US 20040216030A1

a2 Patent Application Publication (o) Pub. No.: US 2004/0216030 A1l

a9 United States

Hellman et al.

43) Pub. Date: Oct. 28, 2004

(5499 METHOD AND SYSTEM FOR DERIVING A
TRANSFORMATION BY REFERRING
SCHEMA TO A CENTRAL MODEL

(76) Inventors: Ziv Z. Hellman, Jerusalem (IL);

Marcel Zvi Schreiber, Jerusalem (IL);
Tom Y Yuval, Jerusalem (IL)

Correspondence Address:

BLAKELY SOKOLOFF TAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD

SEVENTH FLOOR

LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 10/053,045

(22) Filed: Jan. 15, 2002

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/866,101,

filed on May 25, 2001.
Publication Classification

Int. C1.”
U.S. CL.

GO6F 15/00
715/500; 715/513

(1)
(52) US. Cle oo

(7) ABSTRACT

A method for transforming data from one data schema to
another including receiving a source data schema and a
target data schema, mapping the source data schema into an
ontology model, mapping the target data schema into the
ontology model, and deriving a transformation for trans-
forming data conforming to the source data schema into data
conforming to the target data schema, using the ontology
model. A system is also described and claimed.

110 { START

A 4

120Y

IMPORT SOURCE DATA SCHEMA
AND TARGET DATA SCHEMA

130

ONTOLOGY MODEL

D

TO IMPORT?

y
IMPORT INITIAL
ONTOLOG

Y MODEL

150

1603

INITIAL ONTOLOGY
MODEL SUITABLE TO
EMBED SOURCE AND
TARGET DATA SCHEMA?

,[BUILD CoMMON
ONTOLOGY MODEL

GENERATE MAPPINGS OF
SOURCE DATA SCHEMA AND
TARGET DATA SCHEMA INTO
ONTOLOGY MODEL

Y

y

185 DERIVE

SOURCE-TO-TARGET
TRANSFORMATION

190 1ENDI

k.

A

Patent Application Publication Oct. 28,2004 Sheet 1 of 47

110Y START

A 4

120N IMPORT SOURCE DATA SCHEMA
AND TARGET DATA SCHEMA

1307/——!
, ONTOLOGY MODEL

10 IMPORT?

A
140 IMPORT INITIAL

ONTOLOGY MODEL

INITIAL ONTOLOGY
MODEL SUITABLE TO

150

US 2004/0216030 A1

EMBED SOURCE AND
TARGET DATA SCHEMA?

1603
»| BUILD COMMON
ONTOLOGY MODEL

176\ GENERATE MAPPINGS OF
SOURCE DATA SCHEMA AND

TARGET DATA SCHEMA INTO
'ONTOLOGY MODEL

A 4

186-\ DERIVE
SOURCE-TO-TARGET
TRANSFORMATION

\ 4

190 YEND

FIG. 1

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 2 of 47

VW3IHIS YiLvd

1398y —

¢ Old
NOILVWIO4SNYYL
d3A143d
> YOLVY3INID
» NOILYWYHOASNVYHL
[y
AOON
ONIddVYIN ONIddVIN
L30UvVL 304N0S
U »(06z__JH3JIINIQI AL¥3J08d] 40ss330ud
> O#Nme_u_thD_ SSV10 ANIddYW
RE{e[e])] oee
AD0T0LNO
NOWWOD
/" 43a7ng 7 ¥43AI13D3Y
ADOT0LNO 1aqom
- - > ADOTOLNO
= = AONN
L w
5 w5
:T._ D] mm (%]
O <« <C
@ = D=
25| 3k
HIAITD3IY YW3HOS viva
YINTHOS 304N0S
Aoﬁm

/\OON

Patent Application Publication Oct. 28,2004 Sheet 3 of 47 US 2004/0216030 A1

310 START

l

120 IMPORT AT LEAST ONE
DATA SCHEMA

|

1 45Y IMPORT INITIAL
ONTOLOGY MODEL

160w l
BUILD COMMON

ONTOLOGY MODEL

320 YEND

FIG. 3

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 4 of 47

€# YINIHOS v1va

¥ Ol
A
73A0W
ADOTOLNO
NOWIOD
> ost_493071INg ALY oy d ¥3alng
e oy _A4307ING SEE1D| HOI0LNO
m o\ — y A
oE O 1300w Oev
S| s = ADOTOLNO
Wi u L TVILINI
Q O O
w w 3]
<| < < 4IAI303Y | JAOW ADOTOLNO
<| = < ADOTOLNO IVILINI
Cozv
SEVNERER!
YINIHOS T# YWIHOS V.ivad
A
9 AOHN
>
S 00
I
m
: /\
™
3+
N

Patent Application Publication Oct. 28,2004 Sheet 5 of 47 US 2004/0216030 A1

2
o A
— i
™) BN
al
[|
X
4]
<+ o
Al
v LO
O
L
<|
of
-l
]
T
a:
N
Zlo]
-l
o

500
|
1
]

Patent Application Publication Oct. 28,2004 Sheet 6 of 47 US 2004/0216030 A1

QY]
b
—t
....................... 0— N
B N -
< A 3
'.‘: —
— 3 o
X .
v'. ’.~.: m
* pLTTON .‘-"'-. - O
J o
o
Q a
O
©
O
L
_ <t
S 0
ke Hl o : KEY :
d I : :
— @ -
Al a
=l O e
Sl kv 2
= L KEY 2

500
600

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 7 of 47

L OIH | woviewno@sswel| iz | e6ELLSY
g _ Wil QdHSH3EN3A] 180dssvd!
: e ..mwr._.._a,mmn_lmdgt....mmz.—._y__&.. - 4031p3

Eec. L51)
0SSV |

_Eou__mEﬁo_L@mmEm: .
"7 Ss3yaavivina:

7| vSSEYEpLY| .§o_
30! ¢ 3INOHd !

”m@munmvﬁ

!

g 3. S
zq14 5

0
)
=
¥
-
-
-3
4

7 WAIONYLSIA) 1 v Tvaldsy | 3 unLidvdaa’ 9L = o___>_ _‘ SSHS Lo

SNOTLYAN3S 1t STMMNIZONvISIaS . LuoduivoL

e e s ame v ot s b aes _x PRSI

uu_gﬁm

N _owep JseTF -
Uvw3 INVNTING | 71 AIdIHSH38W3W }SdI4 = dWeN [in4.

| éam:m ,., U_...,mD_

. mch~

|

___m:

sswelr

-7t m_z{z.rmﬁ 7t IWvNLSHId
_ -zmzo-—.m:u 4-&-&..-..- "

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 8 of 47

(BLLITER R SRS T e L] IV

N

2 A BTVt nDE muw.._mu_@wﬂ
asl siee] G swansliml ma& 03 an)

ot RN

IIUAI0D
U

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 9 of 47

SSnQuY @) CRED FI

LR ST NREEY

Sl6

i ——a— 016

AAAN R Ve i TNE R UL Loremmdheorn o,
- 15 8
Trd P
1334 B a
K-8
) ov6 St6

$06 0€6 §T6 0T6

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 10 of 47

S16

d6 DId

N B N PRI T

Leall!

WL HOWIANGE S WALS 2 3B 42

L hirdead)

e e L Ul

Wid {

A REY

auus
sguregesy
AQUmptey

15,

JURU
naguong: gt
Ak

S06

el

. mﬁ%

TE g
[

PR oty

!

CeY oW fuus 5

URTTLINLY S,
Sl A o @
Z e gz
| vRuTpauIy B 2
R BT 3

3

tapntd

L Ao p
L3

FR-TERITRTES LRy

..HJM_ Y

28

Jaiael

[

A S

ov6

— 016

Geo6

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 11 of 47

J6 DIA

YT R TN GRS —

.3._:_:nax_r o

wENgreay _ -
TR

|eory

RLE UL P LT

e TE T P]

LTS _ -~

-

Tt

HRpC e A

oA

S06

AL

wagmr

Ut Jdesy

uJINred

. w: . !.\:wmr.—.i.:l [T

R i)

FUELHE (]

i e

reres ceemar e s e 8

)i ey ity

686

IS P -:
OEERRTE| Oodgw [T ARG

086 SL6

EN

VBT e L T N S

.- rdlly HEs
it L RIUT

=iedll) m N
A (N LT HERTERT T}

ST O, | GUILISRY] - JanT iaes) dm

66

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 12 of 47

de DId

IR TENERS (R LA EEN TR f....,‘,._

Jaudtj

| modpera [wodiey T AsogRes vmaraien

MG >30Q Runtlon)

[T XIS

PRTARR T A

fudl o

A niala 1 al
ssieyANy:
Ay

“_ adéy a

Naduoig oy T

J3EMNN .w_.:.jmu
HeHA A, E_&L
- B T T

S06

D IIFIY GICSARERY

PR (AT, oon .

FREOPRRL| s 5 ME B

SL6

¥ Y

Cesl :
[RUCLITLY IR DUELYAN s I S
PogUway uy

B

. A

| boudso §) - 1—-.-.“..-!; .-w

§T6

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 13 of 47

FUIVE RSP v AL G bie e

S o s =

LR LT EFIETT N E ST 11V
! WOUS
MY3A Y YvaLe
T AU BY ALY
SO BY [GZE-11THNINHY S G)
JEELE -
GIv3A WD L SH2T3018 UMD L SRRt yR), DA LHSSHI i
A i)
spicjinbiey | o) &k S3M0S | DS UORE WLy SE 4 B4 Biidgih 45 53]

INBMIEMY FLMISS H0F) o JHUUBIUB NI FUIUIS AI1KR

o e st wnd - fur a4

06 0¢€6

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 14 of 47

0101

01 "DId

BWISYIS LAALIO) _

“"Uo[}e307 Pajas

Lo at

R U PO = PO T TV

e Shl imae.

i et et TET Sl B et e i

s st et B sttt 2, dlea

~+ {0rp) 49393400 ewiayis

W

PORTY

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 15 of 47

VII DId

£Z 010 Wold

‘uonduasag /Aaladold

. smpq

WwoJj pajisyu| _ Jusjiuod

[

BUWEN

oy Apadoid Jo spe suc)

1868}u|
13b3ju|
1afaul
18B8}u]
._mmmE__!
JEL]

puoI8s|
yyuous|:
BInUW:
puodaS!iw H,

"oy Oken|

80AL

eueN

«<[BjUBWEPUN)»3]B(Q SSLID

ey e e e saad0lg m@msizl.

[»

Guns B

agquinNeay B
oled B

ol JsquinN 8
WFuiAigpaweN B
oamus B

=i
mi
-

YA
vf

. 9‘*\12 bls hor‘:'sN
-

_m .,n mg__z ()

% WGP @ 0
3 _w_..E.EC @ ©

L

| SewsuISECY By o
- $eUBYISINX -0

s%o asx g
mﬁméﬁo._zx - c)
mmommﬁ::mm._. m b

| (e i o
) = 198l014 wm:___&

YR <y THE T I._Emm

pmars....

= e A

N 27\1313Y0 D uioxun

diafi MaiA MON Mp3 alll
- (MO"uoKeIHA W) AulHY 3G

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 16 of 47

dll

DIH

"slafuassed ||e Joj UOREULION) I8 A4 Jusnbeid

uonduasag sse|d

:sasseja1adng ajRpawu

;E_zwsuoi_

oweN

S EEeniadpig)| ie1euab

<aU||4] ¥»48 f§ Jjuanbat § :ssep)

WwawaIpsweN B o
funs @
oney &
logquiny B 9

8ieq &

= w uoleAssay
Mso_s:zmcmi@

P T ._mm:wmmmo B _&

i 5.2« Tlosiad @ &

e Do ybng ge
2 é%ﬁ]

~f

PUEERKOOOOOOO O,

MAIRN
3
1

s opnly,

Sews?s 8QY By @
“$eWsIs THX % -0

E éso asx
msmcsso WX B o

Jm

7
H

.w

€ BEEQX \mw@e

= gaesu sal BB O
- T l L & mmm

mu:,o._m__c Juioauny - juw-uonesiaij auiny]

E___m_EE_EEE..:
diofi mB(A MaN Wn3 end

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 17 of 47

Il

DId

diysiaquiaw Jo eujllle ey

“uo0i)iiasag Ausdoid

_ 123uRd _ _b

(Iuo’) 34 TOWO _ :adf§ o sap4

. _I. =

| wi | [

Eo maEmwmmc:E_

|wos|dwege:njeisdwis | ﬂ_
woy (]

wogH (]

_Eo sjuauodw o083 G
wo'a|cuwe www:_:_< G

sjapow J _ Ui 3007

<0WBQIIY>184 fluanbeld :ssef)

»

Jaw|3paueN B o
fuus B
oney &

1Bquny &
oleq B
uolieglasey @

w.EE:_@.Sn_ .ﬂ

VWMUE_%U?F,W

< ohmm:wwm.wm@ &

ELL
-3 11

5wl wsd® &
S 3% Uil
O o moez -
F g 2 AUy @

g = mc_mm mw

| oS
D e

i o SEWBUIG mDm 8y o
mmecumJEx G-

s..wsoomx)
m@ @o WX B o

V5 m&mﬁ:_uﬁ m o
_.M_oaw._BE_m:_:E "4

g e

A Vejoid seuuy o9

(l\

i

R <Y THUET BB

Xm@r..

s R

e 33uasayo uoauf -

diofi M3\ moN WP 9l
[tio uone.ifiajul auy iy &

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 18 of 47

A1l DI

{1se) +)s4y) aweu jry s,uosia d

wuondiasag Ay adoig

“d 1w} DWENISIY UDSIEd = BWENIINFUOSID]
ue0d _

G luensuod
WEN

_ | wou paayul |

sLIENIN AAuadoad 1o ﬁc_E.ﬁ:om

Bung llews

i JAGLUNNSUOY BuTU4|18)

ol JELET abe
THaN _ F [wo payiayul [agAL [suEN

ins]| seipadoig FigiB

<08 lly»UDsIed :SSEID

q

4

juawsa|3paweN B .
Buuis @B
oley B
BawnN 8 @
.- sleq &,
G uoneagsay @
@E:am_s:a.a

e
a3 Lm&:mm@m n»_

ol

m_ .”n Hl ._.__oﬂm.a . &
S 55, W@
”wi ~ \tee_(4a
& £ Zadiy: @
£ Bujsg B |-
ST p———e B
2o

a - .

ow R
.ma_.:mcum aay 8y)
m.mEmr_omJEX éﬁw

Jndno asx B
swowniod Wy Fo -
momcwm:_ 591 B &

m : g«:_ a==.=§ 4
v

12aloig saul

d
g

@ﬁ@tuﬁ HEE:

»
£ % T W

:@-um

© 8Jua1ayo) uieduy) -

dEH MaiA mMeN W3 epd

__:c uogelfiaju auliny NV,

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 19 of 47

dI1

DI4

wows|3peweN B @
buls B
aiey B
180WnN B @
:(shion3 uonepres = eled @
< o I s
. & D Unijenasay &
aepleA | saoue)su|)sal aepyen 3= w.mn_.e:wm&;m
fghgipnio. oh
:anjes ooue)su| JIpg =)m.ﬁm..um.wmmm_\@)
S SEE% Nod @ &
= o Bt T
o r LOME
609e0t 1abajy qldiyssquiaw 6E00E6BY2-1353pIEg i Wm 2 m__c@m_z &
s ARl ySIIIg auldly djysisquia poBuipe e 2 auliv @
A o -payl EE _
|| sz811ze86-0usnes BUAS ql-auenise] 68Z08BEEE DI s a buieg
N 10uaAe) plaeq Aulis SWENIINY 62062E€3-PuUcy
1 pirecy Bung BLUENISIY IZ6281ETT-AIUPIW
_ woa e @plAep butig lews Z0ZBYBEG0-UAMEO
d3quinhjauo auoydliaa) b
e 8YBE Y5y £16+ 129 z_mmm”_”_ f_m_._mm 000E01628-4IWS e [N
’ w\ Y2
e _ €8.6E8PT0-UBLNIOY PUBUIS BAY By o
FA8EBS KT Bumg Jagwnpuodssed ‘ seway1g TNX & e
678 12ZEBB-10UBARD =
ue|essny Aulig Aleuojeu m NN O ASK -
| BnieA [eda | Risdold A Qi -aweN 1587 sLALN30G TWX B
R)RQ 90UR)SU| aauBsuf “‘Mwm‘mm.«wﬂm.mmﬂm 22 JCS
B oo uesu] 159l
i w Uojieibauil auly 4
safiuassed :sse|) Jo savuelsulIsa) | S Yefoig saury g8

¢ BEEHYR > THEP W@

: #3uUalayo) WoNun - _:_o.-o_s._mww—__m:__.__ﬁm/u..

el MeiA MeN W3 ol

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 20 of 47

»:

._SJEEco_. adiy

A3INWIWOI, =8UIBU JLBIIB|S:S
<QuUaWB|BISK/>
<adA [#3)1dwod:s%/>
<aauanbas:sx/>
</ JAauanor, ==dAy Jybiy, =sweu JuUsIgIE s
<aouanbasisx> -
<adAxeiduooisks -
<, 0ugybiy, =sweu juaus|aisK> -

<8ouanbas:isy> -
< ,U011eAl18Say IYbId,=aweu adA L xe|duiooisw> -
<add 1 xeidwoa:sk/>

<AIUBNDESISR/>
</ ,81ep:sx,=3d4] | JJO-3) 0, =3UIRU JUSWIS|D:SH>
</ Dupays:isx,=8dA] ,p1,=owieu Juswaa;sk>
</ 30 sy, =3dA) SO|IWUIAIUR]S|P, =8WEL JUSILA|R!SK>
</ ,Modiy,=adAy einuedap,=sweU JUBILAB:SK>
</ JModliy =adA] feALLER, =5WBU JUSINB|S! K>
</ JAuedwod,=sdA) Bujie, =8WRU JUSWS|B:SK>

<3auanbasisy> -
<, Asunog,=aweu adA | x3|dwodisxk> ~
<adA] xgdwoa:sx/>

<8auahbas:sx/>
</ papunoqun,=51n220%EW ,0,=5IN330UIW
JAouinor,=adAy eauainooQiybiyy,=auIcy Jusws|asH>
</ Bunys:sx, —add) |8na1AINIa8S,=8UILU JUBWIB(E XD

<gouanbasisxk> -
<,0Julybid, =aweu ad# | xajdwod:isx> -

</ Juoneassasayybi4,=adi;
A3pI043woIsnd

=3WeU JUBLID|3:ISH>

<, paylenbun, =y nejaguun4ainguiie ,pagijenb,=jneyagwio4jusws(e

QLIBYISTINN/TUOZ /D0 Brs tasara/ /A1y, =52 [SUUIR BWBYISISKS -
< ,8-41N,=bupoaus ,0'T,=UoISIEA UIRE>

J11 "DId

mEmcum .:< mm_>>m
x__umniu L QIUCIIRAIBSAL, =8IEY BYNGUIIE 'SK>
£33Uanbas 5K/
ed,=5d4) Jabuassed, =aueu juauwiazisk>
LIUDD|E IERS>
<adA | wadwnaisy/>
e Amgcm:_uumm..n.x\u
li4.=2dA3 __v.u_._m._u___ mvcmc ugIsa Ex>
AMJLm__ﬁmﬂ Sx>
mmmﬂx@.u__tno SN -
Emcmcwc_m_n SX> -
- Auugmzwmmnmxj -
m: add'rxaduod sx> -
mmampxw_a_:_._u SR/
Smcwmu_]_n_:um)
gE <3auanbas sy/>
b: sk, =sdd) ,ewLpe %_nnr:mc JUBUIBIB (5K
=adAy Ev_:-mu:mun_nulv.:mc IEIVE /=R 5
Ay ﬂca_.__cm._:tmnwfnmc_mc .Ewk_n_m SR>
.=904) ._ton.__t_m\,_.mmn,_ auleu Justuale isk>
:_._um.mx_...aa? &::.:m.u =BUIBU JUSTIDD (SK>
m nmucm:w_mw SH> -
__u:m__m }nEmc mamhxw_n_:.auumxv -
<adA | xaidwod isx/>
<aauanbasisx/>
</ __uwuﬁ.on::.. SINJI0REW
w JyYyb1d,=8dA) __Emm:__lmrcm.c JUBIZ|3 1EX>
<aayanbas:sx> -
A__mu:m.__u___um_.:mc adA | ¥adiunD s> -
1959y, =00A1 ,UDIIEAJIDSAL, =8WEU 1UBWIB|3 ISK>
uuo48ingulie payenb, =3 nejaguiiousuis|a

(E:Ii‘,
?"A‘

v
2 gnina
o B

nwn‘t\s\“

<.0uly

< :Q_uﬂ?-mm

uals:s®, =adAl ,arIgbi;

T T

SELIayD m,_ZX\ Tooe/ b0 g mrara f fidayy,=s0s0

L BUIBLYDS ISK> -
<i ,8-41N.=6upo3us ,0'T,=UQISIBA [WKL>

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 21 of 47

DIT "DIA

[i] i z I]

 —— _ |ooued __)

() sepaiy| addjo seny

[=@]|

B N TVEN

silicu ojij

psxshermityysug]

psxiyssimg ﬂ_

gidwessauniy [_ oo

’

- uawajgpawen B

Buuls @
oley |
saquinn mu ©

Bujag @

BE

\ ’

SHUEUIS BAY By o
SELRUS THX o

snso asx &
w_:msaac X B
" saoumsi Sei @ 6
:@EmmE_ BUIY 35 &
T 8(0id saully u3

(> THET & G]

SRR 80Uasayo D wioIu() - wo uoyeifiaju] alny B

disfj moin moN pp3 apd

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 22 of 47

HIT DId

Aawinor :adfyxajdwo) dew

uondiosag
Apadolg dewury _ _ fyadoid up3 V _ Apadoid Bunsixy _ _ Auedoid man
.. oLpRisiyy dey
<paddewuns ¢= 3lep:sx Jjo aye)
«paddewun> ¢ puls:sx Pt
<paddewuns 4= jeojsx saiw ul aoueisip B -
<paddewuns & vodny ainpedap G5 -0
<paddewun» ¢= yodJiy [eAuE ﬁ.e,
<paddewuns ¢ Auedwo) aule @.@
Ayadoid 0L [} adAL | wol4 i
_ g 9554 :m___.m &
Buiddey ynegaq __ dewup) _ _ “ppy ' _ -~ paddewun mme_._osz_x e
soiadold dew ynejaq :s5e17 0) Burddey sasd Omx 2
5| swewniwg WX D ©
m wmém@_mﬁ H o
4
L

co_ﬁ_mﬂc_ auply 81 &

0_ ﬂvm_c._n_ sauiy .58 |

BEOAR € P!

1R ¥ ROE

doll MaA MaN Pl Al

e nu___u_u__aoiau_:: - jworuoneibaw) aullny N

ITT "DId

US 2004/0216030 A1

— _ jaue) :zo _
% |
oney @
1BAWNNIERY & -0
JsquinN B &
aka® |
. uojemasay ®§ L | E L
: I Jsqunnavoud @ | -
Ayadog deurun ‘ _.u@lnem:u 1aAiduanbal 4 @ | I coﬂ_mn_)
P ssbuassed @ & .| Ll * uddiy gy
......, uosiad @ & : r >=m .oo B
<paddewuny 3 ,.Q_>
<paddewund N uw amwmm W14 g
<paddewuny . i h B jm......ﬁ!;@é
<paddewuns =22 ouiwbny @
ddewsuns 2
<paddeiuns 2 2 gaddy xajduo)
<paddewun . £y 2
sasse) m::w_xw 18410 T
Apadoigo) .
— " “uopdses 1asn| T 1akiyiusnbory [w.m:s:d ._.w_:_m LT Y
Oulddey ynejag __ dewuy _ _.ll uosesy SSEID x mmﬁwﬁmqs_x % &
sapadosy deyy ynejsg suoysabfing - nano oxmx. =
SSBID MaN B 8Jua1) () | spawnd0q Tux & .o
i * Seuesu) S8 EE &
sse|3 Bupsixyuy @ oy 4 “yg d i : s
¥ 0 BuoIsn) v dew .A 2 uoeiBal BUpIY i3
- sse[) e o) adAj xajdwo) gsy dey 1a80ad saully 18

9@ RS @v@‘;&alm

Patent Application Publication Oct. 28,2004 Sheet 23 of 47

def maiA moN wp3 Al
uu_.mhm__au Eau_:: - __E. :E-Emﬁ:.m:.:.?]

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 24 of 47

1T "DI4

‘auteu Auedwod aujie syt

uondi1asaq

Aauinop :adA]xajdwo?) depy

Apadosg dewsupy _ _ hta._.:nu_-..m_ _ _ Ajadolrd Bupspey _ _ Apadoug may _
- 0L prat3 siuL d &
L Rt O ETS VL s i
<paddewuns ¢ ajep.sx Jo ave} @ .
<paddewun> d= BuLs:sX P g
<peddewuns < Jeossx s8jlw ul sauelsIp
<paddewuns & yoday ainyedap ﬁ.@ \
<paddewiuns gn uody el BE @ | oo @_
<paddewns ¢ Auedwo) sujile o ——
Auadoid o1 _ [adAL | wol4 4] o
; .i-lm:amm@mm
— G| manzﬂ.._mm_w:tm 6
buiddeyy ynesaq || dewnidi || ey | |- .__E_"__ : mmeuﬁm WX &
saipadoyg de g ynegsq 'ssep) oy fividdewy Saﬁpdmx 2
TS || swewnodnx G o
DR BUBS] _ Buicidey | wm,%em@:_ cal B 6
4
M

Q_*Smm:__ auply sE &

dom—oLn_ ssululy 28

5¢ HBUR <> TUABT BB

doH MaiA MmaN wp3 aid

mu—“.m:o__cu woaluf) - (wo-uoneida) aulny 3

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 25 of 47

AT DI

N
\

- [ommgwman | [

{4 URnpeuse utd g

S30BISE LAY

lwodry'aindirgarpsedop Wity
Qtuhrelldine e L g

A2 SLERENT T

£3|puey oukry

CIRQLTHICIN ITUR B0

LR F Dagirepas o fss 3 IRguInMan oy o

UL 0PN YEME JOYILrTHBUONS
V2QUNNSI L HRIETRIBU0N JAGIDE) Ay 4
{swsprg)aunue g 4
JuGng

2€ B @R

SHRvIasp il 4=

wi T "
a9
= ¢ = H =
sy 2 E T
>0 % v.cmﬁ% ®
T Eo 7 e
m_. g :an_wu d -
S il
e

ACJYAT

L pas Buva.,u._.unuu:?_- - L

Sudueh &

st Aol - oy

sfemiyuspug) &
mmemﬁm J_Zx = b

5&5 asx T
swaunag Tk @ -0

mmmmmm:_ﬁm._. m e
uggeJGalul Uiy 35 &
o &
& Teloid seuny ga

<> THET OO

e aJliasayod uonun -

dali MBA MBN Wp3 old
1uto"uone B aulay = &

TIT DA

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 26 of 47

‘sUIeY Auedwod suipie 8y |
uondi1osa() - -
: I%
Auadold dewun _ _ Aupdoldipl _ _ Auadoid Bups k3 _ _ Aladud MON : Sy
. 0Lpiayd sy depy | %
RO a .
>, cmnan ﬁ\
<paddewuns ajep:sx JJo axe} S il N
N) i . co__mhmwmm&u_; ﬁ -
<paddewuns & pupis:sx Ny &t
(18ynNen)S8)l WUIBIVEIBIUBN S . 4., JROLESX . S@IIW Ul souEsIp.E .ﬁﬁ...m.m_EwEF@ @
<poddewuns ¢ podary ainpedep -0 E_.m:wm__u ﬁ,
<psddewuns d= Hodayy |BA LR ﬁuoh — —
<paddewun> &= Auedwo) aune TS |
Aiadoig ol [adAl | wold e
m:a%z. &
. R -
_ |'sAea iy’ Lw._«:m = &
Bugddew ynejaq __ dewupy __ ~ppy _ _b Eu__u__ mmﬁwsquEx % &
‘saiusdold dely ynejaq :sse(D ol upddey | sh:go asK B
Buddora | || SHE4M00 Tx @ @
35| Buidden) : mwuﬂwﬁc_mﬁ g o
.. cgﬁ_mﬂc_mgti i 4
fiauinor :adA xajdwo) dew | & : $oaloid sauuly g3

B R <> TH l%l.-_.n_“

.__uz man, meN uwp3 el
; mufmuazco uiedug - o uoyeiha) auny B

xar- ..

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 27 of 47

INTT "DId

‘awleu Auedwoed sulie syl

!a.ié_ n:.z%—&

fauinoy :adA) xajdwio) dew

o i
:uondinsaqg - S _..mn g =
L > 2 g
e > 2 S 4
L O & M
Auadold dewiun _ _ fuadoid up3 _ _ AQuadoid Bupsix3 _ _ Auedaid MeN 38 5 e msn_ i3
‘0] pard sy depy £% £ godd @
P : “. M .wémanw i3
ajleqyanpey s elepisx 10 ey 3 X
© . g - uBneue %amzm_: 1
(funis)anubiy 4= Bumsisx pE o & v T
(squinNIEssall WU leuelsIp B <= oS seliw ul 8auelsip T a Mﬁ Aauinor| g -©
(lodiy)uodayainpedsp 4= podany ainpedsp -0 -3 m U wfin 4 @
; g -
(odny)uodiyieaue 4 podipy leane -0 aogr)xa_n.:ouam
Guuieue < Auedwod sulue E-o 2
Riadoig o) [] adil | wodd :
Tz m:_a%_zAu
_ w\mm_s:c.-ﬂm._ hxm o
Bujddel uneseq __ dewdfi [ooy | B o | R oeuss T g 6
Satuadold dew uneysq ssel) oy Huddey

NN O asx. 3
spawneg X B:e
- saelsul AL HH &
uoeJGalul BULIY B2 &

pefuigsauly &

C BRAGKE ¢€> TT

TE T OO

au:&a._au wiooiup] - (wouoneifojuf swply 3

dioli Mo\ maN wp3 end

\?.

NIT "DIA

US 2004/0216030 A1

"
-
RN A
Fane®
'

e

- [~
[N 8 AN
-

9
NS LoV
c11919f yo
.

B et
e

-

=3
Q.

gedud) g

ye

uori; aﬁmm eI 5§
g [xagmor)g o
aRp:SX 10 aye G .”om__ 19614 3§
Bums:sX 0 e s s
jeojysx sajw ut eguesip &
uoday ainyedap @é
vodury feae -0
Auedwon supie o | || | shem ﬁﬁ::m =4
anjEA 83N | XEW [WA | Al | SWEN %msmﬁmﬁx =

Eneo asx
weos&oogzx Ho A
savielou saL @ &
ubliaBojur sumy 3 &

193014 saupy 5

0J1 RWBYIS

fawnor :adfxajdwo) depyy

Patent Application Publication Oct. 28,2004 Sheet 28 of 47

19X 4> PHET QICE

deH MeiA maN up3 aE.
au:_m_u__au usrooluf) - pliotuoygeNa) sulny 5%

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 29 of 47

OIl DI4d

"BUIBY 16| S,UBS 1ad 8Y |

uondi13saqg

Apasdosg dewup _ _ Apadoid p3 _ _ Auadoig Bups iy _ _ ArRdudmaN

LT

.E _._m_.l. wEh amE

llewis’uosiad

Bus:sx

__an @.@

|aoue)

H

sAemayyusnug

JNYSSIMG

Aug

E3

1abie]

:a3Inos

uonewojsuBd) MIN

Guyddey ynejag _ _

dewnsi || ~ppy

w4 4

sse1padulg dew yneps g

ssep o) fiuddeyy

]1#&!3.:11«&..

(Dleul

fuino :adApxajdwo’) dey

fuiddew | |

4_9 - .

i

__ﬁ_w%:c:m:_m«:_ @
mnﬁzzmcocn @
A e

= ;zec @ :

P4
=t
0 r...

¥

mmemﬁmé_x @ b

Lasoomx
mEmc@anx B -
sgadpsu oL B &
co_@_moE_ uIIIY ks

smai sauuy 28

Fa-y)

il

V,,.am RS - % G = &

A ogzwhu-_ou woun -

TdiBil MSBA MeN Up3 eNd
w0 uoneJfia u) aundy N]

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 30 of 47

dIT DI

Egiientin Side i

<f ,]MBIY=ouIR U 2YRId Wk B0 SX »
<, B, =8UWBU ISP BXS -
<, WyBlY,=1089s Yoka-1a) [sX> -
<SP, =2Weu JUSWaR SX» -
<.0 upuBi. =40 e wsalBXs -
<appldwa)sxy »
<JUo W3S »
</ WIBNU WSS, =Pass S8k |dWal-AjddeIsK >
« J3buassed, =aweu JI3WIP EX> -
<JUB We|asx »
< OB, =pa s sapIdwardiddeisk»
<, OU[BIY, =BWBY UBWIB BX>» -
<, J3PI0I8 WORND, =P W 33| Wway: By s -
<amdwalisx »
<UO[BAISSa N »
&f , JIIMOIIUDISID,, =P s SIW(dwalAjddeisx >
<UOJBAIBSS Y¥ -
< J =UDMeW o ld WY EX S -
< SPA,= P 8 41N, =DUPOIU O L, =U0ISI3A | WX, 2ROy W INTINDSX »
<, WI0ISUBL 1SS X/BE6 WB0 A dPY, =BX SU WX 07 |,=U0SJ3A |29USalA B BX» -
=¢ 8" 41N =BUPoIUd ' |, =UOISIaN UKL >

|13pow 0) saBueyd Jo3Yas o} uopewLIojSURY) AeIBualiay | owEpdn _

@

‘SewByds TWX 11y SSIMS pue SABMIE ys|lug ay) 30 Bujbsaw ayl

uondiasag

—lliu_w%_\sm_ 'a3IN0g

_ shemay %_Em__ yafise |

P vssims B S
shemdiy ysiug = -0

31 $RUIBYIS WX) &

]

Candno asx
| SHewogInx B0
N Cdaresuyisal B &

i -

82313103 wiodlun - (o vonefiau] aulily

ME T Qe

‘digH MaiR MeN ub3 oiid

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 31 of 47

OT1 "OId

LI A LY] . —.

TEUOT I YSHIAITIRUCIICR .,

srlPao ucsdursgaswog: | ivwas
SR VEIR R KL
-£5L VLIE) (I3TEmppIscdmon:
AOT /P90 T - LG L~ ISTUNTIT 0T >
LT RLER] SEPA e TR
CHIOY LT o>
. tsuogdI |/
~38 0] cIIMCHPPIE WO
arpe m.._.m.,..nmmguas,_:a,._.._u
i3 ..ﬂl..%uu% ..Zs..uﬂ.a LT ELLY
v ..u:anaaLUu«

7

SR T TR S VR (BT TTTEST]

% Wh=2

Bl R
Tu.ud ‘vm.w.ﬁunﬂv
unedum g Avp aouo omSiitois
<13IhOnoa;: - L
<osaraufitTa e CUORRA- N
<IYDTTE /> R pIETIT =1
P-EBU-LABE 230 -8B H___.—_.u IR 31gjia) (e
<P IAI00epTs &, WL = 2wEu sy
G5 LB TEZLIY LRUA s uRLD > TTERSEE AT
~8an23IudEp ix « 31tjhifj, =pwiy sy
U Seplg-988 (BTL) «IARURNIOT IMUIDINY <, 00 ybpy, sz B SrE(dy
1]OgRAE e s Toqgd e ﬁa_EnEuf,ﬂ
THURCLI0TINE L RTP IENS BT BumpI0E 318
STATIOTIORASYL/NMYI0L ASCUADT ATDOOP2SUA LS
caanzasdaps
£TUATIIVY

eyt Iy

-,'

r

cl2u-sqoa

ERS

[3«3/'-

X2

CEYLIRNL pORMUELD

; .un&....am,qn_q.(
|mﬂ @ (it -

ac .a% folr3ac THIFORT TRT

'Hﬂﬁldnﬂ,n \h‘hcngdﬂbus—hu [3-3 &Y

5:._“:&_.. i 4 .:.‘_7 SR I3 YA i

Ty CROPITITIS
r1abusseeds
PP SR LU R B
ceamte 3oy
<3IqLIIT4

100 =193)3 5 ‘.n.n_n:_ufranﬂ“_uxu

< Jofiuassed, < owey Juawee: |59 -

CIASUMPTIGT SREIAIYT Y) e FoEn
CIOMAE /3 X o] OAE A z_u__u.d.n_m_m 3 2By Ejduit- 0dE (Sex

10T ICE 0 TRUNTPON T2 T <=y and 1TR: < 0MNUDM. =280 1U3URR" IS -

YUTEW Be|durd) (exs

JUT L UEGRR-

auvam.H ;n_v. o:T...._:huudyn..

DCTIIUA0L S EIT Ly 00 ol Jo al —relsty DSt = Enlp ey
STRATIZI®RZ
EEUS S 4P

w..n.::ncPAuhca:duu.,u,.d;uu,
un-mw“:ﬂrn ayjrzaadatyrenrazes

n:uj%n# VGOt ITWY AT ITRE

AKCF TR E~TRS (NI} xege = iy
soungld et ths-tng (Vo) counyds - ~2EmMBrII
STORAS J oYy - TOqUEAS S - SSFUTAETIF

CHWULE S PEOR L | LY :cn,_.T.Pv,« DA JEah =yl SMOTIRAIRE L
<DUTTICES 1.SUSTRIAN (IR, cFS1Au anding sus 40" Tu =S TEAIN JMNLD

Aoty QT4 R AR LAY F A IS TE

Z0FULIYBITES T

B S OSIHE ST uN 2 a0 LR T nAR U, st BHIRU WX AIRIOIFROLENI- ”..m-.ur.._.um:__...uu:u
WITITT L EOUSP \UIDRTUA I D w35I0 LTHK IXDI,;e9d41 ASSUSSTAIS-TIN >
WX ARAS 1] Q) Ot b ANE HN S PalEelIaual oTTY TN ATdeeg-- e
Al uB-AiN=BUTPOTUE LD Tu«U0TEIIA PURXL >

21, =HU0IRIAs UV

/i

US 2004/0216030 A1

Patent Application Publication Oct. 28,2004 Sheet 32 of 47

dIT DId

[reorpy [usul] podty | syl & Loydies (7]
o ! - st e e e v
[~ OIS T IPUTE BT
<ALIGL dA
-ggz (t10) < equrppasadwnz s
CAAMNNE S0 L ER -GG T CIRGUT 11T 2000
CPRSUENIR/ T TO<ANATTIIF
- caloljdmass -
: [ciopuet frappwm<saguabo
CHWE NP RIS AOL < B wEp e s , J
TATHISULS S ABWIOH < IS S Iy B
wigbugsseds ; .u
<n g ;
— — SBENLLIRIS/F CY -B0-L96T <2 H 11513 1 73
T T B2 1905 | JO0000TCBTD' $ 508 US| IURISIP: i
et e E i)
fremsrry [ay] Py : .
s ‘. - <ot uedspy s opaeng ; 3
LR SN NPT TLSWLE BV S ; v
SN PR LIRS S R U0 IR uSe U ! 2 k
Yyl da et :
SOV S PUIESY UODRKILL Y U i L2 ih
<pubys - L Smpeseasmg a8
1 N . - o
axpubigs - ; N L LTI s
<opupystivie - | 2 ey [4,
RIPSCRNTEOP PR | H B st I v
<¢ L -gansbugaaua oo sumsien pexes L iogincy
- . ‘x o - Aoy

o - HEOUEH AL oW~ k. S|HBEEd C
Wi ropaR el mwof eofl oe]l 1S owarealog Yox Wisprunibs ewopsiar] WG pded e 93 55
EIRRLN A, ' {RUCAIZIFDIT IFOWTS] - ATS TWX

Patent Application Publication Oct. 28,2004 Sheet 33 of 47 US 2004/0216030 A1

ot
=
-
o
@)
T
O
A
L
©
x
<
L
>—

® [2 ;

= z

JAYN 5 loy, s

Wy =

- ([b~ O @
..\'.700 S
() =Yg -

{ SCHOOL ;
FIG. 12

MOTHER

Patent Application Publication Oct. 28,2004 Sheet 34 of 47 US 2004/0216030 A1

=
Z |
= BUDGET_AMOUNT |
o
3002 < @
L
= i
9:
b
1
L
%
|
—
2 ® .
o S
= T
o
=
®
Q
é(O/ Y
oz
L]
® [% Z
- & |(©
JNVYN o i
= Al
wl D
QL z

OM_NUMBER

Patent Application Publication Oct. 28,2004 Sheet 35 of 47 US 2004/0216030 A1

-
1
.....
oooo
.........
nnnnnnnnnnn

Proy

©
e ©
TO_AIRPORT
FIG. 14

FROM_AIRPORT

@
AIRPORT

Patent Application Publication Oct. 28,2004 Sheet 36 of 47 US 2004/0216030 A1

FIG. 15

b -
», L)
.."'Iunuuﬂnt"

Patent Application Publication Oct. 28,2004 Sheet 37 of 47 US 2004/0216030 A1

nes

s .
* 4
o hd
03 *e,
o s,

FIG. 16

®

PREVIOUS_OWNER

=
@]
JA cﬂlf)
VN o
'.’.. 2l
%, "5.,,‘ A‘ o

Patent Application Publication Oct. 28,2004 Sheet 38 of 47 US 2004/0216030 A1

%
©

|D#

@ 7/ % EMAIL —
“TIAYN T S
K; E% (:) ™

»
o

DEPARTMENT ¢

Patent Application Publication Oct. 28,2004 Sheet 39 of 47 US 2004/0216030 A1

R,

MBE

E NU

@

ROOM_NUMBER

@—P

FIG. 18

JANVN

| EMPLOYEE TELEPHON

DIVISION
@

Patent Application Publication Oct. 28,2004 Sheet 40 of 47 US 2004/0216030 A1

—p

HRENHEIT

[©

Y TEMPERATURE IN FA

JAVN

A
CITY
FIG. 19

GRADE

.

TEMPERATURE IN CENTI

<

Patent Application Publication Oct. 28,2004 Sheet 41 of 47 US 2004/0216030 A1

=
Z®
=

.......
10
o
o
0y
0

PRICE

PRODUCT
O

v
FIG. 20

]
—
Ll
-
.
*
»
.

RODUCTION{

[€

GOST_OF_P

Patent Application Publication Oct. 28,2004 Sheet 42 of 47 US 2004/0216030 A1

L
=
£
i@
)
<C
—
= .‘."'-, —
#Al o y FULL_NAME N
A 2 >
@i & ;/ O S
ol —

FIRST_NAME

<

Patent Application Publication Oct. 28,2004 Sheet 43 of 47 US 2004/0216030 A1

=

3 ™ »

o JAVYN

Al

*
oz

QN

=S >
D @)
< T

S JNVYN

O —p

@ @,

Patent Application Publication Oct. 28,2004 Sheet 44 of 47 US 2004/0216030 A1

©

INYN

> PERSON

AUTHOR
@
FIG. 23

Patent Application Publication Oct. 28,2004 Sheet 45 of 47 US 2004/0216030 A1

SET[BOOK]

MAGAZINES

STORAGE
FIG. 24

BOOKS

SET[BOOK]

Patent Application Publication Oct. 28,2004 Sheet 46 of 47 US 2004/0216030 A1

SET[BOOK]

FIG. 25

SET[LIBRARY]

Patent Application Publication Oct. 28,2004 Sheet 47 of 47 US 2004/0216030 A1

FIG. 26

1:

®)

L

O

m

o]

=

O

=

w

y

SET[STATION]

{
N~

SET[LIBRARY]

US 2004/0216030 A1l

METHOD AND SYSTEM FOR DERIVING A
TRANSFORMATION BY REFERRING SCHEMA
TO A CENTRAL MODEL

CROSS REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a continuation-in-part of assign-
ee’s pending application U.S. Ser. No. 09/866,101 filed on
May 25, 2001, entitled “Method and System for Collabo-
rative Ontology Modeling.”

FIELD OF THE INVENTION

[0002] The present invention relates to data schema, and
in particular to deriving transformations for transforming
data from one schema to another.

BACKGROUND OF THE INVENTION

[0003] Ontology is a philosophy of what exists. In com-
puter science ontology is used to model entities of the real
world and the relations between them, so as to create
common dictionaries for their discussion. Basic concepts of
ontology include (i) classes of instances/things, and (ii)
relations between the classes, as described hereinbelow.
Ontology provides a vocabulary for talking about things that
exist.

[0004]

[0005] There are many kinds of “things” in the world.
There are physical things like a car, person, boat, screw and
transistor. There are other kinds of things which are not
physically connected items or not even physical at all, but
may nevertheless be defined. A company, for example, is a
largely imaginative thing the only physical manifestation of
which is its appearance in a list at a registrar of companies.
A company may own and employ. It has a defined beginning
and end to its life.

Instances/Things

[0006] Other things can be more abstract such as the
Homo Sapiens species, which is a concept that does not have
a beginning and end as such even if its members do.

[0007] Ontological models are used to talk about “things.”
An important vocabulary tool is “relations” between things.
An ontology model itself does not include the “things,” but
introduces class and property symbols which can then be
used as a vocabulary for talking about and classifying things.

[0008] Properties

[0009] Properties are specific associations of things with
other things. Properties include:

[0010] Relations between things that are part of each
other, for example, between a PC and its flat panel
screen;

[0011] Relations between things that are related
through a process such as the process of creating the
things, for example, a book and its author;

[0012] Relations between things and their measures,
for example, a thing and its weight.

[0013] Some properties also relate things to fundamental
concepts such as natural numbers or strings of characters—
for example, the value of a weight in kilograms, or the name
of a person.

Oct. 28, 2004

[0014] Properties play a dual role in ontology. On the one
hand, individual things are referenced by way of properties,
for example, a person by his name, or a book by its title and
author. On the other hand, knowledge being shared is often
a property of things, too. A thing can be specified by way of
some of its properties, in order to query for the values of
other of its properties.

[0015] Classes

[0016] Not all properties are relevant to all things. It is
convenient to discuss the source of a property as a “class” of
things, also referred to as a frame or, for end-user purposes,
as a category. Often sources of several properties coincide,
for example, the class Book is the source for both Author and
ISBN Number properties.

[0017] There is flexibility in the granularity to which
classes are defined. Cars is a class. Fiat Cars can also be a
class, with a restricted value of a manufacturer property. It
may be unnecessary to address this class, however, since
Fiat cars may not have special properties of interest that are
not common to other cars. In principle, one can define
classes as granular as an individual car unit, although an
objective of ontology is to define classes that have important
properties.

[0018] Abstract concepts such as measures, as well as
media such as a body of water which cannot maintain its
identity after coming into contact with other bodies of water,
may be modeled as classes with a quantity property mapping
them to real numbers.

[0019] In a typical mathematical model, a basic ontology
comprises:

[0020] A set C, the elements of which are called
“class symbols;”

[0021] For each CeC, a plain language definition of
the class C;

[0022] A sct P, the elements of which are called
“property symbols;”

[0023] For each PeF:

[0024] a plain language definition of P,
[0025] a class symbol called the source of P; and
[0026] a class symbol called the target of P; and

[0027] A binary transitive reflexive anti-symmetric
relation, I, called the inheritance relation on CxC.

[0028] In the ensuing discussion, the terms “class” and
“class symbol” are used interchangeably, for purposes of
convenience and clarity. Similarly, the terms “property” and
“property symbol” are also used interchangeably.

[0029] Tt is apparent to those skilled in the art that if an
ontology model is extended to include sets in a class, then
a classical mathematical relation on CxD can be considered
as a property from C to sets in D.

[0030] IfI(C,, C,) then C; is referred to as a subclass of
C,, and C, is referred to as a superclass of C,. Also, C, is
said to inherit from C,.

[0031] A distinguished universal class “Being” is typically
postulated to be a superclass of all classes in C.

US 2004/0216030 A1l

[0032] Variations on an ontology model may include:

[0033] Restrictions of properties to unary properties,
these being the most commonly used properties;

[0034] The ability to specify more about properties,
such as multiplicity and invertibility.

[0035] The notion of a class symbol is conceptual, in that
it describes a generic genus for an entire species such as
Books, Cars, Companies and People.

[0036] Specific instances of the species within the genus
are referred to as “instances” of the class. Thus “Gone with
the Wind” is an instance of a class for books, and “IBM” is
an instance of a class for companies. Similarly, the notions
of a property symbol is conceptual, in that it serves as a
template for actual properties that operate on instances of
classes.

[0037] Class symbols and property symbols are similar to
object-oriented classes in computer programming, such as
C++ classes. Classes, along with their members and field
variables, defined within a header file, serve as templates for
specific class instances used by a programmer. A compiler
uses header files to allocate memory for, and enables a
programmer to use instances of classes. Thus a header file
can declare a rectangle class with members left, right, top
and bottom. The declarations in the header file do not
instantiate actual “rectangle objects,” but serve as templates
for rectangles instantiated in a program. Similarly, classes of
an ontology serve as templates for instances thereof.

[0038] There is, however, a distinction between C++
classes and ontology classes. In programming, classes are
templates and they are instantiated to create programming
objects. In ontology, classes document common structure
but the instances exist in the real world and are not created
through the class.

[0039] Ontology provides a vocabulary for speaking about
instances, even before the instances themselves are identi-
fied. Aclass Book is used to say that an instance “is a Book.”
A property Author allows one to create clauses “author of™
about an instance. A property Siblings allows one to create
statements “are siblings” about instances. Inheritance is used
to say, for example, that “every Book is a PublishedWork™.
Thus all vocabulary appropriate to PublishedWork can be
used for Book.

[0040] Once an ontology model is available to provide a
vocabulary for talking about instances, the instances them-
selves can be fit into the vocabulary. For each class symbol,
C, all instances which satisfy “is a C” are taken to be the set
of instances of C, and this set is denoted B(C). Sets of
instances are consistent with inheritance, so that
B(C,)=B(C,) whenever C, is a subclass of C,. Property
symbols with source C, and target C, correspond to prop-
erties with source B(C,) and target B(C,). It is noted that if
class C, inherits from class C, then every instance of C; is
also an instance of C, and it is therefore known already at the
ontology stage that the vocabulary of C is applicable to C,.

[0041] Ontology enables creation of a model of multiple
classes and a graph of properties therebetween. When a class
is defined, its properties are described using handles to
related classes. These can in turn be used to look up
properties of the related classes, and thus properties of
properties can be accessed to any depth.

Oct. 28, 2004

[0042] Provision is made for both classes and complex
classes. Generally, complex classes are built up from simpler
classes using tags for symbols such as intersection, Carte-
sian product, set, list and bag. The “intersection” tag is
followed by a list of classes or complex classes. The
“Cartesian product” tag is also followed by a list of classes
or complex classes. The set symbol is used for describing a
class comprising subsets of a class, and is followed by a
single class or complex class. The list symbol is used for
describing a class comprising ordered subsets of a class;
namely, finite sequences, and is followed by a single class or
complex class. The bag symbol is used for describing
unordered finite sequences of a class, namely, subsets that
can contain repeated elements, and is followed by a single
class or complex class. Thus set[C] describes the class of
sets of instances of a class C, list[C] describes the class of
lists of instances of class C, and bag[C] describes the class
of bags of instances of class C.

[0043] In terms of formal mathematics, for a set S, set[S]
is P(S), the power set of S; bag[S]is N, where N is the set
of non-negative integers; and list[S] is

s
n=1

[0044] There are natural mappings

list [$] 2> bagl§] -5 set[S]. m

[0045] Specifically, for a sequence (s,, S5, . . ., s,) € lisf S],
o(sq, S5, . . ., 8,) is the element febag[S] that is the
“frequency histogram” defined by f(s)=#{1=i=n: s;=s}; and
for febag[S], W(H)Eset[S] is the subset of S given by the
support of f, namely, supp(f)={seS: f(s)>0}. It is noted that
the composite mapping ¢ maps a the sequence (s;, Sy, - -
., 8,) into the set of its elements {s;, s,, . . . , s,}. For finite
sets S, set[S] is also finite, and bag[S] and 1isf[S] are
countably infinite.

[0046] A general reference on ontology systems is Sowa,
John F., “Knowledge Representation,” Brooks/Cole, Pacific
Grove, Calif., 2000.

[0047] Relational database schema (RDBS) are used to
define templates for organizing data into tables and fields.
SQL queries are used to populate tables from existing tables,
generally by using table join operations. Extensible markup
language (XML) schema are used to described documents
for organizing data into a hierarchy of elements and
attributes. XSLT script is used to generate XML documents
from existing documents, generally by importing data
between tags in the existing documents. XSLT was origi-
nally developed in order to generate HTML pages from
XML documents.

[0048] A general reference on relation databases and SQL
is the document “Oracle 9i: SQL Reference,” available
on-line at http://www.oracle.com. XML, XML schema,
XPath and XSLT are standards of the World-Wide Web
Consortium, and are available on-line at http://www.w3.org.

US 2004/0216030 A1l

[0049] Often multiple schema exist for the same source of
data, and as such the data cannot readily be imported or
exported from one application to another. For example, two
airline companies may each run applications that process
relational databases, but if the relational databases used by
the two companies conform to two different schema, then
neither of the companies can readily use the databases of the
other company. In order for the companies to share data, it
iS necessary to export the databases from one schema to
another.

[0050] There is thus a need for a tool that can transform
data conforming with a first schema into data that conforms
with a second schema.

SUMMARY OF THE INVENTION

[0051] The present invention provides a method and sys-
tem for deriving transformations for transforming data from
one schema to another. The present invention describes a
general method and system for transforming data confirming
with an input, or source data schema into an output, or target
data schema. In a preferred embodiment, the present inven-
tion can be used to provide (i) an SQL query, which when
applied to relational databases from a source RDBS, popu-
lates relational databases in a target RDBS; and (ii) XSLT
script which, when applied to documents conforming with a
source XML schema generates documents conforming with
a target XML schema.

[0052] The present invention preferably uses an ontology
model to determine a transformation that accomplishes a
desired source to target transformation. Specifically, the
present invention employs a common ontology model into
which both the source data schema and target data schema
can be mapped. By mapping the source and target data
schema into a common ontology model, the present inven-
tion derives interrelationships among their components, and
uses the interrelationships to determine a suitable transfor-
mation for transforming data conforming with the source
data schema into data conforming with the target data
schema.

[0053] Given a source RDBS and a target RDBS, in a
preferred embodiment of the present invention an appropri-
ate transformation of source to target databases is generated
by:

[0054] (i) mapping the source and target RDBS into a
common ontology model;

[0055] (ii) representing table columns of the source and
target RDBS in terms of properties of the ontology
model;

[0056] (iii) deriving expressions for target table col-
umns in terms of source table columns; and

[0057] (iv) converting the expressions into one or more
SQL queries.

[0058] Although the source and target RDBS are mapped
into a common ontology model, the derived transformations
of the present invention go directly from source RDBS to
target RDBS without having to transform data via an onto-
logical format. In distinction, prior art Universal Data Model
approaches transform via a neutral model or common busi-
ness objects.

Oct. 28, 2004

[0059] The present invention applies to N relational data-
base schema, where N=2. Using the present invention, by
mapping the RDBS into a common ontology model, data can
be moved from any one of the RDBS to any other one. In
distinction to prior art approaches that require on the order
of N? mappings, the present invention requires at most N
mappings.

[0060] For enterprise applications, SQL queries generated
by the present invention are preferably deployed within an
Enterprise Application Integration infrastructure. Those
skilled in the art will appreciate that transformation lan-
guages other than SQL that are used by enterprise applica-
tion infrastructures can be generated using the present
invention. For example, IBM’s ESQL language can simi-
larly be derived for deployment on their WebSphere MQ
family of products.

[0061] Given a source XML schema and a target XML
schema, in a preferred embodiment of the present invention
an appropriate transformation of source to target XML
documents is generated by:

[0062] (i) mapping the source and target XML schema
into a common ontology model;

[0063] (ii) representing elements and attributes of the
source and target XML schema in terms of properties of
the ontology model;

[0064] (iii) deriving expressions for target XML ele-
ments and XML attributes in terms of source XML
elements and XML attributes; and

[0065] (iv) converting the expressions into an XSLT
seript.

[0066] There is thus provided in accordance with a pre-
ferred embodiment of the present invention a method for
deriving transformations for transforming data from one
data schema to another, including receiving a source data
schema and a target data schema, mapping the source data
schema into an ontology model, mapping the target data
schema into the ontology model, and deriving a transfor-
mation for transforming data conforming to the source data
schema into data conforming to the target data schema,
using the ontology model.

[0067] There is further provided in accordance with a
preferred embodiment of the present invention a system for
deriving transformations for transforming data from one
data schema to another, including a schema receiver receiv-
ing a source data schema and a target data schema, a
mapping processor mapping a data schema into an ontology
model, and a transformation processor deriving a transfor-
mation for transforming data conforming to the source data
schema into data conforming to the target data schema,
based on respective source and target mappings generated
by said mapping processor for mapping said source data
schema and said target data schema into a common ontology
model.

[0068] There is yet further provided in accordance with a
preferred embodiment of the present invention a method for
building an ontology model into which data schema can be
embedded, including receiving at least one data schema, and
building an ontology model into which the at least one data
schema can be embedded.

US 2004/0216030 A1l

[0069] There is additionally provided in accordance with
a preferred embodiment of the present invention a system
for building an ontology model into which data schema can
be embedded, including a schema receiver receiving at least
one data schema, and a model builder building an ontology
model into which the at least one data schema can be
embedded.

[0070] There is moreover provided in accordance with a
preferred embodiment of the present invention an article of
manufacture including one or more computer-readable
media that embody a program of instructions for transform-
ing data from one schema to another, wherein the program
of instructions, when executed by a processing system,
causes the processing system to receive a source data
schema and a target data schema, map the source data
schema into an ontology model, map the target data schema
into the ontology model, and derive a transformation for
transforming data conforming to the source data schema into
data conforming to the target relational database schema,
using the ontology model.

[0071] There is further provided in accordance with a
preferred embodiment of the present invention an article of
manufacture including one or more computer-readable
media that embody a program of instructions for building a
common ontology model into which data schema can be
embedded, wherein the program of instructions, when
executed by a processing system, causes the processing
system to receive at least one data schema, and build an
ontology model into which the at least one data schema can
be embedded.

BRIEF DESCRIPTION OF THE DRAWINGS

[0072] The present invention will be more fully under-
stood and appreciated from the following detailed descrip-
tion, taken in conjunction with the drawings in which:

[0073] FIG. 1 is a simplified flowchart of a method for
deriving transformations for transforming data from one
schema to another, in accordance with a preferred embodi-
ment of the present invention;

[0074] FIG. 2 is a simplified block diagram of a system
for deriving transformations for transforming data from one
schema to another, in accordance with a preferred embodi-
ment of the present invention;

[0075] FIG. 3 is a simplified flowchart of a method for
building a common ontology model into which one or more
data schema can be embedded, in accordance with a pre-
ferred embodiment of the present invention;

[0076] FIG. 4 is a simplified block diagram of a system
for building a common ontology model into which one or
more data schema can be embedded, in accordance with a
preferred embodiment of the present invention;

[0077] FIG. 5 is a simplified illustration of a mapping
from an RDBS into an ontology model, in accordance with
a preferred embodiment of the present invention;

[0078] FIG. 6 is a second simplified illustration of a
mapping from an RDBS into an ontology model, in accor-
dance with a preferred embodiment of the present invention;

[0079] FIG. 7 is a simplified illustration of relational
database transformations involving constraints and joins, in
accordance with a preferred embodiment of the present
invention;

Oct. 28, 2004

[0080] FIG. 8 is a simplified illustration of use of a
preferred embodiment of the present invention to deploy
XSLT scripts within an EAI product such as Tibco;

[0081] FIGS. 9A-9E are illustrations of a user interface
for a software application that transforms data from one
relational database schema to another, in accordance with a
preferred embodiment of the present invention;

[0082] FIG. 10 is an illustration of a user interface for an
application that imports an RDBS into the software appli-
cation illustrated in FIGS. 8A-8E, in accordance with a
preferred embodiment of the present invention;

[0083] FIGS. 11A-11R are illustrations of a user interface
for a software application that transforms data from one
XML schema to another, in accordance with a preferred
embodiment of the present invention;

[0084] FIG. 12 is an illustration of ontology model cor-
responding to a first example;

[0085] FIG. 13 is an illustration of ontology model cor-
responding to a second example;

[0086] FIG. 14 is an illustration of ontology model cor-
responding to a third example;

[0087] FIG. 15 is an illustration of ontology model cor-
responding to a fourth example;

[0088] FIG. 16 is an illustration of ontology model cor-
responding to a fifth and sixth example;

[0089] FIG. 17 is an illustration of ontology model cor-
responding to a seventh example.

[0090] FIG. 18 is an illustration of ontology model cor-
responding to an eighth example

[0091] FIG. 19 is an illustration of ontology model cor-
responding to a ninth example

[0092] FIG. 20 is an illustration of ontology model cor-
responding to a tenth example;

[0093] FIG. 21 is an illustration of ontology model cor-
responding to an eleventh example;

[0094] FIG. 22 is an illustration of ontology model cor-
responding to a twelfth and seventeenth example.

[0095] FIG. 23 is an illustration of ontology model cor-
responding to a thirteenth example

[0096] FIG. 24 is an illustration of ontology model cor-
responding to a fourteenth example

[0097] FIG. 25 is an illustration of ontology model cor-
responding to a twenty-second example; and

[0098] FIG. 26 is an illustration of ontology model cor-
responding to a twenty-third example.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

[0099] The present invention concerns deriving transfor-
mations for transforming data conforming with one data
schema to data conforming to another data schema. Pre-
ferred embodiments of the invention are described herein
with respect to table-based data schema, such as RDBS and
document-based schema, such as XML schema.

US 2004/0216030 A1l

[0100] Reference is now made to FIG. 1, which is a
simplified flowchart of a method for deriving transforma-
tions for transforming data from one schema to another, in
accordance with a preferred embodiment of the present
invention. The flowchart begins at step 110. At step, 120 a
source data schema and a target data schema are imported.
These data schema describe templates for storing data, such
as templates for tables and table columns, and templates for
structured documents. If necessary, the source data schema
and/or the target data schema may be converted from a
standard format to an internal format. For example, they
may be converted from Oracle format to an internal format.

[0101] At steps 130-160 a common ontology model is
obtained, into which the source data schema and the target
data schema can both be embedded, At step 130 a determi-
nation is made as to whether or not an initial ontology model
is to be imported. If not, logic passes directly to step 160.
Otherwise, at step 140 an initial ontology model is imported.
If necessary, the initial ontology model may be converted
from a standard format, such as one of the formats men-
tioned hereinabove in the Background, to an internal format.

[0102] At step 150 a determination is made as to whether
or not the initial ontology model is suitable for embedding
both the source and target data schema. If so, logic passes
directly to step 170. Otherwise, at step 160 a common
ontology model is built. If an initial ontology model was
exported, then the common ontology is preferably build by
editing the initial ontology model; specifically, by adding
classes and properties thereto. Otherwise, the common
ontology model is built from scratch. It may be appreciated
that the common ontology model may be built automatically
with or without user assistance.

[0103] At step 170 the source and target data schema are
mapped into the common ontology model, and mappings
therefor are generated. At step 180 a transformation is
derived for transforming data conforming with the source
data schema into data conforming with the target data
schema, based on the mappings derived at step 170. Finally,
the flowchart terminates at step 190.

[0104] Reference is now made to FIG. 2, which is a
simplified block diagram of a system 200 for deriving
transformations for transforming data from one schema to
another, in accordance with a preferred embodiment of the
present invention. Shown in FIG. 2 is a schema receiver 210
for importing a source data schema and a target data schema.
These data schema describe templates for storing data, such
as templates for tables and table columns, and templates for
structured documents. If necessary, schema receiver 210
converts the source and target data schema from an external
format to an internal format.

[0105] Also shown in FIG. 2 is an ontology receiver/
builder 220 for obtaining a common ontology model, into
which the source data schema and the target data schema can
both be embedded. The operation of ontology receiver/
builder 220 is described hereinabove in steps 130-160 of
FIG. 1.

[0106] The source and target data schema, and the com-
mon ontology model are used by a mapping processor 230
to generate respective source and target mappings, for
mapping the source data schema into the common model
and for mapping the target data schema into the common

Oct. 28, 2004

ontology model. In a preferred embodiment of the present
invention, mapping processor 230 includes a class identifier
240 for identifying ontology classes with corresponding to
components of the source and target data schema, and a
property identifier 250 for identifying ontology properties
corresponding to other components of the source and target
data schema, as described in detail hereinbelow.

[0107] Preferably, the source and target mappings gener-
ated by mapping processor, and the imported source and
target data schema are used by a transformation generator
260 to derive a source-to-target transformation, for trans-
forming data conforming to the source data schema into data
conforming to the target data schema.

[0108] Reference is now made to FIG. 3, which is a
simplified flowchart of a method for building a common
ontology model into which one or more data schema can be
embedded, in accordance with a preferred embodiment of
the present invention. The flowchart begins are step 310.
Steps 120, 140 and 160 are similar to these same steps in
FIG. 1, as described hereinabove. Finally, the flowchart
terminates at step 320.

[0109] Reference is now made to FIG. 4, which is a
simplified block diagram of a system 400 for building a
common ontology model into which one or more data
schema can be embedded, in accordance with a preferred
embodiment of the present invention. Shown in FIG. 4 is
schema receiver 210 from FIG. 2 for importing data
schema. Also shown in FIG. 4 is an ontology receiver 420,
for importing an initial ontology model. If necessary, ontol-
ogy receiver 420 converts the initial ontology model from an
external format to an internal format.

[0110] The initial ontology model and the imported data
schema are used by an ontology builder 430 for generating
a common ontology model, into which the imported data
schema can all be embedded. In a preferred embodiment of
the present invention, ontology builder 430 generates the
common ontology model by editing the initial ontology
model; specifically, by using a class builder 440 to add
classes thereto based on components of the imported data
schema, and by using a property builder 450 to add prop-
erties thereto based on other components of the imported
data schema.

[0111] Applications of the present invention include inter
alia:

[0112] integrating between two or more applications
that need to share data;

[0113] transmitting data from a database schema
across a supply chain to a supplier or customer using
a different database schema;

[0114] moving data from two or more databases with
different schemas into a common database, in order
that queries may be performed across the two or
more databases;

[0115] loading a data warehouse database for off-line
analysis of data from multiple databases;

[0116]

[0117] migrating data when a database schema is
updated;

synchronizing two databases;

US 2004/0216030 A1l

[0118] moving data from an old database or database
application to a replacement database or database
application, respectively.

[0119] Relational Database Schema

[0120] Relational database schema (RDBS), also referred
to as table definitions or, in some instances, metadata, are
used to define templates for organizing data into tables and
table columns, also referred to as fields. Often multiple
schema exist for the same source of data, and as such the
data cannot readily be imported or exported from one
application to another. The present invention describes a
general method and system for transforming an input, or
source relational database schema into an output, or target
schema. In a preferred embodiment, the present invention
can be used to provide an SQL query, which when applied
to a relational database from the source schema, produces a
relational database in the target schema.

[0121] As described in detail hereinbelow, the present
invention preferably uses an ontology model to determine an
SQL query that accomplishes a desired source to target
transformation. Specifically, the present invention employs a
common ontology model into which both the source RDBS
and target RDBS can be mapped. By mapping the source and
target RDBS into a common ontology model, the present
invention derives interrelationships among their tables and
fields, and uses the interrelationships to determine a suitable
SQL query for transforming databases conforming with the
source RDBS into databases conforming with the target
RDBS.

[0122] The present invention can also be used to derive
executable code that transforms source relational databases
into the target relational databases. In a preferred embodi-
ment, the present invention creates a Java program that
executes the SQL query using the JDBC (Java Database
Connectivity) library. In an alternative embodiment the Java
program manipulates the databases directly, without use of
an SQL query.

[0123] For enterprise applications, SQL queries generated
by the present invention are preferably deployed within an
Enterprise Application Integration infrastructure.

[0124] Although the source and target RDBS are mapped
into a common ontology model, the derived transformations
of the present invention go directly from source RDBS to
target RDBS without having to transform data via an onto-
logical format. In distinction, prior art Universal Data Model
approaches transform via a neutral model.

[0125] The present invention applies to N relational data-
base schema, where N=2. Using the present invention, by
mapping the RDBS into a common ontology model, data can
be moved from any one of the RDBS to any other one. In
distinction to prior art approaches that require on the order
of N? mappings, the present invention requires at most N
mappings.

[0126] A “mapping” from an RDBS into an ontology
model is defined as:

[0127] (i) an association of each table from the RDBS
with a class in the ontology model, in such a way that
rows of the table correspond to instances of the class;
and

Oct. 28, 2004

[0128] (ii) for each given table from the RDBS, an
association of each column of the table with a property
or a composition of properties in the ontology model,
the source of which is the class corresponding to the
given table and the target of which has a data type that
is compatible with the data type of the column.

[0129] A mapping from an RDBS into an ontology model
need not be surjective. That is, there may be classes and
properties in the ontology that do not correspond to tables
and columns, respectively, in the RDBS. A mapping is useful
in providing a graph representation of an RDBS.

[0130] In general, although a mapping from an RDBS into
an ontology model may exist, the nomenclature used in the
RDBS may differ entirely from that used in the ontology
model. Part of the utility of the mapping is being able to
translate between RDBS language and ontology language. It
may be appreciated by those skilled in the art, that in
addition to translating between RDBS table/column lan-
guage and ontology class/property language, a mapping is
also useful in translating between queries from an ontology
query language and queries from an RDBS language such as
SQL (standard query language).

[0131] Reference is now made to FIG. 5, which is a first
simplified illustration of a mapping from an RDBS into an
ontology model, in accordance with a preferred embodiment
of the present invention. Shown in FIG. 5 is a table 500,
denoted T1, having four columns denoted C1, C2, C3 and
C4. Also shown in FIG. 1 is an ontology model 550 having
a class denoted K1 and properties P1, P2, P3 and P4 defined
on class T1. The labeling indicates a mapping from table T1
into class K1, and from columns C1, C2, C3 and C4 into
respective properties P1, P2, P3 and P4.

[0132] Reference is now made to FIG. 6, which is a
second simplified illustration of a mapping from an RDBS
into an ontology model, in accordance with a preferred
embodiment of the present invention. Shown in FIG. 6 are
table T1 from FIG. 5, and a second table 600, denoted T2,
having four columns denoted D1, D2, D3 and D4. Column
C1 of table T1 is a key; i.e., each entry for column C1 is
unique, and can be used as an identifier for the row in which
it is situated. Column D3 of table T2 refers to table T1, by
use of the key from column C1. That is, each entry of
column D3 refers to a row within table T1, and specifies
such row by use of the key from C1 for the row.

[0133] Also shown in FIG. 6 is an ontology model 650
having two classes, denoted K1 and K2. Class K1 has
properties P1, P2, P3 and P4 defined thereon, and class K2
has properties Q1, Q2, Q4 and S defined thereon. Property
S has as its source class K1 and as its target class K2. The
labeling indicates a mapping from table T1 into class K1,
and from columns C1, C2, C3 and C4 into respective
properties P1, P2, P3 and P4. The fact that C1 serves as a key
corresponds to property P1 being one-to-one, so that no two
distinct instances of class K1 have the same values for
property P1.

[0134] The labeling also indicates a mapping from table
T2 into class K2, and from columns D1, D2 and D4 into
respective properties Q1, Q2 and Q4. Column D3 corre-
sponds to a composite property P1oS, where o denotes
function composition. In other words, column D3 corre-
sponds to property P1 of S(K2).

US 2004/0216030 A1l

[0135] The targets of properties P1, P2, P3, P4, Q1, Q2
and Q4 are not shown in FIG. 6, since these properties
preferably map into fundamental types corresponding to the
data types of the corresponding columns entries. For
example, the target of P1 may be an integer, the target of P2
may be a floating point number, and the target of P3 may be
a character string. Classes for such fundamental types are
not shown in order to focus on more essential parts of
ontology model 650.

[0136] Classes K1 and K2, and property S are indicated
with dotted lines in ontology model 650. These parts of the
ontology are transparent to the RDBS underlying tables T1
and T2. They represent additional structure present in the
ontology model which is not directly present in the RDBS.

[0137] Given a source RDBS and a target RDBS, in a
preferred embodiment of the present invention an appropri-
ate transformation of source to target RDBS is generated by:

[0138] (i) mapping the source and target RDBS into a
common ontology model;

[0139] (i) representing fields of the source and target
RDBS in terms of properties of the ontology model,
using symbols for properties;

[0140] (iii) deriving expressions for target symbols in
terms of source symbols; and

[0141] (iv) converting the expressions into one or more
SQL queries.

[0142] Reference is now made to FIG. 7, which is a
simplified illustration of relational database transformations
involving constraints and joins, in accordance with a pre-
ferred embodiment of the present invention.

[0143] XML Schema

[0144] As described in detail hereinbelow, the present
invention preferably uses an ontology model to determine an
XSLT transformation that accomplishes a desired source to
target transformation. Specifically, the present invention
employs a common ontology model into which both the
source XML schema and target XML schema can be
mapped. By mapping the source and target XML schema
into a common ontology model, the present invention
derives interrelationships among their elements and
attributes, and uses the interrelationships to determine suit-
able XSLT script for transforming documents generating
documents conforming with the target XML schema from
documents conforming with the source XML schema.

[0145] The present invention can also be used to derive
executable code that transforms source XML documents
into the target XML documents. In a preferred embodiment,
the present invention packages the derived XSLT script with
a Java XSLT engine to provide an executable piece of Java
code that can execute the transformation.

[0146] Preferably, this is used to deploy XSLTs within an
EAI product such as Tibco. Specifically, in a preferred
embodiment of the present invention, a function (similar to
a plug-in) is installed in a Tibco MessageBroker, which uses
the Xalan XSLT engine to run XSLT scripts that are pre-
sented in text form. As an optimization, the XSLT script files
are preferably compiled to Java classfiles.

Oct. 28, 2004

[0147] Reference is now made to FIG. 8, which is a
simplified illustration of use of a preferred embodiment of
the present invention to deploy XSLT scripts within an EAI
product such as Tibco.

[0148] User Interface

[0149] Applicant has developed a software application,
named COHERENCE™, which implements a preferred
embodiment of the present invention to transform data from
one schema to another. Coherence enables a user

[0150]

[0151] to build an ontology model into which both
the source and target RDBS can be mapped;

[0152] to map the source and target RDBS into the
ontology model; and

[0153] to impose constraints on properties of the
ontology model.

to import source and target RDBS;

[0154] Once the mappings are defined, Coherence gener-
ates an SQL query to transform the source RDBS into the
target RDBS.

[0155] Reference is now made to FIGS. 9A-9E, which are
illustrations of a user interface for transforming data from
one relational database schema to another using the Coher-
ence software application, in accordance with a preferred
embodiment of the present invention. Shown in FIG. 9A is
a main Coherence window 905 with a left pane 910 and a
right pane 915. Window 905 includes three primary tabs
920, 925 and 930, labeled Authoring, Mapping and Trans-
formations, respectively. Authoring tab 920 is invoked in
order to display information about the ontology model, and
to modify the model by adding, deleting and editing classes
and properties. Mapping tab 925 is invoked in order to
display information about the RDBS and the mappings of
the RDBS into the ontology, and to edit the mappings.
Transformations tab 930 is invoked to display transforma-
tions in the form of SQL queries, from a source RDBS into
a target RDBS. In FIG. 9A, tab 920 for Authoring is shown
selected.

[0156] Left pane 910 includes icons for two modes of
viewing an ontology: icon 935 for viewing in inheritance
tree display mode, and icon 940 for viewing in package
display mode.

[0157] Inheritance tree display mode shows the classes of
the ontology in a hierarchical fashion corresponding to
superclass and subclass relationships. As illustrated in FIG.
9A, in addition to the fundamental classes for Date, Number,
Ratio, String and NamedElement, there is a class for City.
Corresponding to the class selected in left pane 910, right
pane 915 displays information about the selected class.
Right pane 915 includes six tabs for class information
display: tab 945 for General, tab 950 for Properties, tab 955
for Subclasses, tab 960 for Enumerated Values, tab 965 for
Relations and tab 970 for XML schema. Shown in FIG. 9A
is a display under tab 945 for General. The display includes
the name of the class, Being, and the package to which it
belongs; namely, fundamental. Also shown in the display is
a list of immediate superclasses, which is an empty list for
class Being. Also shown in the display is a textual descrip-
tion of the class; namely, that Being is a root class for all
classes.

US 2004/0216030 A1l

[0158] Tab 960 for Enumerated Values applies to classes
with named elements; i.e., classes that include a list of all
possible instances. For example, a class Boolean has enu-
merated values “True” and “False,” and a class Gender may
have enumerated values “Male” and “Female.”

[0159] FIG. 9B illustrates package display mode for the
ontology. Packages are groups including one or more ontol-
ogy concepts, such as classes, and properties. Packages are
used to organize information about an ontology into various
groupings. As illustrated in FIG. 9B, there is a fundamental
package that includes fundamental classes, such as Being,
Boolean, Date and Integer. Also shown in FIG. 9B is a
package named WeatherFahrenheit, which includes a class
named City.

[0160] As shown in FIG. 9B, City is selected in left pane
910 and, correspondingly, right pane 915 displays informa-
tion about the class City. Right pane 915 display information
under Tab 950 for Properties. As can be seen, class City
belongs to the package WeatherFahrenheit, and has four
properties; namely, Celsius of type RealNumber, city of type
String, Fahrenheit of type RealNumber and year of type
RealNumber. FIG. 9B indicates that the property Celsius
satisfies a constraint. Specifically, Celsius=5*(Fahrenheit
-32)/9.

[0161] In FIG. 9C, the tab 925 for Mapping is shown
selected. As shown in the left pane of FIG. 9C, two RDBS
have been imported into Coherence. A first RDBS named
WeatherCelsius, which includes a table named Towns, and a
second RDBS named WeatherFahrenheit, which includes a
table named Cities.

[0162] The table named Cities is shown selected in FIG.
9C, and correspondingly the right pane display information
regarding the mapping of Cities into the ontology. As can be
seen, the table Cities contains three fields; namely, Fahren-
heit, city and year. The table Cities has been mapped into the
ontology class City, the field Fahrenheit has been mapped
into the ontology property Fahrenheit, the field city has been
mapped into the ontology property name, and the field year
has been mapped into the ontology property year. The RDBS
WeatherFahrenheit will be designated as the source RDBS.

[0163] When tab 925 for Mapping is selected, the right
pane includes three tabs for displaying information about the
RDBS: tab 975 for Map Info, tab 980 for Table Info and tab
985 for Foreign Keys.

[0164] The RDBS named WeatherCelsius is displayed in
FIG. 9D. As can be seen, the table Towns contains three
fields; namely, town, Celcius and year. The table Towns has
been mapped into the ontology class City, the field town has
been mapped into the ontology property name, the field
Celcius has been mapped into the ontology property Celcius,
and the field year had been mapped into the ontology
property year. The RDBS WeatherCelcius will be designated
as the target RDBS.

[0165] As such, the target RDBS is

TABLE 1

Towns

Town Celcius Year

Oct. 28, 2004

[0166] and the source RDBS is
TABLE II
Cities
Fahrenheit City Year
[0167] In FIG. 9E, the tab 930 for Transformations is

shown selected. As can be seen in the right pane, the source
table is Cities and the target table is Towns. The SQL query

INSERT INTO WeatherCelcius. Towns(CELCIUS, TOWN, YEAR)
(SELECT
(5 * (A.FAHRENHEIT - 32)/9) AS CELCIUS,
A.CITY AS TOWN,
A.YEAR AS YEAR
FROM
WeatherFahrenheit.Cities A);

[0168]

[0169] Reference is now made to FIG. 10, which is an
illustration of a user interface for an application that imports
an RDBS into Coherence, in accordance with a preferred
embodiment of the present invention. Shown in FIG. 10 is
a window 1010 for a schema convertor application. Prefer-
ably, a user specifies the following fields:

[0170] Database Name 1020: What Oracle refers to
as an SID (System Identifier).

[0171] Host Name 1030: The name of an Oracle 8i
server (or Global Database Name).

[0172] Port 1040: Port number

[0173] Username 1050: The username of a user with
privileges to the relevant schemas.

[0174] Password 1060: The password of the user with
privileges to the relevant schemas.

[0175] Oracle schema 1070: The schema or database
in Oracle to be converted to .SML format. The .SML
format is an internal RDBS format used by Coher-
ence. When importing more than one schema, a
semicolon (;) is placed between schema names.

[0176] Coherence schema 2080: The label identify-
ing the RDBS that is displayed on the Mapping Tab
in Coherence. This field is optional; if left blank, the
Oracle schema name will be used.

[0177] Output File 1090: A name for the .SML file
generated.

[0178] Reference is now made to FIGS. 11A-11R, which
are illustrations of a for transforming data from one XML
schema to another using the Coherence software application,
in accordance with a preferred embodiment of the present
invention. Shown in FIG. 11A is a window with package
view of an Airline Integration ontology model in its left lane.
The left pane displays classes from a fundamental package.
A class Date is shown highlighted, and its properties are
shown in the right pane. Fundamental packages are used for
standard data types. Shown in FIG. 11B is a window with
a hierarchical view of the Airline Integration ontology model

accomplishes the desired transformation.

US 2004/0216030 A1l

in its left pane. The left pane indicates that FrequentFlyer is
a subclass of Passenger, Passenger is a subclass of Person,
and Person is a subclass of Being. The right pane displays
general information about the class FrequentFlyer.

[0179] FIG. 11C shows a window used for opening an
existing ontology model. In the Coherence software appli-
cation, ontology models are described using XML and
stored in .oml files. Such files are described in applicant’s
co-pending patent application U.S. Ser. No. 09/866,101 filed
on May 25, 2001 and entitled METHOD AND SYSTEM
FOR COLLABORATIVE ONTOLOGY MODELING, the
contents of which are hereby incorporated by reference.

[0180] FIG. 11D shows the hierarchical view from FIG.
11B, indicating properties of the FrequentFlyer class. The
property fullName is highlighted, and a window for con-
straint information indicates that there is a relationship
among the ontology properties firstName, lastName and
fullName; namely, that fullName is the concatenation of
firstName and lastName with a white space therebetween.
This relationship is denoted as Constraint 5.

[0181] FIG. 11E shows the hierarchical view from FIG.
11B, indicating test instance of the Passenger class. A list of
instances is displayed in the right pane, along with property
values for a specific selected instance from the list.

[0182] FIG. 11F shows two imported XML schema for
airline information. FIG. 11G shows a window for import-
ing XML schema into Coherence. FIG. 11H shows a
window with a display of an imported XML schema for
British Airways, with a list of complexTypes from the
imported schema. The complexType Journey is selected, and
the right pane indicates that Journey and its elements are
currently not mapped to a class and properties of the
ontology model.

[0183] FIG. 11I shows a window for generating a map-
ping from the British Airways XML schema into the Airline
Integration ontology model. The ontology class Flight is
shown selected to correspond to the XML ComplexType
Journey. FIG. 11] shows the left pane from FIG. 11H, with
the right pane now indicating that the XML complexType
Journey from the British Airways XML schema has been
mapped to the class Flight from the Airline Integration
ontology model. FIG. 11K shows the left pane from FIG.
11H, with a window for selecting properties and indirect
properties (i.e., compositions of properties) to correspond to
elements from the XML schema. Shown selected in FIG.
11K is a property distanceInMiles() of the class Flight. FIG.
11L shows the left pane from FIG. 11H, with the right pane
now indicated that Journey has been mapped to Flight, and
the XML element distance_in_miles within the complex-
Type Journey has been mapped to the property distanceln-
Miles() of the class Flight. FIG. 11M shows the left pane
from FIG. 11H, with the right pane now indicating that the
mapping has been extended to all XML elements of the
complexType Journey, showing the respective properties to
which each element is mapped. FIG. 11N shows schema
info for the complexType Journey, listing its elements and
their data types.

[0184] FIG. 110 shows a window for specifying a trans-
formation to be derived. Shown in FIG. 10 is a request to
derive a transformation from a source data schema, namely,
the imported SwissAir XML schema to a target data schema,

Oct. 28, 2004

namely, the imported British Airways XML schema. Shown
in FIG. 11P is an XSLT script generated to transform XML
documents conforming to the SwissAir schema to XML
documents conforming to the British Airways schema. FIG.
11Q shows a specific transformation of a SwissAir XML
document to a British Airways XML document, obtained by
applying the derived XSLT script from FIG. 11P. Finally,
FIG. 11R shows a display of the newly generated British
Airways XML document with specific flights and passen-
gers.

EXAMPLES

[0185] For purposes of clarity and exposition, the work-
ings of the present invention are described first through a
series of twenty-three examples, followed by a general
description of implementation. Two series of examples are
presented. The first series, comprising the first eleven
examples, relates to RDBS transformations. For each of
these examples, a source RDBS and target RDBS are
presented as input, along with mappings of these schema
into a common ontology model. The output is an appropriate
SQL query that transforms database tables that conform to
the source RDBS, into database tables that conform to the
target RDBS. Each example steps through derivation of
source and target symbols, expression of target symbols in
terms of source symbols and derivation of an appropriate
SQL query based on the expressions.

[0186] The second series of examples, comprising the last
twelve examples, relates to XSLT transformation. For each
of these examples, a source XML schema and target XML
schema are presented as input, along with mappings of these
schema into a common ontology model. The output is an
appropriate XSLT script that transforms XML documents
that conform to the source schema into XML documents that
conform to the target schema.

A First Example

Schoolchildren

[0187]
form:

In a first example, a target table is of the following

TABLE III

Target Table T for First Example

Child_ Name Mother_ Name School_Location Form

[0188] Four source tables are given as follows:

TABLE IV

Source Table S, for First Example

Name School__Attending Mother_ NI__Number

US 2004/0216030 A1l Oct. 28, 2004

[0189] indicated in FIG. 12, the unique properties of the ontology
are identified as:
TABLE V
TABLE VIII
Source Table S, for First Example Unique Properties within Ontology for First Example
NI_Number Name Region Car_ Number Property Property Index
name(Child) 6
national _insurance_number(Person) 4
[0190] name(School) 10
TABLE VI [0193] The mapping of the target schema into the ontology
Source Table S; for First Example is as follows:
Name Location HeadTeacher TABLE IX
Mapping from Target schema to Ontology for First Example
[0191] Property
schema Ontology Index
TABLE VII
T Class: Child
Source Table S, for First Example T.Child_Name Property: name(Child) 6
T.Mother_ Name Property: name(mother(Child)) 305
Name Year Form T.School__Location Property: 1209
location(school__attending(Child))
T.Form Property: current_school form(Child) 8

[0192] The underlying ontology is illustrated in FIG. 12.
The dotted portions of the ontology in FIG. 12 show [0194] The symbol o is used to indicate composition of

additional ontology structure that is transparent to the rela- properties. The mapping of the source schema into the
tional database schema. Using the numbering of properties ontology is as follows:
TABLE X

Mapping from Source schema to Ontology for First Example

Property
schema Ontology Index
S, Class: Child
S;.Name Property: name(Child) 6
S;.School__Attending Property: name(school__attending(Child)) 1009
S;-Mother_ NI_ Number Property: national _insurance_number(mother(Child)) 405
S, Class: Person
S,.NI__Number Property: national insurance_ number(Person) 4
S,.Name Property: name(Person) 3
S,.Region Property: region__of_residence(Person) 1
S,.Car__ Number Property: car_registration__number(Person) 2
S Class: School
S;.Name Property: name(School) 10
S;.Location Property: location(School) 12
S;.HeadTeacher Property: name(headteacher(School)) 3011
S, Class: Child
S,.Name Property: name(Child) 6
S, Year Property: year_of schooling(Child} 7
S,.Form Property: current_school form(Child) 8

US 2004/0216030 A1l

[0195] The indices of the source properties are:

TABLE XI

Source Symbols for First Example

Source Table Source Symbols
S, 1009067*
405067*
S, 3047t
lo4™
2047
Ss 120107*
30110107t
S, To67*
806"

[0196] The symbols in Table XI relate fields of a source
table to a key field. Thus in table S, the first field, S;.Name
is a key field. The second field, S;.School_Attending is
related to the first field by the composition 1009067, and the
third field, S; . Mother_NI_Number is related to the first field
by the composition 405067". In general, if a table contains
more than one key field, then expressions relative to each of
the key fields are listed.

[0197] The inverse notation, such as 6™ is used to indicate
the inverse of property 6. This is well defined since property
6 is a unique, or one-to-one, property in the ontology model.

The indices of the target properties, keyed on Child_Name

Oct. 28, 2004
11

[0200] Rule 1: When a target symbol is represented using
a source symbols, say (aob™") from a source table, S, then
the column of S mapping to a is used in the SELECT clause
of the SOL query and the column of S mapping to b is used
in the WHERE clause.

[0201] Rule 2: When a target symbol is represented as a
composition of source symbols, say (aob™) o (boc™), where
aob™! is taken from a first source table, say S, and boc™ is
taken from a second source table, say S,, then S, and S, must
be joined in the SQL query by the respective columns
mapping to b.

[0202] Rule 3: When a target symbol is represented using
a source symbols, say (aob™?), from a source table, S, and is
not composed with another source symbol of the form boc™,
then table S must be joined to the target table through the

column mapping to b.

[0203] When applied to the following sample source data,
Tables XIII, XIV, XV and XVI, the above SQL query
produces the target data in Table XVII.

TABLE XIII

Sample Source Table S, for First Example

are:
TABLE XII Name School__Attending Mother_ NI Number
Target Symbols for First Example Daniel Ashton Chelsea Secondary School 123456
Target Table Target Symbols Paths Peter Brown Warwick School for Boys 673986
T 30506-" (3047 0 (405067 Tan Butler Warwick School for Boys 234978
1209067* (120107 o (1009067%) Matthew Davies Manchester Grammar School 853076
80671 (8067%)

[0198] Based on the paths given in Table XII, the desired
SQL query is:

INSERT INTO T(Child_ Name, Mother_ Name, School_Location, Form)
(SELECT
S;.Name AS Child_ Name,
S,.Name AS Mother_ Name,
S;.Location AS School_Location,
S, Form AS Form
FROM
S1, S, S5, Sy
WHERE
S,.NI_Number = S;.Mother_ NI Number AND
S;.Name = S,.School__Attending AND
S,.Name = S;.Name);

[0199] The rules provided with the examples relate to the
stage of converting expressions of target symbols in terms of

source symbols, into SQL queries. In general,

Alex Douglas Weatfields Secondary School 862085

Emma Harrison = Camden School for Girls 275398
Martina Howard Camden School for Girls 456398
[0204]

TABLE XIV

Sample Source Table S, for First Example

NI_Number Name Region Car__Number
123456 Linda London NULL
673986 Amanda Warwick NULL
456398 Claire Cambridgeshire =~ NULL
862085 Margaret NULL NULL
234978 Amanda NULL NULL
853076 Victoria Manchester NULL
275398 Elizabeth London NULL

US 2004/0216030 A1l

[0205]

TABLE XV

Sample Source Table S; for First Example

Name Location HeadTeacher

Manchester Grammar School Manchester M. Payne

Camden School for Girls London J. Smith

Weatfields Secondary School Cambridgeshire =~ NULL

Chelsea Secondary School London I. Heath

Warwick School for Boys Warwickshire NULL
[0206]

TABLE XVI

Sample Source Table S, for First Example

Name Year Form

Peter Brown 7 Lower Fourth

Daniel Ashton 10 Mid Fifth

Matthew Davies 4 Lower Two

Emma Harrison 6 Three

James Kelly 3 One

Greg McCarthy 5 Upper Two

Tina Reynolds 8 Upper Fourth
[0207]

TABLE XVII
Sample Target Table T for First Example

Child_ Name Mother_ Name School Location Form
Daniel Ashton Linda London Mid Fifth
Peter Brown Amanda Warwickshire Lower Fourth
Matthew Davies Victoria Manchester Lower Two
Emma Harrison Elizabeth London Three

A Second Example

Employees

[0208] In a second example, a target table is of the
following form:

TABLE XVIII

Target Table T for Second Example

Name Department Supervisor Room#

[0209] Four source tables are given as follows:

TABLE XIX

Source Table S, for Second Example

Emp_ ID# Name Department

Oct. 28, 2004

[0210]
TABLE XX
Source Table S, for Second Example
Employee_ Name Supervisor Project
[0211]
TABLE XXI
Source Table S; for Second Example
ID# Room__Assignment Telephone#
[0212]

TABLE XXII

Source Table S, for Second Example

Department Budget

[0213] The underlying ontology is illustrated in FIG. 13.
The dotted portions of the ontology in FIG. 13 are additional
ontology structure that is transparent to the relational data-
base schema. The unique properties of the ontology are:

TABLE XXIII

Unique Properties within Ontology for Second Example

Property Property Index
name(Employee) 3
ID#(Employee) 4

[0214] The mapping of the target schema into the ontology
is as follows:

TABLE XXIV

Mapping from Target schema to Ontology for Second Example

Property

schema Ontology Index
T Class: Employee
T.Name Property: name(Employee) 3
T.Department Property: 807

code(departmental _ affiliation(Employee))
T.Supervisor Property: name(supervisor(Employee)) 306
T.Room# Property: room__number(Employee) 1

US 2004/0216030 A1l Oct. 28, 2004
13

[0215] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE XXV

Mapping from Source schema to Ontology for Second Example

Property
schema Ontology Index
S, Class: Employee
S;.Emp_ID# Property: ID#Employee) 4
S,.Name Property: name(Employee) 3
S,.Department Properly: code(departmental affiliation(Employee)) 807
S, Class: Employee
S,.Employee_Name Property: name(Employee) 3
S,.Supervisor Property: name(supervisor(Employee)) 306
S,.Project Property: project_assignment(Employee)
S; Class: Employee
S;.ID# Property: ID#Employee) 4
S;.Room_ Assignment Property: room_ number(Employee) 1
S;.Telephone# Property: tel#(Employee) 2
4 Class: Department
S,.Department Property: code(Department) 8
S,-Budget Property: budget__amount(Department) 9
[0216] The indices of the source properties are:
-continued
TABLE XXVI
Source Symbols for Second Example WHERE
S,.Employee Name = S;.Name AND S;.ID# =
Source Table Source Symbols
S,.Emp_ID#);
S, 30471
807047
4037t
S gozogj [0219] It is noted that Table S, not required in the SQL.
060 . .
B 5031 When applied to the following sample source data, Tables
S5 o4t XXVIII, XXIX and XXX, the above SQL query produces
1 .
2047 the target data in Table XXXI.
S, 908
TABLE XXVIII
[0217] The indices of the target properties, keyed on Name
are: Sample Source Table S, for Second Example
TABLE XXVII Emp_ ID# Name Department
Target Symbols for Second Example
198 Patricia SW
Target Table Target Symbols Paths ,
247 Eric QA
T 807037 (807037 386 Paul T
306037" (306037™)
1037t (1o47%) o (40374
[0220]
[0218] Based on the paths given in Table XXVII, the
desired SQL query is: TABLE XXIX
Sample Source Table S, for Second Example
INSERT INTO T(Name, Department, Supervisor, Room#)
(SELECT Employee_ Name Supervisor Project
S;.Name AS Name,
S,;.Department AS Department, Eric John Release 1.1

S,.Supervisor AS Supervisor,

S;.Room__Assignment AS Room# .
FROM Paul Richard Release 1.1

S1; 85 S5

Patricia George Release 1.1

US 2004/0216030 A1l

Oct. 28, 2004

[0221] ontology structure that is transparent to the relational data-
base schema. The unique properties of the ontology are:
TABLE XXX
TABLE XXXV
Sample Source Table S; for Second Example
Unique Properties within Ontology for Third Example
ID# Room__Assignment Telephone#
Property Property Index
386 10 106
198 8 117 name(Airport) 1
247 7 123 ID(Flight) 6
[0222] [0227] The mapping of the target schema into the ontology
is as follows:
TABLE XXXI
TABLE XXXVI
Sample Target Table T for Second Example
Mapping from Target schema to Ontology for Third Example
Name Department Supervisor Room#
Property
. schema Ontology Index
Patricia SW George 8
Eric QA John 7 T Class: Flight
Paul T Richard 10 T FlightID Property: ID#(Flight) 6
T.DepartingCity Property: location(from__airport(Flight)) 204
T.ArrivingCity Property: location(to__airport(Flight)) 205
A Third Example
Airline Flights [0228] The mapping of the source schema into the ontol-
))) ogy is as follows:
[0223] In a third example, a target table is of the following
form: TABLE XXXVII
TABLE XXXII Mapping from Source schema to Ontology for Third Example
Property
Target Table T for Third Example schema Ontology Index
. o L S, Class: Airport
FlightID DepartingCity ArrivingCity S, .Index Property: Index(Airport) 3
S;.APName Property: name(Airport) 1
S;.Location Property: location(Airport) 2
S, Class: Flight
[0224] Two source tables are given as follows: S, FlightlD Property: ID#(Flight) 6
S,.FromAirport ~ Property: name(from_ airport(Flight)) lo4
S,.ToAirport Property: name(to_airport(Flight)) 105

TABLE XXXIII

Source Table S; for Third Example

Index APName Location

[0225]

TABLE XXXIV

Source Table S, for Third Example

FlightID FromAirport ToAirport

[0226] The underlying ontology is illustrated in FIG. 14.
The dotted portions of the ontology in FIG. 14 are additional

[0229] The indices of the source properties are:

TABLE XXXVIII

Source Symbols for Third Example

Table Source Symbols

S, 1037t
2037t
30171
20171

S, lo4o67*
1050671

US 2004/0216030 A1l

[0230] The indices of the target properties, keyed on
FlightID are:

TABLE XXXIX

Target Symbols for Third Example

Table Target Symbols Paths

T 204067t
205067*

(2017%) o (lodo6™)
(2017 o (10506™)

[0231] Since the path (2017") appears in two rows of Table
XXXIX, it is necessary to create two tables for S, in the SQL
query. Based on the paths given in Table XXXVII, the
desired SQL query is:

INSERT INTO T(FlightID, DepartingCity, ArrivingCity)

(SELECT
S,.FlightID AS FlightID,
S,;.Location AS DepartingCity,
Sys.Location AS ArrivingCity
FROM
Sl Sll> Sl S127 SZ
WHERE
Sy1.-APName = S,.FromAirport AND
S,5.APName = S,.ToAirport);
[0232] In general,

[0233] Rule 4: When the same source symbol is used
multiple times in representing target symbols, each occur-
rence of the source symbol must refer to a different copy of
the source table containing it.

[0234] When applied to the following sample source data,
Tables XL and XLI, the above SQL query produces the
target data in Table XLII.

TABLE XL

Sample Source Table S, for Third Example

Index APName Location

1 Orly Paris

2 JFK New York

3 LAX Los Angeles

4 HNK Hong Kong

5 TLV Tel Aviv

6 Logan Boston

[0235]
TABLE XLI
Sample Source Table S, for Third Example

FlightID FromAirport ToAirport
001 Orly JFK
002 JFK LAX
003 TLV HNK

004 Logan TLV

Oct. 28, 2004

[0236]
TABLE XLII
Sample Target Table T for Third Example
FlightID DepartingCity ArrivingCity
001 Paris New York
002 New York Los Angeles
003 Tel Aviv Hong Kong
004 Boston Tel Aviv
A Fourth Example
Lineage
[0237] 1In a fourth example, a target table is of the follow-
ing form:
TABLE XLIII
Target Table T for Fourth Example
ID Name Father Name

[0238] One source table is given as follows:

TABLE XLIV

Source Table S for Fourth and Fifth Examples

ID Name Father_ ID

[0239] The underlying ontology is illustrated in FIG. 15.
The dotted portions of the ontology in FIG. 15 are additional
ontology structure that is transparent to the relational data-
base schema. The unique properties of the ontology are:

TABLE XLV

Unique Properties within Ontology for Fourth and Fifth Examples

Property Property Index
name(Person) 1
ID#(Person) 2

[0240] The mapping of the target schema into the ontology
is as follows:

TABLE XLVI

Mapping from Target schema to Ontology for Fourth Example

Property
schema Ontology Index
T Class: Person
T.ID Property: ID#(Person) 2
T.Name Property: name(Person) 1

T.Father Name Property: name(father(Person)) 103

US 2004/0216030 A1l

[0241] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE XLVII

Mapping from Source schema to Ontology
for Fourth and Fifth Examples

Property
schema Ontology Index
S Class: Person
S.ID Property: ID#(Person) 2
S.Name Property: name(Person) 1
S.Father_ID Property: ID#(father(Person)) 203

[0242] The indices of the source properties are:

TABLE XLVIII

Source Symbols for Fourth and Fifth Examples

Table Source Symbols
S, 1027*
203027

[0243] The indices of the target properties, keyed on ID
are:

TABLE XLIX

Target Symbols for Fourth Example

Table Target Symbols Paths
T 1027t (1027
103027* (1027 0 (203027

[0244] Based on the paths given in Table XLIX, the
desired SQL query is:

INSERT INTO T(ID, Name, Father_ID)

Oct. 28, 2004

[0246] One source table is given as above in Table XLIV.

[0247] The underlying ontology is again illustrated in
FIG. 15. The unique properties of the ontology are as above
in Table XLV.

[0248] The mapping of the target schema into the ontology
is as follows:

TABLE LI

Mapping from Target schema to Ontology for Fifth Example

Property
schema Ontology Index
T Class: Person
T.ID Property: ID#(Person) 2
T.Name Property: name(Person) 1
T.Grandfather_ Name Property: 10303

name(father(father(Person)))

[0249] The mapping of the source schema into the ontol-
ogy is given in Table XLVII above.

[0250] The indices of the source properties are given in
Table XLVIII above.

[0251] The indices of the target properties, keyed on ID
are:

TABLE LII

Target Symbols for Fifth Example

Table Target Symbols Paths
T 1027t (1027%)
10303027* (1027 0 (203027 o

(203027

[0252] Based on the paths given in Table LII, the desired
SQL query is:

(SELECT INSERT INTO T(ID, Name, Grandfather_ ID)
S,.ID AS ID, (SELECT
S,.Name AS Name, S..ID AS ID, S,.Name AS Name,
S,.ID AS Father ID SS.ID AS Grandfather ID
FROM FROM
S$S.,SS, $S,SS,SS,
WHERE WHERE
S,.ID = Sl.FatherilD); SS.ID = Sz.FatherilD AND
S,.ID = S, .Father_ID);
A Fifth Example)
A Sixth Example
Lineage
Dog Owners
[0245] 1In a fifth example, the target property of Father-
_Name in the fourth example is changed to Grandfather- [0253] In asixth example, a target table is of the following
_Name, and the target table is thus of the following form: form:
TABLE L TABLE LIII
Target Table T for Fifth Example Target Table T for Sixth Example
ID Name Grandfather_ Name ID Name Dogs__Previous__Owner

US 2004/0216030 A1l

[0254] Two source tables are given as follows:

TABLE LIV

Oct. 28, 2004
17

[0259] The indices of the source properties are:

TABLE LIX

Source Table S, for Sixth Example

ID Name Dog

[0255]

TABLE LV

Source Table S, for Sixth Example

Owner Name Previous_ Owner

[0256] The underlying ontology is illustrated in FIG. 16.
The dotted portions of the ontology in FIG. 16 are additional
ontology structure that is transparent to the relational data-
base schema. The unique properties of the ontology are:

TABLE LVI

Unique Properties within Ontology for Sixth Example

Property Property Index
ID#(Person) 2
name(Dog) 6

[0257] The mapping of the target schema into the ontology
is as follows:

Source Symbols for Sixth Example

Table Source Symbols
Sy 1027*
603027"
S, 104067t
10506™*

[0260] The indices of the target properties, keyed on ID

are:
TABLE LX
Target Symbols for Sixth Example
Table Target Symbols Paths
T lo27" (1027

503027* (10506™%) o (603027%)

[0261] Based on the paths given in Table LX, the desired
SQL query is:

INSERT INTO T(ID, Name, Dogs_ Previous_ Owrer)

(SELECT
TABLE LVII S,.ID AS ID, S, Name AS Name,
S,.Previous__Owner AS Dogs_ Previous__Owner
Mapping from Target schema to Ontology for Sixth Example FROM
Si, S,
Property WHERE
schema Ontology Index S,.Name = S;.Dog);
T Class: Person
T.ID Property: ID#(Person) 2
T.Name Property: name(Person) 1
T.Dogs__Previous_ Owner Property: 503 A Seventh Example

previous_ owner(dog(Person))

[0258] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE LVIII

Mapping from Source schema to Ontology for Sixth Example

Property
schema Ontology Index
S, Class: Person
S,.ID Property: ID#(Person) 2
S;.Name Property: name(Person) 1
S,.Dog Property: name(dog(Person)) 603
S, Class: Dog
S,.Owner Property: name(owner(Dog)) lo4
S,.Name Property: name(Dog) 6

S,.Previous_ Owner Property: name(previous_owner(Dog)) 105

Employees

[0262] In a seventh example, a target table is of the
following form:

TABLE LXI

Target Table T for Seventh Example

ID Name Email Department

[0263] Five source tables are given as follows:

TABLE LXII

Source Table S; for Seventh Example

ID Department

US 2004/0216030 A1l

[0264]
TABLE LXIII
Source Table S, for Seventh Example
D Email
[0265]
TABLE LXIV
Source Table S, for Seventh Example
D Name
[0266]
TABLE LXV
Source Table S, for Seventh Example
D Email
[0267]
TABLE LXVI

Source Table S5 for Seventh Example

ID Department

[0268] The underlying ontology is illustrated in FIG. 17.
The dotted portions of the ontology in FIG. 17 are additional
ontology structure that is transparent to the relational data-
base schema. The unique properties of the ontology are:

TABLE LXVII

Unique Properties within Ontology for Seventh Example

Property Property Index

ID#(Person) 2

[0269] The mapping of the target schema into the ontology
is as follows:

TABLE LXVIII

Mapping from Target schema to Ontology for Seventh Example

schema Ontology Property Index
T Class: Person

T.ID Property: ID#(Person) 2
T.Name Property: name(Person) 1
T.Email Property: e-mail(Person) 3
T.Department Property: department(Person) 4

Oct. 28, 2004

[0270] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE LXIX

Mapping from Source schema to Ontology for Seventh Example

schema Ontology Property Index
S, Class: Employee

S..ID Property: ID#(Employee) 2
S, .Department Property: department(Employee) 4
S, Class: Employee

S,.ID Properly: ID#(Employee) 2
S,.Email Property: e-mail(Employee) 3
S; Class: Employee

S;.ID Property: ID#(Employee) 2
S;.Name Property: name(Employee) 1
S, Class: Employee

S,.ID Property: ID#(Employee) 2
S,.Email Property: e-mail(Employee) 3
Ss Class: Employee

Ss.ID Property: ID#(Employee) 2
Ss.Department Property: department(Employee) 4

[0271] The indices of the source properties are:

TABLE LXX

Source Symbols for Seventh Example

Table Source Symbols
Sy

4027"
S,

3027t
Ss

1027
S4

3027t
Ss

4027"

[0272] The indices of the target properties, keyed on ID
are:

TABLE LXXI

Target Symbols for Seventh Example

Table Target Symbols Paths
T
1027t (1027H)
30271 (3027H)
40271 (4027Y)

[0273] Based on the paths given in Table LXXI, the
desired SQL query is:

INSERT INTO T(ID, Name, Email, Department)

(SELECT
S..ID AS ID, S;.Name AS Name,
S,.Email AS Email,
S,.Department AS Department
FROM

S1, 55 S5

US 2004/0216030 A1l Oct. 28, 2004

[0278]
-continued
TABLE LXXIV
WHERE
S2ID = S,.ID AND S,.ID = $,.ID Sample Source Table S, for Seventh Example
UNION
SELECT ID Name
S,.ID AS ID,
S;.Name AS Name, 123 Jack
S,.Email AS Email, 456 TJan
S,.Department AS Department 789 Til
FROM 999 Joe
S1, S5 Sy 111 Jim
WHERE 888 Jeffrey
S,.ID = S,.ID AND S,.ID = S,.ID
UNION
SELECT
S,.ID AS ID, [0279]
S;.Name AS Name,
S,.Email AS Email, TABLE LXXV
Ss.Department AS Department
FROM Sample Source Table S, for Seventh Example
S1, S2: S35 Ss
WHERE ID Email
S,.ID = S,.ID and S,.ID = S,.ID and S.ID = S,.ID
UNION 999 joe@ company
SELECT 111 jim@ company
S,.ID AS ID, 888 Jeffrey@ company
S;.Name AS Name,
S,.Email AS Email,
Ss.Department AS Department
FROM [0280]
S1, S5 S4s Ss
WHERE TABLE LXXVI
S,.ID = S,.ID and S,.ID = S,.ID and
S,ID = S,.ID AND S..ID = S,.ID); Sample Source Table S5 for Seventh Example
ID Department
[0274] In general, 999 Sales
111 Business_ Dev
888 PdM
[0275] Rule 5: When a source symbol used to represent a
target symbol is present in multiple source tables each such
table must be referenced in an SOL querv and the resultant [0281]
queries joined.
[0276] When applied to the following sample source data, TABLE LXXVII
Tables LXXII, LXXIII, LXXIV, LXXV and LXXVI, the Sample Target Table T for Seventh Example
above SQL query produces the target data in Table LXXVII.
ID Name Email Department
TABLE LXXII 123 Jack jack@company SW
456 Jan jan@company PdM
Sample Source Table S, for Seventh Example 789 Jill jill@company SwW
111 Jim jim@company Business__Dev
D Department 888 Jeffrey jeffrey@company PdM
999 Joe joe@company Sales
123 SW
456 PdM
789 SW
An Eighth Example
[0277] Employees
TABLE LXXIII [0282] In an cighth example, a target table is of the
following form:
Sample Source Table S, for Seventh Example
D Email TABLE LXXVIII
123 jack@company Target Table T for Eighth Example

456 jan@company
789 jill@company Emp_ Name Emp__Division Emp_Tel_No

US 2004/0216030 A1l Oct. 28, 2004

20
[0283] Two source tables are given as follows:
TABLE LXXXIII-continued
TABLE LXXIX
Mapping from Source schema to Ontology for Fighth Example
Source Table S, for Eighth Example Property
schema Ontology Index
Employee_Division Employee_Tel# Employee_ Name Room#
S,.Employee__Tel Property: telephone__number 2
(Employee)
S,.Division Property: division(Employee) 4
[0284]
TABLE LXXX [0288] The indices of the source properties are:
Source Table S, for Eighth Example
TABLE LXXXIV
Name Employee__Tel Division
Source Symbols for Eighth Example
. L. . Table Source Symbols
[0285] The underlying ontology is illustrated in FIG. 18.
. . .. -1
The dotted portions of the ontology in FIG. 18 are additional S ‘210171
. . 0
ontology structure that is transparent to the relational data- 3011
base schema. The unique properties of the ontology are: S, 201’1
4o01™
TABLE LXXXI
Unique Properties within Ontology for Eighth Example [0289] The indices of the target properties, keyed on
Property Property Index Emp_Name are:
name(Employee) 1 TABLE LXXXV

Target Symbols for Eighth Example
[0286] The mapping of the target schema into the ontology

Table Target Symbols Paths
is as follows:
T 4017t (4017
2017t (2017

TABLE LXXXII

Mapping from Target schema to Ontology for Eighth Example
[0290] Since each of the source tables S; and S, suffice to

Property . . .
schema Ontology Index generaFe the Farget table T, the desired SQL is a union of a
query involving S, alone and a query involving S, alone.
T Class: Employee B . .
T-Fmp. Name Property: name(Employec) S Spe.c1ﬁcally, based on the paths given in Table LXXXYV, the
T.Emp_ Division Property: division 4 desired SQL query 1s:
(Employee)
T.Emp__Tel__No Property: telephone__number 2
(Employee)
INSERT INTO T(Emp_ Name, Emp_ Division, Emp_ Tel_ No)
(SELECT
. . S,.Employee_ Name AS Emp_ Name,
[0287] The mapping of the source schema into the ontol- $,.Employec_Division AS Emp_Division,
ogy is as follows: S,.Employee_ Tel# AS Emp_ Tel_No
FROM
Sy
TABLE LXXXIII UNION
. . SELECT
Mapping from Source schema to Ontology for Eighth Example S,.Employee_ Name AS Emp_ Name,
S,.Employee_ Division AS Emp_ Division,
Property S,.Employee__Tel# AS Emp_ Tel_No
schema Ontology Index
FROM S,);
S, Class: Employee
S,.Employee__Division Property: division 4
(Employee)
S,.Employee__Tel# Property: telephone__number 2 [0291] In general’
(Employee) .
S, Employee_ Name Property: name(Employee) 1 [0292] Rule 6: When one or more source tables contain
S,.Employee_ Room# Property: room__number 3 source symbols sufficient to generate all of the target sym-
(Employee) bols, then each such source table must be used alone in an
S, Class: Employee o
S,.Name Property: name(Employee) 1 SQL query and the resultant queries joined. (Note that Rule

6 is consistent with Rule 5.)

US 2004/0216030 A1l

[0293] When applied to the following sample source data,
Tables LXXXVI and LXXXVII, the above SQL query

produces the target data in Table LXXXVIII.

TABLE LXXXVI

Oct. 28, 2004

[0298]

TABLE XCI

Sample Source Table S, for Eighth Example

Source Table S, for Ninth Example

City C__Temperature

Employee__Division Employee__Tel# Employee_ Name Room#
Engineering 113 Richard 10
SW 118 Adrian 4
Engineering 105 David 10
[0294]
TABLE LXXXVII
Sample Source Table S, for Eighth Example
Name Employee__Tel Division
Henry 117 SW
Robert 106 IT
William 119 PdM
Richard 113 Engineering
[0295]
TABLE LXXXVIII
Sample Target Table T for Eighth Example
Emp_ Name Emp__Division Emp_Tel_No
Tom Engineering 113
Adrian SW 118
David Engineering 105
Henry SW 117
Robert IT 106
William PdM 119
A Ninth Example
Data Constraints
[0296] In a ninth example, a target table is of the following

form:

TABLE LXXXIX

Target Table T for Ninth Example

City Temperature

[0297] Two source tables are given as follows:

TABLE XC

Source Table S; for Ninth Example

City Temperature

[0299] The underlying ontology is illustrated in FIG. 19.
The dotted portions of the ontology in FIG. 19 are additional
ontology structure that is transparent to the relational data-
base schema. The properties temperature_in_Centrigade and
temperature_in_Fahrenheit are related by the constraint:

Temperature_in_Centrigade(City) 5/9*(Temperature-
_in Fahrenheit(City)-32)

[0300] The unique properties of the ontology are:

TABLE XCII

Unique Properties within Ontology for Ninth Example

Property Property Index

name(City) 1

[0301] The mapping of the target schema into the ontology
is as follows:

TABLE XCIII

Mapping from Target schema to Ontology for Ninth Example

Property
schema Ontology Index
T Class: City
T.City Property: name(City) 1
T.Temperature Property: 2
temperature__in_ Centigrade
(City)

[0302] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE XCIV

Mapping from Source schema to Ontology for Ninth Example

Property
schema Ontology Index
S, Class: City
S,.City Property: name(City) 1
S,.Temperature Property: 3

temperature__in_ Fahrenheit

(City)
S, Class: City
S,.City Property: name(City) 1
S,.C_Temperature Property: 2

temperature__in_ Centrigade
(City)

US 2004/0216030 Al Oct. 28, 2004
22
[0303] The indices of the source properties are: [0309]
TABLE XCV TABLE XCVIII
Source Symbols for Ninth Example Sample Source Table S, for Ninth Example
Table Source Symbols City C_Temperature
Moscow 12
S, 3017t Brussels 23
S, 2017% Tel Aviv 32
London 16
[0304] The indices of the target properties, keyed on City [0310]
are:
TABLE XCIX
TABLE XCVI
Sample Target Table T for Ninth Example
Target Symbols for Ninth Example
City Temperature
Table Target Symbols Paths
New York 25.5
T 2017t %% * ((3017H-32) Phoenix 33.3
(2017 Anchorage 222
Boston 222
Moscow 12
. Brussels 23
[0305] Since each of the source tables S; and S, suffice to Tel Aviv 32
generate the target table T, the desired SQL is a union of a London 16
query involving S, alone and a query involving S, alone.
Specifically, based on the paths given in Table XCVI, the
desired SQL query is: A Tenth Example
Pricing
ggfggNTO T(City, Temperature) [0311] In atenth example, a target table is of the following
S,.City AS City, form:
5/9 * (Sy.Temperature — 32) AS Temperature
FROM TABLE C
Sy
UNION Target Table T for Tenth Example
SELECT
S,.City AS City, S,.Temperature AS Temperature Product Price
FROM
S
[0312] Two source tables are given as follows:
[0306] In general, TABLE CI

[0307] Rule 7: When a target symbol can be expressed in
terms of one or more source symbols by a dependency
constraint then such constraint must appear in the list of
target symbols.

[0308] When applied to the following sample source data,
Tables XCVII and XCVIII, the above SQL query produces
the target data in Table XCIX.

TABLE XCVII

Sample Source Table S, for Ninth Example

City Temperature
New York 78
Phoenix 92
Anchorage 36
Boston 72

Source Table S, for Tenth Example

SKU Cost

[0313]

TABLE CII

Source Table S, for Tenth Example

Item Margin

[0314] The underlying ontology is illustrated in FIG. 20.
The dotted portions of the ontology in FIG. 20 are additional
ontology structure that is transparent to the relational data-
base schema. The properties price, cost_of_production and
margin are related by the constraint:

price(Product)=
cost_of_production(Product)*margin(Product).

US 2004/0216030 A1l

[0315] The unique properties of the ontology are:

TABLE CIII

Unique Properties within Ontology for Tenth Example

Property Property Index

SKU(Product) 1

[0316] The mapping of the target schema into the ontology
is as follows:

TABLE CIV

Mapping from Target schema to Ontology for Tenth Example

Oct. 28, 2004

[0320] Based on the paths given in Table CVII, the desired
SQL query is:

INSERT INTO T(Product, Price)

(SELECT

S,.SKU AS Product, (S,.Cost) * (S,.Margin) AS Price
FROM

5182
WHERE

S,.Item = S,.SKU);

[0321] When applied to the following sample source data,
Tables CVIII and CVIX, the above SQL query produces the
target data in Table CX.

TABLE CVIII

Sample Source Table S, for Tenth Example

schema Ontology Property Index SKU Cost
T Class: Product 123 2.2
T.Product Property: SKU(Product) 1 234 3.3
T.Price Property: price(Product) 4 345 4.4
456 5.5
[0317] The mapping of the source schema into the ontol- [0322]
ogy is as follows:
TABLE CIX
TABLE CV
Sample Source Table S, for Tenth Example
Mapping from Source schema to Ontology for Tenth Example
Item Margin
Property
schema Ontology Index 123 12
234 11
S, Class: Product 345 1.04
S,.SKU Property: SKU(Product) 1 456 13
S,.Cost Property: cost_of _production(Product) 2
S, Class: Product
S,.Item Property: SKU(Product) 1
S,.Margin Property: margin(Product) 3 [0323]
TABLE CX
[0318] The indices of the source properties are: Sample Target Table T for Tenth Example
TABLE CVI Product Price
Source Symbols for Tenth Example 123 2.86
234 3.96
Table Source Symbols 345 4.84
456 5.72
S, 2011
S, 30171
An Eleventh Example
0319] The indices of the target properties, keyed on . .
[] get prop » K€Y String Concatenation
Product are:
[0324] In an eleventh example, a target table is of the

TABLE CVII

Target Symbols for Tenth Example

Table Target Symbols Paths

T 4017t (20171 * (3017

following form:

TABLE CXI

Target Table T for Eleventh Example

ID# Full_Name

US 2004/0216030 A1l

[0325] One source table is given as follows:

TABLE CXII

Source Table S for Eleventh Example

ID# First_ Name Last_ Name

[0326] The underlying ontology is illustrated in FIG. 21.
The dotted portions of the ontology in FIG. 21 a re
additional ontology structure that is transparent to the rela-
tional database schema. The properties full name, first-
_name and last_name are related by the constraint:

full_name(Person)=
first name(Person)|last_name(Person),

[0327] where || denotes string concatenation.

[0328] The unique properties of the ontology are:

TABLE CXIII

Unique Properties within Ontology for Eleventh Example

Property Property Index

ID#(Product) 1

[0329] The mapping of the target schema into the ontology
is as follows:

Oct. 28, 2004
24

[0332] The indices of the target properties, keyed on ID#
are:

TABLE CXVII

Target Symbols for Eleventh Example

Table Target Symbols Paths

T 4017t (2017 (3017Y)

[0333] Based on the paths given in Table CXVII, the
desired SQL query is:

INSERT INTO T(ID#, Full_ Name)
(SELECT

S.ID# AS ID#,

(S.First_Name)|| (S.Last_Name) AS Full_Name
FROM

Sk

[0334] When applied to the following sample source data,
Table CXVIIIL, the above SQL query produces the target data
in Table CXIX.

TABLE CXVIII

Sample Source Table S for Eleventh Example

ID# First_Name Last__Name
TABLE CXIV 123 Timothy Smith
234 Janet Ferguson
Mapping from Target schema to Ontology for Eleventh Example 345 Ronald Thompson
456 Marie Baker
schema Ontology Property Index 567 Adrian Clark
T Class: Person
T.ID# Property: ID#(Person) 1
T.Full_Name Property: full__name(Person) 4 [0335]
TABLE CXIX

[0330] The mapping of the source schema into the ontol-
ogy is as follows:

TABLE CXV

Mapping from Source schema to Ontology for Eleventh Example

schema Ontology Property Index
S Class: Person

S.ID# Property: ID#(Person) 1
S.First_ Name Property: first__name(Person) 2
S.Last_ Name Property: last__name(Person) 3

[0331] The indices of the source properties are:

TABLE CXVI

Source Symbols for Eleventh Example

Table Source Symbols
S 2017"
2017t

Sample Target Table T for Eleventh Example

ID# Full__Name

123 Timothy Smith
234 Janet Ferguson
345 Ronald Thompson
456 Marie Baker

567 Adrian Clark

A Twelfth Example

Books—Documents

[0336] A source XML schema for books is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name=“book” type=“Book”/>
<xs:complexType name=“Book”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name="“author” type=“Author“/>

US 2004/0216030 A1l

-continued

</Xs:sequence>
</xs:complexType>
<xs:complexType name="Author”>
<«<xs:attribute name=“name”’/>
</xs:complexType>
</xs:schema>

[0337] A target XML schema for documents is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name=“document” type=“Document”/>
<xs:complexType name=“Document’>

<xs:all>

<xs:element name="“writer” type="xs:string”/>

</xs:all>

<xs:attribute name=“title”’/>
</xs:complexType>
</xs:schema>

[0338] A common ontology model for the source and
target XML schema is illustrated in FIG. 22. A mapping of
the source XML schema into the ontology model is given
by:

TABLE CXX

Mapping from Source schema to Ontology
for Twelfth and Thirteenth Examples

schema Ontology Property Index
complexType: book Class: Book

element: book/name/text() Property: name(Book) 1
element: book/author Property: author(Book) 2
complexType: author Class: Person

element: author/@name Property: name(Person) 3

[0339] A mapping of the target XML schema into the
ontology model is given by:

TABLE CXXI

Mapping from Target schema to Ontology for Twelfth Example

Property
schema Ontology Index
complexType: document Class: Book
element: document/writer/text() Property: 302

name(author(Book))
attribute: document/@title Property: 1
name(Book)

[0340] Tables CXX and CXXI use XPath notation to
designate XSL elements and attributes.

[0341] Based on Tables CXX and CXXI, an XSLT trans-

formation that maps XML documents that conform to the

source schema to corresponding documents that conform to

the target schema should accomplish the following tasks:
[0342] 1. document/@title sbook/name/text()

[0343] 2.)ssbook/author/
(@name

document/writer/text(

25

Oct. 28, 2004

[0344] Such a transformation is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0" xmlns:xsl=
“http://www.w3.0rg/1999/XSL/Transform™>
<xsl:output method=“xml” version="1.0" encoding=“UTF-8”
indent="yes”/>
<xsl:template match="/">
<document>
<xsl:for-each select=".//book[position()=1]“>
<xsl:attribute name=“title”>
<xsl:value-of select=“name()”/>
</xsl:attribute>
<xsl:element name=“writer”>
<xsl:value-of select=“author/@name” />
</xsl:element>
</xsl:for-each>
</document>
</xsl:template>
</xsl:stylesheet>

A Thirteenth Example

Books—Documents

[0345] A source XML schema for books is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="“http://www.w3.0rg/2001/XMLschema”>
<xs:element name=“book” type=“Book”/>
<xs:complexType name=“Book”>
<xsisequence>
<xs:element name=“name” type="xs:string”/>
<xs:element name="“author” type="Author” minOccurs=“0"
maxQOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Author”>
<xs:attribute name=“name”/>
</xs:complexType>
</xs:schema>

[0346] A target XML schema for documents is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="“http://www.w3.0rg/2001/XMLschema”>
<xs:element name=“document” type=“Document”/>
<xs:complexType name=“Document’>
<xs:choice>
<xs:element name="“writer” type="xs:string” minOccurs="“1"
maxQOccurs=“unbounded”/>
<xs:element name="title” type="xs:string”/>
<xs:element name=“ISBN” type=“xs:string” />
</xs:choice>
</xs:complexType>
</xs:schema>

[0347] A common ontology model for the source and
target XML schema is illustrated in FIG. 23. A mapping of
the source XML schema into the ontology model is given by

US 2004/0216030 A1l

26

Table CXVIII above. A mapping of the target XML schema
into the ontology model is given by:

TABLE CXXII

Mapping from Target schema to Ontology for Thirteenth Example

Property
schema Ontology Index
complexType: document Class: Book
element: document/writer/text() Property: 302
name(author(Book))

element: document/title/text() Property: 1
name(Book)

element: document/ISBN/text() Property: 4
ISBN(Book)

[0348] Based on Tables CXX and CXXII, an XSLT trans-
formation that maps XML documents that conform to the
source schema to corresponding documents that conform to
the target schema should accomplish the following tasks:

[0349] 1. document/title/text()ssbook/name/text()

[0350] 2.
(@name

document/writer/text(

[0351] Such a transformation is given by:

)ssbook/author/

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"xmlns:xsl=
“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0" encoding=“UTF-8”
indent="yes”/>
<xsl:template match="/">
<document>
<xsl:apply-templates select="book™ />
</document>
</xsl:template>
<xsl:template match="book’>
<xsl:choose>
<xsl:when test=“author”>
<xsl:for-each select=“author”>
<xsl:element name=“writer”’>
<xsl:value-of select=“@name”/>
</xsl:element>
</xsl:for-each>
</xsl:when>
<xsl:when test=“name”>
<xsl:ielement name=“title”>
<xsl:value-of select=“name/text()"/>
</xsl:element>
</xsl:when>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

A Fourteenth Example

Document Storage

[0352] A source XML schema for books is given by:

<?xml version="1.0" encoding=“UTF-8"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name="library” type=“Library”/>
<xs:complexType name="Library”>

Oct. 28, 2004

-continued

<xsisequence>
<xs:element name="“source” type="“Source”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Source”>
<xsisequence>
<xs:element name="review” type=“Review”
minOccurs=“0" maxOccurs=“unbounded”/>
<xs:element name="article” type="Aurticle”
minOccurs=“0" maxOccurs=“unbounded”/>
<xs:element name="letter” type=“Letter”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="“Review”>
<xsisequence>
<xs:element name="author” type="xs:string”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
<xs:attribute name="*“title”/>
</xs:complexType>
<xs:complexType name="Article”>
<xsisequence>
<xs:element name="writer” type="xs:string”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
<xs:attribute name=“name”/>
</xs:complexType>
<xs:complexType name="Letter”>
<xsisequence>
<xs:element name="sender” type="xs:string”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
<xs:attribute name=“name”/>
<xs:attribute name=“subject”/>
<xs:attribute name=“receiver”/>
</xs:complexType>
</xs:schema>

[0353] A first target XML schema for documents is given

by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name="“storage” type="“Storage”/>
<xs:complexType name="Storage”>
<xsisequence>
<xs:element name="articles” type=“Documents”/>
<xs:element name="reviews” type=“Documents”/>
<xs:element name="letters” type=“Letters”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name=“Documents’>
<xsisequence>
<xs:element name="“document” type=“Document”
minOccurs=“0"
maxQOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Letters”>
<xsisequence>
<xs:element name="letter” type=“Letter”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="“Document’>
<xsisequence>
<xs:element name="author” type="xs:string”
minOccurs=“0" maxOccurs=“unbounded”/>

US 2004/0216030 A1l

-continued

</xs:sequence>
<xs:attribute name=“title”’/>
</xs:complexType>
<xs:complexType name="Letter”>
<xs:sequences>
<xs:element name="author” type=“xs:string”
minOccurs=“0" maxQOccurs=“unbounded”/>
</xs:sequence>
<«<xs:attribute name=“name”’/>
<xs:attribute name=“subject’/>
<«<xs:attribute name=“receiver’/>
</xs:complexType>
</xs:schema>

[0354] A common ontology model for the source and first
target XML schema is illustrated in FIG. 24. A mapping of
the source XML schema into the ontology model is given
by:

TABLE CXXIII

Mapping from Source schema to Ontology
for Fourteenth Example

Property

schema Ontology Index

Class: Document

Property: author(Document) 1
Property: title(Document)
Class: Document
Property: author(Document) 1

complexType: review
element: review/author/text()
attribute: review/@title
complexType: article
element: article/writer/text()

[

attribute: article/@name Property: title(Document) 2
complexType: letter Class: Letter

(inherits from Document)
element: letter/sender/text() Property: author(Letter) 1
attribute: letter/@name Property: title(Letter) 2
attribute: letter/@subject Property: subject(Letter) 3
attribute: letter/@receiver Property: receiver(Letter) 4

complexType: source
ComplexType: library

Class: Storage
Container Class:
set[Storage]

[0355] A mapping of the first target XML schema into the
ontology model is given by:

TABLE CXXIV

Mapping from First Target schema to
Ontology for Fourteenth Example

Property

schema Ontology Index

Class: Document
Property: author(Document) 1

complexType: document
element: document/author/text()

attribute: document/@title Property: title(Document) 2
complexType: letter Class: Letter
(inherits from Document)

element: letter/author/text() Property: author(Letter) 1
attribute: letter/@name Property: title(Letter) 2
attribute: letter/@subject Property: subject(Letter) 3
attribute: letter/@receiver Property: receiver(Letter) 4
complexType: storage Class: Storage

element: storage/articles Property: articles(Storage) 9
element: storage/reviews Property: reviews(Storage) 10
element: storage/letters Property: letters(Storage) 11

[0356] Based on Tables CXXIII and CXXIV, an XSLT
transformation that maps XML documents that conform to

27

Oct. 28, 2004

the source schema to corresponding documents that conform
to the target schema should accomplish the following tasks:

[0357] 1. storagesslibrary
[0358] 2. letter/author/text()ssletter/sender/text()

[0359] Such a transformation is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"
xmlns:xsl="“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:itemplate match="/">
<xsl:apply-templates select="/library”/>
</xsl:template>
<xsl:template match="/library”>
<storage>
<articles>
<xsl:apply-templates select="source[not(letter) J/article |
source[not(review) Jarticle”/>
</articles>
<reviews>
<xsl: apply-templates select=“source[not(letter))/review”/>
</reviews>
<letters>
<xsl:apply-templates select="source[not(review)Jletter”/>
</letters>
</storage>
</xsl:template>
<xsl:template match="article”>
<article>
<xsl:attribute name=“title”><xsl:value-of
select=“@name”/></xsl:attribute>
<xsl:apply-templates select="writer”/>
</article>
</xsl:template>
<xsl:itemplate match="review”>
<review>
<xsl:attribute name=“title”><xsl:value-of
select=“@title”/></xsl:attribute>
<xsl:apply-templates select="author”/>
</review>
</xsl:template>
<xsl:itemplate match="letter”>
<review>
<xsl:attribute name=“name”><xsl:value-of
select=“@name”/></xsl:attribute>
<xsl:attribute name=“subject”><xsl:value-of
select="@subject”/></xsl:attribute>
<xsl:attribute name=“receiver”’><xsl:value-of
select=“@receiver”/></xsl:attribute>
<xsl:apply-templates select="sender”/>
</review>
</xsl:template>
<xsl:template match="article/writer | review/author | letter/sender”™>
<author>
<xsl:value-of select="text()"/>
<fauthor>
</xsl:template>
</xsl:stylesheet>

[0360] A second target XML schema for documents is
given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name="“storage” type="“Storage”/>
<xs:complexType name="Storage”>
<xsisequence>
<xs:element name=“books” type=“Books”/>
<xs:element name="“magazines” type=“Magazines”/>
</xs:sequence>

US 2004/0216030 A1l

-continued

Oct. 28, 2004

TABLE CXXV-continued

</xs:complexType>
<xs:complexType name=“Books”>

Mapping from Second Target schema
to Ontology for Fourteenth Example

<Xs:sequence>

<xs:element name="articles” type=“Documents”/> Property
<xs:element name="reviews” type=“Documents”/> schema Ontology Index
</Xs:sequence>
</xs:complexType> complexType: magazine Class: Magazine
<xs:complexTypename=“Magazines”> element: magazine/articles Property: articles(Magazine) 7
<xs:sequences> element: magazine/letters Property: letters(Magazine) 8

<xs:element name="articles” type=“Documents”/>
<xs:element name="letters” type=“Letters”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name=“Documents’>
<xsisequence>
<xs:element name=“document” type=“Document”

[0362] Based on Tables CXXIII and CXXV, an XSLT
transformation that maps XML documents that conform to
the source schema to corresponding documents that conform
to the target schema should accomplish the following tasks:

minOccurs=“0"
maxQOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="Letters”>
<xs:sequence>
<xs:element name="letter” type=“Letter”
minOccurs=“0" maxQOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name=“Document’>
<xs:sequence>
<xs:element name="author” type=“xs:string”
minOccurs=“0" maxQOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“title”’/>
</xs:complexType>

[0363] 1. storagesslibrary
[0364] 2. letter/author/text()ssletter/sender/text()

[0365] Such a transformation is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version=“1.0"
xmins:xsl=“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:template match="/">

<xsl:apply-templates select="/library”/>
</xsl:template>
<xsl:template match="/library”>

<xs:complexType name="Letter”> <storage>
<xs:sequence> <books>
<xs:element name="author” type="xs:string” <articles>
minOccurs=“0" maxOccurs="“unbounded”/> <xsl:apply-templates select=
</xs:sequences “source[not(letter) J/article”/>
<«<xs:attribute name=“name”’/> </articles>
<xs:attribute name=“subject’/> <reviews>
<xs:attribute name="“receiver”/> <xsl:apply-templates select=
</xs:complexType> “source[not(letter) |/review”/>
</xs:schema> </reviews>
</books>
<magazines>
<articles>
[0361] A mapping of the second target XML schema into <xsl:apply-templates select=
. . . “source[not(review)J/article”/>
the ontology model is given by: .
</articles>
<letters>
TABLE CXXV <xsl:apply-templates select=
“source[not(review)]/letter”/>
Mapping from Second Target schema </letters>
to Ontology for Fourteenth Example </magazines>
</storage>
Property </xsl:template>
schema Ontology Index <xsl:template match="article”>
<article>
complexType: document Class: Document <xsl:attribute name=“title”><xsl:value-of
element: Property: author(Document) 1 select="(@name”/></xsl:attribute>
document/author/text() <xsl:apply-templates select="writer”/>
attribute: Property: title(Document) 2 </article>
document/@title </xsl:template>
complexType: letter Class: Letter <xsl:itemplate match="review”>
(inherits from Document) <reviews
element: Property: author(Letter) 1 <xsl:attribute name=“title”><xsl:value-of
letter/author/text() select?=“@title”/></xsl:attribute>
attribute: letter/@name Property: title(Letter) 2 <xsl:apply-templates select="author”/>
attribute: letter/@subject Property: subject(Letter) 3 </review>
attribute: letter/@receiver Property: receiver(Letter) 4 </xsl:template>
complexType: storage Class: Storage <xsl:template match="letter”>
element: storage/books Property: books(Storage) 12 <review>
element: storage/magazines Property: magazines(Storage) 13 <xsl:attribute name=“name”><xsl:value-of
complexType: book Class: Book select="(@name”/></xsl:attribute>
element: book/articles Property: articles(Book) 5 <xsl:attribute name=“subject”><xsl:value-of
element: book/reviews Property: reviews(Book) 6 select="(@subject”/></xsl:attribute>

US 2004/0216030 A1l Oct. 28, 2004
29

the source schema to corresponding documents that conform
-continued to the target schema should accomplish the following tasks:

[0369] 1. storagesslibrary

<xsl:attribute name=“receiver”><xsl:value-of

select="@receiver”/></xs| attribute> [0370] 2. letter/author/text()ssletter/sender/text()
L:apply-t lat lect="sender”, . . .
</reV?:;>app y-templates select="sender’/> [0371] Such a transformation is given by:

</xsl:template>
<xsl:template match="article/writer | review/author |
letter/sender’”™>

<author> <?xml version="1.0" encoding=“UTF-8"7>
<xsl:value-of select="text()"/> <xsl:stylesheet version="1.0"

</author> xmins:xsl=“http://www.w3.0rg/1999/XSL/Transform”>

</xsl:template> <xsl:template match="/">

</xsl:stylesheet> <xsl:apply-templates select="/library”/>

</xsl:template>
<xsl:template match="/library”>

<storage>
[0366] A third target XML schema for documents is given <§(S1:app1y-templates
by: select="source[not(letter) article”mode=“AB"/>
<xsl:apply-templates
select="source[not(review)/article”mode=“AM"/>
</storage>
</xsl:template>
<?xml version="1.0" encoding=“UTF-8"7> <xsl:template match="article” mode=“AB">
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”> <article_ from_ books>
<xs:element name="storage” type="Storage”/> <xsl:attribute name==“title”><xsl:value-of
<xs:complexType name="“Storage”> select="@name”/></xsl:attribute>
<xs:sequence> <xsl:apply-templates select="writer” mode=“AB"/>
<xs:element name="“article_ from_ books” </article_ from_ books>
type=“AB” minOccurs=“0" </xsl:template>
maxOccurs=“unbounded”/> <xsl:template match="article” mode=“AM">
<xs:element name="article__from__magazines” <article_from__magazines>
type=“AM” minOccurs="0" <xsl:attribute name=“name”><xsl:value-of
maxOccurs=“unbounded”/> select="@name”/></xslattribute>
</xs:sequence> <xsl:apply-templates select="writer” mode=“AM"/>
</xs:complexType> </article_ from_ magazines>
<xs:complexType name=“"AB"> </xsl:template>
<xXs:sequence> <xsl:template match="article/writer” mode=“"AB">
<xs:element name="“authors” type="xs:string” <author>
minOccurs=“0" maxQOccurs=“unbounded”/> <xsl:value-of select="text()”/>
</Xs:sequence> </author>
<xs:attribute name==“title”/> </xsl:template>
</xs:complexType> <xsl:template match="article/writer” mode=“AM">
<xs:complexType name=“"AM"> <writers
<Xsisequence> <xsl:value-of select="text()”/>
<xs:element name="“writers” type=“xs:string” </writer>
minOccurs=“0" maxOccurs=“unbounded”/> </xsl:template>
</xs:sequence> </xsl:stylesheet>
<«<xs:attribute name=“name”’/>
</xs:complexType>
</xs:schema>
A Fifteenth Example
[0367] A mapping of the third target XML schema into the String Conversion
ontology model is given by: [0372] A source XML schema for people is given by:
TABLE CXXVI
Mapping from Third Target schema to <?xml version="1.0" encoding=“UTF-8"7>
Ontology for Fourteenth Example <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
Property attributeFormDefault="unqualified”>
schema Ontology Index <xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
complexType: AB Class: Document <xs:sequence>
element: AB/author/text() Property: author(Document) 1 <xs:element name=“name” type="xs:string”/>
attribute: AB/@title Property: title(Document) 2 <!-- name expected input in format
complexType: AM Class: Document firstName#LastName -->
element: AM/writer/text() Property: author(Document) 1 <xs:element name=“ID" type="xs:string”/>
attribute: AM/@title Property: title(Document) 2 <!-- ID expected input in format XXXXXXXXX-X -->
complexType: storage Complex Class: <xs:element name="“age” type="xs:string”/>
set[Document] x set| Document] <!-- age expected input in exponential form XXXeX -->

</xs:sequence>
</xs:complexType>
</xs:schema>

[0368] Based on Tables CXXIII and CXXVI, an XSLT
transformation that maps XML documents that conform to

US 2004/0216030 A1l Oct. 28, 2004
30

[0373] A target XML schema for people is given by:
-continued

<xs:element name=“ID" type="xs:string”/>

9 fan—< (7 I Q70))
<?xml version="1.0" encoding=“UTF-8"7> <1~ ID expected input in format

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema 12X XXKXOOOGE >

elementFormDefault="qualified”
</xs:sequence>

attributeFormDefault="unqualified”>
</xs:complexType>
<xs:element name=“Person” type=“Person”/>
</xs:schema>
<xs:complexType name="Person”>

<xs:sequence>
<xs:element name="“name” type="xs:string”/>

<!-- name expected input in format LastName,

[0374] An XSLT transformation that maps the source

schema into the target schema is given by:

FirstName -->

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0" xmlns:xsl=“http://www.w3.0rg/1999/XS1/Transform”>
<xsl:output method=“xml” version="1.0" encoding=“UTF-8” indent="yes”/>
<xsl:itemplate match="/">
<Person>
<xsl:for-each select="Person”>
<xsl:element name=“name”>
<xsl:value-of select=
“concat(substring-after(name,'#’),","substring-before(name,#"))"/>
</xsl:element>
<xsl:element name=“ID">
<xsl:variable name=“plainlD” select=
“concat(substring-before(ID/text(),-"),substring-after(ID/text(),*-"))"/>
<xsl:value-of select=
“concat(*12” substring($plainlD,1,2),-" substring($plainlD,3),*3E")"/>
</xsl:element>
<xsl:element name="age”>
<xsl:call-template name=“exponentiate”>
<xsl:with-param name=“power” select="substring-after(age,‘e’)"/>
<xsl:with-param name=“digit” select="substring-before(age,‘¢’)”/>
<xsl:with-param name=“ten” select="1"/>
</xsl:call-template>
</xsl:element>
</xsl:for-each>
</Person>
</xsl:template>
<xsl:template name=“exponentiate”>
<xsl:param name=“power”/>
<xsl:param name="“digit”/>
<xsl:param name="“ten”/>
<xsl:choose>
<xsl:when test=“$power > 07>
<xsl:call-template name="exponentiate”>
<xsl:with-param name=“power” select=“$power — 17/>
<xsl:with-param name=“digit” select="$digit”/>
<xsl:with-param name="“ten” select="$ten * 10”/>
</xsl:call-template>
</xsl:when>
<xsl:when test=“$power < 07>
<xsl: call-template name="exponentiate”>
<xsl:with-param name=“power” select=“$power + 17/>
<xsl:with-param name=“digit” select="$digit”/>
<xsl:with-param name="“ten” select="$ten div 10”/>
</xsl:call-template>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select=“format-number($digit * $ten, ##H.##) 7/>
</xsl:otherwise>
</xsl:choose>
</xsl:template>
</xsl:stylesheet>

US 2004/0216030 A1l

A Sixteenth Example

String Conversion

[0375] A source XML schema for people is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs=http://www.w3.0rg/2001/XMLschema

elementFormDefault="qualified”

Oct. 28, 2004

31

-continued

<Xs:complexType name="Person”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name=“homeTown” type="xs:string”/>
</xs:sequence>
<xs:attribute name=“dog__name”/>
</xs:complexType>

</xs:schema>

attributeFormDefault="unqualified”>

<xs:element name=“Person” type=“Person”/>

[0376] A target XML schema for people is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified” attributeFormDefault="unqualified”>
<xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name=“homeTown” type="xs:string”/>
</xs:sequence>
<xs:attribute name=“dog__name”/>
</xs:complexType>
</xs:schema>

[0377] An XSLT transformation that maps the source
schema into the target schema is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"
xmlns:xsl=“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:output method=“xml” version=" 1.0”
encoding="“UTF-8” indent="yes”/>
<xsl:template match="/">
<Person>
<xsl:for-each select="“Person”>
<xsl:attribute name="dog”>
<xsl:value-of select="@dog__name”/>
</xsl:attribute>
<xsl: element name=“name”>
<xsl:value-of select=“name/text()"/>
</xsl:element>
<xsl:elementname=“indexOfcarString_CaseInSensitive”>
<xsl:variable name=“case__neutral”
select="translate(name,
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’,
‘abedefghijklmnopqrstuvwxyz’)”/>
<xsl:value-of select=
“string-length(substring-before($case_neutral,
‘car’)) - 17/>
</xsl:element>
<xsl:element name="“indexOfcarString_ CaseSensitive”>
<xsl:value-of select="string-length(substring-before(name,
‘car’)) - 17/>
</xsl:element>
<xsl:element name=“homeTown”>
<xsl:value-of select=“homeTown” />
</xsl:element>
</xsl:for-each>
</Person>
</xsl:template>
</xsl:stylesheet>

US 2004/0216030 A1l

A Seventeenth Example

Library—Storage

[0378] A source XML schema for libraries is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name="library” type=“Library”/>
<xs:complexType name="Library”>
<xs:sequence>
<xs:element name=“book” type=“Book”
minOccurs=“0" maxQOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name=“Book”>
<xs:sequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name="“author” type=“Author”
maxQOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name="Author”>
<«<xs:attribute name=“name”’/>
</xs:complexType>
</xs:schema>

[0379] A target XML schema for storage is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”>
<xs:element name="“storage” type="“Storage”/>
<xs:complexType name="Storage”>
<xs:sequence>
<xs:element name=“document” type=“Document”
minOccurs=“0"
maxQOccurs=“unbounded”/>
</Xs:sequence>
</xs:complexType>
<xs:complexType name=“Document’>
<xs:sequence>
<xs:element name="“writer” type="xs:string”
maxQOccurs=“unbounded”/>
</Xs:sequence>
<xs:attribute name=“title”’/>
</xs:complexType>
</xs:schema>

[0380] A common ontology model for the source and
target XML schema is illustrated in FIG. 22. A mapping of
the source XML schema into the ontology model is given by
Table CXX, with an additional correspondence between the
complexType and the container class set[Book]. A mapping
of the target XML schema into the ontology model is given
by Table CXXI, with an additional correspondence between
the complexType storage and the container class set{ Book].

[0381] Based on Tables CXX and CXXI, an XSLT trans-
formation that maps XML documents that conform to the
source schema to corresponding documents that conform to
the target schema should accomplish the following tasks:

[0382] 1. document/@titlesbook/name/text()

[0383] 2.
(@name

document/writer/text()sbook/author/

Oct. 28, 2004

[0384] Such a transformation is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"
xmlns:xsl="“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0" encoding=“UTF-8”
indent="yes”/>
<xsl:itemplate match="/">
<storage>
<xsl:for-each select=".//library”>
<xsl:for-each select=“book”>
<document>
<xsl:attribute name=“title”>
<xsl:value-of select=“name”/>
</xsl:attribute>
<writer>
<xsl:for-each select="author/@name”>
<xsl: value-of select=“."/>
</xsl:for-each>
</writer>
</document>
</xsl:for-each>
</xsl:for-each>
</storage>
</xsl:template>
</xsl:stylesheet>

An Eighteenth Example

Change Case

[0385] A source XML schema for plain text is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs=http://www.w3.0rg/2001/XMLschema
elementFormDefault="qualified”
attributeFormDefault="unqualified”>
<xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name=“homeTown” type="xs:string”/>
</xs:sequence>
</xs:complexType>
</xs:schema>

[0386] A target XML schema for case sensitive text is
given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="unqualified”>
<xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name=“homeTown” type="xs:string”/>
</xs:sequence>
</xs:complexType>
</xs:schema>

US 2004/0216030 A1l Oct. 28, 2004
33

[0387] An XSLT transformation that maps the source [0389] Atarget XML schema for a list of numbers is given
schema into the target schema is given by: by:

2xml . “ 0 dinge“UTF-§"7 <?xml version="1.0" encoding=“UTF-8"7>
<ixml version="A0 encoding= = <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”

<xsl: stylesheet version="1.0" elementFormDefault=*qualified”

xmins:xsl="http://www.w3.0rg/1999/XSL/Transform”> attributeFormDefault="unqualified”>

<xslioutput method=“xml” version==1.0" encoding=“UTF-8” <xs:element name=“List_o_ Numbers” type=“NumList”/>

<xs:complexType name=“NumList”>

indent="yes"/>
<xsisequences

<xsl:template match="/"> <xs:element name=“first_as_num”
<Person> type=“xs:decimal”/> <!-- first_as_ num - take a

string and return a numerical value. Exemplifies use of
<xsl:for-each select="“Person”> g p

the operator value(string) -->

<xsl:element name=“low__name”’> « .
<xs:element name=“second__floor’

<xsl:value-of select="translate(name, type=“xs:decimal”/> <!--second__ floor return

‘ABCDEFGHITKLMNOPQRSTUVWXYZ’, nearest integer less than number. Exemplifies use

“abedefghijklmnopqrstuvawxyz’ /> of the operator floor(number) ——.>
<xs:element name=“second__firstDecimal_floor”

</xsl:element> type=“xs:decimal”/>
<xsl:element name="“upper__homeTown”> <!-- second__firstDecimal__floor - return nearest first
<xsl:value-of select="translate(homeTown, decimal place less than number.

E lifi f th t
‘abedefghijklmnopgqrstuvwxyz’, XEmPpIes use of The operator

‘ABCDEFGHIJKLMNOPQRSTU-
VWXYZ)"/>

</xsl:element>

floor(number, significance) -->
<xs:element name="“third_ ceil”
type=“xs:decimal”/> <!- third_ ceil - return nearest

integer greater than number. Exemplifies use of

</xsl:for-each the operator ceil(number) -->
</Person> <xs:element name="“third_ secondDecimal_ ceil”
</xsl:template> type=“xs:decimal”/>

<!-- third__secondDecimal ceil - return nearest second
</xsl:stylesheet>

decimal place greater than number.

Exemplifies use of the operator
cei(number, significance) -->
An Nineteenth Example <xs:element name="“fourth__round”
type=“xs:decimal”/> <!--fourth__round - round
. . the number in integers. Exemplifies use of the
Number Manipulation operator round(number) -->

<xs:element name=“fourth_ thirdDecimal_ round”

[0388] A source XML schema for list of numbers is given
by:

type=“xs:decimal”/>
<!-- fourth__thirdDecimal__round - round the number up to
third decimal.

Exemplifies use of the operator

e s s . round(number, significance) -->
<?xml version="1.0" encoding=“UTF-8"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”

elementFormDefault="qualified”

<xs:element name=“fifth_ roundToThousand”
type=“xs:decimal”/>

. . <!-- fifth_roundToThousand - round the number up to
attributeFormDefault="unqualified”> . P
) . nearest ten to the third.
<xs:element name=“List__o_ Numbers” type=“NumList”/> .
« ‘o Exemplifies use of the operator
<xs:complexType name=“NumList”>
roundToPower(number, power) -->
<xs:sequence> .
. ; st “xsistring” <xs:element name=“abs__sixth”
<xs:element name="firs e="xs:string”/> . .
) dYP ﬂg type=“xs:decimal”/> <!-- abs_ sixth - return
<xs:element name="second” type="xs:float”/> .
P / absolute value of number. Exemplifies use

<xs:element name="third” type=“xs:float”/> of operator abs(mumber) —->

. _« » —xa-float”
<xs:element name="fourth” type=“xs:float”/> <xs:element name=“seventh’

<xs:element name="fifth” type="xs:float”/>

type=“xs:string” /> <!-- seventh - return number as
<xs:element name="sixth” type="“xs:float”/> string. Exemplifies use of operator
<xs:element name="seventh” type=“xs:float” /> string(number) -->
</Xs:sequence> </xs:sequence>
</xs:complexType> </xs:complexType>

</xs:schema> </xs:schema>

US 2004/0216030 A1 Oct. 28, 2004
34

[0390] An XSLT transformation that maps the source
schema into the target schema is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"xmlns:xsl=“http://www.w3.01g/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0" encoding="“UTF-8” indent="“yes”/>
<xsl:template match="/">
<List_o_ Numbers>
<xsl:for-each select=“List__o_ Numbers”>
<xsl:element name=“first_as_ num”>
<xsl:value-of select=“number(first)”/>
</xsl:element> <!-- first_as__num - take a string and return a numerical value.
Exemplifies use of the operator value(string) -->
<xsl:element name=“second__floor”>
<xsl:value-of select=“floor(second)”/>
</xsl:element> <!-- second__floor return nearest integer less than number.
Exemplifies use of the operator floor(number) -->
<xsl:elementname=“second_ firstDecimal_floor”>
<xsl:value-of select=“floor(second*10) div 10”/>
</xsl:element> <!-- second__firstDecimal_ floor - return nearest first decimal
place less than number. Exemplifies use of the operator floor(number, significance) -->
<xsl: element name="“third_ ceil”>
<xsl:value-of select="ceiling(third)”/>
</xsl:element>
<xsl: element name=“third secondDecimal_ ceil”>
<xsl:value-of select="ceiling(third*100) div 100”/>
</xsl:element> <!-- third__ceil - return nearest integer greater than number.
Exemplifies use of the operator ceil(number) -->
<xsl:element name=“fourth_ round”>
<xsl:value-of select=“round(fourth)”/>
</xsl:element> <!--fourth__round - round the number in integers
Exemplifies use of the operator round(number) -->
<xsl:element name=“fourth_ thirdDecimal_ round”>
<xsl:value-of select=“round(fourth*1000) div 1000 />
</xsl:element> <!-- fourth__thirdDecimal__round - round the number up to
third decimal. Exemplifies use of the operator round(number, significance) -->
<xsl:element name=“fifth_ roundToThousand”>
<xsl:value-of select=“round(fifth div 1000) * 1000 />
</xsl:element> <!-- fifth__roundToThousand - round the number up to nearest
ten to the third. Exemplifies use of the operator roundToPower(number, power) -->
<xsl:element name=“abs_ sixth”>
<xsl:choose>
<xsl:when test=“sixth < 0”>
<xsl:value-of select="sixth * -1"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select=“sixth”/>
</xsl:otherwise>
</xsl:choose>
</xsl:element> <!-- abs__sixth - return absolute value of number.
Exemplifies use of operator abs(number) -->
<xsl:element name=“seventh”>
<xsl:value-of select=“concat(* ’,string(seventh),* *Y"/>
</xsl:element> <!-- seventh - return number as string.
Exemplifies use of operator string(number) -->
</xsl:for-each>
</List__o_ Numbers>
</xsl:template>
</xsl:stylesheet>

A Twentieth Example
-continued

String Manipulation

<xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
<xsisequence>
<xs:element name="“name” type="xs:string”/>
<xs:element name=“homeTown” type="xs:string”/>
</xs:sequence>

[0391] A source XML schema for a person is given by:

<?xml version="1.0" encoding=“UTF-8"7> <xs:attribute name=“dog__name” />
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema” </xs:complexType>
elementFormDefault="qualified” </xs:schema>

attributeFormDefault="unqualified”>

US 2004/0216030 A1l Oct. 28, 2004
35

[0392] A target XML schema for a person is given by:
-continued

out of respect. This exemplifies use of the capital
operator-->
</xs:sequence>
<xs:attribute name=“dog_ trim”/>
<xs:attribute name=“dog__length”/>
<!-- dog__trim - keep your dog trim - no blank spaces
in front or after the name.
This exemplifies use of the trim operator -->
<!--dog_length - gives the number of characters
(in integers, not dog years) in your
dog’s name. This exemplifies use of the length(string)
operator -->
</xs:complexType>
</xs:schema>

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0org/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="unqualified”>
<xs:element name=“Person” type=“Person”/>
<xs:complexType name="Person”>
<xs:sequence>
<xs:element name="four_name”
type="xs:string”/>
<xs:element name="capital _homeTown”
type="xs:string”/>
<!-- four-Name is only four characters long, please.
This exemplifies use of the substring(string, start,
length) operator-->
<!--capital__homeTown - we must insist you capitalize
the first letter of a town, [0393] An XSLT transformation that maps the source

schema into the target schema is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version="1.0"
xmlns:xsl=“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0"
encoding="“UTF-8” indent="yes”/>
<xsl:template match="/">
<Person>
<xsl:for-each select="Person”>
<xsl:attribute name=“dog__trim”>
<xsl:value-of
select="normalize-space(@dog_name)”/>
</xsl:attribute>
<xsl:attribute name=“dog_length”>
<xsl:value-of
select="string-length(normalize-space(@dog__name))”/>
</xsl:attribute>
<!-- dog__trim - This exemplifies use of the
trim operator -->
<!--dog__length - This exemplifies use of the
length(string) operator ->
<xsl:element name=“four_name”’>
<xsl:value-of
select="substring(name,1, 4)”/>
</xsl:element>
<xsl:element name="“capital _homeTown">
<xsl:value-of
select="concat(translate(substring(normalize-
space(homeTown),1,1),
‘abedefghijklrnnopqrstuvwxyz’,
‘ABCDEFGHIJKLMNOPQRSTUVWXYZ),
substring(normalize-space(homeTown),2))” />
</xsl:element>
<!-- four-Name. This exemplifies use of the
substring(string,start,length) operator-->
<!-- capital__hometown. This exemplifies use of
the capital operator-->
</xsl:for-each>
</Person>
</xsl:template>
</xsl:stylesheet>

US 2004/0216030 A1l

A Twenty-First Example

Temperature Conversion

[0394] A source XML schema for temperature in Fahren-
heit is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="unqualified”>

<xs:element name="“city” type=“city”’/>
<xs:complexType name=“city”>

<xs:sequence>

<xs:element name="temperatureF” type="xs:string”/>

</Xs:sequence>

<«<xs:attribute name=“name” />
</xs:complexType>

</xs:schema>

[0395] A target XML schema for temperature in Centi-
grade is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="unqualified”>
<xs:element name=“town” type=“town” />
<xs:complexType name=“town”>
<xs:sequence>
<xs:element name="“temperatureC” type="xs:string” />
</Xs:sequence>
</xs:complexType>
<xs:attribute name=“name” />
</xs:schema>

[0396] An XSLT transformation that maps the source
schema into the target schema is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version=“1.0"
xmins:xsl=“http://www.w3.01g/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0"
encoding="“UTF-8” indent="yes”/>
<xsl:template match="/">
<town>
<xsl:for-each select="city”>
<xsl:attribute name=“name”>
<xsl:value-of select=“@name”/>
</xsl:attribute>
<xsl:element name=“temperatureC”>
<xsl:value-of
select=select=“floor((temperatureF - 32) *
(5 div 9))” />
</xsl:element>
</xsl:for-each>
</town>
</xsl:template>
</xsl:stylesheet>

Oct. 28, 2004

A Twenty-Second Example

Town with Books

[0397] A source XML schema for a town with books is
given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="“unqualified”>
<xs:element name=“town” type=“Town” />
<xs:complexType name=“Town”>
<xsisequence>
<xs:element name="library”
type=“Library” minOccurs=“0"
maxQOccurs=“unbounded” />
</xs:sequence>
<xs:attribute name="“name” type="xs:string” />
</xs:complexType>
<xs:complexType name=“Library”>
<xsisequence>
<xs:element name=“book”
type=“Book” minOccurs=“0"
maxQOccurs=“unbounded” />
</xs:sequence>
<xs:attribute name="name”
type=“xs:string” />
</xs:complexType>
<xs:complexType name=“Book”>
<xsisequence>
<xs:element name="title”
type=“xs:string” />
<xs:element name=“author_name”
type="“xs:string” minOccurs=“1"
maxQOccurs=“unbounded” />
</xs:sequence>
</xs:complexType>
</xs:schema>

[0398] A target XML schema for a list of books is given
by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="“unqualified”>
<xs:element name="list__of_books” type=“books”/>
<xs:complexType name="“books”>
<xsisequence>
<xs:element name=“book”
type=“book” minOccurs=“0"
maxQOccurs=“unbounded” />
</xs:sequence>
</xs:complexType>
<xs:complexType name=“book”>
<xsisequence>
<xs:element name="title”
type=“xs:string” />
<xs:element name="author_ name”
type="“xs:string” minOccurs=“1"
maxQOccurs=“unbounded” />
</xs:sequence>
</xs:complexType>
</xs:schema>

[0399] A common ontology model for the source and
target XML schema is illustrated in FIG. 25. A mapping of

US 2004/0216030 A1l

the source XML schema into the ontology model is given
by:

TABLE CXXVII

Mapping from Source schema to Ontology
for Twenty-Second Example

Property
schema Ontology Index
complexType: book Class: Book
element: book/title/text() Property: name(Book) 1
element: book/author_name/text() Property: author(Book) 2
complexType: library Class: Library
element: library/books Container Class: 5

set[Book]
element: library/name/text() Property: name(Library) 6
complexType: town Class: Town
element: town/libraries Container Class: 1
set[Library]
element: town/name/text() Property: name(Town) 2

[0400] A mapping of the target XML schema into the
ontology model is given by:

TABLE CXXVIII

Mapping from Target schema to Ontology
for Twenty-Second Example

Property
schema Ontology Index
complexType: book Class: Book
element: book/title/text() Property: name(Book) 1
element: book/author_name/text() Property: author(Book) 2
element: list_of_books Set[Book]

[0401] Based on Tables CXXVII and CXXVIII, an XSLT
transformation that maps XML documents that conform to
the source schema to corresponding documents that conform
to the target schema is given by:

<?xml versions“1.0” encoding=“UTF-8"7>
<xsl:stylesheet version=“1.0"
xmins:xsl=“http://www.w3.01g/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0"
encoding="“UTF-8” indent="yes”/>

<xsl:template match="/">

<books>
<xsl:for-each select=*.//book™>
<book>
<xsl:ielement name=“title”>
<xsl:value-of select=“title/text()”/>
</xsl:element>
<xsl:for-each select=“author__name”>
<xsl:element name=“author_ name”>
<xsl:value-of select=%“.""/>
</xsl:element>
</xsl:for-each>
</book>
</xsl:for-each>
</books>

</xsl:template>
</xsl:stylesheet>

Oct. 28, 2004

A Twenty-Third Example

Town with Books

[0402] A source XML schema for a town is given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="“unqualified”>
<xs:element name=“town” type=“Town”/>
<xs:complexType name=“Town”>
<xsisequence>
<xs:element name="library”
type=“Library” minOccurs=“0"
maxQOccurs=“unbounded”/>
<xs:element name="police__station”
type=“PoliceStation” minOccurs=“0"
maxQOccurs=“unbounded”/>
</xs:sequence>
<xs:attribute name="“name” type="xs:string”/>
</xs:complexType>
<xs:complexType name=“Library”>
<xsisequence>
<xs:element name=“book” type=“Book”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
<xs:attribute name="“name” type="xs:string”/>
</xs:complexType>
<xs:complexType name=“Book”>
<xsisequence>
<xs:element name="title” type="“xs:string”/>
<xs:element name=“author_name”
type=“xs:string” maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PoliceStation”>
<xsisequence>
<xs:element name="Officers”
type=“Officers”/>
</xs:sequence>
<xs:attribute name="identifier”
type=“xs:string”/>
</xs:complexType>
<xs:complexType name="Officers”>
<xsisequence>
<xs:element name="“name” type="xs:string”
minOccurs=“1" maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
</xs:schema>

[0403] A first target XML schema for police stations is
given by:

<?xml version="1.0" encoding=“UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
elementFormDefault="qualified”
attributeFormDefault="“unqualified”>
<xs:element name=“PoliceStations”
type=“PoliceStations™/>
<xs:complexType name="“PoliceStations”>
<xsisequence>
<xs:element name="Station” type="“Station”
minOccurs=“0" maxOccurs=“unbounded”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="Station”>
<xsisequence>
<xs:element name="Officers”
type=“Officers”/>

US 2004/0216030 A1l Oct. 28, 2004

38

the source schema to corresponding documents that conform

-continued to the first target schema is given by:

</Xs:sequence>

<xs:attribute name=“identifier” type="xs:string”/>

</xs:complexType>

<xs:complexType name=“Officers”>

<Xs:sequence>

<xs:elementname="name” type=“xs:string”
minOccurs=“1" maxOccurs=“10"/>

</Xs:sequence>
</xs:complexType>
</xs:schema>

[0404] A common ontology model for the source and
target XML schema is illustrated in FIG. 26. A mapping of
the source XML schema into the ontology model is given

by: <xsl:for-each
select="“name[position() <11]">
TABLE CXXIX <Xsl:elem.ent name=“name‘3"’:
<xsl:value-of select=%“.""/>
Mapping from Source schema to Ontology < /XSlzéer_le.:;r:enb
for Twenty-Third Example </Officers>
</xsl:for-each>
Property .
schema Ontology Index </xs1-<féysrit;2}r11:
complexType: book Class: Book </PoliceStations>
element: book/title/text() Property: title(Book) 2 </xsl:template>
element: book/author Property: author(Book) 1 </xslistylesheet>
name/text()
complexType: library Class: Library
element: library/books Secz[n];‘zlgg Class: 5 [0407] A second target XML schema for temperature in
element: library/@name Property: name(Library) 6 Centlgrade 1S given by:
complexType: officer Class: Person
element: officer/name/text() Property: name(Person) 7
complexType: police__station Class: Station
element: police_ station/officers Container Class: 8 <?xml version="1.0" encoding=“UTF-8"?>
set[Person] <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLschema”
element: police_ station/ Property: 9 elementFormDefault=“qualified”
@identifier identifier(Station) attributeFormDefault="unqualified”>
complexType: town Class: Town <xs:element name=“PoliceStations”
element: town/libraries Container Class: 3 type=“PoliceStations”/>
set[Library] <xs:complexType name=“PoliceStations”>
element: town/police__stations Container Class: 10 <xs:sequence>
set[Station] <xs:element name="Station” type=“Station”
element: town/@name Property: name(Town) 4 minOccurs=“0" maxOccurs=“unbounded”/>

[0405] A mapping of the first target XML schema into the

ontology model is given

by:

TABLE CXXX

Mapping from

Target schema to Ontology

for Twenty-Third Example

<?xml version="1.0" encoding=“UTF-8"7>

<xsl:stylesheet version=“1.0"

xmins:xsl=“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0"
encoding="“UTF-8” indent="yes”/>

<xsl:template match="/">
<PoliceStations>

<xsl:for-each select="“.//PoliceStation”>

<Station>

<xsl:attribute name=“identifier”>
<xsl:value-of select=“@identifier”’/>

</xsl:attribute>

<xsl:for-each select=“Officers”>
<Officers>

</xs:sequence>
</xs:complexType>

<xs:complexType name="Station”>

<Xs:sequences

<xs:element name="Officers” type=“Officers”/>

</Xs:sequence>

<xs:attribute name="identifier” type="xs:string”/>

</xs:complexType>

<xs:complexType name="Officers”>

<Xs:sequences

<xs:element name="“name” type="xs:string”
minOccurs=“10" maxOccurs=“unbounded”/>

Property </xsisequences>

schema Ontology Index </xs:complexTypes
complexType: officer Class: Person </xs:schema>
element: Property: name(Person) 7
officer/name/text()
complexType: station Class: Station [0408] Based on Tables CXXIX and CXXX, an XSLT
element: station/officers Container Class: 8 N

sef[Person] transformation that maps XML documents that conform to
element: Property: 9 the source schema to corresponding documents that conform
station/@identifier identifier(Station) to the second target schema is given by:
complexType: Class:
police_ stations set[Station]

<?xml version="1.0" encoding=“UTF-8"7>
<xsl:stylesheet version=“1.0"

[0406] Based on Tables CXXIX and CXXX, an XSLT
transformation that maps XML documents that conform to

US 2004/0216030 A1l Oct. 28, 2004
39

[0410] Based on Tables CXXIX and CXXX, an XSLT
-continued transformation that maps XML documents that conform to
the source schema to corresponding documents that conform
to the first target schema is given by:

xmins:xsl=“http://www.w3.01g/1999/XSL/Transform”>
<xsl:output method=“xml” version="1.0"
encoding="“UTF-8” indent="yes”/>

<xsl:template match="/">

<PoliceStations>
<xsl:for-each select="“.//PoliceStation”> <?xml version="1.0" encoding=“UTF-8"7>
<Station> <xsl:stylesheet version=“1.0"
<xsl:attribute name=“identifier””> xmins:xsl=“http://www.w3.0rg/1999/XSL/Transform”>
<xsl:value-of select=“@identifier”/> <xsl:output method=“xml” version="1.0"
</xsl:attribute> encoding="“UTF-8”indent="yes”/>
<xsl:for-each select=“Officers™> <xsl:template match="/">
<Officers> <PoliceStations>
<xsl:for-each select=“name”> <xsl:for-each select="“.//PoliceStation”>
<xsl:element name=“name”> <Station>
<xsl:value-of select=%“.""/> <xsl:attribute name=“identifier””>
</xsl:element> <xsl:value-of select=“@identifier”’/>
</xsl:for-each> </xsl:attribute>
</Officers> <xsl:for-each select=“Officers™>
</xsl:for-each> <Officers>
<xsl:call-template name="“generate__officer”> <xsl:for-each
<xsl:with-param name="“so_ far” select="“name[position()< 11]">
select="“count(name)”/> <xsl:element name=“name”>
</xsl:call-template> <xsl:value-of select=%“.""/>
</Station> </xsl:element>
</xsl:for-each> </xsl:for-each>
</PoliceStations> </Officers>

</xsl:for-each>

<xsl:call-template name="“generate__officer”>
<xsl:with-param name=“so__far”
select="count(name)”/>

</xsl:call-template>

</xsl:template>
<xsl:template name="generate__officer”>
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < 10”>

<bar> </Station>
</bar> </xsl:for-each>
<xsl:call-template name="“generate__officer”’> </PoliceStations>
<xsl:with-param name=“so__far” </xsl:template>
select=“$so_far + 17/> <xsl:template name="“generate_ officer”>
</xsl:call-template> <xsl:param name="“so__far”/>
</xsliif> <xsl:if test=“$so_ far < 207>
</xsl:template> <bar>
</xsl:stylesheet> </bar>

<xsl:call-template name="“generate__officer”’>
<xsl:with-param name=“so__far”
select="$so_ far + 17/>
[0409] A third target XML schema for temperature in 1<éX81icaﬂ-template>
. . . . </xsl:if>
Centigrade is given by: <xsltemplates
</xsl:stylesheet>

<?xml version="1.0" encoding=“UTF-8"7>

<xs:schema xmlns:xs=“http://www.w3.0rg/2001/XMLschema” [0411] Implementation Details—SOL Generation
elementFormDefault="qualified” . . .
attributeFormDefault=*unqualified”> [0412] As mentioned hereinabove, and described through
<xs:element name="PoliceStations” the above series of examples, in accordance with a preferred
type="PoliceStations”/> embodiment of the present invention a desired transforma-

<xs:complexType name="“PoliceStations”>
<xsisequence>
<xs:element name="Station” type=“Station”

tion from a source RDBS to a target RDBS is generated by:

minOccurs=“0" maxOccurs=“unbounded”/> [0413] (1) mapping the source and target RDBS into a
</xs:sequence> common ontology model;
</xs:complexType>
<xs:complexType name="Station”> [0414] (ii) representing fields of the source and target
<xsisequence> RDBS in terms of properties of the ontology model,

<xs:element name=“Officers”
type=“Officers”/>
</xs:sequences

using symbols for properties;

<xs:attribute name=“identifier”type="“xs:string”/> [0415] (111) deriVing expressions for target SymbOIS n
</xs:complexType> terms of source symbols; and
<xs:complexType name=“Officers”>
<xsisequence> [0416] (iv) converting the expressions into one or more
<xs:element name="name” SQL queries

type="“xs:string”minOccurs="10" maxOccurs="20"/>

- /Xs:sé:;ﬁ%r;c:: [0417] Preferably the common ontology model is built by

</xs:schemas adding classes and properties to an initial ontology model, as
required to encompass tables and fields from the source and
target RDBS. The addition of classes and properties can be

US 2004/0216030 A1l

performed manually by a user, automatically by a computer,
or partially automatically by a user and a computer in
conjunction.

[0418] Preferably, while the common ontology model is
being built, mappings from the source and target RDBS into
the ontology model are also built by identifying tables and
fields of the source and target RDBS with corresponding
classes and properties of the ontology model. Fields are
preferably identified as being either simple properties or
compositions of properties.

[0419] Inapreferred embodiment of the present invention,
automatic user guidance is provided when building the
common ontology model, in order to accommodate the
source and target RDBS mappings. Specifically, while map-
ping source and target RDBS into the common ontology
model, the present invention preferably automatically pre-
sents a user with the ability to create classes that corresponds
to tables, if such classes are not already defined within the
ontology. Similarly, the present invention preferably auto-
matically present a user with the ability to create properties
that correspond to fields, if such properties are not already
defined within the ontology.

[0420] This automatic guidance feature of the present
invention enables users to build a common ontology on the
fly, while mapping the source and target RDBS.

[0421] Inapreferred embodiment of the present invention,
automatic guidance is used to provide a user with a choice
of properties to which a given table column may be mapped.
Preferably, the choice of properties only includes properties
with target types that are compatible with a data type of the
given table column. For example, if the given table column
has data type VARCHAR?2, then the choice of properties
only includes properties with target type string. Similarly, if
the given table column is a foreign key to a foreign table,
then the choice of properties only includes properties whose
target is the class corresponding to the foreign table.

[0422] 1Inapreferred embodiment of the present invention,
automatic guidance is provided in determining inheritance
among classes of the common ontology. Conditions are
identified under which the present invention infers that two
tables should be mapped to classes that inherit one from
another. Such a condition arises when a table, T,, contains
a primary key that is a foreign key to a table, T,. In such a
situation, the present invention preferably infers that the
class corresponding to T, inherits from the class correspond-
ing to T,.

[0423] For example, T, may be a table for employees with
primary key Social_Security_No, which is a foreign key for
a table T, for citizens. The fact that Social Security_No
serves both as a primary key for T, and as a foreign key for
T, implies that the class Employees inherits from the class
Citizens.

[0424] Preferably, when the present invention infers an
inheritance relation, the user is given an opportunity to
confirm or decline. Alternatively, the user may not be given
such an opportunity.

[0425] Preferably, representing fields of the source and
target RDBS in terms of properties of the ontology model is
performed by identifying a key field among the fields of a
table and expressing the other fields in terms of the identified

Oct. 28, 2004

key field using an inverse property symbol for the key field.
For example, if a key field corresponds to a property denoted
by 1, and a second field corresponds to a property denoted
by 2, then the relation of the second field to the first field is
denoted by 2017, If a table has more than one key field, then
preferably symbols are listed for each of the key fields,
indicating how the other fields relate thereto. For example,
if the second field above also is a key field, then the relation
of the first field to the second field is denoted by 10271, and
both of the symbols 2017 and 102! are listed.

[0426] Preferably, deriving expressions for target symbols
in terms of source symbols is implemented by a search over
the source symbols for paths that result in the target symbols.
For example, if a target symbol is given by 3017%, then
chains of composites are formed starting with source sym-
bols of the form ao1~", with each successive symbol added
to the composite chain inverting the leftmost property in the
chain. Thus, a symbol ending with a™ is added to the left of
the symbol a017, and this continues until property 3 appears
at the left end of the chain.

[0427] Preferably, converting symbol expressions into
SQL queries is accomplished by use of Rules 1-7 described
hereinabove with reference to the examples.

[0428] Preferably, when mapping a table to a class, a flag
is set that indicates whether it is believed that the table
contains all instances of the class.

[0429]
rithm

Implementation Details—XSLT Generation Algo-

[0430] 1. Begin with the target schema. Preferably, the
first step is to identify a candidate root element. Assume in
what follows that one such element has been identified—if
there are more than one such candidate, then preferably a
user decides which is to be the root of the XSLT transfor-
mation. Assume that a <root> element has thus been iden-
tified. Create the following XSLT script, to establish that any
document produced by the transformation will at minimum
conform to the requirement that its opening and closing tags
are identified by root:

<xsl:itemplate match="/">
<root>
<froot>
</xsl:template>

[0431] 2. Preferably, the next step is to identify the ele-
ments in the target schema that have been mapped to
ontological classes. The easiest case, and probably the one
encountered most often in practice, is one in which the root
itself is mapped to a class, be it a simple class, a container
class or a cross-product. If not, then preferably the code-
generator goes down a few levels until it comes across
elements mapped to classes. The elements that are not
mapped to classes should then preferably be placed in the
XSLT between the <root> tags mentioned above, in the
correct order, up to the places where mappings to classes
begin.

US 2004/0216030 A1l

<xsl:template match="/">
<root>
<sequencel>
[<elementl> mapped to class |
<element2>
</sequencel>
<sequence2>
</sequence2>
</root>
</xsl:template>

[0432] 3. Henceforth, for purposes of clarity and exposi-
tion, the XSLT script generation algorithm is described in
terms of an element <fu> that is expected to appear in the
target XML document and is mapped to an ontological class,
whether that means the root element or a parallel set of
elements inside a tree emanating from the root. The treat-
ment is the same in any event from that point onwards.

[0433] 4. Preferably the XSLT generation algorithm
divides into different cases depending on a number of
conditions, as detailed hereinbelow:

TABLE CXXXI

Conditions for <xsl:for-each> Segments

XSLT
Condition Segment

<fu> is mapped to a simple class Foo with cardinality A
parameters minOccurs=“1" maxOccurs=“1" in the

XML schema and there is a corresponding element <foo>

in the source document that is associated to the same

class Foo.

<fu> is mapped to a simple class Foo with cardinality B
parameters minOccurs=“0" maxOccurs=“1" in the

XML schema and there is a corresponding element <foo>

in the source document that is associated to the same

class Foo.

<fus> is mapped to a container class set[Foo] with C
cardinality parameters minOccurs=“0"

maxQOccurs=“unbounded” in the XML schema,

and there are corresponding elements <foosl>,

<foos2>, . . ., <foosn> in the source document

each of which is associated to the same container-

class set[Foo].

fus> is mapped to a container class set[Foo] with D
cardinality parameters minOccurs=“0"

maxQOccurs=“unbounded” in the XML schema,

but there is no corresponding element <foos> in

the source document that is associated with the

same container-class set[Foo]. There are,

however, perhaps elements <fool>, <foo2> . .. <foom>
which are each individually mapped to the class Foo.
<fus> is mapped to a container class set[Foo] E

with cardinality parameters minOccurs=“0"

maxQOccurs=“n" in the XML schema, and

there are corresponding elements <foos1>, <foos2>, .. .,

<foosk> in the source document each of which is

associated to the same container-class set[Foo].

<fus> is mapped to a container class set[Foo] with F
cardinality parameters minOccurs=“0"

maxQOccurs=“n" in the XML schema, but

there is no corresponding element <foos> in the

source document that is associated with the same container-

class set[Foo]. There are, however, perhaps elements

<fool>, <foo2> ... <fook> which are each individually

mapped to the class Foo.

fus> is mapped to a container class set[Foo] with G
cardinality parameters minOccurs=“m”

maxQOccurs=“n" in the XML schema, and there

Oct. 28, 2004
41

TABLE CXXXI-continued

Conditions for <xsl:for-each> Segments

XSLT
Condition Segment
are corresponding elements <foosl>, <foos2>, ...,
<foosk> in the source document each of which is
associated to the same container-class set[Foo].
fus> is mapped to a container class set[Foo] with H

cardinality parameters minOccurs=“m”
maxQOccurs=“n" in the XML schema, but

there is no corresponding element <foos> in the
source document that is associated with the same
container-class set[Foo]. There are, however,
perhaps elements <fool>, <foo2> ... <fook> which

are each individually mapped to the class Foo.

[0434] For cases C and D, the XML schema code prefer-
ably looks like:

<xsd:complexType name="fus”>
<xsd:sequences>
<xsd:element name=“fu” type=“fu_ view” minOccurs=“0"
maxQOccurs=“unbounded”’/>
</xsd:sequence>

</xsd:complexType>

[0435] For cases E and F, the XML schema code prefer-
ably looks like:

<xsd:complexType name="fus”>
<xsd:sequence>
<xsd:element name=“fu” type=“fu_ view” minOccurs=“0"
maxOccurs=“n">
</xsd:sequence>

</xsd:complexType>

[0436] For cases G and H, the XML schema code prefer-
ably looks like:

<xsd:complexType name="fus”>
<xsd:sequence>
<xsd:element name=“fu” type=“fu_ view” minOccurs=“0"
maxOccurs=“n">
</xsd: sequence>

</xsd:complexType>

US 2004/0216030 Al Oct. 28, 2004
42

[0437] For the rules as to what should appear in between
the <for-each> tags, see step 5 hereinbelow.

CASE A:

<fu>
<xsl:for-each select=".//foo[position() = 17>
</xsl:for-each>
</fu>
CASE B:

<xsl:for-each select=“.//foo[position() = 1]">
<fu>
</fu>

</xsl:for-each>

CASE C:

<fus>
<xsl:for-each select=%.//foos1”>
<xsl:for-each select="foo”>
<fu>
</fu>
</xsl:for-each>
</xsl:for-each>
<xsl:for-each select=%.//f00s2”>
<xsl:for-each select="foo”>
<fu>
</fu>
</xsl:for-each>
</xsl:for-each>
<«xsl:for-each select=%.//foosn”>
<xsl:for-each select="foo”>
<fu>
</fu>
</xsl:for-each>
</xsl:for-each>
</fus>
CASE D:

<fus>
<xsl:for-each select=%.//foo1”>
<fu>
</fu>
</xsl:for-each>
<xsl:for-each select=*.//fo02">
<fu>
</fu>
</xsl:for-each>
<xsl:for-each select=".//foom™>
<fu>
</fu>
</xsl:for-each>
</fus>
CASE E:

<xsl:template match="/">
<fus>
<xsl:call-template name="“find foos1”>
<xsl:with-param name=“so__far” select="0"/>
</xsl:call-template>
</fus>
</xsl:template>
<xsl:template name=“find__foos1”>
<xsl:param name="“so_ far”/>
<xsl:if test=“$so_ far < n+17>
<«xsl:for-each select="“.//foos1/fo0”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foos2”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//foos1/fo0)”/>
</xsl:call-template>

US 2004/0216030 A1l
43

-continued

</xsl:template>
<xsl:template name=“find_foos2”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select="“.//foos2/fo0”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foos3”>

<xsl:with-param name="“so_ far” select="$so__far+count(.//foos2/fo0)”/>

</xsl:call-template>
</xsl:template>
<xsl:template name=“find__foosk”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select="“.//foosn/foo”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
</xsl:template>
CASE F:

<xsl:template match="/">
<fus>
<xsl:call-template name=“find_ foo 1 7>
<xsl:with-param name=“so__far” select="0"/>
</xsl:call-template>
</fus>
</xsl:template>
<xsl:template name=“find_ foo1”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each selects“.//fool”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foo2”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//fool)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name="fmd_ fo02”>
<xsl:param name="“so_ far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select=*“.//fo02>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foo3”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//foo2)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name="find__fook”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select=*.//fook™>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if
</xsl:template>

Oct. 28, 2004

US 2004/0216030 Al Oct. 28, 2004
44

-continued

CASE G:

<xsl:template match="/">
<fus>
<xsl:call-template name=“find__foos1”>
<xsl:with-param name=“so__far” select="0"/>
</xsl:call-template>
</fus>
</xsl:template>
<xsl:template name="find foos1”>
<xsl:param name="“so_ far”/>
<xsl:if test=“$so_ far < n+17>
<«xsl:for-each select="“.//foos1/fo0”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“findd__foos2”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//foos1/fo0)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name="find foos2”>
<xsl:param name="“so_ far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select="“.//foos2/fo0”>
<xsl:if test=“$so far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foos3”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//foos2/fo0)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name=“find__foosn”>
<xsl:param name="“so_ far”/>
<xsl:if test=“$so_ far < k+17>
<xsl:for-each select="“.//foosn/foo”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name="“generate__fus”>
<xsl:with-param name="“so_ far” select="$so__far+count(.//foosk/foo)”/>
</xsl:call-template>
</xsl:template>
<xsl:templatename=“generate__fus”>
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < m”>
<fu>
</fu>
<xsl:call-template name="“generate__fus”>
<xsl:with-param name="“so_ far” select="$so_ far + 17/>
</xsl:call-template>
</xsl:if>
</xsl:template>

US 2004/0216030 A1l
45

-continued

Oct. 28, 2004

CASE H:

<xsl:template match="/">
<fus>
<xsl:call-template name=“find__foo1”>
<xsl:with-param name=“so__far” select="0"/>
</xsl:call-template>
</fus>
</xsl:template>
<xsl:template name=“find_ foo1”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select=*“.//fool”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foo2 ">
<xsl:with-param name="“so_ far” select="$so__far+count(.//fool)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name="find_ foo2”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < n+17>
<xsl:for-each select=*“.//fo02>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name=“find_ foo3 >
<xsl:with-param name="“so_ far” select="$so__far+count(.//foo2)”/>
</xsl:call-template>
</xsl:template>
<xsl:template name="find__foon”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < k+17>
<xsl:for-each select=*“.//foon”>
<xsl:if test=“$so_ far+position() < n+1”>
<fu>
</fu>
</xsl:if>
</xsl:for-each>
</xsl:if>
<xsl:call-template name="“generate__fus”>

<xsl:with-param name="“so_ far” select="$so__far+count(.//fook)”/>

</xsl:call-template>
</xsl:template>
<xsl:template name=“generate__fus”>
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < m”>
<fu>
</fu>
<xsl:call-template name="“generate__fus”>
<xsl:with-param name="“so_ far” select="$so_ far + 17/>
</xsl:call-template>
</xsl:if>
</xsl:template>

[0438] 5. Next assume that the classes have been taken
care of as detailed hereinabove in step 4. Preferably, from
this point onwards the algorithm proceeds by working with
properties rather than classes. Again, the algorithm is

divided up into cases.

[0439] Assume that the <fu> </fu> tags have been treated,
and that the main issue now is dealing with the elements
<bar> that are properties of <fu>.

[0440] Sequence Lists

[0441] Suppose that the properties of <fu> are listed in a
sequence complex-type in the target schema. Assume, for
the sake of definitiveness, that a complexType fu is mapped
to an ontological class Foo, with elements bar; mapped to
respective property, Foo.bar;. Assume further that the source
XML schema has an Xpath pattern fill that maps to the
ontological class Foo, with further children patterns ful/
barrl, ful/barr2, etc., mapping to the relevant property
paths.

US 2004/0216030 A1 Oct. 28, 2004
46

[0442] Inapreferred embodiment of the present invention,

specific pieces of code are generated to deal with different -continued
maximum and minimum occurrences. Such pieces of code - P N
L. <xsl:call-template name="generate__bar”>
are generated inside the <fu> </fu> tags that were gener- <xsl:with-param name=*so_ far” select=<$so_far + 17/>
atedas described hereinabove. Preferably, the general rule </xsl:call-template>
. . . R </xsl:if>
for producing such pieces of code is as follows: </xsltemplates
CASE M:
TABLE CXXXI
<xsl:for-each select="“barr[position() < n+1]">
Conditions for Filling in <xsl:for-each> Segments <bar>
<xsl:value-of select=%“.""/>
XSIT <bar>
Condition Segment </xsl:for-each>
<xsl:call-template name="generate__bar”>
The target XML code says <xs:element name="“bar” I <xsl:with-param name=“so_ far” select="count(barr)”/>
minOccurs=“1" maxOccurs=“1"/> or </xsl:call-template>
equivalently <xs:element name=“bar” />, and <xslitemplate name="“generate_bar”>
the source has an associated tag <barrs. <xsl:param name="“so__far"/>
The target XML code says <xs:element name="“bar” 7 <xsl:if test="$so_far < m”>
minOccurs=“0" maxOccurs=“unbounded”/> <bar>
and the source has an associated tag <barr>. </bar>
The XML code says <xs:element name="“bar” L <xsl:call-template name="“generate_bar”>
minOccurs=“0" maxOccurs=“n"/> <xsl:with-param name=“so_ far” select="$so_far + 17/>
and the source has an associated tag <barr>. </xsl:call-template>
The XML code says <xs:element name="bar” M </xsl:if>
minOccurs=“m” maxOccurs=“unbounded”/> </xsl:template>
where m > 0, and the source has an associated tag <barr>. CASE N:
The XML code says <xs:element name="bar” N
minOccurs=“m” maxQOccurs=“n"/> <bar>
where m > 0, and n is a finite integer, and the source </bar>
has an associated tag <barr>.
The target sequence includes a line <xs:element (0]
name="bar” minOccurs="m" [0444] As an exemplary illustration, suppose the complex-

maxQOccurs=“n"/> where m > 0, but the source has

no associated tag, Type appears in the target schema as follows:

[0443] <xs:complexType name=“fu”>
<xsisequence>
<xs:element name=“barl” type=“xs:string” />
<xs:element name=“bar2” type=“xs:string”” minOccurs=“0"
maxQOccurs=“7"/>

CASE I: <xs:element name=“bar3” type=“xs:string” minOccurs="1"
maxQOccurs=“8”/>
<bar> <xs:element name=“bar4” type=“xs:string” minOccurs=“3"
<xsl:value-of select="barr”/> maxOccurs=“unbounded”/>
</bar> <xs:element name=“bar5” type=“xs:string” minOccurs=“0"
CASE J: maxOccurs=“unbounded”/>
<xs:element name=“barn” type=“xs:string” />
<xsl:for-each select=“barr’> </xs:sequence>
<bar> </xs:complexType>
<xsl:value-of select=%“.""/>
</bar>
é/isslgog_e“b [0445] Then, based on the above cases, the following

XSLT script is generated.

<xsl:for-each select=“barr[position() < n+1]">

<bar>
<xsl:value-of select=%“.""/>
</bar> <fu>
</xsl:for-each> <barrl>
CASE L: <xsl:value-of select=“barl”/>
</barrl>
<xsl:for-each select=“barr’> <xsl:for-each select="bar2[position() < 5>
<bar> <barr2>
<xsl:value-of select="."/> <xsl:value-of select="“."/>
</bar> </barr2>
</xsl:for-each> </xsl:for-each>
<xsl:call-template name="generate_ bar”> <xsl:for-each select="bar3[position() < 9>
<xsl:with-param name="“so_ far” select="count(barr)”/> <barr3>
</xsl:call-template> <xsl:value-of select="."/>
<xsl:template name="generate__bar”> </barr3>
<xsl:param name=“so_ far”/> </xsl:for-each>
<xsl:if test=“$so_far < m”> <xsl:call-template name="“generate__barr3”>
<bar> <xsl:with-param name=“so__far”

</bar> select="“count(bar3)”/>

US 2004/0216030 A1l

-continued

</xsl:call-template>
<xsl:for-each select="bar4”>
<barrd>
<xsl:value-of select=%“""/>
</barrd>
</xsl:for-each>
<xsl:call-template name="“generate__barr4”>
<xsl:with-param name=“so__far”
select="count(bar4)”/>
</xsl:call-template>
<xsl:for-each select="bar5”>

<barr5>
<xsl:value-of select="."/>
</barr5>
</xsl:for-each>
</xsl:if>
</fu>

</xsl:template>
<xsl:template match="text()|@*"/>
<xsl:template name="generate__barr3”>
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < 17>
<barr3>
</barr3>
<xsl:call-template name="“generate__barr3 ”>
<xsl:with-param name=“so__far”
select="$so_ far + 17/>
</xsl:call-template>
</xsl:if>
</xsl:template>
<xsl:template name="generate__barr4”>
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < 37>
<barrd>
</barrd>
<xsl:call-template name="generate__barr4“>
<xsl:with-param name="so__far“
select="$so_ far + 1/>
</xsl:call-template>
</xsl:if>
</xsl:template>

[0446] Choice Lists

[0447] Suppose that the properties of <fu> are listed in a
choice complex-type in the target schema. Assume again, as
above, that fu is mapped to an ontological class Foo, with
each of bar; mapped to a property, Foo.bar;. Assume further,
as above, that the source XML schema has an Xpath pattern
foo that maps to the ontological class Foo, with further
children patterns foo/barrl, foo/barr2, etc., mapping to the
relevant property paths.

[0448] Preferably, the general rule for producing XSLT
script associated with a target choice bloc is as follows. Start
with the tags <xsl:choose> </xsl:choose>. For each element
in the choice sequence, insert into the choose bloc <xsl:when
test="barr”></xsl:when> and within that bloc insert code
appropriate to the cardinality restrictions of that element,
exactly as above for sequence blocs, including the creation
of new templates if needed. Finally, if there are no elements
with minOccurs=“0" in the choice bloc, select any tag
<barr> at random in the choice bloc, and insert into the
XSLT, right ©before the closing </xsl:choose>,
<xsl:otherwise><barr></barr></xsl:otherwise>.

47

Oct. 28, 2004

[0449] As an exemplary illustration, suppose the complex-
Type appears I the target schema as follows:

<xs:choice>
<xs:element name=“barl” type=“xs:string” />

<xs:element name=“bar2” type=“xs:string”” minOccurs=“0"

maxQOccurs=“7"/>

<xs:element name=“bar3” type=“xs:string” minOccurs="1"

maxQOccurs=“8”/>

<xs:element name=“bar4” type=“xs:string” minOccurs=“3"

maxQOccurs=“unbounded”/>

<xs:element name=“bar5” type=“xs:string” minOccurs=“0"

maxQOccurs=“unbounded”/>
<xs:element name=“barn” type=“xs:string” />
</xs:choice>

[0450] Then, based on the above cases, the following
XSLT script is generated.

<fu>
<xsl:choose>
<xsl:when test=“bar1”>
<barrl>
<xsl:value-of select="“barl”/>
</barrl>
</xsl:when>
<xsl:when test=“bar2”>
<xsl:for-each select="“bar2[position() < 8]">
<barr2>
<xsl:value-of select=%.""/>
</barr2>
</xsl:for-each>
</xsl:when>
<xsl:when test=“bar3”>
<xsl:for-each select="“bar3[position() < 9]">
<barr3>
<xsl:value-of select="."/>
<barr3>
</xsl:for-each>
<xsl:call-template name="“generate_ barr3”>
<xsl:with-param name=“so__far”
select="count(bar3)”/>
</xsl:call-template>
</xsl:when>
<xsl:when test=“bar4”>
<xsl:for-each select="bar4”>
<barrd>
<xsl:value-of select="."/>
</barrd>
</xsl:for-each>
<xsl:call-template name="“generate barr4”>
<xsl:with-param name=“so__far”
select="count(bar4)”/>
</xsl:call-template>
</xsl:when>
<xsl:when test=“bar5”>
<xsl:for-each select="bar5”>
<barr5>
<xsl:value-of select=%.""/>
</barr5>
</xsl:for-each>
</xsl:when>
<xsl:otherwise>
</xsl:otherwise>
</xsl:choose>
</fu>
</xsl:template>
<xsl:template match="text()|@*”/>
<xsl:template name=“generate_barr3 ">
<xsl:param name="“so__far”/>
<xsl:if test="$so_ far < 17>
<barr3>
</barr3>

US 2004/0216030 A1l

-continued

<xsl:call-template name="“generate__barr3”>
<xsl:with-param name="so__far“
select=""$so_ far + 1%/>
</xsl:call-template>
</xsl:if>
</xsl:template>
<xsl:template name=“generate barr4”>
<xsl:param name="“so__far”/>
<xsl:if test=“$so_ far < 3”>
<barr4>
</barrd>
<xsl:call-template name="“generate__barr4”>
<xsl:with-param name=“so__far”
select="$so_ far + 17/>
</xsl:call-template>
</xsl:if>
</xsl:template>

[0451] All Lists

[0452] Suppose that the properties of <fu> are listed in an
all complex-type in the target schema. Assume again, as
above, that foo is mapped to an ontological class Foo, with
each of bar; mapped to a property, Foo.bar,. Assumer further
that the source XML schema has an Xpath pattern foo that
maps to the ontological class Foo, with further children
patterns foo/barrl, foo/barr2, etc., mapping to the relevant
property paths.

[0453] Inapreferred embodiment of the present invention,
a general rule is to test for the presence of each of the source
tags associated with the target tags, by way of

<xslif test=“fo0”>
<fu>
<xsl:value-of select=“fo0”/>
</fu>
</xsl:if>

[0454] Preferably, if any of the elements has minOccurs=
“1” then the negative test takes place as well:

<xsl:if test=“not (foo)”>
<fu>
</fu>

</xsl:if>

[0455] As an exemplary illustration, suppose the complex-
Type appears I the target schema as follows:

48

Oct. 28, 2004

[0456] Then the following XSLT script is generated.

<fu>
<xsl:template match="fo0”>
<xsl:if test=“position() = 17>
<xslif test=“barl”>
<barrl>
<xsl:value-of select="“barl”/>
</barrl>
</xsl:if>
<xslif test=“bar2”>
<barr2>
<xsl:value-of select="“bar2”/>
</barr2>
</xsl:if>
<xsl:if test=“not (bar2)”>
<barr2>
</barr2>
</xsl:if>
</xsl:if>
</xsl:template>

[0457] 6. In a preferred embodiment of the present inven-
tion, when the elements of foo/barl, foo/bar2, etc. have been
processed as above in step 5, everything repeats in a
recursive manner for properties that are related to each of the
bar; elements. That is, if the target XML schema has further
tags that are children of barl, bar2, etc., then preferably each
of those is treated as properties of the respective target
classes of barl, bar2, and so on, and the above rules apply
recursively.

[0458] Additional Considerations

[0459] Inreading the above description, persons skilled in
the art will realize that there are many apparent variations
that can be applied to the methods and systems described. A
first variation to which the present invention applies is a
setup where source relational database tables reside in more
than one database. The present invention preferably operates
by using Oracle’s cross-database join, if the source data-
bases are Oracle databases. In an alternative embodiment,
the present invention can be applied to generate a first SQL
query for a first source database, and use the result to
generate a second SQL query for a second source database.
The two queries taken together can feed a target database.

[0460] In the foregoing specification, the invention has
been described with reference to specific exemplary embodi-
ments thereof. It will, however, be evident that various
modifications and changes may be made to the specific
exemplary embodiments without departing from the broader
spirit and scope of the invention as set forth in the appended
claims. Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

<xs:complexType name="bar”>

<xs:all>

<xs:element name="bar2” type=“xs:string” minOccurs=“0" maxOccurs=“1"/>

<xs:element name="bar3” type="xs:string“ minOccurs=“1" maxOccurs=“1"/>

</xs:all>

</xs:complexType>

US 2004/0216030 A1l

What is claimed is:
1. Amethod for deriving transformations for transforming
data from one data schema to another, comprising:

receiving a source data schema and a target data schema;
mapping the source data schema into an ontology model;

mapping the target data schema into the ontology model;
and

deriving a transformation for transforming data conform-
ing to the source data schema into data conforming to
the target data schema, using the ontology model.

2. The method of claim 1 further comprising converting at
least one of the source data schema and the target schema
from an external format to an internal format.

3. The method of claim 1 further comprising receiving the
ontology model.

4. The method of claim 3 further comprising converting
the ontology model from an external format to an internal
format.

5. The method of claim 1 further comprising generating
the ontology model.

6. The method of claim 5 further comprising receiving an
initial ontology model, wherein said generating generates
the ontology model from the initial ontology model.

7. The method of claim 6 further comprising converting
the initial ontology model from an external format to an
internal format.

8. The method of claim 1 further comprising generating
executable program code that transforms data conforming to
the source data schema into data conforming to the target
data schema.

9. The method of claim 1 wherein the source data schema
is a source table schema describing source data tables,
wherein the target data schema is a target table schema
describing target data tables, and wherein the source table
schema and the target table schema each describes at least
one table having columns.

10. The method of claim 9 wherein the source table
schema is a source relational database schema describing
source relational database tables, wherein the target table
schema is a target relational database schema describing
target relational database tables, and wherein the transfor-
mation is an SQL query.

11. The method of claim 10 wherein said mapping a
source data schema and said mapping a target data schema
each comprise:

identifying at least one class in the ontology model
corresponding to at least one table; and

identifying at least one property or composition of prop-
erties in the ontology model corresponding to at least
one table column.
12. The method of claim 11 wherein said deriving com-
prises:

labeling properties of the ontology model with symbols;

converting at least one column in the source relational
database schema into at least one source symbol;

converting at least one column in the target relational
database schema into at least one target symbol; and

expressing the at least one target symbol in terms of at
least one source symbol.

49

Oct. 28, 2004

13. The method of claim 12 wherein said expressing uses
expressions involving composition of properties.

14. The method of claim 12 wherein at least one depen-
dency exists among properties in the ontology model, and
wherein said deriving further comprises translating the at
least one dependency among properties in the ontology
model as at least one dependency between target relational
database columns and source relational database columns,
and wherein said expressing incorporates the at least one
dependency between target relational database columns and
source relational database columns.

15. The method of claim 14 wherein said expressing uses
expressions involving arithmetic operations.

16. The method of claim 14 wherein said expressing uses
expressions involving character string operations.

17. The method of claim 10 further comprising applying
the query to at least one source relational database table to
populate at least one target relational database table.

18. The method of claim 17 wherein the at least one
source relational database table reside in a single database.

19. The method of claim 17 wherein the at least one
source relational database table reside in multiple databases.

20. The method of claim 1 wherein the source data
schema is a source document schema describing source
documents, and wherein the target data schema is a target
document schema describing target documents.

21. The method of claim 20 wherein the source document
schema is a source D'TD describing source XML documents,
wherein the target document schema is a target DTD
describing target XML documents, and wherein the source
DTD and the target DTD each describes at least one XML
element or XML attribute.

22. The method of claim 21 wherein the transformation is
an XQuery.

23. The method of claim 21 wherein the transformation is
an XSLT script.

24. The method of claim 20 wherein the source document
schema is a source XML schema describing source XML
documents, wherein the target document schema is a target
XML schema describing target XML documents, and
wherein the source XML schema and the target XML
schema each describes at least one XML complexType
having at least one XML element or XML attribute.

25. The method of claim 24 wherein the transformation is
an XQuery.

26. The method of claim 24 wherein the transformation is
an XSLT script.

27. The method of claim 24 wherein said mapping a
source data schema and said mapping a target data schema
each comprise:

identifying at least one class in the ontology model
corresponding to at least one XML complexType; and

identifying at least one property or composition of prop-
erties in the ontology model corresponding to at least
one XML element or XML attribute.

28. The method of claim 24 wherein said deriving com-
prises expressing XML elements and XML attributes of the
target XML schema in terms of XML elements and XML
attributes of the source XML schema.

29. The method of claim 28 wherein said expressing is
performed recursively through XPath paths.

30. The method of claim 27 wherein at least one depen-
dency exists among properties in the ontology model, and

US 2004/0216030 A1l

wherein said deriving further comprises translating the at
least one dependency among properties in the ontology
model as at least one dependency between target XML
elements and source XML elements.

31. The method of claim 26 further comprising applying
the XSLT script to at least one source XML document to
generate at least one target XML document.

32. The method of claim 31 wherein the at least one
source XML document reside in a single database.

33. The method of claim 31 wherein the at least one
source XML document reside in multiple databases.

34. A system for deriving transformations for transform-
ing data from one data schema to another, comprising:

a schema receiver receiving a source data schema and a
target data schema;

a mapping processor mapping a data schema into an
ontology model; and

a transformation processor deriving a transformation for
transforming data conforming to the source data
schema into data conforming to the target data schema,
based on respective source and target mappings gen-
erated by said mapping processor for mapping said
source data schema and said target data schema into a
common ontology model.

35. The system of claim 34 further comprising a schema
format convertor, converting at least one of the source data
schema and the target data schema from an external format
to an internal format.

36. The system of claim 34 further comprising an ontol-
ogy receiver receiving the ontology model.

37. The system of claim 36 further comprising an ontol-
ogy format convertor, converting the ontology model from
an external format to an internal format.

38. The system of claim 34 further comprising an ontol-
ogy builder generating the ontology model.

39. The system of claim 38 further comprising an ontol-
ogy receiver receiving an initial ontology model, wherein
said ontology builder generates the ontology model from the
initial ontology model.

40. The system of claim 39 further comprising an ontol-
ogy format convertor, converting the initial ontology model
from an external format to an internal format.

41. The system of claim 34 further comprising a program
code generator generating executable program code that
transforms data conforming to the source data schema into
data conforming to the target data schema.

42. The system of claim 34 wherein the source data
schema is a source table schema describing source data
tables, wherein the target data schema is a target table
schema describing target data tables, and wherein the source
table schema and the target table schema each describes at
least one data table having columns.

43. The system of claim 42 wherein the source table
schema is a source relational database schema describing
source relational database tables, wherein the target table
schema is a target relational database schema describing
target database tables, and wherein the transformation is an
SQL query.

Oct. 28, 2004

44. The system of claim 43 wherein said mapping pro-
Cessor comprises:

a class identifier identifying at least one class in the
common ontology model corresponding to at least one
table; and

a property identifier identifying at least one property or
composition of properties in the common ontology
model corresponding to at least one table column.

45. The system of claim 44 wherein said property iden-
tifier presents a user with a choice of at least one property in
the common ontology model that may correspond to a given
table column.

46. The system of claim 45 wherein the choice of at least
one property only includes properties having targets that are
compatible with a data type of the given table column.

47. The system of claim 46 wherein, for a given table
column that is a foreign key to a foreign table, the choice of
at least one property only includes properties whose target is
a class corresponding to the foreign table.

48. The system of claim 43 wherein said transformation
processor comprises:

an ontology labeller labeling properties of the common
ontology model with symbols;

a column converter converting at least one column in the
source relational database schema into at least one
source symbol, and converting at least one column in
the target relational database schema into at least one
target symbol; and

a symbol processor expressing the at least one target
symbol in terms of at least one source symbol.

49. The system of claim 48 wherein said symbol proces-
sor uses expressions involving composition of properties.

50. The system of claim 48 wherein at least one depen-
dency exists among properties in the ontology model, and
wherein said transformation processor further comprises a
dependency processor translating the at least one depen-
dency among properties in the ontology model as at least one
dependency between target relational database columns and
source relational database columns, and wherein said sym-
bol processor incorporates the at least one dependency
between target relational database columns and source rela-
tional database columns.

51. The system of claim 50 wherein said symbol proces-
sor uses expressions involving arithmetic operations.

52. The system of claim 50 wherein said symbol proces-
sor uses expressions involving character string operations.

53. The system of claim 43 further comprising:

a data receiver receiving at least one source relational
database table; and

a data processor applying the query to the at least one
source relational database table to populate at least one
target relational database table.

54. The system of claim 53 wherein the at least one source

relational database table reside in a single database.

55. The system of claim 53 wherein the at least one source
relational database table resides in multiple databases.

56. The system of claim 34 wherein the source data
schema comprises a source document schema describing
source documents, and wherein the target data schema
comprises a target document schema describing target docu-
ments.

US 2004/0216030 A1l

57. The system of claim 56 wherein the source document
schema is a source D'TD describing source XML documents,
wherein the target document schema is a target DTD
describing target XML documents, and wherein the source
DTD and the target DTD each describes at least one XML
element or XML attribute.

58. The system of claim 57 wherein the transformation is
an XQuery.

59. The system of claim 57 wherein the transformation is
an XSLT script.

60. The system of claim 56 wherein the source document
schema comprises a source XML schema that describes
XML source documents, wherein the target document
schema comprises a target XML schema that describes XML
target documents, and wherein the source XML schema and
the target XML schema each comprises at least one XML
complexType having at least one XML element or XML
attribute.

61. The system of claim 60 wherein the transformation is
an XQuery.

62. The system of claim 60 wherein the transformation is
an XSLT script.

63. The system of claim 60 wherein said mapping pro-
Cessor comprises:

a class identifier identifying at least one class in the
ontology model corresponding to at least one XML
complexType; and

an property identifier identifying at least one property or
composition of properties in the ontology model cor-
responding to at least one XML element or XML
attribute.

64. The system of claim 60 wherein said transformation
processor comprises an XML processor expressing XML
elements and XML attributes of said target XML schema in
terms of XML elements and XML attributes of said source
XML schema.

65. The system of claim 64 wherein said XML processor
operates recursively through XPath paths.

66. The system of claim 64 wherein at least one depen-
dency exists among properties in the ontology model, and
wherein said transformation processor further comprises a
dependency processor translating the at least one depen-
dency among properties in the ontology model as at least one
dependency between target XML elements or attributes, and
source XML elements or attributes, and wherein said XML
processor incorporates the at least one dependency between
target XML elements or attributes, and source XML ele-
ments or attributes.

67. The system of claim 60 further comprising

a data receiver receiving at least one source XML docu-
ment; and

a data processor applying the XSLT script to the at least
one source XML document to generate at least one
target XML document.

68. The system of claim 67 wherein the at least one source

XML document reside in a single database.
69. The system of claim 67 wherein the at least one source
XML document reside in multiple databases.

70. A method for building an ontology model into which

data schema can be embedded, comprising:

receiving at least one data schema; and

building an ontology model into which the at least one
data schema can be embedded.

Oct. 28, 2004

71. The method of claim 70 further comprising converting
at least one of the at least one data schema from an external
format to an internal format.

72. The method of claim 70 wherein the at least one data
schema is at least one table schema describing data tables
having columns.

73. The method of claim 72 wherein the at least one table
schema is at least one relational database schema describing
relational database tables.

74. The method of claim 73 wherein said building an
ontology model comprises:

providing an initial ontology model;

adding classes to the initial ontology model correspond-
ing to tables described in the at least one relational
database schema; and

adding properties to the initial ontology model corre-
sponding to columns described in the at least one
relational database schema.

75. The method of claim 74 wherein the initial ontology
model is empty.

76. The method of claim 74 wherein the initial ontology
model is non-empty.

77. The method of claim 76 further comprising converting
the initial ontology model from an external format to an
internal format.

78. The method of claim 74 wherein said adding classes
is performed by a computer in conjunction with a user.

79. The method of claim 78 wherein said adding classes
prompts a user to add a class to the ontology model when
there is a table described in the at least one relational
database schema that does not correspond to an existing
class in the ontology model.

80. The method of claim 74 wherein said adding classes
is performed automatically by a computer.

81. The method of claim 80 wherein said adding classes
automatically adds a class to the ontology model when there
is a table described in the at least one relational database
schema that does not correspond to an existing class in the
ontology model.

82. The method of claim 74 wherein said adding proper-
ties is performed by a computer in conjunction with a user.

83. The method of claim 82 wherein said adding proper-
ties prompts a user to add a property to the ontology model
when there is a table column described in the at least one
relational database schema that does not correspond to an
existing property or composition of properties in the ontol-
ogy model.

84. The method of claim 74 wherein said adding proper-
ties is performed automatically by a computer.

85. The method of claim 84 wherein said adding proper-
ties automatically adds a property to the ontology model
when there is a table column described in the at least one
relational database schema that does not correspond to an
existing property or composition of properties in the ontol-
ogy model.

86. The method of claim 70 wherein said building an
ontology model comprises inferring inheritance relation-
ships between classes in the ontology model based on
relationships between tables described in the at least one
relational database schema.

US 2004/0216030 A1l

87. The method of claim 86 wherein a first class in the
ontology model is inferred to inherit from a second class in
the ontology model when a table corresponding to the first
class has a primary key that is a foreign key to a table
corresponding to the second class.

88. The method of claim 86 wherein said inferring inher-
itance relationships includes prompting a user to confirm an
inferred inheritance relationship.

89. The method of claim 70 wherein the at least one data
schema is at least one document schema describing docu-
ments.

90. The method of claim 89 wherein the at least one
document schema is an XML schema describing XML
documents having at least one XML complexType with at
least one XML element or XML attribute.

91. The method of claim 90 wherein said building an
ontology model comprises:

providing an initial ontology model;

adding classes to the initial ontology model correspond-
ing to XML complexTypes described in the at least one
XML schema; and

adding properties to the initial ontology model corre-
sponding to XML elements and XML attributes
described in the at least one XML schema.

92. The method of claim 91 wherein the initial ontology
model is empty.

93. The method of claim 92 wherein the initial ontology
model is non-empty.

94. The method of claim 91 wherein said adding classes
is performed by a computer in conjunction with a user.

95. The method of claim 94 wherein said adding classes
prompts a user to add a class to the ontology model when
there is an XML complexType described in the at least one
XML schema that does not correspond to an existing class
in the ontology model.

96. The method of claim 91 wherein said adding classes
is performed-automatically by a computer.

97. The method of claim 96 wherein said adding classes
automatically adds a class to the ontology model when there
is an XML complexType described in the at least one XML
schema that does not correspond to an existing class in the
ontology model.

98. The method of claim 91 wherein said adding proper-
ties is performed by a computer in conjunction with a user.

99. The method of claim 98 wherein said adding proper-
ties prompts a user to add a property to the ontology model
when there is an XML element or an XML attribute
described in the at least one XML schema that does not
correspond to an existing property or composition of prop-
erties in the ontology model.

100. The method of claim 91 wherein said adding prop-
erties is performed automatically by a computer.

101. The method of claim 100 wherein said adding
properties automatically adds a property to the ontology
model when there is an XML element or an XML attribute
described in the at least one relational database schema that
does not correspond to an existing property or composition
of properties in the ontology model.

102. A system for building an ontology model into which
data schema can be embedded, comprising:

a schema receiver receiving at least one data schema; and

a model builder building an ontology model into which
the at least one data schema can be embedded.

Oct. 28, 2004

103. The system of claim 102 further comprising a
schema format convertor, converting at least one of the at
least one data schema from an external format to an internal
format.

104. The system of claim 102 wherein the at least one data
schema is at least one table schema describing data tables
having columns.

105. The system of claim 104 wherein the at least one
table schema is at least one relational database schema
describing relational database tables.

106. The system of claim 105 further comprising an
ontology receiver receiving an initial ontology model, and
wherein said model builder comprises:

a class adder adding classes to the initial ontology model
corresponding to tables described in the at least one
relational database schema; and

a property adder adding properties to the initial ontology
model corresponding to table columns described in the
at least one relational database schema.

107. The system of claim 106 wherein the initial ontology

model is empty.

108. The system of claim 106 wherein the initial ontology
model is non-empty.

109. The system of claim 108 further comprising an
ontology format convertor, converting the initial ontology
model from an external format to an internal format.

110. The system of claim 106 wherein said class adder is
guided by a user in conjunction with a computer.

111. The system of claim 110 wherein said class adder
prompts a user to add a class to the ontology model when
there is a table described in the at least one relational
database schema that does not correspond to an existing
class in the ontology model.

112. The system of claim 106 wherein said class adder is
automatically guided by a computer.

113. The system of claim 112 wherein said class adder
automatically adds a class to the ontology model when there
is a table described in the at least one relational database
schema that does not correspond to an existing class in the
ontology model.

114. The system of claim 106 wherein said property adder
is guided by a user in conjunction with a computer.

115. The system of claim 114 wherein said property adder
prompts a user to add a property to the ontology model when
there is a table column described in the at least one relational
database schema that does not correspond to an existing
property or composition of properties in the ontology model.

116. The system of claim 106 wherein said property adder
is automatically guided by a computer.

117. The system of claim 116 wherein said property adder
automatically adds a property to the ontology model when
there is a table column described in the at least one relational
database schema that does not correspond to an existing
property or composition of properties in the ontology model.

118. The system of claim 105 wherein said model builder
comprises an inheritance processor inferring inheritance
relationships between classes in the ontology model based
on relationships between tables in the at least one relational
database schema.

119. The system of claim 118 wherein said inheritance
processor infers that a first class in the ontology model

US 2004/0216030 A1l

inherits from a second class in the ontology model when a
table corresponding to the first class has a primary key that
is a foreign key to a table corresponding to the second class.

120. The system of claim 118 wherein said model builder
ensures that classes corresponding to tables in the at least
one relational database schema obey the inferred inheritance
relationships.

121. The system of claim 120 wherein said inheritance
processor prompts a user to confirm an inferred inheritance
relationship.

122. The system of claim 102 wherein the at least one data
schema comprises at least one document schema describing
documents.

123. The system of claim 122 wherein the at least one
document schema comprises at least one XML schema that
describes XML documents, wherein having at least one
XML complexType with at least one XML element or XML
attribute.

124. The system of claim 123 further comprising an
ontology receiver receiving an initial ontology model, and
wherein said model builder comprises:

a class adder adding classes to the initial ontology model
corresponding to XML complexTypes described in the
at least one XML schema; and

a property adder adding properties to the initial ontology
model corresponding to table columns in the at least
one relational database schema.

125. The system of claim 124 wherein the initial ontology

model is empty.

126. The system of claim 124 wherein the initial ontology
model is non-empty.

127. The system of claim 124 wherein said class adder is
guided by a user in conjunction with a computer.

128. The system of claim 127 wherein said class adder
prompts a user to add a class to the ontology model when
there is an XML complexType described in the at least one
XML schema that does not correspond to an existing class
in the ontology model.

129. The system of claim 124 wherein said class adder is
automatically guided by a computer.

130. The system of claim 129 wherein said class adder
automatically adds a class to the ontology model when there
is an XML complexType described in the at least one XML
schema that does not correspond to an existing class in the
ontology model.

131. The system of claim 124 wherein said property adder
is guided by a user in conjunction with a computer.

132. The system of claim 131 wherein said property adder
prompts a user to add a property to the ontology model when

Oct. 28, 2004

there is an XML element or XML attribute described in the
at least one XML schema that does not correspond to an
existing property or composition of properties in the ontol-
ogy model.

133. The system of claim 124 wherein said property adder
is automatically guided by a computer.

134. The system of claim 133 wherein said property adder
automatically adds a property to the ontology model when
there is an XML element or XML attribute described in the
at least one XML schema that does not correspond to an
existing property or composition of properties in the ontol-
ogy model.

135. An article of manufacture including one or more
computer-readable media that embody a program of instruc-
tions for transforming data from one schema to another,
wherein the program of instructions, when executed by a
processing system, causes the processing system to:

receive a source data schema and a target data schema;
map the source data schema into an ontology model;
map the target data schema into the ontology model; and

derive a transformation for transforming data conforming
to the source data schema into data conforming to the
target relational database schema, using the ontology
model.

136. The article of claim 135 wherein the one or more
computer-readable media include one or more non-volatile
storage devices.

137. The article of claim 135 wherein the one or more
compute-readable media include a carrier wave modulated
with a data signal.

138. An article of manufacture including one or more
computer-readable media that embody a program of instruc-
tions for building a common ontology model into which data
schema can be embedded, wherein the program of instruc-
tions, when executed by a processing system, causes the
processing system to:

receive at least one data schema; and

build an ontology model into which the at least one data

schema can be embedded.

139. The article of claim 138 wherein the one or more
computer-readable media include one or more non-volatile
storage devices.

140. The article of claim 138 wherein the one or more
compute-readable media include a carrier wave modulated
with a data signal.

