 

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 22 of 47 

HI I "OIH 

  

    

  

  

  

  

  

  

    

  

  

  

    

  

  

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 23 of 47 

II I "OIH 

ge sys) 

: 

is v 

sselo MaN e e?pejo C) 

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  



[ [ [ "OIH 

US 2004/0216030 A1 

( f 

«padde uuuns 

Patent Application Publication Oct. 28, 2004 Sheet 24 of 47 

  

  

  



XII I "OIH 

US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 25 of 47 

Cow 

  



TI I "OIH 

US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 26 of 47 

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 27 of 47 

WII I "OIH 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 28 of 47 

º : † • Rj B ! 

  

  

  

  

  

  

  

  





US 2004/0216030 A1 

- ---- - - - - ----**********----------* ****--> --~--~-------- -----• >} 

Patent Application Publication Oct. 28, 2004 Sheet 30 of 47 

  

  

  

  

  





US 2004/0216030 A1 Patent Application Publication Oct. 28, 2004 Sheet 32 of 47 

RII I "OIH 

I. : 
Sisi. is fit is of si 

Ys 2: i ; 

  

  

  

  

  

  

  

  

  

  

  

  

  

    

    

  

  

  

  

  



Patent Application Publication Oct. 28, 2004 Sheet 33 of 47 US 2004/0216030 A1 

(S) 

essessawess. 

  



US 2004/0216030 A1 

HOSIAH?anS 

BUDGET AMOUNT 
G) 

Go) |INGWIºwa??----------------------------------------------------?|-—\, ÅojNOIIVITIHHV. TVLNEWLHVdBQ \?oidae)}HE8|N?IN WO 
(T) 

(3) 
OOO 

Patent Application Publication Oct. 28, 2004 Sheet 34 of 47 

  



Patent Application Publication Oct. 28, 2004 Sheet 35 of 47 US 2004/0216030 A1 

gs 

a ''' 
'..........' ' as 

G) 

  



Patent Application Publication Oct. 28, 2004 Sheet 36 of 47 US 2004/0216030 A1 

  



Patent Application Publication Oct. 28, 2004 Sheet 37 of 47 US 2004/0216030 A1 

is stine 
t 

8 s 

GO) 

  



Patent Application Publication Oct. 28, 2004 Sheet 38 of 47 US 2004/0216030 A1 

5 (S) 

E-MAIL 

Go) 



Patent Application Publication Oct. 28, 2004 Sheet 39 of 47 US 2004/0216030 A1 

ROOM NUMBER 

  



Patent Application Publication Oct. 28, 2004 Sheet 40 of 47 US 2004/0216030 A1 

: 

W W N :s 
lo 

  

  



Patent Application Publication Oct. 28, 2004 Sheet 41 of 47 US 2004/0216030 A1 

... " o 
# , , O 

n>IS i O PRICE dy 
-H - ?h -> 

G) 2 (S) CD 



Patent Application Publication Oct. 28, 2004 Sheet 42 of 47 US 2004/0216030 A1 

\ FULL NAME 
(S) 

d 
CC 

f(S) - 
C/O 

. 
Li 

  



Patent Application Publication Oct. 28, 2004 Sheet 43 of 47 US 2004/0216030 A1 

G) 
WWN 

  



Patent Application Publication Oct. 28, 2004 Sheet 44 of 47 US 2004/0216030 A1 

G) 
WWN 

  



Patent Application Publication Oct. 28, 2004 Sheet 45 of 47 US 2004/0216030 A1 

i 
  

  

  



Patent Application Publication Oct. 28, 2004 Sheet 46 of 47 US 2004/0216030 A1 
  

  

  



Patent Application Publication Oct. 28, 2004 Sheet 47 of 47 US 2004/0216030 A1 

| 
  



US 2004/0216030 A1 

METHOD AND SYSTEM FOR DERVING A 
TRANSFORMATION BY REFERRING SCHEMA 

TO A CENTRAL MODEL 

CROSS REFERENCES TO RELATED 
APPLICATIONS 

0001. This application is a continuation-in-part of assign 
ee's pending application U.S. Ser. No. 09/866,101 filed on 
May 25, 2001, entitled “Method and System for Collabo 
rative Ontology Modeling.” 

FIELD OF THE INVENTION 

0002 The present invention relates to data schema, and 
in particular to deriving transformations for transforming 
data from one Schema to another. 

BACKGROUND OF THE INVENTION 

0.003 Ontology is a philosophy of what exists. In com 
puter Science ontology is used to model entities of the real 
World and the relations between them, So as to create 
common dictionaries for their discussion. Basic concepts of 
ontology include (i) classes of instanceS/things, and (ii) 
relations between the classes, as described hereinbelow. 
Ontology provides a vocabulary for talking about things that 
exist. 

0004) 
0005. There are many kinds of “things” in the world. 
There are physical things like a car, perSon, boat, Screw and 
transistor. There are other kinds of things which are not 
physically connected items or not even physical at all, but 
may nevertheless be defined. A company, for example, is a 
largely imaginative thing the only physical manifestation of 
which is its appearance in a list at a registrar of companies. 
A company may own and employ. It has a defined beginning 
and end to its life. 

InstanceS/Things 

0006 Other things can be more abstract such as the 
Homo Sapiens Species, which is a concept that does not have 
a beginning and end as Such even if its members do. 
0007 Ontological models are used to talk about “things.” 
An important vocabulary tool is "relations' between things. 
An ontology model itself does not include the “things,” but 
introduces class and property Symbols which can then be 
used as a vocabulary for talking about and classifying things. 
0008 Properties 
0009 Properties are specific associations of things with 
other things. Properties include: 

0010 Relations between things that are part of each 
other, for example, between a PC and its flat panel 
Screen, 

0011 Relations between things that are related 
through a proceSS Such as the process of creating the 
things, for example, a book and its author; 

0012 Relations between things and their measures, 
for example, a thing and its weight. 

0013 Some properties also relate things to fundamental 
concepts Such as natural numbers or Strings of characters 
for example, the value of a weight in kilograms, or the name 
of a perSon. 

Oct. 28, 2004 

0014 Properties play a dual role in ontology. On the one 
hand, individual things are referenced by way of properties, 
for example, a perSon by his name, or a book by its title and 
author. On the other hand, knowledge being shared is often 
a property of things, too. A thing can be specified by way of 
Some of its properties, in order to query for the values of 
other of its properties. 
0.015 Classes 
0016 Not all properties are relevant to all things. It is 
convenient to discuss the Source of a property as a “class” of 
things, also referred to as a frame or, for end-user purposes, 
as a category. Often Sources of Several properties coincide, 
for example, the class Book is the source for both Author and 
ISBN Number properties. 
0017. There is flexibility in the granularity to which 
classes are defined. CarS is a class. Fiat CarS can also be a 
class, with a restricted value of a manufacturer property. It 
may be unnecessary to address this class, however, Since 
Fiat cars may not have special properties of interest that are 
not common to other cars. In principle, one can define 
classes as granular as an individual car unit, although an 
objective of ontology is to define classes that have important 
properties. 

0018) Abstract concepts such as measures, as well as 
media Such as a body of water which cannot maintain its 
identity after coming into contact with other bodies of water, 
may be modeled as classes with a quantity property mapping 
them to real numbers. 

0019. In a typical mathematical model, a basic ontology 
comprises: 

0020. A set C, the elements of which are called 
“class symbols;” 

0021 For each CeC, a plain language definition of 
the class C, 

0022. A set P, the elements of which are called 
“property symbols;” 

0023 For each. PeF: 
0024 a plain language definition of P; 

0.025 a class symbol called the source of P; and 
0.026 a class symbol called the target of P; and 

0027) A binary transitive reflexive anti-symmetric 
relation, I, called the inheritance relation on CxC. 

0028. In the ensuing discussion, the terms “class” and 
“class Symbol” are used interchangeably, for purposes of 
convenience and clarity. Similarly, the terms “property' and 
“property Symbol' are also used interchangeably. 
0029. It is apparent to those skilled in the art that if an 
ontology model is extended to include Sets in a class, then 
a classical mathematical relation on CxD can be considered 
as a property from C to Sets in D. 
0030) If I(C,C) then C is referred to as a subclass of 
C, and C is referred to as a Superclass of C. Also, C is 
Said to inherit from C. 
0031. A distinguished universal class “Being” is typically 
postulated to be a Superclass of all classes in C. 



US 2004/0216030 A1 

0.032 Variations on an ontology model may include: 
0033 Restrictions of properties to unary properties, 
these being the most commonly used properties, 

0034. The ability to specify more about properties, 
Such as multiplicity and invertibility. 

0035. The notion of a class symbol is conceptual, in that 
it describes a generic genus for an entire Species Such as 
Books, Cars, Companies and People. 
0.036 Specific instances of the species within the genus 
are referred to as “instances” of the class. Thus “Gone with 
the Wind” is an instance of a class for books, and "IBM' is 
an instance of a class for companies. Similarly, the notions 
of a property Symbol is conceptual, in that it serves as a 
template for actual properties that operate on instances of 
classes. 

0037 Class symbols and property symbols are similar to 
object-oriented classes in computer programming, Such as 
C++ classes. Classes, along with their members and field 
variables, defined within a header file, Serve as templates for 
Specific class instances used by a programmer. A compiler 
uses header files to allocate memory for, and enables a 
programmer to use instances of classes. Thus a header file 
can declare a rectangle class with members left, right, top 
and bottom. The declarations in the header file do not 
instantiate actual “rectangle objects,” but Serve as templates 
for rectangles instantiated in a program. Similarly, classes of 
an ontology serve as templates for instances thereof. 
0.038. There is, however, a distinction between C++ 
classes and ontology classes. In programming, classes are 
templates and they are instantiated to create programming 
objects. In ontology, classes document common Structure 
but the instances exist in the real world and are not created 
through the class. 
0.039 Ontology provides a vocabulary for speaking about 
instances, even before the instances themselves are identi 
fied. A class Book is used to say that an instance “is a Book.” 
A property Author allows one to create clauses "author of 
about an instance. A property Siblings allows one to create 
Statements “are Siblings' about instances. Inheritance is used 
to say, for example, that “every Book is a PublishedWork”. 
Thus all vocabulary appropriate to PublishedWork can be 
used for Book. 

0040. Once an ontology model is available to provide a 
Vocabulary for talking about instances, the instances them 
Selves can be fit into the Vocabulary. For each class Symbol, 
C, all instances which satisfy “is a C are taken to be the set 
of instances of C, and this set is denoted B(C). Sets of 
instances are consistent with inheritance, So that 
B(C) CB(C) whenever C is a subclass of C. Property 
Symbols with Source C and target C correspond to prop 
erties with source B(C) and target B(C). It is noted that if 
class C inherits from class C, then every instance of C is 
also an instance of C, and it is therefore known already at the 
ontology Stage that the Vocabulary of C is applicable to C. 
0041 Ontology enables creation of a model of multiple 
classes and a graph of properties therebetween. When a class 
is defined, its properties are described using handles to 
related classes. These can in turn be used to look up 
properties of the related classes, and thus properties of 
properties can be accessed to any depth. 

Oct. 28, 2004 

0042 Provision is made for both classes and complex 
classes. Generally, complex classes are built up from Simpler 
classes using tags for Symbols Such as interSection, Carte 
sian product, Set, list and bag. The “interSection” tag is 
followed by a list of classes or complex classes. The 
“Cartesian product’ tag is also followed by a list of classes 
or complex classes. The Set Symbol is used for describing a 
class comprising Subsets of a class, and is followed by a 
Single class or complex class. The list Symbol is used for 
describing a class comprising ordered Subsets of a class, 
namely, finite Sequences, and is followed by a single class or 
complex class. The bag Symbol is used for describing 
unordered finite Sequences of a class, namely, Subsets that 
can contain repeated elements, and is followed by a single 
class or complex class. Thus SetC describes the class of 
Sets of instances of a class C, listC describes the class of 
lists of instances of class C, and bagC describes the class 
of bags of instances of class C. 
0043. In terms of formal mathematics, for a set S, setS 
is P(S), the power set of S; bagS) is N, where N is the set 
of non-negative integers; and listS is 

S. 

0044) There are natural mappings 

list (S)-bag|S|- set{S). (1) 

004.5 Specifically, for a sequence (S,S,..., s) e listS, 
(p(S, S., . . . , S) is the element febagS that is the 
“frequency histogram' defined by f(s)=#1 sisn: S;=S}; and 
for febagS), p(f) EsetS is the Subset of S given by the 
Support of f, namely, Supp(f)={SeS: f(s)>0}. It is noted that 
the composite mapping (pl) maps a the Sequence (S1, S2, . . 
., S.) into the set of its elements {s1, s2, ..., S. For finite 
sets S, setS is also finite, and bag S and listS are 
countably infinite. 
0046. A general reference on ontology systems is Sowa, 
John F., “Knowledge Representation,” Brooks/Cole, Pacific 
Grove, Calif., 2000. 

0047 Relational database schema (RDBS) are used to 
define templates for organizing data into tables and fields. 
SQL queries are used to populate tables from existing tables, 
generally by using table join operations. Extensible markup 
language (XML) Schema are used to described documents 
for organizing data into a hierarchy of elements and 
attributes. XSLT script is used to generate XML documents 
from existing documents, generally by importing data 
between tags in the existing documents. XSLT was origi 
nally developed in order to generate HTML pages from 
XML documents. 

0048. A general reference on relation databases and SQL 
is the document “Oracle 9i: SQL Reference,” available 
on-line at http://www.oracle.com. XML, XML schema, 
XPath and XSLT are standards of the World-Wide Web 
Consortium, and are available on-line at http://www.w3.org. 



US 2004/0216030 A1 

0049. Often multiple schema exist for the same source of 
data, and as Such the data cannot readily be imported or 
exported from one application to another. For example, two 
airline companies may each run applications that proceSS 
relational databases, but if the relational databases used by 
the two companies conform to two different Schema, then 
neither of the companies can readily use the databases of the 
other company. In order for the companies to share data, it 
is necessary to export the databases from one Schema to 
another. 

0050. There is thus a need for a tool that can transform 
data conforming with a first Schema into data that conforms 
with a Second Schema. 

SUMMARY OF THE INVENTION 

0051. The present invention provides a method and sys 
tem for deriving transformations for transforming data from 
one Schema to another. The present invention describes a 
general method and System for transforming data confirming 
with an input, or Source data Schema into an output, or target 
data Schema. In a preferred embodiment, the present inven 
tion can be used to provide (i) an SQL query, which when 
applied to relational databases from a Source RDBS, popu 
lates relational databases in a target RDBS; and (ii) XSLT 
Script which, when applied to documents conforming with a 
Source XML Schema generates documents conforming with 
a target XML Schema. 
0.052 The present invention preferably uses an ontology 
model to determine a transformation that accomplishes a 
desired Source to target transformation. Specifically, the 
present invention employs a common ontology model into 
which both the Source data Schema and target data Schema 
can be mapped. By mapping the Source and target data 
Schema into a common ontology model, the present inven 
tion derives interrelationships among their components, and 
uses the interrelationships to determine a Suitable transfor 
mation for transforming data conforming with the Source 
data Schema into data conforming with the target data 
Schema. 

0053 Given a source RDBS and a target RDBS, in a 
preferred embodiment of the present invention an appropri 
ate transformation of Source to target databases is generated 
by: 

0054 (i) mapping the source and target RDBS into a 
common ontology model; 

0055 (ii) representing table columns of the source and 
target RDBS in terms of properties of the ontology 
model; 

0056 (iii) deriving expressions for target table col 
umns in terms of Source table columns, and 

0057 (iv) converting the expressions into one or more 
SQL queries. 

0.058 Although the source and target RDBS are mapped 
into a common ontology model, the derived transformations 
of the present invention go directly from source RDBS to 
target RDBS without having to transform data via an onto 
logical format. In distinction, prior art Universal Data Model 
approaches transform via a neutral model or common busi 
neSS objects. 

Oct. 28, 2004 

0059. The present invention applies to N relational data 
base Schema, where Ne2. Using the present invention, by 
mapping the RDBS into a common ontology model, data can 
be moved from any one of the RDBS to any other one. In 
distinction to prior art approaches that require on the order 
of N° mappings, the present invention requires at most N 
mappings. 
0060 For enterprise applications, SQL queries generated 
by the present invention are preferably deployed within an 
Enterprise Application Integration infrastructure. Those 
skilled in the art will appreciate that transformation lan 
guages other than SQL that are used by enterprise applica 
tion infrastructures can be generated using the present 
invention. For example, IBM's ESQL language can simi 
larly be derived for deployment on their WebSphere MQ 
family of products. 

0061 Given a source XML schema and a target XML 
Schema, in a preferred embodiment of the present invention 
an appropriate transformation of Source to target XML 
documents is generated by: 

0062 (i) mapping the source and target XML schema 
into a common ontology model; 

0063 (ii) representing elements and attributes of the 
Source and target XML Schema in terms of properties of 
the ontology model; 

0064 (iii) deriving expressions for target XML ele 
ments and XML attributes in terms of Source XML 
elements and XML attributes; and 

0065 (iv) converting the expressions into an XSLT 
Script. 

0066. There is thus provided in accordance with a pre 
ferred embodiment of the present invention a method for 
deriving transformations for transforming data from one 
data Schema to another, including receiving a Source data 
Schema and a target data Schema, mapping the Source data 
Schema into an ontology model, mapping the target data 
Schema into the ontology model, and deriving a transfor 
mation for transforming data conforming to the Source data 
Schema into data conforming to the target data Schema, 
using the ontology model. 

0067. There is further provided in accordance with a 
preferred embodiment of the present invention a System for 
deriving transformations for transforming data from one 
data Schema to another, including a Schema receiver receiv 
ing a Source data Schema and a target data Schema, a 
mapping processor mapping a data Schema into an ontology 
model, and a transformation processor deriving a transfor 
mation for transforming data conforming to the Source data 
Schema into data conforming to the target data Schema, 
based on respective Source and target mappings generated 
by Said mapping processor for mapping Said Source data 
Schema and Said target data Schema into a common ontology 
model. 

0068 There is yet further provided in accordance with a 
preferred embodiment of the present invention a method for 
building an ontology model into which data Schema can be 
embedded, including receiving at least one data Schema, and 
building an ontology model into which the at least one data 
Schema can be embedded. 



US 2004/0216030 A1 

0069. There is additionally provided in accordance with 
a preferred embodiment of the present invention a System 
for building an ontology model into which data Schema can 
be embedded, including a Schema receiver receiving at least 
one data Schema, and a model builder building an ontology 
model into which the at least one data Schema can be 
embedded. 

0070 There is moreover provided in accordance with a 
preferred embodiment of the present invention an article of 
manufacture including one or more computer-readable 
media that embody a program of instructions for transform 
ing data from one Schema to another, wherein the program 
of instructions, when executed by a processing System, 
causes the processing System to receive a Source data 
Schema and a target data Schema, map the Source data 
Schema into an ontology model, map the target data Schema 
into the ontology model, and derive a transformation for 
transforming data conforming to the Source data Schema into 
data conforming to the target relational database Schema, 
using the ontology model. 
0071. There is further provided in accordance with a 
preferred embodiment of the present invention an article of 
manufacture including one or more computer-readable 
media that embody a program of instructions for building a 
common ontology model into which data Schema can be 
embedded, wherein the program of instructions, when 
executed by a processing System, causes the processing 
System to receive at least one data Schema, and build an 
ontology model into which the at least one data Schema can 
be embedded. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0.072 The present invention will be more fully under 
stood and appreciated from the following detailed descrip 
tion, taken in conjunction with the drawings in which: 
0073 FIG. 1 is a simplified flowchart of a method for 
deriving transformations for transforming data from one 
Schema to another, in accordance with a preferred embodi 
ment of the present invention; 
0.074 FIG. 2 is a simplified block diagram of a system 
for deriving transformations for transforming data from one 
Schema to another, in accordance with a preferred embodi 
ment of the present invention; 
0075 FIG. 3 is a simplified flowchart of a method for 
building a common ontology model into which one or more 
data Schema can be embedded, in accordance with a pre 
ferred embodiment of the present invention; 
0.076 FIG. 4 is a simplified block diagram of a system 
for building a common ontology model into which one or 
more data Schema can be embedded, in accordance with a 
preferred embodiment of the present invention; 
0.077 FIG. 5 is a simplified illustration of a mapping 
from an RDBS into an ontology model, in accordance with 
a preferred embodiment of the present invention; 
0078 FIG. 6 is a second simplified illustration of a 
mapping from an RDBS into an ontology model, in accor 
dance with a preferred embodiment of the present invention; 
007.9 FIG. 7 is a simplified illustration of relational 
database transformations involving constraints and joins, in 
accordance with a preferred embodiment of the present 
invention; 

Oct. 28, 2004 

0080 FIG. 8 is a simplified illustration of use of a 
preferred embodiment of the present invention to deploy 
XSLT scripts within an EAI product such as Tibco; 
0081 FIGS. 9A-9E are illustrations of a user interface 
for a Software application that transforms data from one 
relational database Schema to another, in accordance with a 
preferred embodiment of the present invention; 
0082 FIG. 10 is an illustration of a user interface for an 
application that imports an RDBS into the software appli 
cation illustrated in FIGS. 8A-8E, in accordance with a 
preferred embodiment of the present invention; 
0.083 FIGS. 11A-11R are illustrations of a user interface 
for a Software application that transforms data from one 
XML Schema to another, in accordance with a preferred 
embodiment of the present invention; 
0084 FIG. 12 is an illustration of ontology model cor 
responding to a first example; 

0085 FIG. 13 is an illustration of ontology model cor 
responding to a Second example, 

0086 FIG. 14 is an illustration of ontology model cor 
responding to a third example, 

0087 FIG. 15 is an illustration of ontology model cor 
responding to a fourth example; 

0088 FIG. 16 is an illustration of ontology model cor 
responding to a fifth and Sixth example; 
0089 FIG. 17 is an illustration of ontology model cor 
responding to a Seventh example. 

0090 FIG. 18 is an illustration of ontology model cor 
responding to an eighth example 

0091 FIG. 19 is an illustration of ontology model cor 
responding to a ninth example 

0092 FIG. 20 is an illustration of ontology model cor 
responding to a tenth example, 

0093 FIG. 21 is an illustration of ontology model cor 
responding to an eleventh example; 

0094 FIG. 22 is an illustration of ontology model cor 
responding to a twelfth and Seventeenth example. 
0.095 FIG. 23 is an illustration of ontology model cor 
responding to a thirteenth example 

0096 FIG. 24 is an illustration of ontology model cor 
responding to a fourteenth example 

0097 FIG. 25 is an illustration of ontology model cor 
responding to a twenty-Second example, and 

0.098 FIG. 26 is an illustration of ontology model cor 
responding to a twenty-third example. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

0099. The present invention concerns deriving transfor 
mations for transforming data conforming with one data 
Schema to data conforming to another data Schema. Pre 
ferred embodiments of the invention are described herein 
with respect to table-based data schema, such as RDBS and 
document-based Schema, Such as XML Schema. 



US 2004/0216030 A1 

0100 Reference is now made to FIG. 1, which is a 
simplified flowchart of a method for deriving transforma 
tions for transforming data from one Schema to another, in 
accordance with a preferred embodiment of the present 
invention. The flowchart begins at step 110. At step, 120 a 
Source data Schema and a target data Schema are imported. 
These data Schema describe templates for Storing data, Such 
as templates for tables and table columns, and templates for 
Structured documents. If necessary, the Source data Schema 
and/or the target data Schema may be converted from a 
Standard format to an internal format. For example, they 
may be converted from Oracle format to an internal format. 
0101. At steps 130-160 a common ontology model is 
obtained, into which the Source data Schema and the target 
data schema can both be embedded, At step 130 a determi 
nation is made as to whether or not an initial ontology model 
is to be imported. If not, logic passes directly to Step 160. 
Otherwise, at step 140 an initial ontology model is imported. 
If necessary, the initial ontology model may be converted 
from a Standard format, Such as one of the formats men 
tioned hereinabove in the Background, to an internal format. 

0102 At step 150 a determination is made as to whether 
or not the initial ontology model is Suitable for embedding 
both the Source and target data Schema. If So, logic passes 
directly to step 170. Otherwise, at step 160 a common 
ontology model is built. If an initial ontology model was 
exported, then the common ontology is preferably build by 
editing the initial ontology model; specifically, by adding 
classes and properties thereto. Otherwise, the common 
ontology model is built from Scratch. It may be appreciated 
that the common ontology model may be built automatically 
with or without user assistance. 

0103) At step 170 the source and target data schema are 
mapped into the common ontology model, and mappings 
therefor are generated. At step 180 a transformation is 
derived for transforming data conforming with the Source 
data Schema into data conforming with the target data 
Schema, based on the mappings derived at Step 170. Finally, 
the flowchart terminates at step 190. 

0104 Reference is now made to FIG. 2, which is a 
simplified block diagram of a system 200 for deriving 
transformations for transforming data from one Schema to 
another, in accordance with a preferred embodiment of the 
present invention. Shown in FIG. 2 is a schema receiver 210 
for importing a Source data Schema and a target data Schema. 
These data Schema describe templates for Storing data, Such 
as templates for tables and table columns, and templates for 
Structured documents. If necessary, Schema receiver 210 
converts the Source and target data Schema from an external 
format to an internal format. 

0105. Also shown in FIG. 2 is an ontology receiver/ 
builder 220 for obtaining a common ontology model, into 
which the Source data Schema and the target data Schema can 
both be embedded. The operation of ontology receiver/ 
builder 220 is described hereinabove in steps 130-160 of 
FIG. 1. 

0106 The source and target data schema, and the com 
mon ontology model are used by a mapping processor 230 
to generate respective Source and target mappings, for 
mapping the Source data Schema into the common model 
and for mapping the target data Schema into the common 

Oct. 28, 2004 

ontology model. In a preferred embodiment of the present 
invention, mapping processor 230 includes a class identifier 
240 for identifying ontology classes with corresponding to 
components of the Source and target data Schema, and a 
property identifier 250 for identifying ontology properties 
corresponding to other components of the Source and target 
data Schema, as described in detail hereinbelow. 
0107 Preferably, the source and target mappings gener 
ated by mapping processor, and the imported Source and 
target data Schema are used by a transformation generator 
260 to derive a Source-to-target transformation, for trans 
forming data conforming to the Source data Schema into data 
conforming to the target data Schema. 
0108) Reference is now made to FIG. 3, which is a 
simplified flowchart of a method for building a common 
ontology model into which one or more data Schema can be 
embedded, in accordance with a preferred embodiment of 
the present invention. The flowchart begins are step 310. 
Steps 120, 140 and 160 are similar to these same steps in 
FIG. 1, as described hereinabove. Finally, the flowchart 
terminates at step 320. 
0109 Reference is now made to FIG. 4, which is a 
simplified block diagram of a system 400 for building a 
common ontology model into which one or more data 
Schema can be embedded, in accordance with a preferred 
embodiment of the present invention. Shown in FIG. 4 is 
schema receiver 210 from FIG. 2 for importing data 
Schema. Also shown in FIG. 4 is an ontology receiver 420, 
for importing an initial ontology model. If necessary, ontol 
ogy receiver 420 converts the initial ontology model from an 
external format to an internal format. 

0110. The initial ontology model and the imported data 
Schema are used by an ontology builder 430 for generating 
a common ontology model, into which the imported data 
schema can all be embedded. In a preferred embodiment of 
the present invention, ontology builder 430 generates the 
common ontology model by editing the initial ontology 
model; specifically, by using a class builder 440 to add 
classes thereto based on components of the imported data 
Schema, and by using a property builder 450 to add prop 
erties thereto based on other components of the imported 
data Schema. 

0111 Applications of the present invention include inter 
alia: 

0112 integrating between two or more applications 
that need to share data; 

0113 transmitting data from a database schema 
acroSS a Supply chain to a Supplier or customer using 
a different database Schema, 

0114 moving data from two or more databases with 
different Schemas into a common database, in order 
that queries may be performed acroSS the two or 
more databases, 

0115 loading a data warehouse database for off-line 
analysis of data from multiple databases, 

0116 
0117 migrating data when a database Schema is 
updated; 

Synchronizing two databases, 



US 2004/0216030 A1 

0118 moving data from an old database or database 
application to a replacement database or database 
application, respectively. 

0119 Relational Database Schema 
0120 Relational database schema (RDBS), also referred 
to as table definitions or, in Some instances, metadata, are 
used to define templates for organizing data into tables and 
table columns, also referred to as fields. Often multiple 
Schema exist for the same Source of data, and as Such the 
data cannot readily be imported or exported from one 
application to another. The present invention describes a 
general method and System for transforming an input, or 
Source relational database Schema into an output, or target 
Schema. In a preferred embodiment, the present invention 
can be used to provide an SQL query, which when applied 
to a relational database from the Source Schema, produces a 
relational database in the target Schema. 
0121 AS described in detail hereinbelow, the present 
invention preferably uses an ontology model to determine an 
SQL query that accomplishes a desired Source to target 
transformation. Specifically, the present invention employs a 
common ontology model into which both the source RDBS 
and target RDBS can be mapped. By mapping the Source and 
target RDBS into a common ontology model, the present 
invention derives interrelationships among their tables and 
fields, and uses the interrelationships to determine a Suitable 
SQL query for transforming databases conforming with the 
Source RDBS into databases conforming with the target 
RDBS. 

0122) The present invention can also be used to derive 
executable code that transforms Source relational databases 
into the target relational databases. In a preferred embodi 
ment, the present invention creates a Java program that 
executes the SQL query using the JDBC (Java Database 
Connectivity) library. In an alternative embodiment the Java 
program manipulates the databases directly, without use of 
an SQL query. 
0123 For enterprise applications, SQL queries generated 
by the present invention are preferably deployed within an 
Enterprise Application Integration infrastructure. 

0.124. Although the source and target RDBS are mapped 
into a common ontology model, the derived transformations 
of the present invention go directly from source RDBS to 
target RDBS without having to transform data via an onto 
logical format. In distinction, prior art Universal Data Model 
approaches transform via a neutral model. 
0.125 The present invention applies to N relational data 
base Schema, where Ne2. Using the present invention, by 
mapping the RDBS into a common ontology model, data can 
be moved from any one of the RDBS to any other one. In 
distinction to prior art approaches that require on the order 
of N' mappings, the present invention requires at most N 
mappings. 

0126. A "mapping from an RDBS into an ontology 
model is defined as: 

0127 (i) an association of each table from the RDBS 
with a class in the ontology model, in Such a way that 
rows of the table correspond to instances of the class, 
and 

Oct. 28, 2004 

0128 (ii) for each given table from the RDBS, an 
asSociation of each column of the table with a property 
or a composition of properties in the ontology model, 
the Source of which is the class corresponding to the 
given table and the target of which has a data type that 
is compatible with the data type of the column. 

0129. A mapping from an RDBS into an ontology model 
need not be Surjective. That is, there may be classes and 
properties in the ontology that do not correspond to tables 
and columns, respectively, in the RDBS. A mapping is useful 
in providing a graph representation of an RDBS. 
0.130. In general, although a mapping from an RDBS into 
an ontology model may exist, the nomenclature used in the 
RDBS may differ entirely from that used in the ontology 
model. Part of the utility of the mapping is being able to 
translate between RDBS language and ontology language. It 
may be appreciated by those skilled in the art, that in 
addition to translating between RDBS table/column lan 
guage and ontology class/property language, a mapping is 
also useful in translating between queries from an ontology 
query language and queries from an RDBS language Such as 
SQL (Standard query language). 
0131 Reference is now made to FIG. 5, which is a first 
simplified illustration of a mapping from an RDBS into an 
ontology model, in accordance with a preferred embodiment 
of the present invention. Shown in FIG. 5 is a table 500, 
denoted T1, having four columns denoted C1, C2, C3 and 
C4. Also shown in FIG. 1 is an ontology model 550 having 
a class denoted K1 and properties P1, P2, P3 and P4 defined 
on class T1. The labeling indicates a mapping from table T1 
into class K1, and from columns C1, C2, C3 and C4 into 
respective properties P1, P2, P3 and P4. 

0132 Reference is now made to FIG. 6, which is a 
second simplified illustration of a mapping from an RDBS 
into an ontology model, in accordance with a preferred 
embodiment of the present invention. Shown in FIG. 6 are 
table T1 from FIG. 5, and a second table 600, denoted T2, 
having four columns denoted D1, D2, D3 and D4. Column 
C1 of table T1 is a key; i.e., each entry for column C1 is 
unique, and can be used as an identifier for the row in which 
it is situated. Column D3 of table T2 refers to table T1, by 
use of the key from column C1. That is, each entry of 
column D3 refers to a row within table T1, and specifies 
such row by use of the key from C1 for the row. 
0133) Also shown in FIG. 6 is an ontology model 650 
having two classes, denoted K1 and K2. Class K1 has 
properties P1, P2, P3 and P4 defined thereon, and class K2 
has properties Q1, Q2, Q4 and S defined thereon. Property 
S has as its Source class K1 and as its target class K2. The 
labeling indicates a mapping from table T1 into class K1, 
and from columns C1, C2, C3 and C4 into respective 
properties P1, P2, P3 and P4. The fact that C1 serves as a key 
corresponds to property P1 being one-to-one, So that no two 
distinct instances of class K1 have the same values for 
property P1. 

0134) The labeling also indicates a mapping from table 
T2 into class K2, and from columns D1, D2 and D4 into 
respective properties Q1, Q2 and Q4. Column D3 corre 
sponds to a composite property PloS, where o denotes 
function composition. In other words, column D3 corre 
sponds to property P1 of S(K2). 



US 2004/0216030 A1 

0135) The targets of properties P1, P2, P3, P4, Q1, Q2 
and Q4 are not shown in FIG. 6, since these properties 
preferably map into fundamental types corresponding to the 
data types of the corresponding columns entries. For 
example, the target of P1 may be an integer, the target of P2 
may be a floating point number, and the target of P3 may be 
a character String. Classes for Such fundamental types are 
not shown in order to focus on more essential parts of 
ontology model 650. 

0.136 Classes K1 and K2, and property S are indicated 
with dotted lines in ontology model 650. These parts of the 
ontology are transparent to the RDBS underlying tables T1 
and T2. They represent additional Structure present in the 
ontology model which is not directly present in the RDBS. 

0137) Given a source RDBS and a target RDBS, in a 
preferred embodiment of the present invention an appropri 
ate transformation of Source to target RDBS is generated by: 

0138 (i) mapping the source and target RDBS into a 
common ontology model; 

0139 (ii) representing fields of the source and target 
RDBS in terms of properties of the ontology model, 
using Symbols for properties, 

0140 (iii) deriving expressions for target symbols in 
terms of Source Symbols, and 

0141 (iv) converting the expressions into one or more 
SQL queries. 

0142 Reference is now made to FIG. 7, which is a 
Simplified illustration of relational database transformations 
involving constraints and joins, in accordance with a pre 
ferred embodiment of the present invention. 

0143 XML Schema 

0144. As described in detail hereinbelow, the present 
invention preferably uses an ontology model to determine an 
XSLT transformation that accomplishes a desired Source to 
target transformation. Specifically, the present invention 
employs a common ontology model into which both the 
Source XML schema and target XML schema can be 
mapped. By mapping the Source and target XML Schema 
into a common ontology model, the present invention 
derives interrelationships among their elements and 
attributes, and uses the interrelationships to determine Suit 
able XSLT Script for transforming documents generating 
documents conforming with the target XML Schema from 
documents conforming with the Source XML Schema. 

0145 The present invention can also be used to derive 
executable code that transforms source XML documents 
into the target XML documents. In a preferred embodiment, 
the present invention packages the derived XSLT script with 
a Java XSLT engine to provide an executable piece of Java 
code that can execute the transformation. 

0146 Preferably, this is used to deploy XSLTs within an 
EAI product Such as Tibco. Specifically, in a preferred 
embodiment of the present invention, a function (similar to 
a plug-in) is installed in a Tibco MessageBroker, which uses 
the Xalan XSLT engine to run XSLT scripts that are pre 
sented in text form. As an optimization, the XSLT script files 
are preferably compiled to Java classfiles. 

Oct. 28, 2004 

0147 Reference is now made to FIG. 8, which is a 
simplified illustration of use of a preferred embodiment of 
the present invention to deploy XSLT scripts within an EAI 
product Such as Tibco. 
0148 User Interface 
0149 Applicant has developed a software application, 
named COHERENCETM, which implements a preferred 
embodiment of the present invention to transform data from 
one Schema to another. Coherence enables a user 

O150 
0151 to build an ontology model into which both 
the Source and target RDBS can be mapped; 

0152 to map the source and target RDBS into the 
ontology model; and 

0153 to impose constraints on properties of the 
ontology model. 

to import source and target RDBS; 

0154) Once the mappings are defined, Coherence gener 
ates an SQL query to transform the source RDBS into the 
target RDBS. 

0155 Reference is now made to FIGS. 9A-9E, which are 
illustrations of a user interface for transforming data from 
one relational database Schema to another using the Coher 
ence Software application, in accordance with a preferred 
embodiment of the present invention. Shown in FIG. 9A is 
a main Coherence window 905 with a left pane 910 and a 
right pane 915. Window 905 includes three primary tabs 
920, 925 and 930, labeled Authoring, Mapping and Trans 
formations, respectively. Authoring tab 920 is invoked in 
order to display information about the ontology model, and 
to modify the model by adding, deleting and editing classes 
and properties. Mapping tab 925 is invoked in order to 
display information about the RDBS and the mappings of 
the RDBS into the ontology, and to edit the mappings. 
Transformations tab 930 is invoked to display transforma 
tions in the form of SQL queries, from a source RDBS into 
a target RDBS. In FIG. 9A, tab 920 for Authoring is shown 
Selected. 

0156 Left pane 910 includes icons for two modes of 
viewing an ontology: icon 935 for viewing in inheritance 
tree display mode, and icon 940 for viewing in package 
display mode. 
O157 Inheritance tree display mode shows the classes of 
the ontology in a hierarchical fashion corresponding to 
Superclass and Subclass relationships. AS illustrated in FIG. 
9A, in addition to the fundamental classes for Date, Number, 
Ratio, String and Named Element, there is a class for City. 
Corresponding to the class selected in left pane 910, right 
pane 915 displays information about the selected class. 
Right pane 915 includes six tabs for class information 
display: tab 945 for General, tab 950 for Properties, tab 955 
for Subclasses, tab 960 for Enumerated Values, tab 965 for 
Relations and tab 970 for XML Schema. Shown in FIG. 9A 
is a display under tab 945 for General. The display includes 
the name of the class, Being, and the package to which it 
belongs, namely, fundamental. Also shown in the display is 
a list of immediate Superclasses, which is an empty list for 
class Being. Also shown in the display is a textual descrip 
tion of the class, namely, that Being is a root class for all 
classes. 



US 2004/0216030 A1 

0158 Tab 960 for Enumerated Values applies to classes 
with named elements, i.e., classes that include a list of all 
possible instances. For example, a class Boolean has enu 
merated values “True” and “False,” and a class Gender may 
have enumerated values “Male” and “Female.” 

0159 FIG.9B illustrates package display mode for the 
ontology. Packages are groups including one or more ontol 
ogy concepts, Such as classes, and properties. Packages are 
used to organize information about an ontology into various 
groupings. As illustrated in FIG. 9B, there is a fundamental 
package that includes fundamental classes, Such as Being, 
Boolean, Date and Integer. Also shown in FIG. 9B is a 
package named WeatherFahrenheit, which includes a class 
named City. 
0160. As shown in FIG. 9B, City is selected in left pane 
910 and, correspondingly, right pane 915 displays informa 
tion about the class City. Right pane 915 display information 
under Tab 950 for Properties. As can be seen, class City 
belongs to the package WeatherFahrenheit, and has four 
properties, namely, Celsius of type RealNumber, city of type 
String, Fahrenheit of type RealNumber and year of type 
RealNumber. FIG. 9B indicates that the property Celsius 
satisfies a constraint. Specifically, Celsius=5*(Fahrenheit 
–32)/9. 
0161 In FIG. 9C, the tab 925 for Mapping is shown 
selected. As shown in the left pane of FIG. 9C, two RDBS 
have been imported into Coherence. A first RDBS named 
WeatherCelsius, which includes a table named Towns, and a 
Second RDBS named WeatherFahrenheit, which includes a 
table named Cities. 

0162 The table named Cities is shown selected in FIG. 
9C, and correspondingly the right pane display information 
regarding the mapping of Cities into the ontology. AS can be 
Seen, the table Cities contains three fields, namely, Fahren 
heit, city and year. The table Cities has been mapped into the 
ontology class City, the field Fahrenheit has been mapped 
into the ontology property Fahrenheit, the field city has been 
mapped into the ontology property name, and the field year 
has been mapped into the ontology property year. The RDBS 
WeatherFahrenheit will be designated as the source RDBS. 
0163) When tab 925 for Mapping is selected, the right 
pane includes three tabs for displaying information about the 
RDBS: tab 975 for Map Info, tab 980 for Table Info and tab 
985 for Foreign Keys. 

0164. The RDBS named WeatherCelsius is displayed in 
FIG. 9D. As can be seen, the table Towns contains three 
fields; namely, town, Celcius and year. The table Towns has 
been mapped into the ontology class City, the field town has 
been mapped into the ontology property name, the field 
Celcius has been mapped into the ontology property Celcius, 
and the field year had been mapped into the ontology 
property year. The RDBS WeatherCelcius will be designated 
as the target RDBS. 
0165. As such, the target RDBS is 

TABLE I 

Towns 

Town Celcius Year 

Oct. 28, 2004 

0166 and the source RDBS is 

TABLE II 

Cities 

Fahrenheit City Year 

0167. In FIG. 9E, the tab 930 for Transformations is 
shown Selected. AS can be seen in the right pane, the Source 
table is Cities and the target table is Towns. The SQL query 

INSERT INTO WeatherCelcius.Towns(CELCIUS, TOWN, YEAR) 
(SELECT 

(5 * (AFAHRENHEIT - 32)/9) AS CELCIUS, 
A.CITY AS TOWN, 
A.YEAR AS YEAR 

FROM 

WeatherFahrenheit. Cities A); 

0168) 
0169. Reference is now made to FIG. 10, which is an 
illustration of a user interface for an application that imports 
an RDBS into Coherence, in accordance with a preferred 
embodiment of the present invention. Shown in FIG. 10 is 
a window 1010 for a schema convertor application. Prefer 
ably, a user Specifies the following fields: 

0170 Database Name 1020: What Oracle refers to 
as an SID (System Identifier). 

0171 Host Name 1030: The name of an Oracle 8i 
server (or Global Database Name). 

0172 Port 1040: Port number 
0173 Username 1050: The username of a user with 
privileges to the relevant Schemas. 

0174 Password 1060: The password of the user with 
privileges to the relevant Schemas. 

0175 Oracle schema 1070: The schema or database 
in Oracle to be converted to SML format. The SML 
format is an internal RDBS format used by Coher 
ence. When importing more than one Schema, a 
Semicolon () is placed between Schema names. 

0176) Coherence schema 2080: The label identify 
ing the RDBS that is displayed on the Mapping Tab 
in Coherence. This field is optional; if left blank, the 
Oracle Schema name will be used. 

0177) Output File 1090: A name for the SML file 
generated. 

0178 Reference is now made to FIGS. 11A-11R, which 
are illustrations of a for transforming data from one XML 
Schema to another using the Coherence Software application, 
in accordance with a preferred embodiment of the present 
invention. Shown in FIG. 11A is a window with package 
View of an Airline Integration ontology model in its left lane. 
The left pane displayS classes from a fundamental package. 
A class Date is shown highlighted, and its properties are 
shown in the right pane. Fundamental packages are used for 
standard data types. Shown in FIG. 11B is a window with 
a hierarchical view of the Airline Integration ontology model 

accomplishes the desired transformation. 



US 2004/0216030 A1 

in its left pane. The left pane indicates that FrequentFlyer is 
a Subclass of Passenger, Passenger is a Subclass of Person, 
and Person is a Subclass of Being. The right pane displayS 
general information about the class FrequentFlyer. 

0179 FIG. 11C shows a window used for opening an 
existing ontology model. In the Coherence Software appli 
cation, ontology models are described using XML and 
Stored in .oml files. Such files are described in applicant's 
co-pending patent application U.S. Ser. No. 09/866,101 filed 
on May 25, 2001 and entitled METHOD AND SYSTEM 
FOR COLLABORATIVE ONTOLOGY MODELING, the 
contents of which are hereby incorporated by reference. 

0180 FIG. 11D shows the hierarchical view from FIG. 
11B, indicating properties of the FrequentFlyer class. The 
property fullName is highlighted, and a window for con 
Straint information indicates that there is a relationship 
among the ontology properties firstName, lastName and 
fullName; namely, that fullName is the concatenation of 
firstName and lastName with a white space therebetween. 
This relationship is denoted as Constraint 5. 

0181 FIG. 11E shows the hierarchical view from FIG. 
11B, indicating test instance of the Passenger class. A list of 
instances is displayed in the right pane, along with property 
values for a specific Selected instance from the list. 
0182 FIG. 11F shows two imported XML schema for 
airline information. FIG. 11G shows a window for import 
ing XML schema into Coherence. FIG. 11H shows a 
window with a display of an imported XML schema for 
British Airways, with a list of complexTypes from the 
imported Schema. The complexType Journey is Selected, and 
the right pane indicates that Journey and its elements are 
currently not mapped to a class and properties of the 
ontology model. 

0183 FIG. 11 shows a window for generating a map 
ping from the British Airways XML schema into the Airline 
Integration ontology model. The ontology class Flight is 
shown selected to correspond to the XML ComplexType 
Journey. FIG. 11J shows the left pane from FIG. 11H, with 
the right pane now indicating that the XML complexType 
Journey from the British Airways XML schema has been 
mapped to the class Flight from the Airline Integration 
ontology model. FIG. 11K shows the left pane from FIG. 
11H, with a window for selecting properties and indirect 
properties (i.e., compositions of properties) to correspond to 
elements from the XML Schema. Shown selected in FIG. 
11K is a property distanceInMiles() of the class Flight. FIG. 
11L shows the left pane from FIG. 11H, with the right pane 
now indicated that Journey has been mapped to Flight, and 
the XML element distance in miles within the complex 
Type Journey has been mapped to the property distanceIn 
Miles() of the class Flight. FIG. 11M shows the left pane 
from FIG. 11H, with the right pane now indicating that the 
mapping has been extended to all XML elements of the 
complexType Journey, showing the respective properties to 
which each element is mapped. FIG. 11N shows schema 
info for the complexType Journey, listing its elements and 
their data types. 
0184 FIG. 11O shows a window for specifying a trans 
formation to be derived. Shown in FIG. 10 is a request to 
derive a transformation from a Source data Schema, namely, 
the imported SwissAir XML Schema to a target data Schema, 

Oct. 28, 2004 

namely, the imported British Airways XML schema. Shown 
in FIG. 11P is an XSLT script generated to transform XML 
documents conforming to the SwissAir Schema to XML 
documents conforming to the British Airways schema. FIG. 
11O shows a specific transformation of a SwissAir XML 
document to a British Airways XML document, obtained by 
applying the derived XSLT script from FIG. 11P. Finally, 
FIG. 11R shows a display of the newly generated British 
Airways XML document with Specific flights and passen 
gerS. 

EXAMPLES 

0185. For purposes of clarity and exposition, the work 
ings of the present invention are described first through a 
Series of twenty-three examples, followed by a general 
description of implementation. Two Series of examples are 
presented. The first Series, comprising the first eleven 
examples, relates to RDBS transformations. For each of 
these examples, a source RDBS and target RDBS are 
presented as input, along with mappings of these Schema 
into a common ontology model. The output is an appropriate 
SQL query that transforms database tables that conform to 
the Source RDBS, into database tables that conform to the 
target RDBS. Each example steps through derivation of 
Source and target Symbols, expression of target Symbols in 
terms of Source symbols and derivation of an appropriate 
SQL query based on the expressions. 

0186 The second series of examples, comprising the last 
twelve examples, relates to XSLT transformation. For each 
of these examples, a Source XML Schema and target XML 
Schema are presented as input, along with mappings of these 
Schema into a common ontology model. The output is an 
appropriate XSLT script that transforms XML documents 
that conform to the Source Schema into XML documents that 
conform to the target Schema. 

A First Example 

Schoolchildren 

0187) 
form: 

In a first example, a target table is of the following 

TABLE III 

Target Table T for First Example 

Child Name Mother Name School Location Form 

0188 Four source tables are given as follows: 

TABLE IV 

Source Table S for First Example 

Name School Attending Mother NI Number 



US 2004/0216030 A1 

0189) 

TABLE V 

Source Table S for First Example 

NI Number Name Region Car Number 

0190. 

TABLE VI 

Source Table S. for First Example 

Name Location HeadTeacher 

0191) 

TABLE VII 

Source Table S for First Example 

Name Year Form 

0.192 The underlying ontology is illustrated in FIG. 12. 
The dotted portions of the ontology in FIG. 12 show 
additional ontology Structure that is transparent to the rela 
tional database Schema. Using the numbering of properties 

schema 

S. 
S.Name 

S. 
S.NI Number 
S.Name 
S. Region 
S.Car Number 
Ss 
S.Name 
S.Location 
S.HeadTeacher 
S. 
S.Name 
SYear 

Oct. 28, 2004 
10 

indicated in FIG. 12, the unique properties of the ontology 
are identified as: 

TABLE VIII 

Unique Properties within Ontology for First Example 

Property Property Index 

name(Child) 6 
national insurance number(Person) 4 
name(School) 1O 

0193 The mapping of the targetschema into the ontology 
is as follows: 

TABLE IX 

Mapping from Target Schema to Ontology for First Example 

Property 
schema Ontology Index 

T Class: Child 
TChild Name Property: name(Child) 6 
T.Mother Name Property: name(mother(Child)) 305 
T.School Location Property: 12C9 

location (school attending(Child)) 
TForm Property: current school form (Child) 8 

0194 The symbol o is used to indicate composition of 
properties. The mapping of the Source Schema into the 
ontology is as follows: 

TABLE X 

Mapping from Source schema to Ontology for First Example 

Property 
Ontology Index 

Class: Child 

Property: name(Child) 6 
S.School Attending Property: name(school attending(Child)) 1009 

S.Mother NI Number Property: national insurance number(mother(Child)) 405 
Class: Person 

Property: national insurance number(Person) 4 
Property: name(Person) 3 
Property: region of residence(Person) 1. 
Property: car registration number(Person) 2 
Class: School 

Property: name(School) 1O 
Property: location (School) 12 
Property: name(headteacher(School)) 3O11 
Class: Child 

Property: name(Child) 6 
Property: year of schooling(Child 7 

Property: current school form (Child) 8 S.Form 



US 2004/0216030 A1 

0.195 The indices of the source properties are: 

TABLE XI 

Source Symbols for First Example 

Source Table Source Symbols 

0196) The symbols in Table XI relate fields of a source 
table to a key field. Thus in table S the first field, S.Name 
is a key field. The Second field, S.School Attending is 
related to the first field by the composition 10o9o6', and the 
third field, S.Mother NI Number is related to the first field 
by the composition 4o506. In general, if a table contains 
more than one key field, then expressions relative to each of 
the key fields are listed. 

0197) The inverse notation, such as 6' is used to indicate 
the inverse of property 6. This is well defined since property 
6 is a unique, or one-to-one, property in the ontology model. 
The indices of the target properties, keyed on Child Name 

C. 

TABLE XII 

Target Symbols for First Example 

Target Table Target Symbols Paths 

T 3o506 (3o4") o (405o6') 
1209o6. (12o.10") o (1009o6) 
8o6. (8o6) 

0198 Based on the paths given in Table XII, the desired 
SQL query is: 

INSERT INTO T(Child Name, Mother Name, School Location, Form) 
(SELECT 

S.Name AS Child Name, 
S.Name AS Mother Name, 
S.Location AS School Location, 
S.Form AS Form 

FROM 
S1, S2, S3, S4 

WHERE 

S.NI Number = S.Mother NI Number AND 
S.Name = S.School Attending AND 
S.Name = S.Name); 

0199 The rules provided with the examples relate to the 
Stage of converting expressions of target Symbols in terms of 
Source Symbols, into SQL queries. In general, 

11 
Oct. 28, 2004 

0200 Rule 1: When a target symbol is represented using 
a source symbols, say (aob') from a Source table, S, then 
the column of S mapping to a is used in the SELECT clause 
of the SOL query and the column of S mapping to b is used 
in the WHERE clause. 

0201 Rule 2: When a target symbol is represented as a 
composition of Source symbols, say (aob') o (boc'), where 
aob' is taken from a first source table, say S1, and boc' is 
taken from a second Source table, Say S, then S and S must 
be joined in the SQL query by the respective columns 
mapping to b. 

0202 Rule 3: When a target symbol is represented using 
a Source symbols, say (aob'), from a Source table, S, and is 
not composed with another source symbol of the form boc', 
then table S must be joined to the target table through the 
column mapping to b. 

0203 When applied to the following sample source data, 
Tables XIII, XIV, XV and XVI, the above SQL query 
produces the target data in Table XVII. 

TABLE XIII 

Sample Source Table S for First Example 

Name Mother NI Number School Attending 

Daniel Ashton Chelsea Secondary School 123456 

Peter Brown Warwick School for Boys 673986 

Ian Butler Warwick School for Boys 234978 
Matthew Davies Manchester Grammar School 853076 

Alex Douglas Weatfields Secondary School 862085 
Emma Harrison Camden School for Girls 275398 

Martina Howard Camden School for Girls 456398 

0204) 

TABLE XIV 

Sample Source Table S for First Example 

NI Number Name Region Car Number 

123456 Linda London NULL 
673986 Amanda Warwick NULL 

456398 Claire Cambridgeshire NULL 
86,2085 Margaret NULL NULL 
234978 Amanda NULL NULL 
853076 Victoria Manchester NULL 
275398 Elizabeth London NULL 



US 2004/0216030 A1 

0205) 

TABLE XV 

Sample Source Table S for First Example 

Name Location HeadTeacher 

Manchester Grammar School Manchester M. Payne 
Camden School for Girls London J. Smith 

Weatfields Secondary School Cambridgeshire NULL 
Chelsea Secondary School London I. Heath 
Warwick School for Boys Warwickshire NULL 

0206 

TABLE XVI 

Sample Source Table SA for First Example 

Name Year Form 

Peter Brown 7 Lower Fourth 
Daniel Ashton 1O Mid Fifth 
Matthew Davies 4 Lower Two 
Emma Harrison 6 Three 
James Kelly 3 One 
Greg McCarthy 5 Upper Two 
Tina Reynolds 8 Upper Fourth 

0207 

TABLE XVII 

Sample Target Table T for First Example 

Child Name Mother Name School Location Form 

Daniel Ashton Linda London Md. Fifth 
Peter Brown Amanda Warwickshire Lower Fourth 
Matthew Davies Victoria Manchester Lower Two 
Emma Harrison Elizabeth London Three 

A Second Example 

Employees 

0208. In a second example, a target table is of the 
following form: 

TABLE XVIII 

Target Table T for Second Example 

Name Department Supervisor Room# 

0209 Four source tables are given as follows: 

TABLE XIX 

Source Table S for Second Example 

Emp ID# Name Department 

Oct. 28, 2004 

0210) 

TABLE XX 

Source Table S for Second Example 

Employee Name Supervisor Project 

0211 

TABLE XXI 

Source Table S. for Second Example 

ID#. Room Assignment Telephone# 

0212 

TABLE XXII 

Source Table S for Second Example 

Department Budget 

0213 The underlying ontology is illustrated in FIG. 13. 
The dotted portions of the ontology in FIG. 13 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE XXIII 

Unique Properties within Ontology for Second Example 

Property Property Index 

name(Employee) 3 

ID#(Employee) 4 

0214) The mapping of the target Schema into the ontology 
is as follows: 

TABLE XXIV 

Mapping from Target Schema to Ontology for Second Example 

Property 
schema Ontology Index 

T Class: Employee 
TName Property: name(Employee) 3 
T. Department Property: 807 

code(departmental affiliation (Employee)) 
TSupervisor Property: name(supervisor(Employee)) 3O6 
TRoomi Property: room number(Employee) 1. 



US 2004/0216030 A1 Oct. 28, 2004 
13 

0215. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE XXV 

Mapping from Source schema to Ontology for Second Example 

Property 
schema Ontology Index 

S. Class: Employee 
S.Emp ID# Property: ID#(Employee) 4 
S.Name Property: name(Employee) 3 
S.Department Properly: code(departmental affiliation (Employee)) 8o7 
S. Class: Employee 
S.Employee Name Property: name(Employee) 3 
S.Supervisor Property: name(supervisor(Employee)) 3O6 
S.Project Property: project assignment(Employee) 5 
Ss Class: Employee 
SID# Property: ID#(Employee) 4 
S. Room Assignment Property: room number(Employee) 1. 
S.Telephone# Property: tel#(Employee) 2 
S. Class: Department 
S.Department Property: code(Department) 8 
S.Budget Property: budget amount (Department) 9 

0216) The indices of the source properties are: 
-continued 

TABLE XXVI 

Source Symbols for Second Example WHERE 
S.Employee Name = S.Name AND SID# = 

Source Table Source Symbols 
S. Emp ID#); 

S. 3o4. 
8o7o4" 
4o3. 

S .. 0219. It is noted that Table S. not required in the SQL. 
OOO 

2 5o3. When applied to the following sample source data, Tables 
Ss 104. XXVIIII, XXIX and XXX, the above SQL query produces 

-1 

204 the target data in Table XXXI. S. 908 

TABLE XXVIII 

0217. The indices of the target properties, keyed on Name 
C. Sample Source Table S for Second Example 

TABLE XXVII Emp ID# Name Department 

Target Symbols for Second Example 
198 Patricia SW 

Target Table Target Symbols Paths 
247 Eric OA 

T 8o7o3. (8o7o3) 386 Paul IT 
3o603 (30603') 
1031 (104") o (403) 

0220) 
0218 Based on the paths given in Table XXVII, the 
desired SQL query is: TABLE XXIX 

Sample Source Table S for Second Example 

INSERT INTO T(Name, Department, Supervisor, Room#) 
(SELECT Employee Name Supervisor Project 

S.Name AS Name, 
S.Department AS Department, Eric John Release 1.1 
S.Supervisor AS Supervisor, 
Ss.Room Assignment AS Roomff 

FROM Paul Richard Release 1.1 

S1, S2, S3 

Patricia George Release 1.1 



US 2004/0216030 A1 

0221) 

TABLE XXX 

Sample Source Table S for Second Example 

ID#. Room Assignment Telephone# 

386 1O 106 

198 8 117 

247 7 123 

0222 

TABLE XXXI 

Sample Target Table T for Second Example 

Name Department Supervisor Roomfi 

Patricia SW George 8 

Eric OA John 7 

Paul IT Richard 1O 

A Third Example 

Airline Flights 

0223) In a third example, a target table is of the following 
form: 

TABLE XXXII 

Target Table T for Third Example 

FlightID DepartingCity ArrivingCity 

0224. Two source tables are given as follows: 

TABLE XXXIII 

Source Table S for Third Example 

Index APName Location 

0225) 

TABLE XXXIV 

Source Table S for Third Example 

FlightID FromAirport ToAirport 

0226. The underlying ontology is illustrated in FIG. 14. 
The dotted portions of the ontology in FIG. 14 are additional 

Oct. 28, 2004 

ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE XXXV 

Unique Properties within Ontology for Third Example 

Property Property Index 

name(Airport) 1. 

ID(Flight) 6 

0227. The mapping of the target Schema into the ontology 
is as follows: 

TABLE XXXVI 

Mapping from Target schema to Ontology for Third Example 

Property 
schema Ontology Index 

T Class: Flight 
TFlightID Property: ID#(Flight) 6 
T.DepartingCity Property: location (from airport (Flight)) 204 
TArrivingCity Property: location (to airport(Flight)) 2o5 

0228. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE XXXVII 

Mapping from Source schema to Ontology for Third Example 

Property 
schema Ontology Index 

S. Class: Airport 
S.Index Property: Index(Airport) 3 
S.APName Property: name(Airport) 1. 
S.Location Property: location (Airport) 2 
S. Class: Flight 
S.FlightID Property: ID#(Flight) 6 
S.FromAirport Property: name(from airport(Flight)) 104 
S.ToAirport Property: name(to airport (Flight)) 105 

0229. The indices of the source properties are: 

TABLE XXXVIII 

Source Symbols for Third Example 

Table Source Symbols 



US 2004/0216030 A1 

0230. The indices of the target properties, keyed on 
FlightID are: 

TABLE XXXIX 

Target Symbols for Third Example 

Table Target Symbols Paths 

(201") o (10406) 
(201') o (10506) 

0231 Since the path (201") appears in two rows of Table 
XXXIX, it is necessary to create two tables for S in the SQL 
query. Based on the paths given in Table XXXVII, the 
desired SQL query is: 

INSERT INTO T(FlightID, DepartingCity, ArrivingCity) 
(SELECT 

S.FlightIDAS FlightID, 
S.Location AS DepartingCity, 
S.Location AS ArrivingCity 

FROM 
S. S11, S. S12, S. 

WHERE 
S.APName = S.FromAirport AND 
S.APName = S.ToAirport); 

0232. In general, 

0233 Rule 4: When the same source symbol is used 
multiple times in representing target Symbols, each occur 
rence of the Source Symbol must refer to a different copy of 
the Source table containing it. 

0234. When applied to the following sample source data, 
Tables XL and XLI, the above SQL query produces the 
target data in Table XLII. 

TABLE XL 

Sample Source Table S1 for Third Example 

Index APName Location 

1. Orly Paris 
2 JFK New York 
3 LAX Los Angeles 
4 HNK Hong Kong 
5 TLV Tel Aviv 
6 Logan Boston 

0235) 

TABLE XLI 

Sample Source Table S for Third Example 

FlightID FromAirport ToAirport 

OO1 Orly JFK 
OO2 JFK LAX 
OO3 TLV HNK 
OO4 Logan TLV 

Oct. 28, 2004 

0236 

TABLE XLII 

Sample Target Table T for Third Example 

FlightID DepartingCity ArrivingCity 

OO1 Paris New York 

OO2 New York Los Angeles 
OO3 Tel Aviv Hong Kong 
OO)4 Boston Tel Aviv 

A Fourth Example 

Lineage 

0237. In a fourth example, a target table is of the follow 
ing form: 

TABLE XLIII 

Target Table T for Fourth Example 

ID Name Father Name 

0238. One source table is given as follows: 

TABLE XLIV 

Source Table S for Fourth and Fifth Examples 

ID Name Father ID 

0239). The underlying ontology is illustrated in FIG. 15. 
The dotted portions of the ontology in FIG. 15 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE XLV 

Unique Properties within Ontology for Fourth and Fifth Examples 

Property Property Index 

name(Person) 1. 
ID#(Person) 2 

0240 The mapping of the targetschema into the ontology 
is as follows: 

TABLE XLVI 

Mapping from Target schema to Ontology for Fourth Example 

Property 
schema Ontology Index 

T Class: Person 
TID Property: ID#(Person) 2 
TName Property: name(Person) 1. 
T.Father Name Property: name(father(Person)) 1O3 



US 2004/0216030 A1 

0241 The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE XLVII 

Mapping from Source schema to Ontology 
for Fourth and Fifth Examples 

Property 
schema Ontology Index 

S Class: Person 
S.D Property: ID#(Person) 2 
S.Name Property: name(Person) 1. 
S.Father ID Property: ID#(father(Person)) 2O3 

0242. The indices of the source properties are: 

TABLE XLVIII 

Source Symbols for Fourth and Fifth Examples 

Table Source Symbols 

S. 1021 
2O3O2 

0243 The indices of the target properties, keyed on ID 
C. 

TABLE XLIX 

Target Symbols for Fourth Example 

Table Target Symbols Paths 

T 1o2 (102) 
1o3O2 (102') o (2O3O2) 

0244 Based on the paths given in Table XLIX, the 
desired SQL query is: 

INSERT INTO T(ID, Name, Father ID) 
(SELECT 

SID AS ID, 
S.Name AS Name, 
S.IDAS Father ID 

FROM 
SS, SS 

WHERE 

S.ID = S.Father ID); 

A Fifth Example 

Lineage 

0245. In a fifth example, the target property of Father 
Name in the fourth example is changed to Grandfather 
Name, and the target table is thus of the following form: 

TABLE L 

Target Table T for Fifth Example 

ID Name Grandfather Name 

Oct. 28, 2004 

0246. One source table is given as above in Table XLIV. 
0247 The underlying ontology is again illustrated in 
FIG. 15. The unique properties of the ontology are as above 
in Table XLV. 

0248. The mapping of the targetschema into the ontology 
is as follows: 

TABLE LI 

Mapping from Target schema to Ontology for Fifth Example 

Property 
schema Ontology Index 

T Class: Person 
TID Property: ID#(Person) 2 
TName Property: name(Person) 1. 
T.Grandfather Name Property: 1O3O3 

name(father(father(Person))) 

0249. The mapping of the source schema into the ontol 
ogy is given in Table XLVII above. 
0250) The indices of the source properties are given in 
Table XLVIII above. 

0251 The indices of the target properties, keyed on ID 
C. 

TABLE LII 

Target Symbols for Fifth Example 

Table Target Symbols Paths 

T 1021 (102) 
1o3O3O2 (102) o (2O3O2) o 

(2O3O2) 

0252 Based on the paths given in Table LII, the desired 
SQL query is: 

INSERT INTO T(ID, Name, Grandfather ID) 
(SELECT 

S.IDAS ID, S.Name AS Name, 
SID AS Grandfather ID 

FROM 
SS, SS, SS 

WHERE 

SID = S.Father ID AND 
S.ID = S.Father ID); 

A Sixth Example 

Dog Owners 

0253) In a sixth example, a target table is of the following 
form: 

TABLE LIII 

Target Table T for Sixth Example 

ID Name Dogs. Previous Owner 



US 2004/0216030 A1 

0254. Two source tables are given as follows: 

TABLE LIV 

Source Table S for Sixth Example 

ID Name Dog 

0255 

TABLE LV 

Source Table S for Sixth Example 

Owner Name Previous Owner 

0256 The underlying ontology is illustrated in FIG. 16. 
The dotted portions of the ontology in FIG.16 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE LVI 

Unique Properties within Ontology for Sixth Example 

Property Property Index 

ID#(Person) 2 
name(Dog) 6 

0257 The mapping of the targetschema into the ontology 
is as follows: 

TABLE LVII 

Mapping from Target schema to Ontology for Sixth Example 

Property 
schema Ontology Index 

T Class: Person 
TID Property: ID#(Person) 2 
TName Property: name(Person) 1. 
TDogs. Previous Owner Property: SO3 

previous Owner(dog (Person)) 

0258. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE LVIII 

Mapping from Source schema to Ontology for Sixth Example 

Property 
schema Ontology Index 

S. Class: Person 
SID Property: ID#(Person) 2 
S.Name Property: name(Person) 1. 
S.Dog Property: name(dog(Person)) 6O3 
S. Class: Dog 
S.Owner Property: name(owner(Dog)) 104 
S.Name Property: name(Dog) 6 
S.Previous Owner Property: name(previous owner(Dog)) 105 

Oct. 28, 2004 

0259. The indices of the source properties are: 

TABLE LIX 

Source Symbols for Sixth Example 

Table Source Symbols 

S. 1021 
6o3O2 

S. 1o4.o6' 
1o5o6. 

0260 The indices of the target properties, keyed on ID 
C. 

TABLE LX 

Target Symbols for Sixth Example 

Table Target Symbols Paths 

T 1o2 (102) 
5o3O2 (105o6) o (60302) 

0261 Based on the paths given in Table LX, the desired 
SQL query is: 

INSERT INTO T(ID, Name, Dogs Previous Owner) 
(SELECT 

SID AS ID, S.Name AS Name, 
S.Previous Owner AS Dogs Previous Owner 

FROM 
S1, S2 

WHERE 
S.Name = S.Dog); 

A Seventh Example 

Employees 

0262. In a seventh example, a target table is of the 
following form: 

TABLE LXI 

Target Table T for Seventh Example 

ID Name Email Department 

0263 Five source tables are given as follows: 

TABLE LXII 

Source Table S for Seventh Example 

ID Department 



US 2004/0216030 A1 

0264) 

TABLE LXIII 

Source Table S for Seventh Example 

ID Email 

0265 

TABLE LXIV 

Source Table S for Seventh Example 

ID Name 

0266 

TABLE LXV 

Source Table S for Seventh Example 

ID Email 

0267 

TABLE LXVI 

Source Table Ss for Seventh Example 

ID Department 

0268. The underlying ontology is illustrated in FIG. 17. 
The dotted portions of the ontology in FIG. 17 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE LXVII 

Unique Properties within Ontology for Seventh Example 

Property Property Index 

ID#(Person) 2 

0269. The mapping of the targetschema into the ontology 
is as follows: 

TABLE LXVIII 

Mapping from Target schema to Ontology for Seventh Example 

schema Ontology Property Index 

T Class: Person 
TID Property: ID#(Person) 2 
TName Property: name(Person) 1. 
TEmail Property: e-mail (Person) 3 
T. Department Property: department(Person) 4 

Oct. 28, 2004 

0270. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE LXIX 

Mapping from Source schema to Ontology for Seventh Example 

schema Ontology Property Index 

S. Class: Employee 
SID Property: ID#(Employee) 2 
S.Department Property: department(Employee) 4 
S. Class: Employee 
S.ID Properly: ID#(Employee) 2 
S.Email Property: e-mail (Employee) 3 
Ss Class: Employee 
S.ID Property: ID#(Employee) 2 
S.Name Property: name(Employee) 1. 
S. Class: Employee 
SID Property: ID#(Employee) 2 
S.Email Property: e-mail (Employee) 3 
Ss Class: Employee 
SID Property: ID#(Employee) 2 
Ss.Department Property: department(Employee) 4 

0271 The indices of the source properties are: 

TABLE LXX 

Source Symbols for Seventh Example 

Table Source Symbols 

S. 
4o2 

S. 
3O21 

Ss 
1o2 

S. 
3O21 

Ss 

0272. The indices of the target properties, keyed on ID 
C. 

TABLE LXXI 

Target Symbols for Seventh Example 

Table Target Symbols Paths 

T 
1o2 (102) 
3O2 (302) 
4021 (402) 

0273 Based on the paths given in Table LXXI, the 
desired SQL query is: 

INSERT INTO T(ID, Name, Email, Department) 
(SELECT 

SID AS ID, S.Name AS Name, 
S.Email AS Email, 
S. Department AS Department 

FROM 



US 2004/0216030 A1 

-continued 

WHERE 
S.ID = SID AND SID = SID 

UNION 
SELECT 

SID AS ID, 
S.Name AS Name, 
S.Email AS Email, 
S.Department AS Department 

FROM 

S1, S3, S4 
WHERE 

SID = SID AND SID = SID 
UNION 
SELECT 

SID AS ID, 
S.Name AS Name, 
S.Email AS Email, 
Ss.Department AS Department 

FROM 

S1, S2, S3, SS 
WHERE 

S.ID = S.ID and S-ID = SID and Ss. ID = SID 
UNION 
SELECT 

SID AS ID, 
S.Name AS Name, 
S.Email AS Email, 
Ss.Department AS Department 

FROM 

S1, S3, S4, Ss 
WHERE 

S.ID = SID and S-ID = SID and 
SID = SID AND SID = SID); 

0274. In general, 

0275 Rule 5: When a source symbol used to represent a 
target Symbol is present in multiple Source tables each Such 
table must be referenced in an SOL querv and the resultant 
queries joined. 

0276 When applied to the following sample source data, 
Tables LXXII, LXXIII, LXXIV, LXXV and LXXVI, the 
above SQL query produces the target data in Table LXXVII. 

TABLE LXXII 

Sample Source Table S, for Seventh Example 

ID Department 

123 SW 
456 PdM 
789 SW 

0277 

TABLE LXXIII 

Sample Source Table S, for Seventh Example 

ID Email 

123 jackG company 
456 jan(Gcompany 
789 jillocompany 

Oct. 28, 2004 

0278) 

TABLE LXXIV 

Sample Source Table Sa for Seventh Example 

ID Name 

123 Jack 
456 Jan 
789 J 
999 Joe 
111 Jim 
888 Jeffrey 

0279) 

TABLE LXXV 

Sample Source Table S for Seventh Example 

ID Email 

999 joeG) company 
111 jim(G) company 
888 JeffreyG) company 

0280 

TABLE LXXVI 

Sample Source Table Ss for Seventh Example 

ID Department 

999 Sales 
111 Business Dev 
888 PdM 

0281 

TABLE LXXVII 

Sample Target Table T for Seventh Example 

ID Name Email Department 

123 Jack jackG company SW 
456 Jan jan(G)company PdM 
789 J jillocompany SW 
111 Jim jimcocompany Business Dev 
888 Jeffrey jeffrey Gcompany PdM 
999 Joe joeGcompany Sales 

An Eighth Example 

Employees 

0282. In an eighth example, a target table is of the 
following form: 

Emp Name 

TABLE LXXVIII 

Target Table T for Eighth Example 

Emp Division Emp Tel No 



US 2004/0216030 A1 

0283 Two source tables are given as follows: 

TABLE LXXIX 

Source Table S for Eighth Example 

Employee Division Employee Tel# Employee Name Room# 

0284) 

TABLE LXXX 

Source Table S for Eighth Example 

Name Employee Tel Division 

0285) The underlying ontology is illustrated in FIG. 18. 
The dotted portions of the ontology in FIG. 18 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The unique properties of the ontology are: 

TABLE LXXXI 

Unique Properties within Ontology for Eighth Example 

Property Property Index 

name(Employee) 1. 

0286 The mapping of the targetschema into the ontology 
is as follows: 

TABLE LXXXII 

Mapping from Target Schema to Ontology for Eighth Example 

Property 
schema Ontology Index 

T Class: Employee 
T.Emp Name Property: name(Employee) 1. 
T.Emp Division Property: division 4 

(Employee) 
T.Emp Tel No Property: telephone number 2 

(Employee) 

0287. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE LXXXIII 

Mapping from Source Schema to Ontology for Eighth Example 

Property 
schema Ontology Index 

S. Class: Employee 
S.Employee Division Property: division 4 

( Employee) 
S.Employee Tel# Property: telephone number 2 

(Employee) 
S.Employee Name Property: name(Employee) 1. 
S.Employee Room# Property: room number 3 

(Employee) 
S. Class: Employee 
S.Name Property: name(Employee) 1. 

Oct. 28, 2004 

TABLE LXXXIII-continued 

Mapping from Source schema to Ontology for Eighth Example 

Property 
schema Ontology Index 

S.Employee Tel Property: telephone number 2 
(Employee) 

S.Division Property: division (Employee) 4 

0288 The indices of the source properties are: 

TABLE LXXXIV 

Source Symbols for Eighth Example 

Table Source Symbols 

S. 4O1 

3o1 
S. 2011 

0289. The indices of the target properties, keyed on 
Emp Name are: 

TABLE LXXXV 

Target Symbols for Eighth Example 

Table Target Symbols Paths 

T 4o1' (401") 
2011 (2011) 

0290 Since each of the source tables S and S suffice to 
generate the target table T, the desired SQL is a union of a 
query involving S alone and a query involving S alone. 
Specifically, based on the paths given in Table LXXXV, the 
desired SQL query is: 

INSERT INTO T(Emp Name, Emp Division, Emp Tel No) 
(SELECT 

S.Employee Name AS Emp Name, 
S.Employee Division AS Emp Division, 
S.Employee Tel# AS Emp Tel No 

FROM 

S. 
UNION 
SELECT 

S.Employee Name AS Emp Name, 
S.Employee Division AS Emp Division, 
S.Employee Tel# AS Emp Tel No 

FROM S.); 

0291. In general, 

0292 Rule 6: When one or more source tables contain 
Source Symbols Sufficient to generate all of the target Sym 
bols, then each Such Source table must be used alone in an 
SQL query and the resultant queries joined. (Note that Rule 
6 is consistent with Rule 5.) 



US 2004/0216030 A1 

0293 When applied to the following sample source data, 
Tables LXXXVI and LXXXVII, the above SQL query 
produces the target data in Table LXXXVIII. 

TABLE LXXXVI 

Sample Source Table S for Eighth Example 

Employee Division Employee Tel# Employee Name Roomfi 

Engineering 113 Richard 1O 
SW 118 Adrian 4 

Engineering 105 David 1O 

0294) 

TABLE LXXXVII 

Sample Source Table S for Eighth Example 

Name Employee Tel Division 

Henry 117 SW 
Robert 106 IT 
William 119 PdM 
Richard 113 Engineering 

0295) 

TABLE LXXXVIII 

Sample Target Table T for Eighth Example 

Emp Name Emp Division Emp Tel No 

Tom Engineering 113 
Adrian SW 118 
David Engineering 105 
Henry SW 117 
Robert IT 106 
William PdM 119 

A Ninth Example 

Data Constraints 

0296. In a ninth example, a target table is of the following 
form: 

TABLE LXXXIX 

Target Table T for Ninth Example 

City Temperature 

0297 Two source tables are given as follows: 

TABLE XC 

Source Table S for Ninth Example 

City Temperature 

Oct. 28, 2004 

0298) 

TABLE XCI 

Source Table S for Ninth Example 

City C Temperature 

0299 The underlying ontology is illustrated in FIG. 19. 
The dotted portions of the ontology in FIG. 19 are additional 
ontology Structure that is transparent to the relational data 
base schema. The properties temperature in Centrigade and 
temperature in Fahrenheit are related by the constraint: 

Temperature in Centrigade(City) 5/9*(Temperature 
in Fahrenheit(City)-32) 

0300. The unique properties of the ontology are: 

TABLE XCII 

Unique Properties within Ontology for Ninth Example 

Property Property Index 

name(City) 1. 

0301 The mapping of the targetschema into the ontology 
is as follows: 

TABLE XCIII 

Mapping from Target Schema to Ontology for Ninth Example 

Property 
schema Ontology Index 

T Class: City 
TCity Property: name(City) 1. 
TTemperature Property: 2 

temperature in Centigrade 
(City) 

0302) The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE XCIV 

Mapping from Source schema to Ontology for Ninth Example 

Property 
schema Ontology Index 

S. Class: City 
S.City Property: name(City) 1. 
S.Temperature Property: 3 

temperature in Fahrenheit 
(City) 

S. Class: City 
S.City Property: name(City) 1. 
S.C Temperature Property: 2 

temperature in Centrigade 
(City) 



US 2004/0216030 A1 

0303. The indices of the source properties are: 

TABLE XCV 

Source Symbols for Ninth Example 

Table Source Symbols 

S. 3o11 
S. 2O1 

0304. The indices of the target properties, keyed on City 
C. 

TABLE XCVI 

Target Symbols for Ninth Example 

Table Target Symbols Paths 

0305 Since each of the source tables S and S suffice to 
generate the target table T, the desired SQL is a union of a 
query involving S alone and a query involving S alone. 
Specifically, based on the paths given in Table XCVI, the 
desired SQL query is: 

INSERT INTO T(City, Temperature) 
(SELECT 

S.City AS City, 
5/9* (S.Temperature - 32) AS Temperature 

FROM 
S. 

UNION 
SELECT 

S.City AS City, S.Temperature AS Temperature 
FROM 

S2); 

0306 In general, 

0307 Rule 7: When a target symbol can be expressed in 
terms of one or more Source Symbols by a dependency 
constraint then Such constraint must appear in the list of 
target Symbols. 

0308 When applied to the following sample source data, 
Tables XCVII and XCVIII, the above SQL query produces 
the target data in Table XCIX. 

TABLE XCVII 

Sample Source Table S, for Ninth Example 

City Temperature 

New York 78 
Phoenix 92 
Anchorage 36 
Boston 72 

22 
Oct. 28, 2004 

0309 

TABLE XCVIII 

Sample Source Table S., for Ninth Example 

City C Temperature 

Moscow 12 
Brussels 23 
Tel Aviv 32 
London 16 

0310 

TABLE XCIX 

Sample Target Table T for Ninth Example 

City Temperature 

New York 25.5 
Phoenix 33.3 
Anchorage 2.22 
Boston 22.2 
Moscow 12 
Brussels 23 
Tel Aviv 32 
London 16 

A Tenth Example 

Pricing 

0311. In a tenth example, a target table is of the following 
form: 

TABLE C 

Target Table T for Tenth Example 

Product Price 

0312 Two source tables are given as follows: 

TABLE CI 

Source Table S for Tenth Example 

SKU Cost 

0313) 

TABLE CII 

Source Table S for Tenth Example 

Item Margin 

0314. The underlying ontology is illustrated in FIG. 20. 
The dotted portions of the ontology in FIG.20 are additional 
ontology Structure that is transparent to the relational data 
base Schema. The properties price, cost of production and 
margin are related by the constraint: 

price(Product)= 
cost of production (Product)*margin (Product). 



US 2004/0216030 A1 

0315. The unique properties of the ontology are: 

TABLE CIII 

Unique Properties within Ontology for Tenth Example 

Property Property Index 

SKU(Product) 1. 

0316 The mapping of the targetschema into the ontology 
is as follows: 

TABLE CIV 

Mapping from Target schema to Ontology for Tenth Example 

schema Ontology Property Index 

T Class: Product 

T.Product Property: SKU(Product) 1. 
T.Price Property: price(Product) 

0317. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE CV 

Mapping from Source schema to Ontology for Tenth Example 

Property 
schema Ontology Index 

S. Class: Product 
S.SKU Property: SKU(Product) 1. 
S.Cost Property: cost of production (Product) 2 
S. Class: Product 
S.Item Property: SKU(Product) 1. 
S.Margin Property: margin (Product) 3 

0318. The indices of the source properties are: 

TABLE CVI 

Source Symbols for Tenth Example 

Table Source Symbols 

S. 2011 
S. 3o11 

03.19. The indices of the target properties, keyed on 
Product are: 

TABLE CVII 

Target Symbols for Tenth Example 

Table Target Symbols Paths 

23 
Oct. 28, 2004 

0320 Based on the paths given in Table CVII, the desired 
SQL query is: 

INSERT INTO T(Product, Price) 
(SELECT 

S.SKUAS Product, (S.Cost) * (S.Margin) AS Price 
FROM 

S1, S2 
WHERE 

S.Item = S.SKU); 

0321) When applied to the following sample source data, 
Tables CVIII and CVIX, the above SQL query produces the 
target data in Table CX. 

TABLE CVIII 

Sample Source Table S, for Tenth Example 

SKU Cost 

123 2.2 
234 3.3 
345 4.4 
456 5.5 

0322) 

TABLE CIX 

Sample Source Table S, for Tenth Example 

Item Margin 

123 1.2 
234 1.1 
345 1.04 
456 1.3 

0323) 

TABLE CX 

Sample Target Table T for Tenth Example 

Product Price 

123 2.86 
234 3.96 
345 4.84 
456 5.72 

An Eleventh Example 

String Concatenation 

0324. In an eleventh example, a target table is of the 
following form: 

TABLE CXI 

Target Table T for Eleventh Example 

ID#. Full Name 



US 2004/0216030 A1 

0325 One source table is given as follows: 

TABLE CXII 

Source Table S for Eleventh Example 

ID#. First Name Last Name 

0326. The underlying ontology is illustrated in FIG. 21. 
The dotted portions of the ontology in FIG. 21 a re 
additional ontology Structure that is transparent to the rela 
tional database Schema. The properties full name, first 
name and last name are related by the constraint: 

full name(Person)= 
first name(Person) last name(Person), 

0327 where | denotes string concatenation. 
0328. The unique properties of the ontology are: 

TABLE CXIII 

Unique Properties within Ontology for Eleventh Example 

Property Property Index 

ID#(Product) 1. 

0329. The mapping of the targetschema into the ontology 
is as follows: 

TABLE CXIV 

Mapping from Target schema to Ontology for Eleventh Example 

schema Ontology Property Index 

T Class: Person 
TID#. Property: ID#(Person) 1. 
TFull Name Property: full name(Person) 4 

0330. The mapping of the source schema into the ontol 
ogy is as follows: 

TABLE CXV 

Mapping from Source Schema to Ontology for Eleventh Example 

schema Ontology Property Index 

S Class: Person 
S.D#. Property: ID#(Person) 1. 
S.First Name Property: first name(Person) 2 
S.Last Name Property: last name(Person) 3 

0331. The indices of the source properties are: 

TABLE CXVI 

Source Symbols for Eleventh Example 

Table Source Symbols 

S 2O1 
2011 

24 
Oct. 28, 2004 

0332 The indices of the target properties, keyed on ID# 
C. 

TABLE CXVII 

Target Symbols for Eleventh Example 

Table Target Symbols Paths 

0333 Based on the paths given in Table CXVII, the 
desired SQL query is: 

INSERT INTO T(ID#, Full Name) 
(SELECT 

S.ID# AS ID#, 
(S.First Name) (S.Last Name) AS Full Name 

FROM 

S); 

0334. When applied to the following sample source data, 
Table CXVIII, the above SQL query produces the target data 
in Table CXIX. 

TABLE CXVIII 

Sample Source Table S for Eleventh Example 

ID#. First Name Last Name 

123 Timothy Smith 
234 Janet Ferguson 
345 Ronald Thompson 
456 Marie Baker 
567 Adrian Clark 

0335) 

TABLE CXIX 

Sample Target Table T for Eleventh Example 

ID#. Full Name 

123 Timothy Smith 
234 Janet Ferguson 
345 Ronald Thompson 
456 Marie Baker 
567 Adrian Clark 

A Twelfth Example 

BookS->Documents 

0336 A Source XML schema for books is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema's 
<xs:element name="book type="Book/> 
<xs:complexType name="Book's 

<XS:sequences 
<XS:element name="name' type="Xs:string"/> 
<xs:element name="author' type="Author"/> 



US 2004/0216030 A1 

-continued 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Author's 

<xs:attribute name="name/ 
</xs:complexTypes 
</XS:schemas 

0337. A target XML schema for documents is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XML schema's 
<xs:element name="document type="Document/> 
<xs:complexType name="Document's 

<xs:element name="writer type="xs:string/> 

<xs:attribute name="title/> 
</xs:complexTypes 
</XS:schemas 

0338 A common ontology model for the source and 
target XML schema is illustrated in FIG. 22. A mapping of 
the Source XML Schema into the ontology model is given 
by: 

TABLE CXX 

Mapping from Source schema to Ontology 
for Twelfth and Thirteenth Examples 

schema Ontology Property Index 

complexType: book Class: Book 
element: book/name/text() Property: name(Book) 1. 
element: book/author Property: author(Book) 2 
complexType: author Class: Person 
element: author/Gname Property: name(Person) 3 

0339. A mapping of the target XML schema into the 
ontology model is given by: 

TABLE CXXI 

Mapping from Target schema to Ontology for Twelfth Example 

Property 
schema Ontology Index 

complexType: document Class: Book 
element: document/writer/text() Property: 3O2 

name(author(Book)) 
attribute: document/Gtitle Property: 1. 

name(Book) 

0340 Tables CXX and CXXI use XPath notation to 
designate XSL elements and attributes. 
0341 Based on Tables CXX and CXXI, an XSLT trans 
formation that maps XML documents that conform to the 
Source Schema to corresponding documents that conform to 
the target Schema should accomplish the following tasks: 

0342 1. document/(otitleesbook/name/text() 
0343 2. )esbook/author/ 
(Gname 

document/writer/text( 

25 
Oct. 28, 2004 

0344). Such a transformation is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 xmlins:Xsl= 
“http://www.w3.org/1999/XSL/Transform"> 
<xsl:output method="xml version="1.0 encoding="UTF-8 
indent="yes/> 
<xsl:template match="/"> 

<document> 

<xsl:for-each select="..//bookposition()=1"> 
<xsl:attribute name="title> 

<xsl:value-of select="name()/> 
<fxsl:attributes 
<xsl:element name="writer's 

<xsl:value-of select="author/Gname f> 
</Xsl:element> 

<fxsl:for-each 
</documents 

</xsl:templates 
</xsl:stylesheets 

A Thirteenth Example 

BookS->Documents 

0345) A source XML schema for books is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema's 
<xs:element name="book” type="Book/> 
<xs:complexType name="Book's 

<XS:sequences 
<Xs:element name="name type="Xs:string"/> 
<xs:element name="author type="Author minOccurs="O 
maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Author's 

<xs:attribute name="name/ 
</xs:complexTypes 
</XS:Schema 

0346 A target XML schema for documents is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema's 
<xs:element name="document type="Document/> 
<xs:complexType name="Document's 

<XS:choice.> 
<xs:element name="writer type="xs:string minOccurs="1 
maxOccurs="unboundedf> 
<xs:element name="title type="xs:string/> 
<xs:element name="ISBN type="xs:string f> 

</XS:choice.> 
</xs:complexTypes 
</XS:Schema 

0347 A common ontology model for the source and 
target XML schema is illustrated in FIG. 23. A mapping of 
the Source XML Schema into the ontology model is given by 





US 2004/0216030 A1 

-continued 

</xs:sequences 
<xs:attribute name="title/> 

</xs:complexTypes 
<xs:complexType name="Letter's 

<XS:Sequences 
<xs:element name="author' type="xs:string 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
<xs:attribute name="name/ 
<xs:attribute name="subject/> 
<xs:attribute name="receiver/> 

</xs:complexTypes 
</XS:schemas 

0354) A common ontology model for the source and first 
target XML schema is illustrated in FIG. 24. A mapping of 
the Source XML Schema into the ontology model is given 
by: 

TABLE CXXIII 

Mapping from Source schema to Ontology 
for Fourteenth Example 

Property 
schema Ontology Index 

complexType: review Class: Document 
element: review/author/text() Property: author(Document) 1. 
attribute: review/G title Property: title(Document) 2 
complexType: article Class: Document 
element: article/writer/text() Property: author(Document) 1. 
attribute: article/Gname Property: title(Document) 2 
complexType: letter Class: Letter 

(inherits from Document) 
element: letter/sender/text() Property: author(Letter) 1. 
attribute: letterfoname Property: title(Letter) 2 
attribute: letter/G subject Property: subject(Letter) 3 
attribute: letterforeceiver Property: receiver(Letter) 4 
complexType: source 
ComplexType: library 

Class: Storage 
Container Class: 
set Storage 

0355. A mapping of the first target XML schema into the 
ontology model is given by: 

TABLE CXXIV 

Mapping from First Target schema to 
Ontology for Fourteenth Example 

Property 
schema Ontology Index 

complexType: document Class: Document 
element: document/author/text() Property: author(Document) 1. 
attribute: document/Gtitle Property: title(Document) 2 
complexType: letter Class: Letter 

(inherits from Document) 
element: letter/author/text() Property: author(Letter) 1. 
attribute: letterfoname Property: title(Letter) 2 
attribute: letter/G subject Property: subject(Letter) 3 
attribute: letterforeceiver Property: receiver(Letter) 4 
complexType: storage Class: Storage 
element: storage/articles Property: articles (Storage) 9 
element: storage/reviews Property: reviews(Storage) 1O 
element: storage/letters Property: letters(Storage) 11 

0356) Based on Tables CXXIII and CXXIV, an XSLT 
transformation that maps XML documents that conform to 

27 
Oct. 28, 2004 

the Source Schema to corresponding documents that conform 
to the target Schema should accomplish the following tasks: 

0357 1. storagees library 

0358 2. letter/author/text()e sletter/sender/text() 
0359 Such a transformation is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:template match="/"> 
<xsl:apply-templates select="/library/> 
</xsl:templates 
<xsl:template match="/library's 
<storages 

<articles> 
<Xsl:apply-templates select="source not(letter)/article 
source not(review)/article/> 

</articles.> 
<reviews> 

<xsl: apply-templates select="source not(letter)/review/> 
</reviews> 
<letters> 

<xsl:apply-templates select="source not(review)/letter/> 
</letters> 

</storages 
</xsl:templates 
<xsl:template match="article'> 
<article> 

<xsl:attribute name="title><xsl:value-of 
select="Gname/s <fxsl:attributes 
<xsl:apply-templates select="writer/> 

</article> 
</xsl:templates 
<xsl:template match="review’s 
<reviews 

<xsl:attribute name="title><xsl:value-of 
select="Gtitle/><fxsl:attributes 
<Xsl:apply-templates select="author/ > 

</reviews 
</xsl:templates 
<xsl:template match="letter's 
<reviews 

<xsl:attribute name="name><xsl:value-of 
select="Gname/s <fxsl:attributes 
<xsl:attribute name="subject's <xsl:value-of 
select="Gsubject/></xsl:attributes 
<xsl:attribute name="receiver's <xsl:value-of 
select="Greceiver/><fxsl:attributes 
<Xsl:apply-templates select="sender'?s 

</reviews 
</xsl:templates 
<xsl:template match="article?writer review fauthor letterisender'> 
<authore 

<xsl:value-of select="text()/> 
<fauthore 
</xsl:templates 
</xsl:stylesheets 

0360 A second target XML schema for documents is 
given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema's 
<Xs:element name="storage' type="Storage'?s 
<Xs:complexType name="Storage''> 

<XS:sequences 
<xs:element name="books' type="Books/> 
<XS:element name="magazines' type="Magazines'?s 

</xs:sequences 



US 2004/0216030 A1 

-continued 

</xs:complexTypes 
<xs:complexType name="Books'> 

<XS:Sequences 
<xs:element name="articles' type="Documents/> 
<xs:element name="reviews type="Documents/> 

</xs:sequences 
</xs:complexTypes 
<Xs:complexTypename="Magazines'> 

<XS:Sequences 
<xs:element name="articles' type="Documents/> 
<xs:element name="letters' type="Letters/> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Documents'> 
<XS:sequences 

<xs:element name="document type="Document 
minOccurs="O 

maxOccurs="unboundedf> 
</xs:sequences 

</xs:complexTypes 
<xs:complexType name="Letters'> 

<XS:Sequences 
<xs:element name="letter type="Letter 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Document's 

<XS:Sequences 
<xs:element name="author' type="xs:string 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
<xs:attribute name="title/> 

</xs:complexTypes 
<xs:complexType name="Letter's 
<XS:sequences 

<xs:element name="author' type="xs:string 
minOccurs="O' maxOccurs="unboundedf> 
</xs:sequences 
<xs:attribute name="name/ 
<xs:attribute name="subject/> 
<xs:attribute name="receiver/> 

</xs:complexTypes 
</XS:schemas 

0361. A mapping of the second target XML schema into 
the ontology model is given by: 

TABLE CXXV 

Mapping from Second Target schema 
to Ontology for Fourteenth Example 

schema Ontology 

complexType: document Class: Document 
element: Property: author(Document) 
document/author/text() 
attribute: Property: title(Document) 
document/G title 
complexType: letter Class: Letter 

(inherits from Document) 
element: Property: author(Letter) 
letter/author/text() 
attribute: letterfoname Property: title(Letter) 
attribute: letter/G subject Property: subject(Letter) 
attribute: letterforeceiver Property: receiver(Letter) 
complexType: storage Class: Storage 
element: storage/books Property: books(Storage) 
element: storage/magazines Property: magazines(Storage) 
complexType: book Class: Book 
element: book/articles Property: articles(Book) 
element: book/reviews Property: reviews(Book) 

Property 
Index 

12 
13 

28 
Oct. 28, 2004 

TABLE CXXV-continued 

Mapping from Second Target schema 
to Ontology for Fourteenth Example 

schema 

complexType: magazine 
element: magazine/articles 
element: magazine/letters 

Property 
Ontology Index 

Class: Magazine 
Property: articles(Magazine) 7 
Property: letters(Magazine) 8 

0362 Based on Tables CXXIII and CXXV, an XSLT 
transformation that maps XML documents that conform to 
the Source Schema to corresponding documents that conform 
to the target Schema should accomplish the following tasks: 

0363 1. storages slibrary 

0364 2. letter/author/text()e sletter/sender/text() 
0365 Such a transformation is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:template match="/"> 

<xsl:apply-templates select="/library/> 
</xsl:templates 
<xsl:template match="/library"> 

<storages 
<books 

<articles> 
<Xsl:apply-templates select= 
“source not(letter)/article/> 

</articles.> 
<reviews> 

<Xsl:apply-templates select= 
“source not(letter)/review/> 

</reviews> 
</books 
<magaziness 

<articles> 
<Xsl:apply-templates select= 
“source not(review)/article/> 

</articles.> 
<letters> 

<Xsl:apply-templates select= 
“source not(review)/letter/> 

</letters> 
</magaziness 

</storages 
</xsl:templates 
<xsl:template match="article's 

<article> 
<xsl:attribute name="title><xsl:value-of 
select="Gname/s <fxsl:attributes 
<xsl:apply-templates select="writer/> 

</article> 
</xsl:templates 
<xsl:template match="review's 

<reviews 
<xsl:attribute name="title><xsl:value-of 
select2="Gtitle/><fxsl:attributes 
<Xsl:apply-templates select="author/> 

</reviews 
</xsl:templates 
<xsl:template match="letter's 

<reviews 
<xsl:attribute name="name><xsl:value-of 
select="Gname/s <fxsl:attributes 
<xsl:attribute name="subject's <xsl:value-of 
select="Gsubject/></xsl:attributes 











US 2004/0216030 A1 

0387 An XSLT transformation that maps the source 
Schema into the target Schema is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl: stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:output method="xml version="1.0 encoding="UTF-8 
indent="yes/> 
<xsl:template match="/"> 

<Person> 

<xsl:for-each select="Person> 

<xsl:element name="low name''> 

<Xsl:value-of select="translate(name, 
ABCDEFGHIJKLMNOPQRSTUVWXYZ, 
'abcdefghiklimnopqrstuVWXyz)/> 

</Xsl:element> 

<xsl:element name="upper homeTown's 
<xsl:value-of select="translate(homeTown, 

abcdefghiklimnopqrstuVWXyz, 
ABCDEFGHIJKLMNOPORSTU 
VWXYZ)/> 

</Xsl:element> 

<fxsl:for-each 

</Person> 

</xsl:templates 
</xsl:stylesheets 

An Nineteenth Example 

Number Manipulation 

0388 A Source XML schema for list of numbers is given 
by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XML schema 
elementForm Default="qualified 

attributeFormDefault="unqualified's 
<xs:element name="List o Numbers type="NumList/> 
<xs:complexType name="NumList's 

<XS:Sequences 

<xs:element name="first type="xs:string/> 
<xs:element name="second type="xs:float/s 
<xs:element name="third type="xs:float/> 
<xs:element name="fourth type="xs:float/> 
<xs:element name="fifth' type="xs:float/> 
<xs:element name="sixth type="xs:float/> 
<xs:element name="seventh type="xs:float f> 

</xs:sequences 
</xs:complexTypes 
</XS:schemas 

33 
Oct. 28, 2004 

0389. A target XML schema for a list of numbers is given 
by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema 
elementForm Default="qualified 
attributeFormDefault="unqualified's 
<xs:element name="List o Numbers type="NumList/> 
<xs:complexType name="NumList's 

<XS:sequences 
<XS:element name="first as num 
type="xs:decimal/> <!-- first as num - take a 

string and return a numerical value. Exemplifies use of 
the operator value(string) --> 

<xs:element name="second floor 
type="xs:decimal/> <!--second floor return 

nearest integer less than number. Exemplifies use 
of the operator floor(number) --> 

<xs:element name="second firstDecimal floor 
type="xs:decimal/> 
<!-- second firstDecimal floor - return nearest first 
decimal place less than number. 

Exemplifies use of the operator 
floor(number, significance) --> 

<xs:element name="third ceil 
type="xs:decimal/> <!- third ceil - return nearest 

integer greater than number. Exemplifies use of 
he operator ceil (number) --> 

<xs:element name="third second Decimal ceil 
type="xs:decimal/> 
<!-- third second Decimal ceil - return nearest second 
decimal place greater than number. 

Exemplifies use of the operator 
cei(number, significance) --> 

<xs:element name="fourth round 
type="xs:decimal/> <!--fourth round - round 

he number in integers. Exemplifies use of the 
operator round(number) --> 

<xs:element name="fourth third Decimal round 
type="xs:decimal/> 
<!-- fourth third Decimal round - round the number up to 
third decimal. 

Exemplifies use of the operator 
round(number, significance) --> 

<xs:element name="fifth roundToThousand 
type="xs:decimal/> 
<!-- fifth roundToThousand - round the number up to 
nearest ten to the third. 

Exemplifies use of the operator 
roundToPower(number, power) --> 

<xs:element name="abs sixth 
type="xs:decimal/> <!-- abs sixth - return 

absolute value of number. Exemplifies use 
of operator abs(number) --> 

<xs:element name="seventh 

type="Xs:string fs <!-- seventh - return number as 
string. Exemplifies use of operator 
string(number) --> 

</xs:sequences 
</xs:complexTypes 
</XS:Schema 





US 2004/0216030 A1 
35 

0392 A target XML schema for a person is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema 
elementForm Default="qualified 

attributeFormDefault="unqualified's 
<xs:element name="Person' type="Person/> 
<xs:complexType name="Person's 

<XS:sequences 
<XS:element name="four name 
type="Xs:string"/> 
<xs:element name="capital homeTown” 
type="Xs:string"/> 

<!-- four-Name is only four characters long, please. 
This exemplifies use of the substring(string, start, 
length) operator--> 
<!--capital homeTown - we must insist you capitalize 
the first letter of a town, 

Oct. 28, 2004 

-continued 

Out of respect. This exemplifies use of the capital 
operator--> 

</xs:sequences 
<XS:attribute name="dog trim'?s 
<XS:attribute name="dog length'?s 

<!-- dog trim - keep your dog trim - no blank spaces 
in front or after the name. 
This exemplifies use of the trim operator --> 
<!--dog length - gives the number of characters 
(in integers, not dog years) in your 
dog's name. This exemplifies use of the length(string) 
operator --> 

</xs:complexTypes 
</XS:Schema 

0393 An XSLT transformation that maps the source 
Schema into the target Schema is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:output method=“xml version="1.0 
encoding="UTF-8 indent="yes/> 
<xsl:template match="/"> 

<Person> 

<xsl:for-each select="Person> 

<Xsl:attribute name="dog trim's 

select="normalize-space(Gdog name)'?s 
<fxsl:attributes 
<Xsl:attribute name="dog length'> 

select="string-length(normalize-space(Gdog name))/> 
<fxsl:attributes 
<!-- dog trim - This exemplifies use of the 
trim operator --> 
<!--dog length - This exemplifies use of the 
length(string) operator -> 
<xsl:element name="four name''> 

<xsl:value-of 

select="substring(name, 1, 4)'?s 
</Xsl:element> 
<xsl:element name="capital homeTown's 

<xsl:value-of 

select="concat(translate(substring(normalize 
space(homeTown),1,1), 

abcdefghiklrnnoparstuVWXyz, 
ABCDEFGHIJKLMNOPQRSTUVWXYZ), 
substring(normalize-space(homeTown).2)) fe 

</Xsl:element> 
<!-- four-Name. This exemplifies use of the 
substring(string.start.length) operator--> 
<!-- capital hometown. This exemplifies use of 
the capital operator--> 

<fxsl:for-each 
</Person> 

</xsl:templates 
</xsl:stylesheets 





US 2004/0216030 A1 

the Source XML Schema into the ontology model is given 
by: 

TABLE CXXVII 

Mapping from Source schema to Ontology 
for Twenty-Second Example 

Property 
schema Ontology Index 

complexType: book Class: Book 
element: book/title/text() Property: name(Book) 1. 
element: book/author name/text() Property: author(Book) 2 
complexType: library Class: Library 
element: library/books Container Class: 5 

setBook 
element: library/name/text() Property: name(Library) 6 
complexType: town Class: Town 
element: town/libraries Container Class: 1. 

set Library 
element: town/name/text() Property: name(Town) 2 

0400. A mapping of the target XML schema into the 
ontology model is given by: 

TABLE CXXVIII 

Mapping from Target schema to Ontology 
for Twenty-Second Example 

Property 
schema Ontology Index 

complexType: book Class: Book 
element: book/title/text() Property: name(Book) 1. 
element: book/author name/text() Property: author(Book) 2 
element: list of books SetBook 

04.01 Based on Tables CXXVII and CXXVIII, an XSLT 
transformation that maps XML documents that conform to 
the Source Schema to corresponding documents that conform 
to the target Schema is given by: 

<?xml versions"1.0” encoding="UTF-8"?s 
<xsl:stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:output method="xml version="1.0 
encoding="UTF-8" indent="yes"/> 
<xsl:template match="/"> 

<books 
<xsl:for-each select="..//books 

<books 
<xsl:element name="title'> 

<xsl:value-of select="title/text()/> 
</Xsl:element> 

<xsl:for-each select="author name''> 
<Xsl:element name="author name''> 

<xsl:value-of select="../> 
</Xsl:element> 

<fxsl:for-each 
</books 

<fxsl:for-each 
</books 

</xsl:templates 
</xsl:stylesheets 

37 
Oct. 28, 2004 

A Twenty-Third Example 

Town with Books 

0402. A source XML schema for a town is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema 
elementForm Default="qualified 

attributeFormDefault="unqualified's 
<xs:element name="town' type="Town's 
<xs:complexType name="Town's 

<XS:sequences 
<xs:element name="library 
type="Library” minOccurs="O” 
maxOccurs="unboundedf> 
<XS:element name="police station' 
type="PoliceStation” minOccurs="O” 

maxOccurs="unboundedf> 
</xs:sequences 
<xs:attribute name="name type="xs:string/> 

</xs:complexTypes 
<xs:complexType name="Library's 

<XS:sequences 
<xs:element name="book” type="Book 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
<xs:attribute name="name type="xs:string/> 

</xs:complexTypes 
<xs:complexType name="Book's 

<XS:sequences 
<xs:element name="title type="xs:string/> 
<Xs:element name="author name 
type="xs:string maxOccurs="unbounded/> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="PoliceStation's 

<XS:sequences 
<xs:element name="Officers 
type="Officers"/> 

</xs:sequences 
<xs:attribute name="identifier 
type="Xs:string"/> 

</xs:complexTypes 
<xs:complexType name="Officers'> 

<XS:sequences 
<XS:element name="name' type="Xs:string 
minOccurs="1 maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
</XS:schemas 

0403. A first target XML schema for police stations is 
given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema 
elementForm Default="qualified 

attributeFormDefault="unqualified's 
<xs:element name="PoliceStations 
type="PoliceStations/> 
<xs:complexType name="PoliceStations'> 

<XS:sequences 
<xs:element name="Station' type="Station 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Station's 

<XS:sequences 
<xs:element name="Officers 
type="Officers"/> 



US 2004/0216030 A1 

-continued 

</xs:sequences 
<xs:attribute name="identifier type="xs:string/> 

</xs:complexTypes 
<xs:complexType name="Officers'> 

<XS:Sequences 
<XS:elementname="name' type="Xs:string 
minOccurs="1 maxOccurs="10/> 

</xs:sequences 
</xs:complexTypes 
</XS:schemas 

0404 A common ontology model for the source and 
target XML schema is illustrated in FIG. 26. A mapping of 
the Source XML Schema into the ontology model is given 
by: 

TABLE CXXIX 

Mapping from Source schema to Ontology 
for Twenty-Third Example 

Property 
schema Ontology Index 

complexType: book Class: Book 
element: book/title/text() Property: title(Book) 2 
element: book/author Property: author(Book) 1. 
name/text() 
complexType: library Class: Library 
element: library/books Container Class: 5 

setBook 
element: library/Gname Property: name(Library) 6 
complexType: officer Class: Person 
element: officer/name/text() Property: name(Person) 7 
complexType: police station Class: Station 
element: police station.fofficers Container Class: 8 

set Person 
element: police station? Property: 9 
Gidentifier identifier(Station) 
complexType: town Class: Town 
element: town/libraries Container Class: 3 

set Library 
element: town/police stations Container Class: 1O 

setStation 
element: town/Gname Property: name(Town) 4 

04.05) A mapping of the first target XML schema into the 
ontology model is given by: 

TABLE CXXX 

Mapping from Target schema to Ontology 
for Twenty-Third Example 

Property 
schema Ontology Index 

complexType: officer Class: Person 
element: Property: name(Person) 7 
officer/name/text() 
complexType: station Class: Station 
element: station? officers Container Class: 8 

set Person 
element: Property: 9 
station/Gidentifier identifier(Station) 
complexType: Class: 
police stations setStation 

0406 Based on Tables CXXIX and CXXX, an XSLT 
transformation that maps XML documents that conform to 

38 
Oct. 28, 2004 

the Source Schema to corresponding documents that conform 
to the first target Schema is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 
xmlins:Xsl="http://www.w3.org/1999/XSL/Transform's 
<xsl:output method="xml version="1.0 
encoding="UTF-8" indent="yes"/> 
<xsl:template match="/"> 

<PoliceStations 
<xsl:for-each select="..//PoliceStation> 

<Station> 
<xsl:attribute name="identifier's 

<xsl:value-of select="Gidentifier/> 
<fxsl:attributes 
<xsl:for-each select="Officers> 

<Officers> 
<xsl:for-each 
select="name position() <11"> 

<xsl:element name="name''> 
<xsl:value-of select="../> 

</Xsl:element> 
<fxsl:for-each 

</Officers> 
<fxsl:for-each 

</Stations 
<fxsl:for-each 

</PoliceStations 
</xsl:templates 
</xsl:stylesheets 

0407. A second target XML schema for temperature in 
Centigrade is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xs:schema xmlins:Xs="http://www.w3.org/2001/XMLschema 
elementForm Default="qualified 

attributeFormDefault="unqualified's 
<xs:element name="PoliceStations 
type="PoliceStations/> 
<xs:complexType name="PoliceStations'> 

<XS:sequences 
<xs:element name="Station' type="Station 
minOccurs="O' maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
<xs:complexType name="Station's 

<XS:sequences 
<xs:element name="Officers' type="Officers/> 

</xs:sequences 
<xs:attribute name="identifier type="xs:string/> 

</xs:complexTypes 
<xs:complexType name="Officers'> 

<XS:sequences 
<XS:element name="name' type="Xs:string 
minOccurs="10 maxOccurs="unboundedf> 

</xs:sequences 
</xs:complexTypes 
</XS:schemas 

0408 Based on Tables CXXIX and CXXX, an XSLT 
transformation that maps XML documents that conform to 
the Source Schema to corresponding documents that conform 
to the Second target Schema is given by: 

<?xml version="1.0” encoding=“UTF-8"?s 
<xsl:stylesheet version="1.0 





US 2004/0216030 A1 

performed manually by a user, automatically by a computer, 
or partially automatically by a user and a computer in 
conjunction. 

0418 Preferably, while the common ontology model is 
being built, mappings from the Source and target RDBS into 
the ontology model are also built by identifying tables and 
fields of the source and target RDBS with corresponding 
classes and properties of the ontology model. Fields are 
preferably identified as being either simple properties or 
compositions of properties. 

0419. In a preferred embodiment of the present invention, 
automatic user guidance is provided when building the 
common ontology model, in order to accommodate the 
Source and target RDBS mappings. Specifically, while map 
ping Source and target RDBS into the common ontology 
model, the present invention preferably automatically pre 
Sents a user with the ability to create classes that corresponds 
to tables, if Such classes are not already defined within the 
ontology. Similarly, the present invention preferably auto 
matically present a user with the ability to create properties 
that correspond to fields, if Such properties are not already 
defined within the ontology. 
0420. This automatic guidance feature of the present 
invention enables users to build a common ontology on the 
fly, while mapping the Source and target RDBS. 
0421. In a preferred embodiment of the present invention, 
automatic guidance is used to provide a user with a choice 
of properties to which a given table column may be mapped. 
Preferably, the choice of properties only includes properties 
with target types that are compatible with a data type of the 
given table column. For example, if the given table column 
has data type VARCHAR2, then the choice of properties 
only includes properties with target type String. Similarly, if 
the given table column is a foreign key to a foreign table, 
then the choice of properties only includes properties whose 
target is the class corresponding to the foreign table. 

0422. In a preferred embodiment of the present invention, 
automatic guidance is provided in determining inheritance 
among classes of the common ontology. Conditions are 
identified under which the present invention infers that two 
tables should be mapped to classes that inherit one from 
another. Such a condition arises when a table, T, contains 
a primary key that is a foreign key to a table, T. In Such a 
Situation, the present invention preferably inferS that the 
class corresponding to T inherits from the class correspond 
ing to T. 
0423 For example, T. may be a table for employees with 
primary key Social Security No, which is a foreign key for 
a table T for citizens. The fact that Social Security No 
Serves both as a primary key for T and as a foreign key for 
T implies that the class Employees inherits from the class 
Citizens. 

0424 Preferably, when the present invention infers an 
inheritance relation, the user is given an opportunity to 
confirm or decline. Alternatively, the user may not be given 
Such an opportunity. 
0425 Preferably, representing fields of the source and 
target RDBS in terms of properties of the ontology model is 
performed by identifying a key field among the fields of a 
table and expressing the other fields in terms of the identified 

40 
Oct. 28, 2004 

key field using an inverse property Symbol for the key field. 
For example, if a key field corresponds to a property denoted 
by 1, and a Second field corresponds to a property denoted 
by 2, then the relation of the second field to the first field is 
denoted by 201'. If a table has more than one key field, then 
preferably symbols are listed for each of the key fields, 
indicating how the other fields relate thereto. For example, 
if the second field above also is a key field, then the relation 
of the first field to the second field is denoted by 1o2, and 
both of the symbols 201 and 102' are listed. 
0426 Preferably, deriving expressions for target symbols 
in terms of Source Symbols is implemented by a Search over 
the Source Symbols for paths that result in the target Symbols. 
For example, if a target symbol is given by 3o1', then 
chains of composites are formed Starting with Source Sym 
bols of the form ao1', with each successive symbol added 
to the composite chain inverting the leftmost property in the 
chain. Thus, a symbol ending with a' is added to the left of 
the symbolao1', and this continues until property 3 appears 
at the left end of the chain. 

0427 Preferably, converting symbol expressions into 
SQL queries is accomplished by use of Rules 1-7 described 
hereinabove with reference to the examples. 

0428 Preferably, when mapping a table to a class, a flag 
is set that indicates whether it is believed that the table 
contains all instances of the class. 

0429 
rithm 

Implementation Details-XSLT Generation Algo 

0430) 1. Begin with the target schema. Preferably, the 
first Step is to identify a candidate root element. ASSume in 
what follows that one Such element has been identified-if 
there are more than one Such candidate, then preferably a 
user decides which is to be the root of the XSLT transfor 
mation. ASSume that a <rootd element has thus been iden 
tified. Create the following XSLT script, to establish that any 
document produced by the transformation will at minimum 
conform to the requirement that its opening and closing tags 
are identified by root: 

<xsl:template match="/"> 
<rOOt 

</roots 
</xsl:templates 

0431 2. Preferably, the next step is to identify the ele 
ments in the target Schema that have been mapped to 
ontological classes. The easiest case, and probably the one 
encountered most often in practice, is one in which the root 
itself is mapped to a class, be it a simple class, a container 
class or a croSS-product. If not, then preferably the code 
generator goes down a few levels until it comes acroSS 
elements mapped to classes. The elements that are not 
mapped to classes should then preferably be placed in the 
XSLT between the <roote tags mentioned above, in the 
correct order, up to the places where mappings to classes 
begin. 



US 2004/0216030 A1 

<xsl:template match="/"> 
<rOOt 

<sequence1> 
<element12 mapped to class 

<element2> 
</sequence1> 
<sequence2> 
</sequence2> 

</roots 
</xsl:templates 

0432. 3. Henceforth, for purposes of clarity and exposi 
tion, the XSLT Script generation algorithm is described in 
terms of an element <fu> that is expected to appear in the 
target XML document and is mapped to an ontological class, 
whether that means the root element or a parallel set of 
elements inside a tree emanating from the root. The treat 
ment is the same in any event from that point onwards. 
0433 4. Preferably the XSLT generation algorithm 
divides into different cases depending on a number of 
conditions, as detailed hereinbelow: 

TABLE CXXXI 

Conditions for sksl:for-each Segments 

XSLT 
Condition Segment 

<fu> is mapped to a simple class Foo with cardinality A. 
parameters minOccurs="1" maxOccurs="1" in the 
XML schema and there is a corresponding element <foot 
in the source document that is associated to the same 
class Foo. 
<fu> is mapped to a simple class Foo with cardinality B 
parameters minOccurs="O' maxOccurs="1" in the 
XML schema and there is a corresponding element <foot 
in the source document that is associated to the same 
class Foo. 
<fuss is mapped to a container class setFoo with C 
cardinality parameters minOccurs="O” 
maxOccurs="unbounded in the XML schema, 
and there are corresponding elements <foos1>, 
<foos2>, . . . , <foosna in the source document 
each of which is associated to the same container 
class setFoo. 
fuss is mapped to a container class setFoo with D 
cardinality parameters minOccurs="O” 
maxOccurs="unbounded in the XML schema, 
but there is no corresponding element <foos> in 
the source document that is associated with the 
same container-class setFoo. There are, 
however, perhaps elements <foo1>, <foo2> . . . <foom.> 
which are each individually mapped to the class Foo. 
<fuss is mapped to a container class setFoo E 
with cardinality parameters minOccurs="O 
maxOccurs="n in the XML schema, and 
there are corresponding elements <foos1>, <foos2>, ..., 
<fooski> in the source document each of which is 
associated to the same container-class setFoo. 
<fuss is mapped to a container class setFoo with F 
cardinality parameters minOccurs="O” 
maxOccurs="n in the XML schema, but 
there is no corresponding element <foos> in the 
source document that is associated with the same container 
class setFoo. There are, however, perhaps elements 
<foo1>, <foo2> ... <fooki> which are each individually 
mapped to the class Foo. 
fuss is mapped to a container class setFoo with G 
cardinality parameters minOccurs="m' 
maxOccurs="n in the XML schema, and there 

Oct. 28, 2004 

TABLE CXXXI-continued 

Conditions for <Xsl:for-each: Segments 

XSLT 

Condition Segment 

are corresponding elements <foos 12, <foos2>. . . . , 
<fooski> in the source document each of which is 

associated to the same container-class setFoo. 
fuss is mapped to a container class setFoo with H 

s cardinality parameters minOccurs="m 
maxOccurs="n in the XML schema, but 
there is no corresponding element <foos> in the 
source document that is associated with the same 

container-class set Fool. There are, however, 
perhaps elements <foo1>, <foo2> ... <fooki> which 
are each individually mapped to the class Foo. 

0434 For cases C and D, the XML schema code prefer 
ably looks like: 

<xsd:complexType name="fus'> 
<Xsd:sequences 

<xsd:element name="fu' type="ful view minOccurs="O” 
maxOccurs="unboundedf> 

</xsd:sequences 
</xsd:complexTypes 

0435 For cases E and F, the XML schema code prefer 
ably looks like: 

<xsd:complexType name="fus'> 
<Xsd:sequences 

<xsd:element name="fu' type="ful view minOccurs="O” 
maxOccurs="n'> 

</xsd:sequences 
</xsd:complexTypes 

0436 For cases G and H, the XML schema code prefer 
ably looks like: 

<xsd:complexType name="fus'> 
<Xsd:sequences 

<xsd:element name="fu' type="ful view minOccurs="O” 
maxOccurs="n'> 

</xsd: sequences 
</xsd:complexTypes 















US 2004/0216030 A1 

-continued 

<Xsl:call-template name="generate barra's 
<xsl:with-param name="so far" 
select=Sso far + 1"/> 

</xsl:call-templated 
<fxsl:if> 

</xsl:templates 
<Xsl:template name="generate barra's 

<Xsl:param name="so far/ > 
<xsl: if test="Sso far < 3> 

<barrás 
<?barrás 
<Xsl:call-template name="generate barrá''> 

<xsl:with-param name="so far 
select="Sso far + 1/> 

</xsl:call-templated 
<fxsl:if> 

</xsl:templates 

0451 All Lists 
0452 Suppose that the properties of <fud are listed in an 
all complex-type in the target Schema. ASSume again, as 
above, that foo is mapped to an ontological class Foo, with 
each of bar mapped to a property, Foo.bar. ASSumer further 
that the source XML schema has an Xpath pattern foo that 
maps to the ontological class Foo, with further children 
patterns foo?barr1, foo?barr2, etc., mapping to the relevant 
property paths. 

0453. In a preferred embodiment of the present invention, 
a general rule is to test for the presence of each of the Source 
tags associated with the target tags, by way of 

0454 Preferably, if any of the elements has minOccurs= 
“1” then the negative test takes place as well: 

0455 As an exemplary illustration, suppose the complex 
Type appears I the target Schema as follows: 

<xs:complexType name="bar's 

48 
Oct. 28, 2004 

0456. Then the following XSLT script is generated. 

0457 6. In a preferred embodiment of the present inven 
tion, when the elements of foo?bar1, foo/bar2, etc. have been 
processed as above in Step 5, everything repeats in a 
recursive manner for properties that are related to each of the 
bar elements. That is, if the target XML schema has further 
tags that are children of bar1, bar2, etc., then preferably each 
of those is treated as properties of the respective target 
classes of bar1, bar2, and So on, and the above rules apply 
recursively. 
0458. Additional Considerations 
0459. In reading the above description, persons skilled in 
the art will realize that there are many apparent variations 
that can be applied to the methods and Systems described. A 
first variation to which the present invention applies is a 
Setup where Source relational database tables reside in more 
than one database. The present invention preferably operates 
by using Oracle's croSS-database join, if the Source data 
bases are Oracle databases. In an alternative embodiment, 
the present invention can be applied to generate a first SQL 
query for a first Source database, and use the result to 
generate a Second SQL query for a Second Source database. 
The two queries taken together can feed a target database. 
0460. In the foregoing specification, the invention has 
been described with reference to specific exemplary embodi 
ments thereof. It will, however, be evident that various 
modifications and changes may be made to the Specific 
exemplary embodiments without departing from the broader 
Spirit and Scope of the invention as Set forth in the appended 
claims. Accordingly, the Specification and drawings are to be 
regarded in an illustrative rather than a restrictive Sense. 

<xs:element name="bar2 type="xs:string minOccurs="O' maxOccurs="1/> 
<xs:element name="bar3’ type=''xs:string" minOccurs="1" maxOccurs="1/> 

</xs:complexTypes 



US 2004/0216030 A1 

What is claimed is: 
1. A method for deriving transformations for transforming 

data from one data Schema to another, comprising: 
receiving a Source data Schema and a target data Schema, 
mapping the Source data Schema into an ontology model; 
mapping the target data Schema into the ontology model; 

and 

deriving a transformation for transforming data conform 
ing to the Source data Schema into data conforming to 
the target data Schema, using the ontology model. 

2. The method of claim 1 further comprising converting at 
least one of the Source data Schema and the target Schema 
from an external format to an internal format. 

3. The method of claim 1 further comprising receiving the 
ontology model. 

4. The method of claim 3 further comprising converting 
the ontology model from an external format to an internal 
format. 

5. The method of claim 1 further comprising generating 
the ontology model. 

6. The method of claim 5 further comprising receiving an 
initial ontology model, wherein Said generating generates 
the ontology model from the initial ontology model. 

7. The method of claim 6 further comprising converting 
the initial ontology model from an external format to an 
internal format. 

8. The method of claim 1 further comprising generating 
executable program code that transforms data conforming to 
the Source data Schema into data conforming to the target 
data Schema. 

9. The method of claim 1 wherein the Source data schema 
is a Source table Schema describing Source data tables, 
wherein the target data Schema is a target table Schema 
describing target data tables, and wherein the Source table 
Schema and the target table Schema each describes at least 
one table having columns. 

10. The method of claim 9 wherein the Source table 
Schema is a Source relational database Schema describing 
Source relational database tables, wherein the target table 
Schema is a target relational database Schema describing 
target relational database tables, and wherein the transfor 
mation is an SQL query. 

11. The method of claim 10 wherein said mapping a 
Source data Schema and Said mapping a target data Schema 
each comprise: 

identifying at least one class in the ontology model 
corresponding to at least one table; and 

identifying at least one property or composition of prop 
erties in the ontology model corresponding to at least 
one table column. 

12. The method of claim 11 wherein said deriving com 
prises: 

labeling properties of the ontology model with Symbols; 
converting at least one column in the Source relational 

database Schema into at least one Source Symbol; 
converting at least one column in the target relational 

database Schema into at least one target Symbol; and 
expressing the at least one target Symbol in terms of at 

least one Source Symbol. 

49 
Oct. 28, 2004 

13. The method of claim 12 wherein said expressing uses 
expressions involving composition of properties. 

14. The method of claim 12 wherein at least one depen 
dency exists among properties in the ontology model, and 
wherein Said deriving further comprises translating the at 
least one dependency among properties in the ontology 
model as at least one dependency between target relational 
database columns and Source relational database columns, 
and wherein Said expressing incorporates the at least one 
dependency between target relational database columns and 
Source relational database columns. 

15. The method of claim 14 wherein said expressing uses 
expressions involving arithmetic operations. 

16. The method of claim 14 wherein Said expressing uses 
expressions involving character String operations. 

17. The method of claim 10 further comprising applying 
the query to at least one Source relational database table to 
populate at least one target relational database table. 

18. The method of claim 17 wherein the at least one 
Source relational database table reside in a single database. 

19. The method of claim 17 wherein the at least one 
Source relational database table reside in multiple databases. 

20. The method of claim 1 wherein the Source data 
Schema is a Source document Schema describing Source 
documents, and wherein the target data Schema is a target 
document Schema describing target documents. 

21. The method of claim 20 wherein the Source document 
schema is a source DTD describing source XML documents, 
wherein the target document Schema is a target DTD 
describing target XML documents, and wherein the Source 
DTD and the target DTD each describes at least one XML 
element or XML attribute. 

22. The method of claim 21 wherein the transformation is 
an XOuery. 

23. The method of claim 21 wherein the transformation is 
an XSLT script. 

24. The method of claim 20 wherein the Source document 
schema is a source XML schema describing source XML 
documents, wherein the target document Schema is a target 
XML schema describing target XML documents, and 
wherein the source XML schema and the target XML 
Schema each describes at least one XML complexType 
having at least one XML element or XML attribute. 

25. The method of claim 24 wherein the transformation is 
an XOuery. 

26. The method of claim 24 wherein the transformation is 
an XSLT script. 

27. The method of claim 24 wherein said mapping a 
Source data Schema and Said mapping a target data Schema 
each comprise: 

identifying at least one class in the ontology model 
corresponding to at least one XML complexType; and 

identifying at least one property or composition of prop 
erties in the ontology model corresponding to at least 
one XML element or XML attribute. 

28. The method of claim 24 wherein said deriving com 
prises expressing XML elements and XML attributes of the 
target XML schema in terms of XML elements and XML 
attributes of the Source XML Schema. 

29. The method of claim 28 wherein said expressing is 
performed recursively through XPath paths. 

30. The method of claim 27 wherein at least one depen 
dency exists among properties in the ontology model, and 



US 2004/0216030 A1 

wherein Said deriving further comprises translating the at 
least one dependency among properties in the ontology 
model as at least one dependency between target XML 
elements and Source XML elements. 

31. The method of claim 26 further comprising applying 
the XSLT script to at least one source XML document to 
generate at least one target XML document. 

32. The method of claim 31 wherein the at least one 
Source XML document reside in a Single database. 

33. The method of claim 31 wherein the at least one 
Source XML document reside in multiple databases. 

34. A system for deriving transformations for transform 
ing data from one data Schema to another, comprising: 

a Schema receiver receiving a Source data Schema and a 
target data Schema; 

a mapping processor mapping a data Schema into an 
ontology model; and 

a transformation processor deriving a transformation for 
transforming data conforming to the Source data 
Schema into data conforming to the target data Schema, 
based on respective Source and target mappings gen 
erated by Said mapping processor for mapping Said 
Source data Schema and Said target data Schema into a 
common ontology model. 

35. The system of claim 34 further comprising a schema 
format convertor, converting at least one of the Source data 
Schema and the target data Schema from an external format 
to an internal format. 

36. The system of claim 34 further comprising an ontol 
ogy receiver receiving the ontology model. 

37. The system of claim 36 further comprising an ontol 
ogy format convertor, converting the ontology model from 
an external format to an internal format. 

38. The system of claim 34 further comprising an ontol 
ogy builder generating the ontology model. 

39. The system of claim 38 further comprising an ontol 
ogy receiver receiving an initial ontology model, wherein 
Said ontology builder generates the ontology model from the 
initial ontology model. 

40. The system of claim 39 further comprising an ontol 
ogy format convertor, converting the initial ontology model 
from an external format to an internal format. 

41. The System of claim 34 further comprising a program 
code generator generating executable program code that 
transforms data conforming to the Source data Schema into 
data conforming to the target data Schema. 

42. The system of claim 34 wherein the source data 
Schema is a Source table Schema describing Source data 
tables, wherein the target data Schema is a target table 
Schema describing target data tables, and wherein the Source 
table Schema and the target table Schema each describes at 
least one data table having columns. 

43. The system of claim 42 wherein the source table 
Schema is a Source relational database Schema describing 
Source relational database tables, wherein the target table 
Schema is a target relational database Schema describing 
target database tables, and wherein the transformation is an 
SQL query. 

50 
Oct. 28, 2004 

44. The System of claim 43 wherein Said mapping pro 
ceSSor comprises: 

a class identifier identifying at least one class in the 
common ontology model corresponding to at least one 
table; and 

a property identifier identifying at least one property or 
composition of properties in the common ontology 
model corresponding to at least one table column. 

45. The system of claim 44 wherein said property iden 
tifier presents a user with a choice of at least one property in 
the common ontology model that may correspond to a given 
table column. 

46. The system of claim 45 wherein the choice of at least 
one property only includes properties having targets that are 
compatible with a data type of the given table column. 

47. The system of claim 46 wherein, for a given table 
column that is a foreign key to a foreign table, the choice of 
at least one property only includes properties whose target is 
a class corresponding to the foreign table. 

48. The system of claim 43 wherein said transformation 
processor comprises: 

an ontology labeller labeling properties of the common 
ontology model with Symbols; 

a column converter converting at least one column in the 
Source relational database Schema into at least one 
Source Symbol, and converting at least one column in 
the target relational database Schema into at least one 
target Symbol; and 

a Symbol processor expressing the at least one target 
Symbol in terms of at least one Source Symbol. 

49. The system of claim 48 wherein said symbol proces 
Sor uses expressions involving composition of properties. 

50. The system of claim 48 wherein at least one depen 
dency exists among properties in the ontology model, and 
wherein Said transformation processor further comprises a 
dependency processor translating the at least one depen 
dency among properties in the ontology model as at least one 
dependency between target relational database columns and 
Source relational database columns, and wherein Said Sym 
bol processor incorporates the at least one dependency 
between target relational database columns and Source rela 
tional database columns. 

51. The system of claim 50 wherein said symbol proces 
Sor uses expressions involving arithmetic operations. 

52. The system of claim 50 wherein said symbol proces 
Sor uses expressions involving character String operations. 

53. The system of claim 43 further comprising: 
a data receiver receiving at least one Source relational 

database table; and 
a data processor applying the query to the at least one 

Source relational database table to populate at least one 
target relational database table. 

54. The system of claim 53 wherein the at least one source 
relational database table reside in a single database. 

55. The system of claim 53 wherein the at least one source 
relational database table resides in multiple databases. 

56. The system of claim 34 wherein the source data 
Schema comprises a Source document Schema describing 
Source documents, and wherein the target data Schema 
comprises a target document Schema describing target docu 
mentS. 



US 2004/0216030 A1 

57. The system of claim 56 wherein the source document 
schema is a source DTD describing source XML documents, 
wherein the target document Schema is a target DTD 
describing target XML documents, and wherein the Source 
DTD and the target DTD each describes at least one XML 
element or XML attribute. 

58. The system of claim 57 wherein the transformation is 
an XOuery. 

59. The system of claim 57 wherein the transformation is 
an XSLT script. 

60. The system of claim 56 wherein the source document 
Schema comprises a Source XML Schema that describes 
XML Source documents, wherein the target document 
schema comprises a target XML schema that describes XML 
target documents, and wherein the Source XML Schema and 
the target XML schema each comprises at least one XML 
complexType having at least one XML element or XML 
attribute. 

61. The system of claim 60 wherein the transformation is 
an XOuery. 

62. The system of claim 60 wherein the transformation is 
an XSLT script. 

63. The system of claim 60 wherein said mapping pro 
ceSSor comprises: 

a class identifier identifying at least one class in the 
ontology model corresponding to at least one XML 
complexType; and 

an property identifier identifying at least one property or 
composition of properties in the ontology model cor 
responding to at least one XML element or XML 
attribute. 

64. The system of claim 60 wherein said transformation 
processor comprises an XML processor expressing XML 
elements and XML attributes of said target XML schema in 
terms of XML elements and XML attributes of said Source 
XML Schema. 

65. The system of claim 64 wherein said XML processor 
operates recursively through XPath paths. 

66. The system of claim 64 wherein at least one depen 
dency exists among properties in the ontology model, and 
wherein Said transformation processor further comprises a 
dependency processor translating the at least one depen 
dency among properties in the ontology model as at least one 
dependency between target XML elements or attributes, and 
Source XML elements or attributes, and wherein said XML 
processor incorporates the at least one dependency between 
target XML elements or attributes, and source XML ele 
ments or attributes. 

67. The system of claim 60 further comprising 
a data receiver receiving at least one Source XML docu 

ment; and 
a data processor applying the XSLT Script to the at least 

one Source XML document to generate at least one 
target XML document. 

68. The system of claim 67 wherein the at least one source 
XML document reside in a Single database. 

69. The system of claim 67 wherein the at least one source 
XML document reside in multiple databases. 

70. A method for building an ontology model into which 
data Schema can be embedded, comprising: 

receiving at least one data Schema, and 
building an ontology model into which the at least one 

data Schema can be embedded. 

Oct. 28, 2004 

71. The method of claim 70 further comprising converting 
at least one of the at least one data Schema from an external 
format to an internal format. 

72. The method of claim 70 wherein the at least one data 
Schema is at least one table Schema describing data tables 
having columns. 

73. The method of claim 72 wherein the at least one table 
Schema is at least one relational database Schema describing 
relational database tables. 

74. The method of claim 73 wherein said building an 
ontology model comprises: 

providing an initial ontology model; 

adding classes to the initial ontology model correspond 
ing to tables described in the at least one relational 
database Schema, and 

adding properties to the initial ontology model corre 
sponding to columns described in the at least one 
relational database Schema. 

75. The method of claim 74 wherein the initial ontology 
model is empty. 

76. The method of claim 74 wherein the initial ontology 
model is non-empty. 

77. The method of claim 76 further comprising converting 
the initial ontology model from an external format to an 
internal format. 

78. The method of claim 74 wherein said adding classes 
is performed by a computer in conjunction with a user. 

79. The method of claim 78 wherein said adding classes 
prompts a user to add a class to the ontology model when 
there is a table described in the at least one relational 
database Schema that does not correspond to an existing 
class in the ontology model. 

80. The method of claim 74 wherein said adding classes 
is performed automatically by a computer. 

81. The method of claim 80 wherein said adding classes 
automatically adds a class to the ontology model when there 
is a table described in the at least one relational database 
Schema that does not correspond to an existing class in the 
ontology model. 

82. The method of claim 74 wherein said adding proper 
ties is performed by a computer in conjunction with a user. 

83. The method of claim 82 wherein said adding proper 
ties prompts a user to add a property to the ontology model 
when there is a table column described in the at least one 
relational database Schema that does not correspond to an 
existing property or composition of properties in the ontol 
ogy model. 

84. The method of claim 74 wherein said adding proper 
ties is performed automatically by a computer. 

85. The method of claim 84 wherein said adding proper 
ties automatically adds a property to the ontology model 
when there is a table column described in the at least one 
relational database Schema that does not correspond to an 
existing property or composition of properties in the ontol 
ogy model. 

86. The method of claim 70 wherein said building an 
ontology model comprises inferring inheritance relation 
ships between classes in the ontology model based on 
relationships between tables described in the at least one 
relational database Schema. 



US 2004/0216030 A1 

87. The method of claim 86 wherein a first class in the 
ontology model is inferred to inherit from a Second class in 
the ontology model when a table corresponding to the first 
class has a primary key that is a foreign key to a table 
corresponding to the Second class. 

88. The method of claim 86 wherein said inferring inher 
itance relationships includes prompting a user to confirm an 
inferred inheritance relationship. 

89. The method of claim 70 wherein the at least one data 
Schema is at least one document Schema describing docu 
mentS. 

90. The method of claim 89 wherein the at least one 
document schema is an XML schema describing XML 
documents having at least one XML complexType with at 
least one XML element or XML attribute. 

91. The method of claim 90 wherein said building an 
ontology model comprises: 

providing an initial ontology model; 
adding classes to the initial ontology model correspond 

ing to XML complexTypes described in the at least one 
XML Schema; and 

adding properties to the initial ontology model corre 
sponding to XML elements and XML attributes 
described in the at least one XML Schema. 

92. The method of claim 91 wherein the initial ontology 
model is empty. 

93. The method of claim 92 wherein the initial ontology 
model is non-empty. 

94. The method of claim 91 wherein said adding classes 
is performed by a computer in conjunction with a user. 

95. The method of claim 94 wherein said adding classes 
prompts a user to add a class to the ontology model when 
there is an XML complexType described in the at least one 
XML Schema that does not correspond to an existing class 
in the ontology model. 

96. The method of claim 91 wherein said adding classes 
is performed-automatically by a computer. 

97. The method of claim 96 wherein said adding classes 
automatically adds a class to the ontology model when there 
is an XML complexType described in the at least one XML 
Schema that does not correspond to an existing class in the 
ontology model. 

98. The method of claim 91 wherein said adding proper 
ties is performed by a computer in conjunction with a user. 

99. The method of claim 98 wherein said adding proper 
ties prompts a user to add a property to the ontology model 
when there is an XML element or an XML attribute 
described in the at least one XML Schema that does not 
correspond to an existing property or composition of prop 
erties in the ontology model. 

100. The method of claim 91 wherein said adding prop 
erties is performed automatically by a computer. 

101. The method of claim 100 wherein said adding 
properties automatically adds a property to the ontology 
model when there is an XML element or an XML attribute 
described in the at least one relational database Schema that 
does not correspond to an existing property or composition 
of properties in the ontology model. 

102. A system for building an ontology model into which 
data Schema can be embedded, comprising: 

a Schema receiver receiving at least one data Schema, and 
a model builder building an ontology model into which 

the at least one data Schema can be embedded. 

52 
Oct. 28, 2004 

103. The system of claim 102 further comprising a 
Schema format convertor, converting at least one of the at 
least one data Schema from an external format to an internal 
format. 

104. The system of claim 102 wherein the at least one data 
Schema is at least one table Schema describing data tables 
having columns. 

105. The system of claim 104 wherein the at least one 
table Schema is at least one relational database Schema 
describing relational database tables. 

106. The system of claim 105 further comprising an 
ontology receiver receiving an initial ontology model, and 
wherein Said model builder comprises: 

a class adder adding classes to the initial ontology model 
corresponding to tables described in the at least one 
relational database Schema, and 

a property adder adding properties to the initial ontology 
model corresponding to table columns described in the 
at least one relational database Schema. 

107. The system of claim 106 wherein the initial ontology 
model is empty. 

108. The system of claim 106 wherein the initial ontology 
model is non-empty. 

109. The system of claim 108 further comprising an 
ontology format convertor, converting the initial ontology 
model from an external format to an internal format. 

110. The System of claim 106 wherein said class adder is 
guided by a user in conjunction with a computer. 

111. The system of claim 110 wherein said class adder 
prompts a user to add a class to the ontology model when 
there is a table described in the at least one relational 
database Schema that does not correspond to an existing 
class in the ontology model. 

112. The system of claim 106 wherein said class adder is 
automatically guided by a computer. 

113. The system of claim 112 wherein said class adder 
automatically adds a class to the ontology model when there 
is a table described in the at least one relational database 
Schema that does not correspond to an existing class in the 
ontology model. 

114. The system of claim 106 wherein said property adder 
is guided by a user in conjunction with a computer. 

115. The system of claim 114 wherein said property adder 
prompts a user to add a property to the ontology model when 
there is a table column described in the at least one relational 
database Schema that does not correspond to an existing 
property or composition of properties in the ontology model. 

116. The system of claim 106 wherein said property adder 
is automatically guided by a computer. 

117. The system of claim 116 wherein said property adder 
automatically adds a property to the ontology model when 
there is a table column described in the at least one relational 
database Schema that does not correspond to an existing 
property or composition of properties in the ontology model. 

118. The system of claim 105 wherein said model builder 
comprises an inheritance processor inferring inheritance 
relationships between classes in the ontology model based 
on relationships between tables in the at least one relational 
database Schema. 

119. The system of claim 118 wherein said inheritance 
processor inferS that a first class in the ontology model 




