PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

A1

WO 92/07831

14 May 1992 (14.05.92)

PCT/US91/08017

29 October 1991 (29.10.91)

Priority data:

609,274 5 November 1990 (05.11.90) US

778,248 24 October 1991 (24.10.91) US

Applicant: WARNER-LAMBERT COMPANY (US/US); 2800 Plymouth Road, Ann Arbor, MI 48105 (US).

Inventors: GLASE, Shelly; 1533 Natalie Lane, Apt. 203, Ann Arbor, MI 48105 (US). JAEN, Juan Carlos; 10680 Red Maple, Plymouth, MI 48170 (US). SMITH, Sarah, Jane; 1468 Bemidji Drive, Ann Arbor, MI 48103 (US). WISE, Lawrence, David; 1241 Barrister, Ann Arbor, MI 48105 (US).


Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

Title: SUBSTITUTED TETRAHYDROPYRIDINES AND HYDROXYPYPERIDINES AS CENTRAL NERVOUS SYSTEM AGENTS

\[ \text{Ar}^1 - \text{C} = \text{C} - (\text{CH}_2)_n - \text{N} \]

Abstract

Substituted tetrahydropyridines and hydroxypiperidines of formula (I) and derivatives thereof are described, as well as methods for the preparation and pharmaceutical composition of the same, which are useful as central nervous system agents and are particularly useful as dopaminergic, antipsychotic, and antihypertensive agents as well as for treating hyperprolactinaemia-related conditions and central nervous system disorders.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>GN</td>
<td>Guinea</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>GR</td>
<td>Greece</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>HU</td>
<td>Hungary</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KP</td>
<td>Democratic People's Republic</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SN</td>
<td>Senegal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SU*</td>
<td>Soviet Union</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>TD</td>
<td>Chad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS</td>
<td>Czechoslovakia</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TG</td>
<td>Togo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE*</td>
<td>Germany</td>
<td>MC</td>
<td>Monaco</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.
SUBSTITUTED TETRAHYDROPYRIDINES AND HYDOXYPIPERIDINES AS CENTRAL NERVOUS SYSTEM AGENTS

BACKGROUND OF THE INVENTION

The present invention relates to novel substituted tetrahydropyridines and hydroxypiperidines and derivatives thereof useful as pharmaceutical agents, to methods for their production, to pharmaceutical compositions which include these compounds and a pharmaceutically acceptable carrier, and to pharmaceutical methods of treatment. The novel compounds of the present invention are central nervous system agents. More particularly, the novel compounds of the present invention are dopaminergic agents.

GB 1055548 discloses compounds of formula

\[
\begin{array}{c}
\text{R-}\overset{\text{A}}{\text{C==C-CH=H}}\overset{\text{A'}}{\text{N}}
\end{array}
\]

wherein R represents unsubstituted phenyl or phenyl substituted by methyl, halogen, nitro, amino, (lower alkanoyl)amino, or lower alkoxy; and either A is alkyl of 1 to 4 carbon atoms and A' is alkyl of 1 to 4 carbon atoms, benzyl, chlorobenzyl, or dimethoxybenzyl; or A and A', together with the adjacent nitrogen atom, form one of the following heterocyclic rings: pyrrolidino, morpholino, thiomorpholino, 4-phenylpiperidino, 4-phenyl-4-hydroxypiperidino, N'-methylpiperazino, N'-benzylpiperazino, N'-phenylpiperazino, N'-chlorophenylpiperazino, N'-tolylpiperazino,
N'-methoxyphenylpiperazino, N'-(β-hydroxyethyl)piperazino, N'-(β-acetoxyethyl)piperazino, N'-(β-propionyloxyethyl)piperazino, N'-(β-carbethoxypiperazino, hexamethylenelimino, and heptamethylenelimino; provided that when R is phenyl, p-methoxyphenyl, o- or p-nitrophenyl, or o-aminophenyl, -N- does not represent dimethylamino or diethylamino; and their acid addition salts, especially those containing physiologically innocuous anions having antiulcer activity.

The aforementioned reference does not teach nor suggest the combination of structural variations of the compounds of the present invention nor their use as dopaminergic agents described hereinafter.

SUMMARY OF THE INVENTION

Accordingly, the present invention provides a compound of Formula I

\[ \text{Ar}^1-\text{C}==\text{C}-(\text{CH}_2)_n-\text{N} \quad \text{I} \]

wherein n is an integer of 2, 3, or 4; Z is \( \text{C}-\text{Ar}^2 \) or \( \text{C}-(\text{CH}_2)_n-\text{OH} \). \( \text{Ar}^1 \) and \( \text{Ar}^2 \) are each independently aryl, aryl substituted by one to four substituents selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-3-

-NH-C-R, wherein R is
aryl,
lower alkyl,
trifluoromethyl or a 5- or 6-membered
heteroaromatic ring comprising one
or more heteroatoms selected from
N, S, and O,

-NH-SO₂R, wherein R is as defined above or
-N-(SO₂R)₂, wherein R is as defined above,
a 5- or 6-membered heteroaromatic ring comprising
one or more heteroatoms selected from N, S,
and O,
a 5- or 6-membered heteroaromatic ring comprising
one or more heteroatoms selected from N, S,
and O, substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-35-

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,
a 8-, 9-, or 10-membered heteroaromatic bicyclic
ring comprising one or more heteroatoms
selected from N, S, and O, or

a 8-, 9-, or 10-membered heteroaromatic bicyclic
ring comprising one or more heteroatoms
selected from N, S, and O, substituted by
halogen,

to lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino

lower alkyl amino,
nitro,

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above;
or a pharmaceutically acceptable acid addition salt
thereof.

As dopaminergic agents, the compounds of
Formula I are useful as antipsychotic agents for
treating psychoses such as schizophrenia. They are
also useful as antihypertensives and for the treatment
of disorders which respond to dopaminergic activation.
Thus, other embodiments of the present invention
include the treatment, by a compound of Formula I, of
hyperprolactinaemia-related conditions, such as
galactorrhea, amenorrhoea, menstrual disorders and
sexual dysfunction, and several central nervous system
disorders such as Parkinson's disease, Huntington's
chorea, and depression.
A still further embodiment of the present invention is a pharmaceutical composition for administering an effective amount of a compound of Formula I in unit dosage form in the treatment methods mentioned above.

Finally, the present invention is directed to methods for production of a compound of Formula I.

DETAILED DESCRIPTION OF THE INVENTION

In the compounds of Formula I, the term "lower alkyl" means a straight or branched hydrocarbon radical having from one to six carbon atoms and includes, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, and the like.

The term "aryl" means an aromatic radical which is a phenyl group or phenyl group substituted by one to four substituents selected from lower alkyl, lower alkoxy, lower thioalkoxy, hydroxy, lower acyloxy,

\[ \text{a} \] amino, lower alkyl amino, nitro, \(-\text{NH-C-R}, \) wherein R is aryl, lower alkyl, trifluoromethyl or a 5- or 6-membered heteroaromatic ring as defined hereinafter, \(-\text{NH-SO}_2\text{R}, \) wherein R is lower alkyl, trifluoromethyl, or a 5- or 6-membered heteroaromatic ring as defined hereinafter, or \(-\text{N-(SO}_2\text{R)}_2\), wherein R is lower alkyl, trifluoromethyl, or a 5- or 6-membered heteroaromatic ring as defined hereinafter.

The term "5- or 6-membered heteroaromatic ring" comprises but is not limited to: 2-, 3-, or 4-pyridinyl, 2-, 4-, or 5-pyrimidinyl, 2-pyrazinyl, 2- or 3-furanyl, 2- or 3-thienyl, 2-, 4-, or 5-imidazolyl, 2-, 4-, or 5-thiazolyl, unsubstituted or
-6-

substituted by halogen, lower alkyl, hydroxy, lower acyloxy, lower alkoxy, amino, lower alkyl amino, 0

5  nitro, -NH-C=O, wherein R is aryl, lower alkyl, trifluoromethyl or a 5- or 6-membered heteroaromatic ring as defined herein for "5- or 6-membered heteroaromatic ring", -NH-SO₂R, wherein R is lower alkyl, trifluoromethyl, or a 5- or 6-membered heteroaromatic ring as defined herein for "5- or 6-membered heteroaromatic ring".

10  The term "8-, 9-, or 10-membered heteroaromatic bicyclic ring" comprises but is not limited to: 2-, 3-, 4-, 5-, 6-, or 7-indolyl, 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl, 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinoliny1, 1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinoliny1, 2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyridinyl, unsubstituted or substituted by halogen, lower alkyl, hydroxy, lower acyloxy, lower alkoxy, amino, lower alkyl amino, nitro, 0

15  -NH-C=O, wherein R is aryl, lower alkyl, trifluoromethyl or a 5- or 6-membered heteroaromatic ring as defined herein for "5- or 6-membered heteroaromatic ring", -NH-SO₂R, wherein R is lower alkyl, trifluoromethyl, or a 5- or 6-membered heteroaromatic ring as defined herein for "5- or 6-membered heteroaromatic ring", or -N-(SO₂R)₂, wherein R is lower alkyl, trifluoromethyl, or a 5- or 6-membered heteroaromatic ring as defined herein for "5- or 6-membered heteroaromatic ring".
"Lower alkoxy" and "thioalkoxy" are O-alkyl or S-alkyl of from one to six carbon atoms as defined above for "lower alkyl."

"Lower acyloxy" is -O-C-alkyl of from one to six carbon atoms as defined above for "lower alkyl".

"Halogen" is fluorine, chlorine, bromine, or iodine.

"Alkali metal" is a metal in Group IA of the periodic table and includes, for example, lithium, sodium, potassium, and the like.

"Alkaline-earth metal" is a metal in Group IIA of the periodic table and includes, for example, calcium, barium, strontium, magnesium, and the like.

"Noble metal" is platinum, palladium, rhodium, ruthenium, and the like.

The dotted line in compounds of Formulas I, VI, and X means a single or double bond.

Pharmaceutically acceptable acid addition salts of the compounds of Formula I include salts derived from nontoxic inorganic acids, such as hydrochloric, nitric, phosphoric, sulfuric, hydrobromic, hydriodic, phosphorous, and the like, as well as the salts derived from nontoxic organic acids, such as aliphatic mono- and dicarboxylic acids, phenyl-substituted alkanoic acids, hydroxy alkanoic acids, alkanedioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, etc. Such salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, caprylate, isobutyrate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, mandelate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, phenylacetate, citrate, lactate,
maleate, tartrate, methanesulfonate, and the like. Also contemplated are salts of amino acids such as arginate and the like and gluconate, galacturonate (see, for example, Berge, S. M., et al, "Pharmaceutical Salts," Journal of Pharmaceutical Science, Vol. 66, pages 1-19 (1977)).

The acid addition salts of said basic compounds are prepared by contacting the free base form with a sufficient amount of the desired acid to produce the salt in the conventional manner. The free base form may be regenerated by contacting the salt form with a base and isolating the free base in the conventional manner. The free base forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base for purposes of the present invention.

Certain of the compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.

A preferred compound of Formula I above is one in which Z is \( \text{C-Ar}^2 \).

Another preferred compound of Formula I above is one in which Z is \( \text{C-OH} \).

A more preferred compound of Formula I is one in which Z is \( \text{C-Ar}^2 \) and \( \text{Ar}^1 \) and \( \text{Ar}^2 \) are each independently aryl,

aryl substituted by one to four substituents selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino
nitro, or
0
-NH-C-R, wherein R is
aryl,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyl,
2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,
2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
0
-NH-C-R, wherein R is as defined above;
-NH-SO_2R, wherein R is as defined
above, or
-N-(SO₂R)₂, wherein R is as
defined above,

2-, 4-, or 5-pyrimidinyl,

2-, 4-, or 5-pyrimidinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[ \text{O} \]
-NH-C-R, wherein R is as defined
above,
-NH-SO₂R, wherein R is as defined
above, or

-N-(SO₂R)₂, wherein R is as
defined above,

2-pyrazinyl,
2-pyrazinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[ \text{O} \]
-NH-C-R, wherein R is as defined
above,
-NH-SO₂R, wherein R is as defined
-11-

above, or
-N-(SO₂R)₂, wherein R is as defined above,

2- or 3-furanyl,

5 2- or 3-furanyl substituted by halogen,

lower alkyl,
lower alkoxy,
hydroxy,

10 lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or

15 -N-(SO₂R)₂ wherein R is as defined above,

2- or 3-thienyl,

2- or 3-thienyl substituted by halogen,

25 lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,

30 lower alkyl amino,
nitro,

0

-NH-C-R wherein R is as defined above,

35 -NH-SO₂R wherein R is as defined
-12-
above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 4-, or 5-imidazolyl,

5
2-, 4-, or 5-imidazolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

10
O
\|-
-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or

15
-N-(SO₂R)₂, wherein R is as defined above,

2-, 4-, or 5-thiazolyl,

20
2-, 4-, or 5-thiazolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

25
O
\|-
-NH-C-R, wherein R is as defined above,
-NH-SO₂R wherein R is as defined

30

35
above, or
\[-\text{N-}(\text{SO}_2\text{R})_2\] wherein R is as defined above,
5
2-, 3-, 4-, 5-, 6-, or 7-indolyl,
2-, 3-, 4-, 5-, 6-, or 7-indolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
10
\[O\]
\[-\text{NH-C-R},\] wherein R is as defined above,
\[-\text{NH-SO}_2\text{R},\] wherein R is as defined above,
20
\[-\text{N-}(\text{SO}_2\text{R})_2\], wherein R is as defined above,
2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl,
2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
15
\[O\]
\[-\text{NH-C-R},\] wherein R is as defined above,
-14-
above,
-\text{NH-SO}_2\text{R}, \text{wherein } \text{R} \text{ is as defined above, or}
-\text{N-}(\text{SO}_2\text{R})_2, \text{wherein } \text{R} \text{ is as defined above,}

2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl,
2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-\text{NH-C-R}, \text{wherein } \text{R} \text{ is as defined above,}
-\text{NH-SO}_2\text{R}, \text{wherein } \text{R} \text{ is as defined above, or}
-\text{N-}(\text{SO}_2\text{R})_2, \text{wherein } \text{R} \text{ is as defined above,}

1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl,
1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-15-

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyridinyl, or

2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂ wherein R is as defined above.

Another more preferred compound of Formula I is

one in which Z is OH

and

Ar¹ and Ar² are each independently aryl,

aryl substituted by one to four substituents selected from the group consisting of
-16-
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro, or

0
\[-\text{NH-C-R}, \text{ wherein R is}\]
aryl,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyl,
2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,
2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0
\[-\text{NH-C-R}, \text{ wherein R is as defined}\]
above,
-17-

-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 4-, or 5-pyrimidinyl,
2-, 4-, or 5-pyrimidinyl substituted by
    halogen,
    lower alkyl,
    lower alkoxy,
    hydroxy,
    lower acyloxy,
    amino,
    lower alkyl amino,
    nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-pyrazinyl,
2-pyrazinyl substituted by
    halogen,
    lower alkyl,
    lower alkoxy,
    hydroxy,
    lower acyloxy,
    amino,
    lower alkyl amino,
    nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2- or 3-furanyl,

2- or 3-furanyl substituted by halogen,
lower alkyl, lower alkoxy,
hydroxy, lower acyloxy,
amino, lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂ wherein R is as defined above,

2- or 3-thienyl,

2- or 3-thienyl substituted by halogen,
lower alkyl, lower alkoxy,
hydroxy, lower acyloxy,
amino, lower alkyl amino,
nitro,

0

-NH-C-R wherein R is as defined above,
-19-

-NH-SO₂R wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 4-, or 5-imidazolyl,
2-, 4-, or 5-imidazolyl substituted by
  halogen,
  lower alkyl,
  lower alkoxy,
  hydroxy,
  lower acyloxy,
  amino,
  lower alkyl amino,
  nitro,

15

O

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 4-, or 5-thiazolyl,
2-, 4-, or 5-thiazolyl substituted by

25

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

30

amino,
lower alkyl amino,
nitro,

35

O

-NH-C-R, wherein R is as defined above,
-20-

-NH-SO₂R wherein R is as defined above, or
-N-(SO₂R)₂ wherein R is as defined above,

2-, 3-, 4-, 5-, 6-, or 7-indolyl,
2-, 3-, 4-, 5-, 6-, or 7-indolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-25-

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl,
2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-21-

0

-\text{NH-C-R}, \text{ wherein } R \text{ is as defined above,}
-\text{NH-SO}_2R, \text{ wherein } R \text{ is as defined above, or}
-\text{N-(SO}_2R)_2, \text{ wherein } R \text{ is as defined above,}

2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl,

2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-\text{NH-C-R}, \text{ wherein } R \text{ is as defined above,}
-\text{NH-SO}_2R, \text{ wherein } R \text{ is as defined above, or}
-\text{N-(SO}_2R)_2, \text{ wherein } R \text{ is as defined above,}

1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl,
1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\( \text{O} \)
\(-\text{NH-C-R}, \text{wherein R is as defined above,} \)
\(-\text{NH-SO}_2\text{R}, \text{wherein R is as defined above, or} \)
\(-\text{N-}(\text{SO}_2\text{R})_2, \text{wherein R is as defined above,} \)
\(-2-, 3-, 4-, 5-, 6-, \text{or 7-}(1,8)\text{naphthyridinyl, or} \)
\(-2-, 3-, 4-, 5-, 6-, \text{or 7-}(1,8)\text{naphthyridinyl substituted by} \)
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

\(-\text{NH-C-R}, \text{wherein R is as defined above,} \)
\(-\text{NH-SO}_2\text{R}, \text{wherein R is as defined above, or} \)
\(-\text{N-}(\text{SO}_2\text{R})_2\text{wherein R is as defined above.} \)

A most preferred compound of Formula I is one in which \( Z = \text{C-Ar}^2; \text{n is 2 or 3; and} \)
\( \text{Ar}^1 \text{and Ar}^2 \text{are each independently} \)
aryl,
aryl substituted by one to four substituents selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro, or

$$-\text{NH-C-R, wherein } R \text{ is}$$

aryl,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyl,
2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,
2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

$$-\text{NH-C-R, wherein } R \text{ is as defined}$$
above,
-24-

-NH-SO$_2$-R, wherein R is as defined above, or
-N-(SO$_2$R)$_2$, wherein R is as defined above,

2-, 4-, or 5-pyrimidinyl,
2-, 4-, or 5-pyrimidinyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO$_2$-R, wherein R is as defined above, or
-N-(SO$_2$R)$_2$, wherein R is as defined above,

2- or 3-thienyl,
2- or 3-thienyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-NH-C-R, where R is as defined above,
-25-

-\text{NH-SO}_2^-\text{R}, \text{wherein R is as defined above, or}
\text{-N-(SO}_2^-\text{R})_2^-, \text{wherein R is as defined above,}

4- or 5-thiazolyl,
4- or 5-thiazolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0
\|\]
-\text{NH-C-R}, \text{wherein R is as defined above,}
-\text{NH-SO}_2^-\text{R}, \text{wherein R is as defined above, or}
\text{-N-(SO}_2^-\text{R})_2^-, \text{wherein R is as defined above,}

2- or 3-indolyl,
2- or 3-indolyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0
]\]
-\text{NH-C-R}, \text{wherein R is as defined above,}
-26-
-NH-SO₂-R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,
5
2-, 3-, or 4-quinolinyl,
2-, 3-, or 4-quinolinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
10
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
15
O

-NH-C-R, wherein R is as defined above,
-NH-SO₂-R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above
20
1-, 3-, or 4-isoquinolinyl, or
1-, 3-, or 4-isoquinolinyl substituted by
25
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
30
amino,
lower alkyl amino,
nitro,
O

-NH-C-R, wherein R is as defined above,
35
-NH-SO₂-R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above.

Another most preferred compound of Formula I is one in which Z is
\[ \text{OH} \]
\[ \text{C} \]
\[ \text{Ar}^1 \]
\[ \text{Ar}^2 \]
; n is 2 or 3; and Ar¹ and Ar² are each independently aryI,
aryl substituted by one to four substituents selected from the group consisting of lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro, or
\[ \text{O} \]

-NH-C-R, wherein R is aryI,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyI,
2-, 4-, or 5-pyrimidinyI,
2-pyrazinyI,
2- or 3-furanyI,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyI, or
2-, 4-, or 5-thiazolyI,
2-, 3-, or 4-pyridinyI,
2-, 3-, or 4-pyridinyI substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[-\text{NH}-\text{C-}R, \text{ wherein } R \text{ is as defined above,}\]
\[-\text{NH}-\text{SO}_2-\text{R, wherein } R \text{ is as defined above, or}\]
\[-\text{N-}(\text{SO}_2 \text{R})_2, \text{ wherein } R \text{ is as defined above,}\]

2-, 4-, or 5-pyrimidinyl,
2-, 4-, or 5-pyrimidinyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[-\text{NH}-\text{C-}R, \text{ wherein } R \text{ is as defined above,}\]
\[-\text{NH}-\text{SO}_2-\text{R, wherein } R \text{ is as defined above, or}\]
\[-\text{N-}(\text{SO}_2 \text{R})_2, \text{ wherein } R \text{ is as defined above,}\]

2- or 3-thienyl,
2- or 3-thienyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\(-\text{NH-}C\text{-R, where } R \text{ is as defined above},\)
\(-\text{NH-SO}_2\text{-R, wherein } R \text{ is as defined above, or}\)
\(-\text{N-}(\text{SO}_2\text{R})_2, \text{ wherein } R \text{ is as defined above,}\)

4- or 5-thiazolyl,
4- or 5-thiazolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\(-\text{NH-}C\text{-R, wherein } R \text{ is as defined above},\)
\(-\text{NH-SO}_2\text{-R, wherein } R \text{ is as defined above, or}\)
\(-\text{N-}(\text{SO}_2\text{R})_2, \text{ wherein } R \text{ is as defined above,}\)

2- or 3-indolyl,
2- or 3-indolyl substituted by halogen,
-lower alkyl,
-lower alkoxy,
-hydroxy,
-lower acyloxy,
-amino,
-lower alkyl amino,
-nitro,
\[-\text{NH}\text{-C-R}, \text{wherein } R \text{ is as defined above},\]
\[-\text{NH} \text{-SO}_2\text{-R}, \text{wherein } R \text{ is as defined above}, \text{or}\]
\[-\text{N} \text{-}(\text{SO}_2\text{R})_2, \text{wherein } R \text{ is as defined above},\]
2-, 3-, or 4-quinolinyl,
2-, 3-, or 4-quinolinyl substituted by halogen,
-lower alkyl,
-lower alkoxy,
-hydroxy,
-lower acyloxy,
-amino,
-lower alkyl amino,
-nitro,
\[-\text{NH}\text{-C-R}, \text{wherein } R \text{ is as defined above},\]
\[-\text{NH} \text{-SO}_2\text{-R}, \text{wherein } R \text{ is as defined above}, \text{or}\]
\[-\text{N} \text{-}(\text{SO}_2\text{R})_2, \text{wherein } R \text{ is as defined above}\]
1-, 3-, or 4-isoquinolinyl, or
1-, 3-, or 4-isoquinolinyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

$\text{O}$

$\text{\text{\text{-NH-C-R, wherein R is as defined above,}}}$

$\text{\text{-NH-SO}_2\text{-R, wherein R is as defined above, or}}$

$\text{\text{-N-(SO}_2\text{R)}_2, wherein R is as defined above.}}$

Particularly preferred compounds are:

3-$[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
butynyl]quinoline;

4-$[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
butylnyl]isoquinoline;

20 3-$[4-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-
1-butylnyl]pyridine;

3-$[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
butylnyl]pyridine;

25 3-$[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
pentynyl]quinoline;

3-$[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
pentynyl]pyridine;

3-$[5-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-
1-pentynyl]pyridine;

30 1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-
butynyl]-4-phenylpyridine;

1,2,3,6-Tetrahydro-1-[4-(4-nitrophenyl)-3-
butynyl]-4-phenylpyridine;

35 1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-
butynyl]-4-phenylpyridine;
4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]pyridine;
6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine;

5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]benzenamine;
5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinamine;
N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]acetamide;
N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]-2-thiophencarboxamide;
N-[4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]phenyl]acetamide;
N-[5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinyl]acetamide;
6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-3-pyridinamine;
4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methylbenzenamine;
5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-2-pyridinamine;
6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-propyl-3-pyridinamine;
N-(Methylsulfonyl)-N-[6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide;
N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide;
3-[5-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-pentylnyl]quinoline;
5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-thiazolamine;
3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-1H-indole; and
4-[4-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-butynyl]pyridine;
or a pharmaceutically acceptable acid addition
salt thereof.

The compounds of Formula I are valuable
dopaminergic agents. The tests employed indicate that
compounds of Formula I possess dopaminergic activity.
Thus, the compounds of Formula I were tested for their
ability to inhibit locomotor activity in mice
according to the assay described by J. R. McLean, et
al, Pharmacology, Biochemistry and Behavior, Volume 8,
pages 97-99 (1978); for their ability to inhibit
$[^3]$H-spiroperdol binding in a receptor assay
described by D. Grigoriadis and P. Seeman, Journal of
Neurochemistry, Volume 44, pages 1925-1935 (1985); and
for their ability to inhibit dopamine synthesis in
rats according to the protocol described by
J. R. Walters and R. H. Roth, Naunyn-Schmiedeberg's
Archives of Pharmacology, Volume 296, pages 5-14
(1976). The above test methods are incorporated
herein by reference. The data in the table show the
dopaminergic activity of representative compounds of
Formula I.
# Biological Activity of Compounds of Formula I

*Page 1 of 5*

<table>
<thead>
<tr>
<th>Example Number</th>
<th>Compound</th>
<th>Inhibition of Locomotor Activity in Mice ED₅₀, mg/kg, IP</th>
<th>% Reversal of Brain Dopamine Synthesis in Rats at 10 mg/kg, IP</th>
<th>Inhibition of [³H]Spiroperidol Binding IC₅₀, nM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3-[4-(3,6-Dihydro-4-phenyl-1(2H)pyridinyl)-1-butynyl]quinoline</td>
<td>1.1</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>4-[4-(3,6-Dihydro-4-phenyl-1(2H)pyridinyl)-1-butynyl]isouquinoine</td>
<td>2.1</td>
<td>32</td>
<td>101</td>
</tr>
<tr>
<td>3</td>
<td>3-[4-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-butynyl]pyridine</td>
<td>0.54</td>
<td>53</td>
<td>354</td>
</tr>
<tr>
<td>4</td>
<td>3-[4-(3,6-Dihydro-4-phenyl-1(2H)pyridinyl)-1-butynyl]pyridine</td>
<td>0.07</td>
<td>79</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentynyl]quinoline</td>
<td>3.6</td>
<td></td>
<td>54.5</td>
</tr>
<tr>
<td>7</td>
<td>3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentynyl]pyridine</td>
<td>0.72</td>
<td>48</td>
<td>77.2</td>
</tr>
<tr>
<td>Example Number</td>
<td>Compound</td>
<td>Inhibition of Locomotor Activity in Mice ED$_{50}$, mg/kg, IP</td>
<td>% Reversal of Brain Dopamine Synthesis in Rats at 10 mg/kg, IP</td>
<td>Inhibition of $[^3]$HSpiroperidol Binding IC$_{50}$, nM</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>--------------------------------------------------------</td>
</tr>
<tr>
<td>8</td>
<td>3-[5-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl-1-pentynyl]pyridine</td>
<td>2.7</td>
<td></td>
<td>209</td>
</tr>
<tr>
<td>9</td>
<td>1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butynyl]-4-phenylpyridine</td>
<td>6.9</td>
<td></td>
<td>229</td>
</tr>
<tr>
<td>10</td>
<td>1,2,3,6-Tetrahydro-1-[4-(4-nitrophenyl)-3-butynyl]-4-phenylpyridine</td>
<td>2.6</td>
<td>42</td>
<td>394</td>
</tr>
<tr>
<td>12</td>
<td>4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]pyridine</td>
<td>0.10</td>
<td>79</td>
<td>43.4</td>
</tr>
<tr>
<td>13</td>
<td>6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl-3-pyrindinamine</td>
<td>0.15</td>
<td>59</td>
<td>85</td>
</tr>
<tr>
<td>14</td>
<td>4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]benzenamine</td>
<td>0.36</td>
<td>51</td>
<td>431</td>
</tr>
<tr>
<td>Example Number</td>
<td>Compound</td>
<td>Inhibition of Locomotor Activity in Mice $\text{ED}_{50}$, mg/kg, IP</td>
<td>% Reversal of Dopamine Synthesis in Rats at 10 mg/kg, IP</td>
<td>Inhibition of $[^3\text{H}]$Spiroperidol Binding $\text{IC}_{50}$, nM</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>------------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>15</td>
<td>5-[[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinamime</td>
<td>0.07</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]-acetamide</td>
<td>0.07</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>17</td>
<td>N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]-2-thiophenecarboxamide</td>
<td>1.50</td>
<td>0</td>
<td>1090</td>
</tr>
<tr>
<td>18</td>
<td>N-[4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]phenyl]acetamide</td>
<td>0.23</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>N-[5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinyl]-acetamide</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example Number</td>
<td>Compound</td>
<td>Inhibition of Locomotor Activity in Mice (ED_{50}, \text{mg/kg, IP})</td>
<td>% Reversal of Brain Dopamine Synthesis in Rats at 10 mg/kg, IP</td>
<td>Inhibition of [^{3}\text{H}]\text{Spiroperidol Binding} IC_{50}, \text{nM}</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>---------------------------------------------</td>
<td>-------------------------------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>20</td>
<td>6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-3-pyridinamine</td>
<td>0.22</td>
<td>0</td>
<td>138</td>
</tr>
<tr>
<td>21</td>
<td>4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methylbenzenamine</td>
<td>0.56</td>
<td>45</td>
<td>129</td>
</tr>
<tr>
<td>22</td>
<td>5-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-2-pyridinamine</td>
<td>6.1</td>
<td>42</td>
<td>77</td>
</tr>
<tr>
<td>23</td>
<td>6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-propyl-3-pyridinamine</td>
<td>0.31</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>Example Number</td>
<td>Compound</td>
<td>Inhibition of Locomotor Activity in Mice ED$_{50}$, mg/kg, IP</td>
<td>% Reversal of Brain Dopamine Synthesis in Rats at 10 mg/kg, IP</td>
<td>Inhibition of $[^{3}\text{H}]$Spiroperidol Binding IC$_{50}$, nM</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>24</td>
<td>N-(Methylsulfonyl)-N-[6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-\ butynyl]-3-pyridinyl]-methanesulfonamide</td>
<td>0.53</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>25</td>
<td>N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]- methanesulfonamide</td>
<td>1.1</td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>
Also, the present invention provides a process for the preparation of a compound of Formula I:

\[
\text{Ar}^1 - \text{C}=\text{C}-\text{(CH}_2\text{)}_n\text{-N}^\text{a}\text{)}_\text{Z} \quad \text{I}
\]

wherein \( n \) is an integer of 2, 3, or 4; \( Z \) is \( \text{C}-\text{Ar}^2 \) or \( \text{OH} \);

\[
\begin{array}{c}
\text{Ar}^2 \\
\text{Ar}^1
\end{array}
\]

\( \text{Ar}^1 \) and \( \text{Ar}^2 \) are each independently aryl,

aryl substituted by one to four substituents selected from the group consisting of

lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[
\begin{array}{c}
\text{O} \\
\text{NH-C-R}
\end{array}
\]

wherein \( R \) is

aryl,
lower alkyl,
trifluoromethyl or a 5- or 6-membered heteroaromatic ring comprising one or more heteroatoms selected from N, S, and O,

\[
\text{-NH-SO}_2\text{R}, \text{ wherein R is as defined above or -N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above,
\]

\[
\text{I}
\]
a 5- or 6-membered heteroaromatic ring comprising
one or more heteroatoms selected from N, S,
and O,
a 5- or 6-membered heteroaromatic ring comprising
one or more heteroatoms selected from N, S,
and O, substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO_2R, wherein R is as defined above, or
-N-(SO_2R)_2, wherein R is as defined above,
a 8-, 9-, or 10-membered heteroaromatic bicyclic
ring comprising one or more heteroatoms
selected from N, S, and O, or
a 8-, 9-, or 10-membered heteroaromatic bicyclic
ring comprising one or more heteroatoms
selected from N, S, and O, substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino
lower alkyl amino,
nitro,

0

-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above;
or a pharmaceutically acceptable acid addition salt
thereof, which comprises

a) reacting a compound of Formula II

\[ \text{Ar}^1-X \]  

wherein X is Cl, Br, or I, and \text{Ar}^1 is as defined above

with a compound of Formula III

\[ \text{HC}≡\text{C-(CH}_2)_n\text{-OH} \]  

wherein \( n \) is an integer of 2, 3, or 4 in a solvent, such
as, for example, dichloromethane and the like, in the
presence of an acid scavenger, such as, for example,
triethylamine and the like, and in the presence of a
catalytically effective amount of
bis(triarylphosphine)palladium(II)chloride

\[ \text{[(Ar}^3)_3\text{P}P\text{dCl}_2], \text{bis(triarylphosphine)palladium(II)} \]
acetate \[ \text{[(Ar}^3)_3\text{P}P\text{d(O}_2\text{CCH}_3)_2] \], or triarylphosphine-
palladium(II)acetate\[ \text{(Ar}^3)_3\text{P/Pd(O}_2\text{CCH}_3)_2 \], wherein \text{Ar}^3 is
phenyl or phenyl substituted by lower alkyl, and cuprous
iodide (CuI) to afford a compound of Formula IV

\[ \text{Ar}^1\text{-C}≡\text{C-(CH}_2)_n\text{-OH} \]  

wherein \text{Ar}^1 and \( n \) are as defined above. Preferably, the
reaction is carried out with dichloromethane in the
presence of triethylamine and bis(triphenylphosphine)-
palladium(II)chloride and cuprous iodide;

b) reacting an alcohol of Formula IV with an
alkyl- or aryl-sulfonyl halide such as, for example,
methanesulfonyl chloride and the like in a solvent such
as, for example, dichloromethane and the like, in the
presence of an acid scavenger such as, for example, triethylamine, diisopropylethylamine and the like to afford a compound of Formula Va:

\[ \text{Ar}^1\text{C}==\text{C}-(\text{CH}_2)_n-L_a \]

wherein \( L_a \) is alkyl- or aryl-sulfonyloxy and \( \text{Ar}^1 \) and \( n \) are as defined above. Preferably, the reaction is carried out with methanesulfonyl chloride in dichloromethane in the presence of triethylamine; or alternatively reacting an alcohol of Formula IV with a triarylphosphine such as, for example, triphenylphosphine and the like, combined with a tetrahalomethane such as, for example, tetrabromomethane and the like to afford a compound of Formula Vb

\[ \text{Ar}^1\text{C}==\text{C}-(\text{CH}_2)_n-L_b \]

wherein \( L_b \) is a halogen atom and \( \text{Ar}^1 \) and \( n \) are as defined above. Preferably, the reaction is carried out with triphenylphosphine and tetrabromomethane; c) reacting a compound of Formula Va or Vb with a compound of Formula VI

\[ \text{HN} \]

wherein \( Z \) is as defined above, in a solvent such as, for example, dimethylformamide and the like, in the presence of a base such as, for example, sodium bicarbonate and the like, to afford a compound of Formula I above. Preferably, the reaction is carried out in dimethylformamide in the presence of sodium bicarbonate.

The present invention provides another process for
the preparation of a compound of Formula I above, which comprises:

a) reacting a compound of Formula II

\[ \text{Ar}^1 \text{X} \]  

wherein \( X \) is Cl, Br or I and \( \text{Ar}^1 \) is as defined above with the compound of Formula VII

\[ \text{HC} \equiv \text{C-SiMe}_3 \]  

in a solvent such as, for example, dichloromethane and the like, in the presence of an acid scavenger such as, for example, triethylamine and the like, in the presence of a catalytically effective amount of

bis(triarylphosphine)palladium(II)chloride

\([\text{Ar}^3 \text{P}]_2 \text{PdCl}_2\),

bis(triarylphosphine)palladium(II)acetate

\([\text{Ar}^3 \text{P}]_2 \text{Pd(O}_2\text{CCH}_3)_2\),

or triarylphosphine-
palladium(II)acetate

\((\text{Ar}^3 \text{P/Pd(O}_2\text{CCH}_3)_2)\),

wherein \( \text{Ar}^3 \) is phenyl or phenyl substituted by lower alkyl and cuprous iodide (CuI) to afford a compound of Formula VIII

\[ \text{Ar}^1 \text{C} \equiv \text{C-SiMe}_3 \]  

wherein \( \text{Ar}^1 \) is as defined above. Preferably, the reaction is carried out in a solvent such as, for example, dichloromethane and the like in the presence of triethylamine and bis(triphenylphosphine)-palladium(II)chloride and cuprous iodide;

b) removing the trimethylsilyl group using a base such as, for example, potassium hydroxide and the like, and an alcohol such as, for example, ethanol and the like, to afford a compound of Formula IX

\[ \text{Ar}^1 \text{CH} \equiv \text{CH} \]
wherein Ar\(^1\) is as defined above. Preferably, the reaction is carried out in ethanol in the presence of potassium hydroxide;

c) reacting a compound of Formula IX with an organolithium compound such as, for example, n-butyllithium and the like, at a temperature of about 0°C, and with a compound of Formula X

\[
X^1-(CH_2)_n-N^{\text{a}}Z
\]

wherein \(X^1\) is Cl, Br, or I and \(n\) and \(Z\) are as defined above in a solvent such as, for example, a mixture of tetrahydrofuran:hexamethylphosphoric triamide and the like to afford a compound of Formula I. Preferably, the reaction is carried out with \(n\)-butyllithium in a mixture of tetrahydrofuran hexamethylphosphoric triamide.

Preferably, a compound of Formula Ia.

\[
Ar^{1a}-C=\text{C}-(CH_2)_n-N
\]

\text{Ia}

wherein \(n\) is an integer of 2, 3, or 4 and \(Ar^{1a}\) is aryl substituted by nitro, or 2-, 3-, or 4-pyridinyl substituted by nitro or a pharmaceutically acceptable acid addition salt thereof, comprises reacting a compound of Formula IIa

\[
Ar^{1a}-X
\]

\text{IIa}
wherein Ar\textsuperscript{1a} and X are as defined above with a compound of Formula XII

\[
\text{HC=C-(CH}_2\text{)}_n\text{-N}
\]

XII

wherein \(n\) is as defined above using the methodology used to prepare a compound of Formula IV from a compound of Formula II and a compound of Formula III to afford a compound of Formula Ia.

Preferably, a compound of Formula Ib

\[
\text{Ar}^{1b}\text{-C≡C-(CH}_2\text{)}_n\text{-N}
\]

Ib

wherein \(n\) is an integer of 2, 3, or 4 and Ar\textsuperscript{1b} is aryl substituted by amino, or

2-3-, or 4-pyridinyl substituted by amino or a pharmaceutically acceptable acid addition salt thereof, comprises reacting a compound of Formula Ia with hydrogen in the presence of a catalyst such as, for example, platinum, palladium, rhodium, ruthenium, and the like, iron in the presence of an acid such as, for example, hydrochloric acid and the like in a solvent such as, for example, ethanol and the like at about 0°C to about the reflux temperature of the solvent to afford a compound of Formula Ib. Preferably, the reaction is
carried out with iron and hydrochloric acid in ethanol at about 80°C.

Preferably, a compound of Formula Ic

\[
\text{Ar}^{1c} - \text{C} = \text{C} - (\text{CH}_2)_n - \text{N} \]

wherein \( n \) is an integer of 2, 3, or 4 and \( \text{Ar}^{1c} \) is aryl substituted by

\[
\text{O} \bigg/ \quad \text{NH}-\text{C}-\text{R}, \text{ wherein R is }
\]

aryl, lower alkyl, trifluoromethyl, or

\[
\text{a 5- or 6-membered heteroaromatic ring comprising one or more heteroatoms selected from N, S, and O,}
\]

\[
\text{NH}-\text{SO}_2\text{R}, \text{ wherein R is as defined above, or}
\]

\[
\text{N}^-\text{(SO}_2\text{R})_2, \text{ wherein R is as defined above, or}
\]

\[
2-, 3-, \text{ or 4-pyridinyl substituted by}
\]

\[
\text{O} \bigg/ \quad \text{NH}-\text{C}-\text{R}, \text{ wherein R is as defined above,}
\]

\[
\text{NH}-\text{SO}_2\text{R}, \text{ wherein R is as defined above, or}
\]

\[
\text{N}^-\text{(SO}_2\text{R})_2, \text{ wherein R is as defined above, or}
\]

a pharmaceutically acceptable acid addition salt thereof, comprises reacting a compound of Formula Ib with a compound of Formula XIII.
wherein $R_1$ is R-C- or (R-SO$_2$)$_2$- and X is as defined above in the presence of a base such as, for example, triethylamine and the like and optionally a catalytic quantity of N,N-dimethylaminopyridine in a solvent such as, for example, dichloromethane and the like at about 0°C to about the reflux temperature of the solvent to afford a compound of Formula Ic. Preferably, the reaction is carried out in the presence of triethylamine in dichloromethane containing a catalytic amount of N,N-dimethylaminopyridine at about room temperature. In the case wherein the substituent group in Ar$^{1c}$ in a compound of Formula Ic is R-SO$_2$NH-, it is prepared by reacting a compound of Formula Ib with a compound of Formula XIV

$$(R-SO_2)_2O$$

wherein R is as defined above in the presence of a base such as, for example, triethylamine and the like in a solvent such as, for example, dichloromethane and the like at about -78°C to afford a compound of Formula Ic. Preferably, the reaction is carried out in the presence of triethylamine in dichloromethane at about -78°C.
Preferably, a compound of Formula I

\[
Ar^{1d} - C\equiv C - (CH_2)_n - N
\]

wherein \(n\) is an integer of 2, 3, or 4 and \(Ar^{1d}\) is ary1 substituted by lower alkyl amino or 2-, 3-, or 4-pyridinyl substituted by lower alkyl amino or a pharmaceutically acceptable acid addition salt thereof, comprises reacting a compound of Formula Ib with a compound of Formula XV

\[
\begin{array}{c}
\text{O} \\
\mid \\
R_2 - \text{CH}
\end{array}
\]

wherein \(R^2\) is lower alkyl in the presence of a metal hydride such as, for example, sodium cyanoborohydride, sodium triacetoxyborohydride, lithium aluminum hydride and the like optionally in the presence of an acid such as, for example, acetic acid and the like in a solvent such as, for example, dichloroethane, dichloromethane and the like at about 0°C to about room temperature. Preferably, the reaction is carried out with sodium triacetoxyborohydride in the presence of acetic acid in dichloroethane at about room temperature. Alternatively, in the case wherein the substituent group in \(Ar^{1d}\) in a compound of Formula I is methylamino, it is prepared by reacting a compound of Formula Ib with a mixture of acetic anhydride and formic acid in a solvent.
such as, for example, tetrahydrofuran and the like and
subsequent reaction with a metal hydride reagent such
as, for example, lithium aluminum hydride and the like
to afford a compound of Formula Ic.

A compound of Formula X is prepared from a compound
of Formula VI and a compound of Formula XI

$$X^1-(CH_2)_n-X^1$$

wherein $X^1$ and $n$ are as defined above in the presence of
a solvent such as, for example, dichloromethane, and the
like, in the presence of an acid scavenger, such as, for
example, triethylamine and the like, to afford a
compound of Formula X. Preferably, the reaction is
carried out in dichloromethane in the presence of
triethylamine.

A compound of Formula XII is prepared from a
compound of Formula XVI

$$HC≡C-(CH_2)_n-L$$

wherein $L$ is a halogen atom or an alkyl or
arylsulfonyloxy and $n$ is as defined above with the
compound of Formula XVII

using the methodology used to prepare a compound of
Formula I from a compound of Formula Va or Vb and VI.
A compound of Formula XVI is prepared from a compound of Formula III using the methodology used to prepare a compound of Formula Va and Vb from a compound of Formula IV.

Compounds of Formula II, IIa, III, VI, VII, XI, XIII, XIV, XV, and XVII are either known or capable of being prepared by methods known in the art.

The compounds of the present invention can be prepared and administered in a wide variety of oral and parenteral dosage forms. It will be obvious to those skilled in the art that the following dosage forms may comprise as the active component, either a compound of Formula I or a corresponding pharmaceutically acceptable salt of a compound of Formula I.

For preparing pharmaceutical compositions from the compounds of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material.

In powders, the carrier is a finely divided solid which is in a mixture with the finely divided active component.

In tablets, the active component is mixed with the carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired.

The powders and tablets preferably contain from five or ten to about seventy percent of the active compound. Suitable carriers are magnesium carbonate, magnesium stearate, talc, sugar, lactose, pectin,
dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as a carrier providing a capsule in which the active component, with or without other carriers, is surrounded by a carrier, which is thus in association with it. Similarly, cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid dosage forms suitable for oral administration.

For preparing suppositories, a low melting wax, such as a mixture of fatty acid glycerides or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogeneous mixture is then poured into convenient sized molds, allowed to cool, and thereby to solidify.

Liquid form preparations include solutions, suspensions, and emulsions, for example, water or water propylene glycol solutions. For parenteral injection liquid preparations can be formulated in solution in aqueous polyethylene glycol solution.

Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavors, stabilizing and thickening agents as desired.

Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, and other well-known suspending agents.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid
form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

The pharmaceutical preparation is preferable in unit dosage form. In such form the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packeted tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form.

The quantity of active component in a unit dose preparation may be varied or adjusted from 1 mg to 1000 mg, preferably 10 mg to 100 mg, according to the particular application and the potency of the active component. The composition can, if desired, also contain other compatible therapeutic agents.

In therapeutic use as antipsychotic agents, the compounds utilized in the pharmaceutical method of this invention are administered at the initial dosage of about 1 mg to about 50 mg per kilogram daily. A daily dose range of about 5 mg to about 25 mg per kilogram is preferred. The dosages, however, may be varied depending upon the requirements of the patient, the severity of the condition being treated, and the compound being employed. Determination of the proper dosage for a particular situation is within the skill of the art. Generally, treatment is initiated with smaller dosages which are less than the optimum dose of the compound. Thereafter, the dosage is increased by small
increments until the optimum effect under the circumstances is reached. For convenience, the total daily dosage may be divided and administered in portions during the day, if desired.

The following nonlimiting examples illustrate the inventors' preferred compounds of the invention and methods for their preparation.

EXAMPLE 1

\[ 3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]-quinoline \]

Step (a): Preparation of 4-(3-Quinolinyl)-3-butyln-1-ol

A solution of 3-bromoquinoline (13.57 mL, 0.10 mol) and 3-butyln-1-ol (9.0 mL, 0.12 mol) in 40 mL of triethylamine and 75 mL of dichloromethane is degassed by bubbling in dry nitrogen for 15 minutes, and 0.7 g (0.001 mol) of bis(triphenylphosphine)palladium chloride and 0.013 g of cuprous iodide are added. The flask is flushed with nitrogen and the mixture is heated to reflux for 5 hours. The cooled mixture is diluted with dichloromethane and washed with water, dried (sodium sulfate), and concentrated to give 27 g of an oil. The oil is triturated with diethyl ether to give 18.2 g of the title compound as a tan solid; mp 95.7-96.7°C.

Step (b): Preparation of 3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]quinoline

A solution of the alcohol prepared in Step (a) (1.98 g, 0.01 mol), N,N-diisopropylethylamine (3.5 mL, 0.02 mol) and a catalytic amount of 4-dimethylaminopyridine is cooled to 0°C, and methanesulfonyl chloride (0.8 mL, 0.0105 mol) is added dropwise. The solution is stirred at 0°C for 18 hours, and then concentrated under reduced pressure. The residue is taken up in dimethylformamide (20 mL), and to this solution is added
4-phenyl-1,2,3,6-tetrahydropyridine (2.41 g, 0.015 mol) and sodium bicarbonate (3.4 g, 0.04 mol). The mixture is heated at 40°C for 5 hours, and the solvent is removed under reduced pressure. The residue is partitioned between 50 mL of ethyl acetate and 50 mL of water. The aqueous layer is extracted with 50 mL of ethyl acetate and the combined organic layers are dried (sodium sulfate), and the solvent is removed in vacuo. The residue is chromatographed (silica gel, 2% methanol/98% dichloromethane) to give the title compound, containing 0.4 mol of water; mp 94.3-95.8°C.

Following the procedure of Example 1, the following compounds are prepared:

EXAMPLE 2

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-isoquinoline, containing 0.4 mol of water; mp 58-59°C.

EXAMPLE 3

3-[4-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-butynyl]pyridine, containing 0.4 mol of water; mp 77-78°C.

EXAMPLE 4

3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]pyridine, containing 0.6 mol of water; mp 72-73°C.

EXAMPLE 5

3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]pyridine, monohydrochloride, containing 0.35 mol of water; mp 167-168°C.

The monohydrochloride salt of the compound of Example 4 described in Example 5 is prepared by
conventional means starting from the compound of Example 4.

EXAMPLE 6

3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentylnyl]-quinoline, 1.6 mol hydrochloride, containing 0.5 mol of water; mp 191-192°C.

EXAMPLE 7

3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentylnyl]-pyridine, containing 0.25 mol of water; mp 63.0-63.5°C.

EXAMPLE 8

3-[5-[3,6-Dihydro-4-(2-thienvl)-1(2H)-pyridinyl]-1-pentyln1lpyridine, monohydrochloride, mp 190.0-190.5°C.

EXAMPLE 9

1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butylnyl]-4-phenlypyridine

Step (a): Preparation of 4-(3,6-Dihydro-4-phenyl-1(2H)-piperidinyl)-1-butyne

A solution of 3-butylnl tosylate (25.0 g, 0.11 mol), 4-phenyl-1,2,3,6-tetrahydropyridine (21.8 g, 0.11 mol) and sodium bicarbonate (10.3 g, 0.12 mol) in 300 mL of dimethylformamide is heated at 80°C for 18 hours. The solvent is removed under reduced pressure, and the residue is partitioned between 200 mL of dichloromethane and 200 mL of water. The aqueous layer is extracted with 100 mL of dichloromethane and the combined organic layers are dried (sodium sulfate), and the solvent is removed in vacuo. The residue is chromatographed (silica gel, 25% ethyl acetate/75% hexane) to give the title compound as a yellow solid; mp 36.5-37.5°C.
Step (b): Preparation of 1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butynyl]-4-phenylpyridine

A solution of 2-bromo-5-nitropyridine (4.23 g, 0.02 mol) and the alkyne prepared in Step (a) (4.0 g, 0.019 mol) in 7.9 mL of triethylamine and 100 mL of acetonitrile is degassed by bubbling in dry nitrogen for 15 minutes, and 0.27 g (0.0004 mol) of bis(triphenylphosphine)palladium chloride and 0.07 g (0.0004 mol) of cuprous iodide are added. The flask is flushed with nitrogen and the mixture is stirred at room temperature for 6 hours. The solvent is removed under reduced pressure and the residue is partitioned between 100 mL of dichloromethane and 100 mL of saturated aqueous sodium bicarbonate. The aqueous layer is extracted with 50 mL of dichloromethane and the combined organic layers are washed with 50 mL of water and dried (sodium sulfate), and the solvent is removed in vacuo. The residue is chromatographed (silica gel, 1% methanol/99% dichloromethane) to give the title compound, containing 0.3 mol of water; mp 133-134°C.

Following the procedure of Example 9, the following compounds are prepared:

EXAMPLE 10

1,2,3,6-Tetrahydro-1-[4-(4-nitrophenyl)-3-butynyl]-4-phenylpyridine; mp 148-149°C.

EXAMPLE 11

1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butynyl]-4-phenylpyridine.
EXAMPLE 12

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-
butynyl]pyridine, containing 0.7 mol of water;
mp 112-113°C.

EXAMPLE 13

6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-
3-pyrudinamine

A solution of 1,2,3,6-tetrahydro-1-[4-(5-nitro-2-
pyridinyl)-3-butynyl]-4-phenylpyridine (Example 9)
(2.0 g, 0.006 mol), reduced iron (3.1 g), and 0.10 mL of
concentrated hydrochloric acid in 30 mL of 95% ethanol
and 10 mL of water is heated at 80°C with vigorous
stirring for 30 minutes. The hot solution is filtered
through diatomaceous earth (Celite), and the filter cake
is washed with 300 mL of hot ethanol. The solvent is
removed under reduced pressure, and the residue is
partitioned between 50 mL of dichloromethane and 50 mL
of saturated aqueous sodium bicarbonate. The aqueous
layer is extracted with dichloromethane and the combined
organic layers are washed with water and dried (sodium
sulfate), and the solvent is removed in vacuo. The
residue is chromatographed (silica gel, 2% methanol/
98% dichloromethane) to give the title compound,
containing 0.3 mol of water; mp 135.5-137°C.

Following the procedure of Example 13, the
following compounds are prepared:

EXAMPLE 14

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl-
benzenamine, containing 0.2 mol of water; mp 88-89°C.
EXAMPLE 15

5-(4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl)-2-pyridinamine; mp 180-181°C.

EXAMPLE 16

N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]-3-pyridinyl]acetamide

A solution of 6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]-3-pyridinamine (Example 13) (1.5 g, 0.005 mol), triethylamine (0.76 mL, 0.0054 mol) and N,N-dimethylaminopyridine (catalytic amount) in 50 mL of dichloromethane is cooled to 0°C and acetyl chloride (0.42 mL, 0.006 mol) is added dropwise. The cold bath is removed and the solution is stirred at room temperature for 1 hour. The reaction is quenched with saturated aqueous sodium bicarbonate, the organic layer is washed with water and dried (sodium sulfate), and the solvent is removed under reduced pressure. The residue is chromatographed (silica gel, 2% methanol/98% dichloromethane) to give the title compound, containing 0.35 mol of water; mp 158.5-159.5°C.

Following the procedure of Example 16, the following compounds are prepared:

EXAMPLE 17

N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]-3-pyridinyl]-2-thiophenecarboxamide

The title compound is prepared from 6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butylnyl]-3-pyridinamine (Example 13) and 2-thiophenecarbonyl chloride, containing 0.3 mol of water; mp 187-188°C.
EXAMPLE 18

N-[4-[(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)butynyl]phenyl]acetamide

The title compound is prepared from 4-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl-1-butynyl)benzenamine (Example 14) and acetyl chloride, containing 0.1 mol of water; mp 172-173.4°C.

EXAMPLE 19

N-[5-[(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)1-butynyl]-2-pyridinyl]acetamide

The title compound is prepared from 5-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl-2-pyridinamine (Example 15) and acetyl chloride; mp 169-170°C.

EXAMPLE 20

6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-3-pyridinamine

To 0.50 mL (6.8 mmol) of acetic anhydride is added 0.32 mL (8.4 mmol) of 88% formic acid dropwise under nitrogen. Anhydrous tetrahydrofuran (10 mL) is added, and the solution is heated at 50°C for 2 hours. To the cooled solution is added a suspension of 6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine (Example 13) (0.8 g, 2.6 mmol) in 10 mL of tetrahydrofuran, and the solution is stirred at room temperature for 18 hours. The mixture is concentrated in vacuo, and the residue is partitioned between dichloromethane and 5% ammonium hydroxide. The organic layer is dried and concentrated in vacuo. The residue, in 10 mL of tetrahydrofuran, is added dropwise under nitrogen to a suspension of 0.14 g (3.9 mmol) of lithium aluminum hydride in 20 mL of dry tetrahydrofuran at 0°C. The reaction mixture is stirred at 0°C for 5 hours. The
reaction is quenched by sequential addition of 0.52 mL of 10% hydrochloric acid solution, 0.52 mL of 30% sodium hydroxide solution, and 0.52 mL of water. The resulting mixture is filtered through diatomaceous earth (Celite), evaporated in vacuo, and chromatographed (silica gel, 1% methanol/99% dichloromethane) to give the title compound, containing 0.5 mol of water; mp 164.5-165.5°C.

Following the procedure of Example 20, the following compounds are prepared:

**EXAMPLE 21**

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methylbenzenamine, containing 0.3 mol of water;
mp 106-107°C.

**EXAMPLE 22**

5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-2-pyridinamine, containing 0.36 mol of water;
mp 169-170°C.

**EXAMPLE 23**

6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-propyl-3-pyridinamine

A solution of propionaldehyde (0.18 mL, 2.5 mmol), 6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine (Example 13) (0.83 g, 2.7 mmol) and glacial acetic acid (0.14 mL, 2.5 mmol) in 20 mL of dichloroethane is treated with sodium triacetoxyborohydride (0.79 g, 3.7 mmol) under nitrogen and is stirred at room temperature for 18 hours. The reaction is quenched with saturated aqueous sodium bicarbonate, diluted with dichloromethane, and the organic layer is dried (sodium sulfate) and concentrated under reduced pressure. The residue is chromatographed
(silica gel, 1% methanol/99% dichloromethane) to give
the title compound, containing 0.20 mol of water;
mp 138-139°C.

EXAMPLE 24

\[ N-(Methylsulfonyl)-N-[6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide \]

A solution of 6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine (Example 13)
(0.89 g, 2.9 mmol), triethylamine (0.61 mL, 4.4 mmol)
and \(N,N\)-dimethylaminopyridine (catalytic amount) in
20 mL of dichloromethane is cooled to 0°C and
methanesulfonyl chloride (0.30 mL, 3.5 mmol) is added
dropwise under nitrogen. The cold bath is removed and
the solution is stirred at room temperature for
18 hours. The solution is diluted with dichloromethane
and washed with 30 mL of saturated aqueous sodium
bicarbonate solution and 30 mL of water, and the organic
layer is dried (sodium sulfate). The solvent is removed
under reduced pressure and the residue is
chromatographed (silica gel, 1% methanol/99%
dichloromethane) to give the title compound as a white
solid; mp 168-169.5°C.

EXAMPLE 25

\[ N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide \]

To a solution of 6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine (Example 13)
(0.50 g, 1.6 mmol) and triethylamine (0.25 mL, 1.8 mmol)
in 20 mL of dichloromethane at -78°C is added a solution
of methanesulfonic anhydride (0.60 g, 2.8 mmol) in 10 mL
of dichloromethane dropwise under nitrogen. The
solution is stirred at -78°C for 2 hours and then warmed
to room temperature over 2 hours. The reaction is
quenched with water, the organic layer is dried (sodium sulfate), and the solvent is removed under reduced pressure. The residue is chromatographed (silica gel 1% methanol/99% dichloromethane) to give the title compound, containing 0.3 mol of water; mp 138-139°C.
CLAIMS

1. A compound of Formula I:

\[
\text{Ar}^1-\text{C}^\text{\(\equiv\text{C-CH}_2\text{)(CH}_2\text{n-CH}_2\text{)}-\text{N}}_{\text{Z}}
\]

wherein \(n\) is an integer of 2, 3, or 4; \(Z\) is

\[
\text{\(\text{C-Ar}^2\) or \(\text{C-Ar}^2\)} \begin{array}{c}
\text{OH} \\
\end{array};
\]

\(\text{Ar}^1\) and \(\text{Ar}^2\) are each independently

aryl,

aryl substituted by one to four substituents

selected from the group consisting of

lower alkyl,

lower alkoxy,

lower thioalkoxy,

hydroxy,

lower acyloxy,

amino,

lower alkyl amino,

nitro,

\(\text{O}
\)

\(-\text{NH-C-R, wherein R is}

aryl,

lower alkyl,

trifluoromethyl or a 5- or

6-membered heteroaromatic ring

comprising one or more

teratoms selected from N, S, and O,

\(-\text{NH-SO}_2\text{R, wherein R is as defined above}

or

\(-\text{NH-SO}_3\text{H, wherein R is as defined above.}

\)
-N-(SO₂R)₂, wherein R is as defined above,
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O,
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O, substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\[ \text{-NH-C-R, wherein R is as defined above,} \]
\[ \text{-NH-SO₂R, wherein R is as defined above,} \]
or
\[-N-(SO₂R)₂, wherein R is as defined above, \]
a 8-, 9-, or 10-membered heteroaromatic
bicyclic ring comprising one or more heteroatoms selected from N, S, and O, or
a 8-, 9-, or 10-membered heteroaromatic
bicyclic ring comprising one or more heteroatoms selected from N, S, and O, substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino
lower alkyl amino,
nitro,

\[-\text{NH}\text{-C-R}, \text{ wherein } R \text{ is as defined above,}\]
\[-\text{NH}\text{-SO}_2\text{R}, \text{ wherein } R \text{ is as defined above,}\]
or
\[-\text{N}\text{-}(\text{SO}_2\text{R})_2, \text{ wherein } R \text{ is as defined above};\]
or a pharmaceutically acceptable acid addition salt thereof.

2. A compound of Claim 1 wherein \(Z\) is \(\text{C-Ar}^2\).

3. A compound of Claim 1 wherein \(Z\) is \(\text{C-ar}^\text{OH}\text{-Ar}^2\).

4. A compound of Claim 2 in which \(Z\) is \(\text{C-Ar}^2\) and \(\text{Ar}^1\) and \(\text{Ar}^2\) are each independently aryl,
aryl substituted by one to four substituents selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino
nitro, or

\[-\text{NH}\text{-C-R}, \text{ wherein } R \text{ is aryl,}\]
lower alkyl,
-66-

trifluoromethyl,
20  2-, 3-, or 4-pyridinyl,
     2-, 4-, or 5-pyrimidinyl,
     2-pyrazinyl,
     2- or 3-furanyl,
     2- or 3-thienyl,
     2-, 4-, or 5-imidazolyl, or
     2-, 4-, or 5-thiazolyl,
     2-, 3-, or 4-pyridinyl,
     2-, 3-, or 4-pyridinyl substituted by
     halogen,
     lower alkyl,
     lower alkoxy,
     hydroxy,
     lower acyloxy,
     amino,
     lower alkyl amino,
     nitro,
     O
     \(-\text{NH-C-R, wherein R is as defined above,}\)
     \(-\text{N-(SO}_2\text{R)}_2,\) wherein R is as defined above, or
     \(-\text{NH-SO}_2\text{R, wherein R is as defined above,}\)
     2-, 4-, or 5-pyrimidinyl,
     2-, 4-, or 5-pyrimidinyl substituted by
     halogen,
     lower alkyl,
     lower alkoxy,
     hydroxy,
     lower acyloxy,
     amino,
     lower alkyl amino,
     nitro,
55

-67-

0

\[-\text{NH-C-R, wherein R is as defined above,}\]

\[-\text{NH-SO}_2\text{R, wherein R is as defined above, or}\]

\[-\text{N-}(\text{SO}_2\text{R})_2, \text{ wherein R is as defined above,}\]

2-pyrazinyl,

2-pyrazinyl substituted by

halogen,

lower alkyl,

lower alkoxy,

hydroxy,

lower acyloxy,

amino,

lower alkyl amino,

nitro,

0

\[-\text{NH-C-R, wherein R is as defined above,}\]

\[-\text{NH-SO}_2\text{R, wherein R is as defined above, or}\]

\[-\text{N-}(\text{SO}_2\text{R})_2, \text{ wherein R is as defined above,}\]

2- or 3-furanyl,

2- or 3-furanyl substituted by

halogen,

lower alkyl,

lower alkoxy,

hydroxy,

lower acyloxy,

amino,

lower alkyl amino,

nitro,
-NH-C-R, wherein R is as defined above,
-\( \text{NH-SO}_2\text{R} \), wherein R is as defined above, or
-\( \text{N-(SO}_2\text{R)}_2 \) wherein R is as defined above,
2- or 3-thienyl,
2- or 3-thienyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-\( \text{NH-C-R} \) wherein R is as defined above,
-\( \text{NH-SO}_2\text{R} \) wherein R is as defined above, or
-\( \text{N-(SO}_2\text{R)}_2 \) wherein R is as defined above,
2-, 4-, or 5-imidazolyl,
2-, 4-, or 5-imidazolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-69-

\[
\begin{align*}
0 \\
\| \\
-NH-C-R, \text{ wherein } R \text{ is as defined above,} \\
-NH-SO_2R, \text{ wherein } R \text{ is as defined above, or} \\
-N-(SO_2R)_2, \text{ wherein } R \text{ is as defined above,}
\end{align*}
\]

2-, 4-, or 5-thiazolyl, 130
2-, 4-, or 5-thiazolyl substituted by halogen, lower alkyl, lower alkoxy, hydroxy, lower acyloxy, amino, lower alkyl amino, nitro, 140

\[
\begin{align*}
0 \\
\| \\
-NH-C-R, \text{ wherein } R \text{ is as defined above,} \\
-NH-SO_2R \text{ wherein } R \text{ is as defined above, or} \\
-N-(SO_2R)_2 \text{ wherein } R \text{ is as defined above,}
\end{align*}
\]

2-, 3-, 4-, 5-, 6-, or 7-indolyl, 150
2-, 3-, 4-, 5-, 6-, or 7-indolyl substituted by halogen, lower alkyl, lower alkoxy, hydroxy, lower acyloxy, amino, lower alkyl amino,
-70-

nitro,

-\( \text{O} \)

-\( \text{NH-C-R, wherein R is as defined above,} \)
-\( \text{NH-SO}_2\text{R, wherein R is as defined above, or} \)
-\( \text{N-(SO}_2\text{R)}_2, \) wherein R is as defined above,

2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl,
2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl

substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

-\( \text{O} \)

-\( \text{NH-C-R, wherein R is as defined above,} \)
-\( \text{NH-SO}_2\text{R, wherein R is as defined above, or} \)
-\( \text{N-(SO}_2\text{R)}_2, \) wherein R is as defined above,

2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl,
2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl

substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
-71-
amino,
  lower alkyl amino,
nitro,
  O
  -NH-C-R, wherein R is as defined above,
  -NH-SO₂R, wherein R is as defined above, or
  -N-(SO₂R)₂, wherein R is as defined above,
  1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl,
  1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl substituted by
    halogen,
    lower alkyl,
    lower alkoxy,
    hydroxy,
    lower acyloxy,
    amino,
    lower alkyl amino,
nitro,
  O
  -NH-C-R, wherein R is as defined above,
  -NH-SO₂R, wherein R is as defined above, or
  -N-(SO₂R)₂, wherein R is as defined above,
  2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyridiny1, or
  2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyridiny1 substituted by
    halogen,
    lower alkyl,
235 lower alkoxy, hydroxy, lower acyloxy, amino, lower alkyl amino, "nitro, 0
240 -NH-C-R, wherein R is as defined above,
-NH-SO₂-R, wherein R is as defined above, or
-NC(SO₂R)₂ wherein R is as defined above.
5. A compound of Claim 3 in which Z is

\[
\begin{align*}
\text{C} & \quad \text{Ar}^2 \\
\end{align*}
\]

and

5 \text{ Ar}^1 \text{ and } \text{Ar}^2 \text{ are each independently aryl, aryl substituted by one to four substituents selected from the group consisting of lower alkyl, lower alkoxy, lower thioalkoxy, hydroxy, lower acyloxy, amino, lower alkyl amino nitro, or}

20 \text{ aryl, lower alkyl,}
-73-

trifluoromethyl,
2-, 3-, or 4-pyridinyl,
2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,

2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-\text{NH}—\text{C}—\text{R}, \text{wherein } \text{R} \text{ is as defined above},

-\text{NH}—\text{SO}_2\text{R}, \text{wherein } \text{R} \text{ is as defined above}, \text{or}

-\text{N}—(\text{SO}_2\text{R})_2, \text{wherein } \text{R} \text{ is as defined above},

2-, 4-, or 5-pyrimidinyl,
2-, 4-, or 5-pyrimidinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-74-

\[ \text{O} \]

60 \[ -\text{NH-C-R}, \text{ wherein R is as defined above,} \]

\[ -\text{NH-SO}_2\text{R}, \text{ wherein R is as defined above, or} \]

\[ -\text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above,} \]

2-pyrazinyl,

2-pyrazinyl substituted by halogen,

lower alkyl,

lower alkoxy,

hydroxy,

lower acyloxy,

amino,

lower alkyl amino,

75 nitro,

\[ \text{O} \]

\[ -\text{NH-C-R}, \text{ wherein R is as defined above,} \]

80 \[ -\text{NH-SO}_2\text{R}, \text{ wherein R is as defined above, or} \]

\[ -\text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above,} \]

2- or 3-furanyl,

85 2- or 3-furanyl substituted by halogen,

lower alkyl,

lower alkoxy,

hydroxy,

lower acyloxy,

amino,

lower alkyl amino,

90 nitro,
\[ \begin{align*}
-75- \\
95 \\
\text{O} \\
\text{\(-NH-C-R\), wherein } R \text{ is as defined above,} \\
\text{\(-NH-SO_2R\), wherein } R \text{ is as defined above, or} \\
\text{\(-N-(SO_2R)_2\) wherein } R \text{ is as defined above,} \\
\text{2- or 3-thienyl,} \\
\text{2- or 3-thienyl substituted by} \\
\quad \text{halogen,} \\
\quad \text{lower alkyl,} \\
\quad \text{lower alkoxy,} \\
\quad \text{hydroxy,} \\
\quad \text{lower acyloxy,} \\
\quad \text{amino,} \\
100 \\
\text{lower alkyl amino,} \\
\text{nitro,} \\
\text{O} \\
\text{\(-NH-C-R\) wherein } R \text{ is as defined above,} \\
\text{\(-NH-SO_2R\) wherein } R \text{ is as defined above, or} \\
\text{\(-N-(SO_2R)_2\) wherein } R \text{ is as defined above,} \\
105 \\
\text{2-, 4-, or 5-imidazolyl,} \\
\text{2-, 4-, or 5-imidazolyl substituted by} \\
\quad \text{halogen,} \\
\quad \text{lower alkyl,} \\
\quad \text{lower alkoxy,} \\
\quad \text{hydroxy,} \\
\quad \text{lower acyloxy,} \\
\quad \text{amino,} \\
\quad \text{lower alkyl amino,} \\
\quad \text{nitro,} \\
110 \\
115 \\
120 \\
125 \end{align*} \]
-NH-C-R, wherein R is as defined above,
-NH-SO₂R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,
2-, 4-, or 5-thiazolyl,
2-, 4-, or 5-thiazolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
-NH-C-R, wherein R is as defined above,
-NH-SO₂R wherein R is as defined above, or
-N-(SO₂R)₂ wherein R is as defined above,
2-, 3-, 4-, 5-, 6-, or 7-indolyl,
2-, 3-, 4-, 5-, 6-, or 7-indolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\[ \text{O} \]
\[ \text{NH-C-R}, \text{ wherein R is as defined above}, \]
\[ \text{NH-SO}_2\text{R}, \text{ wherein R is as defined above, or} \]
\[ \text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above}, \]
170 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl,
175 2-, 3-, 4-, 5-, 6-, or 7-benzo[b]thienyl
substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
\[ \text{O} \]
\[ \text{NH-C-R}, \text{ wherein R is as defined above}, \]
\[ \text{NH-SO}_2\text{R}, \text{ wherein R is as defined above, or} \]
\[ \text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above}, \]
190 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl,
195 2-, 3-, 4-, 5-, 6-, 7-, or 8-quinolinyl
substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
-78-

amino,
lower alkyl amino,
nitro,

\[ \text{O} \]
\[-\text{NH-C-}R, \quad \text{wherein R is as defined above,} \]
\[-\text{NH-SO}_2\text{R, wherein R is as defined above,} \]
\[-\text{N-} (\text{SO}_2\text{R})_2, \quad \text{wherein R is as defined above,} \]

1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl,
1-, 3-, 4-, 5-, 6-, 7-, or 8-isoquinolinyl

substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,

\[ \text{O} \]
\[-\text{NH-C-}R, \quad \text{wherein R is as defined above,} \]
\[-\text{NH-SO}_2\text{R, wherein R is as defined above,} \]
\[-\text{N-} (\text{SO}_2\text{R})_2, \quad \text{wherein R is as defined above,} \]

2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyrindinyl, or
2-, 3-, 4-, 5-, 6-, or 7-(1,8)naphthyrindinyl substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

amino,

lower alkyl amino,
nitro,

\[-\text{NH-C-R, wherein R is as defined above,}\]
\[-\text{NH-SO}_2\text{R, wherein R is as defined above, or}\]
\[-\text{N-}(\text{SO}_2\text{R})_2\text{ wherein R is as defined above.}\]

6. A compound of Claim 4 in which Z is \(\text{C-Ar}^2;\ n\) is 2 or 3; and
\(\text{Ar}^1\) and \(\text{Ar}^2\) are each independently
aryl,
aryl substituted by one to four substituents
selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,

amino,

lower alkyl amino,
nitro, or

\[-\text{NH-C-R, wherein R is}\]
aryl,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyl,
-80-

2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,

2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,

2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,

lower alkyl amino,
nitro,

0

-\text{NH-C-R, wherein R is as defined above,}

-\text{NH-SO}_2\text{-R, wherein R is as defined above, or}

-\text{N-(SO}_2\text{R)}_2\text{, wherein R is as defined above,}

2-, 4-, or 5-pyrimidinyl,

2-, 4-, or 5-pyrimidinyl substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,

lower alkyl amino,
nitro,
-81-

\[ \text{O} \]

\[
\text{\text{-NH-C-} R, \text{ wherein } R \text{ is as defined above,}}
\]

\[
\text{\text{-NH-SO}_2-R, \text{ wherein } R \text{ is as defined above, or}}
\]

\[
\text{\text{-N-(SO}_2\text{R)}_2, \text{ wherein } R \text{ is as defined above,}}
\]

2- or 3-thienyl,

2- or 3-thienyl substituted by

- halogen,
- lower alkyl,
- lower alkoxy,
- hydroxy,
- lower acyloxy,
- amino,
- lower alkyl amino,
- nitro,

\[ \text{O} \]

\[
\text{\text{-NH-C-} R, \text{ where } R \text{ is as defined above,}}
\]

\[
\text{\text{-NH-SO}_2-R, \text{ wherein } R \text{ is as defined above, or}}
\]

\[
\text{\text{-N-(SO}_2\text{R)}_2, \text{ wherein } R \text{ is as defined above,}}
\]

4- or 5-thiazolyl,

4- or 5-thiazolyl substituted by

- halogen,
- lower alkyl,
- lower alkoxy,
- hydroxy,
- lower acyloxy,
- amino,
- lower alkyl amino,
- nitro,
-82-

O

-\text{NH-C-R}, \text{ wherein } R \text{ is as defined above,}
-\text{NH-SO}_2\text{-R}, \text{ wherein } R \text{ is as defined above, or}
-\text{N-(SO}_2\text{R)}_2, \text{ wherein } R \text{ is as defined above,}

95

2- or 3-indoly1,
2- or 3-indoly1 substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

O

-\text{NH-C-R}, \text{ wherein } R \text{ is as defined above,}
-\text{NH-SO}_2\text{-R}, \text{ wherein } R \text{ is as defined above, or}
-\text{N-(SO}_2\text{R)}_2, \text{ wherein } R \text{ is as defined above,}

110

2-, 3-, or 4-quinoliny1,
2-, 3-, or 4-quinoliny1 substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
7. A compound of Claim 5 in which Z is

\[ \begin{align*}
\text{C} & \quad \text{OH} \\
\text{Ar}^2 &
\end{align*} \]

n is 2 or 3; and

5 \text{ Ar}^1 \text{ and } \text{Ar}^2 \text{ are each independently}

aryl,

aryl substituted by one to four substituents

selected from the group consisting of

lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro, or

\[ -\text{NH-C-R, wherein R is} \]

aryl,
lower alkyl,
trifluoromethyl,
2-, 3-, or 4-pyridinyl,
2-, 4-, or 5-pyrimidinyl,
2-pyrazinyl,
2- or 3-furanyl,
2- or 3-thienyl,
2-, 4-, or 5-imidazolyl, or
2-, 4-, or 5-thiazolyl,
2-, 3-, or 4-pyridinyl,
2-, 3-, or 4-pyridinyl substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

\[ -\text{NH-C-R, wherein R is as} \]
defined above,
\[ -\text{NH-SO}_2\text{-R, wherein R is as} \]
defined above, or
-85-

-N-(SO₂R)₂, wherein R is as defined above,
2-, 4-, or 5-pyrimidinyl,
2-, 4-, or 5-pyrimidinyl substituted by

50 halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

55 amino,
lower alkyl amino,
nitro,

O

60 -NH-C-R, wherein R is as defined above,
-NH-SO₂-R, wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above,

65 2- or 3-thienyl,
2- or 3-thienyl substituted by

halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,

70 amino,
lower alkyl amino,
nitro,

O

75 -NH-C-R, where R is as defined above,

80 -NH-SO₂-R, wherein R is as defined above, or
-86-

-\( \text{N}-(\text{SO}_2\text{R})_2 \), wherein \( \text{R} \) is as defined above,

4- or 5-thiazolyl,

85

4- or 5-thiazolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

90

\( \text{NH} - \text{C} - \text{R} \), wherein \( \text{R} \) is as defined above,

-\( \text{NH} - \text{SO}_2\text{R} \), wherein \( \text{R} \) is as defined above, or

95

-\( \text{N}-(\text{SO}_2\text{R})_2 \), wherein \( \text{R} \) is as defined above,

100

2- or 3-indolyl,

2- or 3-indolyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

105

\( \text{NH} - \text{C} - \text{R} \), wherein \( \text{R} \) is as defined above,

-\( \text{NH} - \text{SO}_2\text{R} \), wherein \( \text{R} \) is as defined above, or

110

115
-N-(SO₂R)₂, wherein R is as defined above,
2-, 3-, or 4-quinolinyl,
2-, 3-, or 4-quinolinyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
0
-NH-C-R; wherein R is as defined above,
-NH-SO₂-R; wherein R is as defined above, or
-N-(SO₂R)₂, wherein R is as defined above
1-, 3-, or 4-isoquinolinyl, or
1-, 3-, or 4-isoquinolinyl substituted by halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,
0
-NH-C-R; wherein R is as defined above,
-NH-SO₂-R; wherein R is as defined above, or
8. A compound according to Claim 1 selected from the group consisting of:

3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]quinoline;

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]isoquinoline;

3-[4-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-butynyl]pyridine;

3-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]pyridine;

3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentynyl]quinoline;

3-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-pentynyl]pyridine;

3-[5-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-pentynyl]pyridine;

1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butynyl]-4-phenylpyridine;

1,2,3,6-Tetrahydro-1-[4-(4-nitrophenyl)-3-butynyl]-4-phenylpyridine;

1,2,3,6-Tetrahydro-1-[4-(5-nitro-2-pyridinyl)-3-butynyl]-4-phenylpyridine;

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]pyridine;

6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinamine;

4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]benzenamine;

5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinamine;

N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]acetamide;
N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]-2-thiophencarboxamide;
N-[4-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]phenyl]acetamide;
N-[5-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-pyridinyl]acetamide;
N-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-3-pyridinamine;
N-[3-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methylbenzenamine;
N-[5-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-methyl-2-pyridinamine;
N-[6-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-N-propyl-3-pyridinamine;
N-(Methylsulfonyl)-N-[6-[4-(3,6-dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide;
N-[6-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-3-pyridinyl]methanesulfonamide;
N-[5-[3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl]-1-pentynyl]quinoline;
N-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-2-thiazolamine;
N-[4-(3,6-Dihydro-4-phenyl-1(2H)-pyridinyl)-1-butynyl]-1H-indole; and
N-[4-(3,6-Dihydro-4-(2-thienyl)-1(2H)-pyridinyl)-1-butynyl]pyridine.

9. A method of treating psychoses, depression, hypertension, galactorrhea, amenorrhea, menstrual disorders, sexual dysfunction, Parkinson’s disease, or Huntington’s chorea comprising administering to a host suffering therefrom a therapeutic effective
amount of a compound according to Claim 1 in unit dosage form.

10. A method of treating schizophrenia comprising administering to a host suffering therefrom a therapeutic effective amount of a compound according to Claim 1 in unit dosage form.

11. A method of treating depression comprising administering to a host suffering therefrom a therapeutic effective amount of a compound according to Claim 1 in unit dosage form.

12. A pharmaceutical composition adapted for administration as a dopaminergic, antipsychotic, antihypertensive, or antidepressant agent comprising a therapeutic effective amount of a compound according to Claim 1 in admixture with a pharmaceutically acceptable excipient, diluent, or carrier.

13. A method for the preparation of a compound of Formula I:

\[
\begin{align*}
\text{Ar}^1 - &- C = C - (\text{CH}_2)_n - N - Z \\
\end{align*}
\]

wherein \( n \) is an integer of 2, 3, or 4; \( Z \) is \( \text{OH} \) or \( \text{Ar}^2 \) or \( \text{Ar}^2 \).
Ar$^1$ and Ar$^2$ are each independently
aryl,
aryl substituted by one to four substituents
selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

-O

-NH-C-R, wherein R is
aryl,
lower alkyl,
trifluoromethyl or a 5- or
6-membered heteroaromatic ring
comprising one or more
heteroatoms selected from N, S,
and O,

-NH-SO$_2$R, wherein R is as defined above
or
-N-($SO_2$R)$_2$, wherein R is as defined
above,
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O,
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O, substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
  amino,
  lower alkyl amino,
  nitro,
  $-\text{NH-C-}R$, wherein $R$ is as defined above,
  $-\text{NH-SO}_2R$, wherein $R$ is as defined above,
  or
  $-\text{N-}(\text{SO}_2R)_2$, wherein $R$ is as defined above,
  a 8-, 9-, or 10-membered heteraromatic bicyclic ring comprising one or more heteroatoms selected from N, S, and O, or
  a 8-, 9-, or 10-membered heteraromatic bicyclic ring comprising one or more heteroatoms selected from N, S, and O, substituted by halogen,
  lower alkyl,
  lower alkoxy,
  hydroxy,
  lower acyloxy,
  amino
  lower alkyl amino,
  nitro,
  $-\text{NH-C-}R$, wherein $R$ is as defined above,
  $-\text{NH-SO}_2R$, wherein $R$ is as defined above,
  or
  $-\text{N-}(\text{SO}_2R)_2$, wherein $R$ is as defined above;
  or a pharmaceutically acceptable acid addition salt thereof, which comprises
  a) reacting a compound of Formula II
wherein X is Cl, Br, or I and Ar\textsuperscript{1} is as defined above with a compound of Formula III

\[
\text{HC≡C-(CH}_2\text{)}_n\text{-OH} \quad \text{III}
\]

wherein n is an integer of 2, 3, or 4 in a solvent in the presence of an acid scavenger and a catalyst to afford a compound of Formula IV

\[
\text{Ar}\textsuperscript{1}-\text{C≡C-(CH}_2\text{)}_n\text{-OH} \quad \text{IV}
\]

wherein Ar\textsuperscript{1} and n are as defined above;

b) reacting an alcohol of Formula IV with an alkyl- or aryl-sulfonyl halide in a solvent and in the presence of an acid scavenger to afford a compound of Formula Va

\[
\text{Ar}\textsuperscript{1}-\text{C≡C-(CH}_2\text{)}_n\text{-L}_a \quad \text{Va}
\]

wherein L\textsubscript{a} is alkyl- or aryl-sulfonyloxy and Ar\textsuperscript{1} and n are as defined above;

or alternatively reacting an alcohol of Formula IV with triarylphosphine combined with a tetrahalomethane to afford a compound of Formula Vb

\[
\text{Ar}\textsuperscript{1}-\text{C≡C-(CH}_2\text{)}_n\text{-L}_b \quad \text{Vb}
\]

wherein L\textsubscript{b} is a halogen atom and Ar\textsuperscript{1} and n are as defined above;

c) reacting a compound of Formula Va or Vb with a compound of Formula VI
wherein Z is as defined above in a solvent in the presence of a base to afford a compound of Formula I and, if desired, converting the compound of Formula I to a corresponding pharmaceutically acceptable acid addition salt by conventional means and, if so desired, converting the corresponding pharmaceutically acceptable acid addition salt to a compound of Formula I by conventional means.


\[
\text{Ar}^1-C=\text{C}-(\text{CH}_2)_n-N(Z) \quad \text{I}
\]

wherein \( n \) is an integer of 2, 3, or 4; Z is

\[
\text{C-}\text{Ar}^2 \text{ or } \text{C-}\text{Ar}^2
\]
$\text{Ar}^1$ and $\text{Ar}^2$ are each independently
aryl,
aryl substituted by one to four substituents
selected from the group consisting of
lower alkyl,
lower alkoxy,
lower thioalkoxy,
hydroxy,
lower acyloxy,
amino,
lower alkyl amino,
nitro,

0

$\text{-NH-C-R, wherein } R \text{ is}$
aryl,
lower alkyl,
trifluoromethyl or a 5- or
6-membered heteroaromatic ring
comprising one or more
heteroatoms selected from N, S,
and O,

$\text{-NH-SO}_2R, \text{ wherein } R \text{ is as defined above}$
or
$\text{-N-(SO}_2\text{-R)}_2, \text{ wherein } R \text{ is as defined above,}$
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O,
a 5- or 6-membered heteroaromatic ring
comprising one or more heteroatoms
selected from N, S, and O, substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
45
amino,
lower alkyl amino,
nitro,
O
50
-\text{NH-C-R}, \text{ wherein R is as defined above,}
-\text{NH-SO}_2\text{R}, \text{ wherein R is as defined above,}
or
-\text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above,}
a 8-, 9-, or 10-membered heteroaromatic
55
bicyclic ring comprising one or more
heteroatoms selected from N, S, and O, or
a 8-, 9-, or 10-membered heteroaromatic
bicyclic ring comprising one or more
heteroatoms selected from N, S, and O,
60
substituted by
halogen,
lower alkyl,
lower alkoxy,
hydroxy,
lower acyloxy,
amino
lower alkyl amino,
nitro,
O
70
-\text{NH-C-R}, \text{ wherein R is as defined above,}
-\text{NH-SO}_2\text{R}, \text{ wherein R is as defined above,}
or
-\text{N-(SO}_2\text{R)}_2, \text{ wherein R is as defined above;}

or a pharmaceutically acceptable acid addition salt
thereof, which comprises
a) reacting a compound of Formula II
wherein X is Cl, Br, or I and Ar¹ is as defined above with the compound of Formula VII

\[
\text{HC}≡\text{C-SiMe₃}
\]

VII

in a solvent in the presence of an acid scavenger and a catalyst to afford a compound of Formula VIII

\[
\text{Ar}¹-\text{C}≡\text{C-SiMe₃}
\]

VIII

wherein Ar¹ is as defined above;

b) removing the trimethylsilyl group using a base and an alcohol to afford a compound of Formula IX

\[
\text{Ar}¹-\text{C}≡\text{CH}
\]

IX

wherein Ar¹ is as defined above;

c) reacting a compound of Formula IX with an organolithium compound and with a compound of Formula X

\[
X¹-(\text{CH}_₂)_n-\text{N}-\text{Z}
\]

X

wherein X¹ is Cl, Br, or I, and n and Z are as defined above, in a solvent to afford a compound of Formula I; and if desired, converting the compound of Formula I to a corresponding pharmaceutically acceptable acid addition salt by conventional means and, if so desired, converting the corresponding pharmaceutically acceptable acid addition salt to a compound of Formula I by conventional means.
# INTERNATIONAL SEARCH REPORT

**I. CLASSIFICATION OF SUBJECT MATTER**

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.C1.5</td>
<td>C 07 D 211/70 C 07 D 211/52 C 07 D 401/06</td>
</tr>
<tr>
<td></td>
<td>C 07 D 409/14 A 61 K 31/445</td>
</tr>
</tbody>
</table>

**II. FIELDS SEARCHED**

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.C1.5</td>
<td>C 07 D 211/00 C 07 D 401/00 C 07 D 409/00</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched

**III. DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB,A,1055548 (AZIENDE CHIMICHE) 18 January 1967, see claim 1; example 13</td>
<td>1-8,12</td>
</tr>
<tr>
<td>Y</td>
<td>Chemical Abstracts, vol. 86, 1977, (Columbus, Ohio, US), V.M. KURILENKO et al.: &quot;Synthesis of piperidine and decahydroquinoline derivatives and their analgesic and psychotropic properties. III. 1-(gamma-Phenylpropargyl)-4-phenyl-4-(propionyloxy)piperidine and its derivatives&quot;, see page 527, abstract no. 121114z, &amp; KHIM.-FARM. ZH. 1976, 10(9), 60-4, see compound II; RN=13807-70-0</td>
<td>1-8,12</td>
</tr>
</tbody>
</table>

| * Special categories of cited documents: | *Y" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention |
| "A" document defining the general state of the art which is not considered to be of particular relevance | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step |
| "E" earlier document but published on or after the international filing date | "Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step |
| "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "V" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "O" document referring to an oral disclosure, use, exhibition or other means | "&" document member of the same patent family |

**IV. CERTIFICATION**

- **Date of the Actual Completion of the International Search**: 14-03-1992
- **Date of Mailing of this International Search Report**: 10.04.92

**International Searching Authority**: EUROPEAN PATENT OFFICE

**Signature of Authorized Officer**: [Signature]

Els Vroon
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>BE,A, 633474 (BOEHRINGER INGELHEIM) 11 June 1963, see claim 1</td>
<td>1-8,12</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2416224 (SQUIBB) 31 August 1979, see claim 1</td>
<td>1-8,12</td>
</tr>
<tr>
<td>A</td>
<td>FR,M, 5674 (AUCLAIR) 2 May 1966, see claim 1</td>
<td>1-8,12</td>
</tr>
</tbody>
</table>
V. [X] OBSERVATION WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE

This International search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claim numbers__ Authority, namely:
   Remark: Although claims 9-11 are directed to a method of treatment of (diagnostic method practised on) the human/animal body. The search has been carried out and based on the alleged effects of the compound/composition. (see PCT-Rule 39.1(iv)).

2. [ ] Claim numbers because they relate to parts of the International application that do not comply with the prescribed requirements to such an extent that no meaningful International search can be carried out, specifically:

3. [ ] Claim numbers because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. [X] OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This International Searching Authority found multiple inventions in this International application as follows:

1. [ ] As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.

2. [ ] As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:

3. [ ] No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. [ ] As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

[X] The additional search fees were accompanied by applicant's protest.

[ ] No protest accompanied the payment of additional search fees.
ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO. US 9108017
SA 54755

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 26/03/92. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE-A- 633474</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1116171</td>
<td>12-01-82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 2904451</td>
<td>09-08-79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A,B 2014986</td>
<td>05-09-79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 54117484</td>
<td>12-09-79</td>
</tr>
<tr>
<td>FR-M- 5674</td>
<td>02-01-68</td>
<td>FR-A- 1490501</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1106609</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82