
(12) STANDARD PATENT (11) Application No. AU 2019261768 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Efficient bundling and delivery of client-side scripts

(51) International Patent Classification(s)
G06F 9/445 (2018.01)

(21) Application No: 2019261768 (22) Date of Filing: 2019.11.07

(30) Priority Data

(31) Number (32) Date (33) Country
16/184,625 2018.11.08 US

(43) Publication Date: 2020.05.28
(43) Publication Journal Date: 2020.05.28
(44) Accepted Journal Date: 2020.11.26

(71) Applicant(s)
ServiceNow, Inc.

(72) Inventor(s)
Strimpel, Jason

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 43 101 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
WAGNER, J. et al., "Reduce JavaScript Payloads with Code Splitting Web
Fundamentals", <https://web.archive.org/web/20181107114317/https://
developers.google.com/web/fundamentals/performance/optimizing-javascript/
code-splitting/>, 23/07/2020
"How code-splitting-works", (2018-11-06), URL: https://github.com/gatsbyjs/
gatsby/blob/178fd9492aa5d5cf1334d502e8c5b3f6c0862c51/docs/docs/how-code
splitting-works.md,7 Novemeber 2018 (Retrieved on 19 June 2020)
US 2011/0107326 Al

1002799389

ABSTRACT

A computing system may include a computing device configured to build modules of

script code into bundles, and a bundler application executable to perform operations comprising:

obtaining one or more of the modules of script code that are designated for bundling with one

another; organizing the modules of script code into one or more chunks; for each respective

chunk of the one or more chunks: (i) determining whether the respective chunk is to be assigned

a deterministic chunk identifier or a non-deterministic chunk identifier, and (ii) assigning the

respective chunk a chunk identifier as determined, where deterministic chunk identifiers are

usable for referencing by additional modules of script code both within and not within in the

respective chunk, and where the deterministic chunk identifiers are independent of characteristics

of the computing device; and writing the one or more chunks to a bundle.

-I-- ----- ------ ---
R ICd

col w LL

E VE

C)~0 0 m co (= I (
IOr Li~l

0. 0 L ---_TIM-----
8/14

1002799389

EFFICIENT BUNDLING AND DELIVERY OF CLIENT-SIDE SCRIPTS

BACKGROUND

[001] As the use of web technologies continue to grow, web pages have become more

dynamic. Now, rather than delivering content in just the form of markup language, such as the

Hypertext Markup Language (HTML), web pages can include references to scripts within the

markup language. The references may take the form of uniform resource locators (URLs), and

the scripts may be implemented in JavaScript, for example. In some cases, dynamic web pages

may be referred to as web applications, as they contain a significant amount of executable code.

[002] Large and/or intricate web applications may include dozens of such references to

scripts, and these scripts may be complex. In order for a web application to be fully executable,

each of these scripts is downloaded to the web client (e.g., transmitted from the web server to a

client device executing the web client). These transmissions can increase the overall time it

takes for the web application to be loaded and rendered.

[003] In particular, a script referenced in the markup language may depend on one or

more additional, underlying scripts that might not be directly or explicitly referenced in the

markup language. Thus, these underlying scripts are also downloaded to the web client.

Furthermore, multiple scripts may depend on the same underlying scripts. When the scripts used

in a web application are independently developed and bundled with their underlying

dependencies in a distributed fashion (which is a desirable scenario for large-scale web

application development), this can result in multiple copies of these underlying scripts being

downloaded to the web client.

1

1002799389

[004] Current script bundling mechanisms fail to address these issues in an efficient

fashion. As a consequence, the deployment of rich web applications can result in a slow and

non-satisfactory user experience.

[004A] Reference to any prior art in the specification is not an acknowledgement or

suggestion that this prior art forms part of the common general knowledge in any jurisdiction or

that this prior art could reasonably be expected to be combined with any other piece of prior art

by a skilled person in the art.

SUMMARY

[005] The embodiments herein address technical problems related to building bundles

(packages) of script code modules for deployment to a web client as a web component (e.g., a

graphical user interface widget and some of its functionality). A web application may employ a

number of web components that can be combined in various ways. Currently, bundler

applications assume that all of the dependencies between modules used by the web application

are known ahead of time, and accordingly build one or more bundles under this assumption.

These bundles are then transmitted to the web client at run time.

[006] But in many development environments, especially for large-scale and/or

complex web applications, multiple developers or teams combine their efforts. For instance,

different software developers across various locations may be responsible for various web

components. Thus, it is desirable for these developers to be able to work independently of one

another when carrying out this development. As a result, the full extent of dependencies between

the modules that make up these web components might not be known to any one developer.

[007] Each web component may depend on certain common modules, e.g., libraries, for

basic functionality. A goal is to bundle web components and with their respective dependencies

so that the web components can be individually deployed. Thus, these common modules are

2

1003207878

often bundled with some or all of the web components. As a result, two or more redundant

copies of the same common modules may be transmitted to the web client. Since some common

modules can be quite large (e.g., on the order of 75 kilobytes or more), these redundancies can

use additional memory at both the web server and the web client, use network capacity when

transmitted to the web client, and slow the operation and rendering of the web application.

[008] The embodiments herein avoid these inefficiencies by having the bundler

application assign unique and deterministic identifiers to modules of script code and/or groups

(chunks) of these modules. Since the identifiers are the same for all developers, they will be

consistent across web components, even if the web components were developed independently

from one another. Thus, web components developed in this fashion can refer to common

modules, but only one copy of each common module needs to be transmitted to the web client at

run time. As a result, memory space, network capacity, and processor utilization are reduced.

[009] According to a first aspect of the present invention, there is provided a computing

system including: a computing device configured to build modules of script code into bundles,

wherein the computing device includes one or more processors and memory; and a bundler

application stored in the memory and configured to be executed by the one or more processors,

wherein the bundler application stores information from a previous build of a distributed build

process, and wherein execution of the bundler application causes the bundler application to

perform operations during the distributed build process including: obtaining one or more of the

modules of script code that are designated for bundling with one another; organizing the modules

of script code into one or more chunks, each having one or more modules of script code; for each

respective chunk of the one or more chunks: (i) identifying a cross-build dependency of the

respective chunk by determining that the respective chunk is identical to a different chunk from

the previous build of the distributed build process, wherein the different chunk is associated with

3

1003207878

a chunk identifier, (ii) assigning the respective chunk the same chunk identifier as the different

chunk based on the cross-build dependency of the respective chunk, and (iii) updating references

to the respective chunk in the one or more modules of script code to instead use the chunk

identifier of the respective chunk; and writing, in the memory, the one or more chunks to a

bundle.

[010] According to a second aspect of the present invention, there is provided a

computer-implemented method of performing a distributed build process, including: storing, by a

bundler application executing on a computing device, information from a previous build of the

distributed build process; obtaining, by the bundler application, one or more modules of script

code that are designated for bundling with one another; organizing, by the bundler application,

the modules of script code into one or more chunks, each having one or more modules of script

code; for each respective chunk of the one or more chunks, the bundler application: (i)

identifying a cross-build dependency of the respective chunk by determining that the respective

chunk is identical to a different chunk from a previous build of the distributed build process,

wherein the different chunk is associated with a chunk identifier, (ii) assigning the respective

chunk the same chunk identifier as the different chunk based on the cross-build dependency of

the respective chunk, and (iii) updating references to the respective chunk in the one or more

modules of script code to instead use the chunk identifier; and writing, by the bundler

application, the one or more chunks to a bundle.

[011] According to a third aspect of the present invention, there is provided an article of

manufacture including a non-transitory computer-readable medium, having stored thereon

program instructions that, upon execution by a computing system, cause the computing system to

perform operations during a distributed build process including: storing, by a bundler application

executing on a computing device, information from a previous build of the distributed build

4

1003207878

process; obtaining, by the bundler application, one or more modules of script code that are

designated for bundling with one another; organizing, by the bundler application, the modules of

script code into one or more chunks, each having one or more modules of script code; for each

respective chunk of the one or more chunks, the bundler application: (i) identifying a cross-build

dependency of the respective chunk by determining that the respective chunk is identical to a

different chunk from the previous build of the distributed build process, wherein the different

chunk is associated with a chunk identifier, (ii) assigning the respective chunk the same chunk

identifier as the different chunk based on the cross-build dependency of the respective chunk,

and (iii) updating references to the respective chunk in the one or more modules of script code to

instead use the chunk identifier of the respective chunk; and writing, by the bundler application,

the one or more chunks to a bundle.

[012] In a fourth aspect, a computing system may include at least one processor, as well

as memory and program instructions. The program instructions may be stored in the memory,

and upon execution by the at least one processor, cause the computing system to perform

operations in accordance with the first and/or second aspects.

4A

1002799389

[013] In a fifth aspect, a system may include various means for carrying out each of the

operations of the first and/or second aspects.

[014] These as well as other embodiments, aspects, advantages, and alternatives will

become apparent to those of ordinary skill in the art by reading the following detailed

description, with reference where appropriate to the accompanying drawings. Further, this

summary and other descriptions and figures provided herein are intended to illustrate

embodiments by way of example only and, as such, that numerous variations are possible. For

instance, structural elements and process steps can be rearranged, combined, distributed,

eliminated, or otherwise changed, while remaining within the scope of the embodiments as

claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[015] Figure 1 illustrates a schematic drawing of a computing device, in accordance

with example embodiments.

[016] Figure 2 illustrates a schematic drawing of a server device cluster, in accordance

with example embodiments.

[017] Figure 3 depicts a remote network management architecture, in accordance with

example embodiments.

[018] Figure 4 depicts a communication environment involving a remote network

management architecture, in accordance with example embodiments.

[019] Figure 5A depicts another communication environment involving a remote

network management architecture, in accordance with example embodiments.

[020] Figure 5B is a flow chart, in accordance with example embodiments.

[021] Figure 6A depicts a web application module dependency graph, in accordance

with example embodiments.

5

1002799389

[022] Figure 6B depicts the modules of Figure 6A combined into two bundles, in

accordance with example embodiments.

[023] Figure 6C depicts the modules of Figure 6A combined into three bundles, in

accordance with example embodiments.

[024] Figure 7 depicts distributed builds resulting in bundles with unique identifiers, in

accordance with example embodiments.

[025] Figure 8 depicts using multiple unique identifiers per build, in accordance with

example embodiments.

[026] Figure 9 depicts using deterministic identifiers within a build, in accordance with

example embodiments.

[027] Figure 10 is a flow chart, in accordance with example embodiments.

[028] Figure 11 is a flow chart, in accordance with example embodiments.

DETAILED DESCRIPTION

[029] Example methods, devices, and systems are described herein. It should be

understood that the words "example" and "exemplary" are used herein to mean "serving as an

example, instance, or illustration." Any embodiment or feature described herein as being an

"example" or "exemplary" is not necessarily to be construed as preferred or advantageous over

other embodiments or features unless stated as such. Thus, other embodiments can be utilized

and other changes can be made without departing from the scope of the subject matter presented

herein.

[030] Accordingly, the example embodiments described herein are not meant to be

limiting. It will be readily understood that the aspects of the present disclosure, as generally

described herein, and illustrated in the figures, can be arranged, substituted, combined, separated,

6

1002799389

and designed in a wide variety of different configurations. For example, the separation of

features into "client" and "server" components may occur in a number of ways.

[031] Further, unless context suggests otherwise, the features illustrated in each of the

figures may be used in combination with one another. Thus, the figures should be generally

viewed as component aspects of one or more overall embodiments, with the understanding that

not all illustrated features are necessary for each embodiment.

[032] Additionally, any enumeration of elements, blocks, or steps in this specification or

the claims is for purposes of clarity. Thus, such enumeration should not be interpreted to require

or imply that these elements, blocks, or steps adhere to a particular arrangement or are carried

out in a particular order.

I. Introduction

[033] A large enterprise is a complex entity with many interrelated operations. Some of

these are found across the enterprise, such as human resources (HR), supply chain, information

technology (IT), and finance. However, each enterprise also has its own unique operations that

provide essential capabilities and/or create competitive advantages.

[034] To support widely-implemented operations, enterprises typically use off-the-shelf

software applications, such as customer relationship management (CRM) and human capital

management (HCM) packages. However, they may also need custom software applications to

meet their own unique requirements. A large enterprise often has dozens or hundreds of these

custom software applications. Nonetheless, the advantages provided by the embodiments herein

are not limited to large enterprises and may be applicable to an enterprise, or any other type of

organization, of any size.

[035] Many such software applications are developed by individual departments within

the enterprise. These range from simple spreadsheets to custom-built software tools and

7

1002799389

databases. But the proliferation of siloed custom software applications has numerous

disadvantages. It negatively impacts an enterprise's ability to run and grow its operations,

innovate, and meet regulatory requirements. The enterprise may find it difficult to integrate,

streamline and enhance its operations due to lack of a single system that unifies its subsystems

and data.

[036] To efficiently create custom applications, enterprises would benefit from a

remotely-hosted application platform that eliminates unnecessary development complexity. The

goal of such a platform would be to reduce time-consuming, repetitive application development

tasks so that software engineers and individuals in other roles can focus on developing unique,

high-value features.

[037] In order to achieve this goal, the concept of Application Platform as a Service

(aPaaS) is introduced, to intelligently automate workflows throughout the enterprise. An aPaaS

system is hosted remotely from the enterprise, but may access data, applications, and services

within the enterprise by way of secure connections. Such an aPaaS system may have a number

of advantageous capabilities and characteristics. These advantages and characteristics may be

able to improve the enterprise's operations and workflow for IT, HR, CRM, customer service,

application development, and security.

[038] The aPaaS system may support development and execution of model-view

controller (MVC) applications. MVC applications divide their functionality into three

interconnected parts (model, view, and controller) in order to isolate representations of

information from the manner in which the information is presented to the user, thereby allowing

for efficient code reuse and parallel development. These applications may be web-based, and

offer create, read, update, delete (CRUD) capabilities. This allows new applications to be built

on a common application infrastructure.

8

1002799389

[039] The aPaaS system may support standardized application components, such as a

standardized set of widgets for graphical user interface (GUI) development. In this way,

applications built using the aPaaS system have a common look and feel. Other software

components and modules may be standardized as well. In some cases, this look and feel can be

branded or skinned with an enterprise's custom logos and/or color schemes.

[040] The aPaaS system may support the ability to configure the behavior of

applications using metadata. This allows application behaviors to be rapidly adapted to meet

specific needs. Such an approach reduces development time and increases flexibility. Further,

the aPaaS system may support GUI tools that facilitate metadata creation and management, thus

reducing errors in the metadata.

[041] The aPaaS system may support clearly-defined interfaces between applications, so

that software developers can avoid unwanted inter-application dependencies. Thus, the aPaaS

system may implement a service layer in which persistent state information and other data is

stored.

[042] The aPaaS system may support a rich set of integration features so that the

applications thereon can interact with legacy applications and third-party applications. For

instance, the aPaaS system may support a custom employee-onboarding system that integrates

with legacy HR, IT, and accounting systems.

[043] The aPaaS system may support enterprise-grade security. Furthermore, since the

aPaaS system may be remotely hosted, it should also utilize security procedures when it interacts

with systems in the enterprise or third-party networks and services hosted outside of the

enterprise. For example, the aPaaS system may be configured to share data amongst the

enterprise and other parties to detect and identify common security threats.

9

1002799389

[044] Other features, functionality, and advantages of an aPaaS system may exist. This

description is for purpose of example and is not intended to be limiting.

[045] As an example of the aPaaS development process, a software developer may be

tasked to create a new application using the aPaaS system. First, the developer may define the

data model, which specifies the types of data that the application uses and the relationships

therebetween. Then, via a GUI of the aPaaS system, the developer enters (e.g., uploads) the data

model. The aPaaS system automatically creates all of the corresponding database tables, fields,

and relationships, which can then be accessed via an object-oriented services layer.

[046] In addition, the aPaaS system can also build a fully-functional MVC application

with client-side interfaces and server-side CRUD logic. This generated application may serve as

the basis of further development for the user. Advantageously, the developer does not have to

spend a large amount of time on basic application functionality. Further, since the application

may be web-based, it can be accessed from any Internet-enabled client device. Alternatively or

additionally, a local copy of the application may be able to be accessed, for instance, when

Internet service is not available.

[047] The aPaaS system may also support a rich set of pre-defined functionality that can

be added to applications. These features include support for searching, email, templating,

workflow design, reporting, analytics, social media, scripting, mobile-friendly output, and

customized GUIs.

[048] The following embodiments describe architectural and functional aspects of

example aPaaS systems, as well as the features and advantages thereof.

II. Example Computing Devices and Cloud-Based Computing Environments

[049] Figure 1 is a simplified block diagram exemplifying a computing device 100,

illustrating some of the components that could be included in a computing device arranged to

10

1002799389

operate in accordance with the embodiments herein. Computing device 100 could be a client

device (e.g., a device actively operated by a user), a server device (e.g., a device that provides

computational services to client devices), or some other type of computational platform. Some

server devices may operate as client devices from time to time in order to perform particular

operations, and some client devices may incorporate server features.

[050] In this example, computing device 100 includes processor 102, memory 104,

network interface 106, and an input / output unit 108, all of which may be coupled by a system

bus 110 or a similar mechanism. In some embodiments, computing device 100 may include

other components and/or peripheral devices (e.g., detachable storage, printers, and so on).

[051] Processor 102 may be one or more of any type of computer processing element,

such as a central processing unit (CPU), a co-processor (e.g., a mathematics, graphics, or

encryption co-processor), a digital signal processor (DSP), a network processor, and/or a form of

integrated circuit or controller that performs processor operations. In some cases, processor 102

may be one or more single-core processors. In other cases, processor 102 may be one or more

multi-core processors with multiple independent processing units. Processor 102 may also

include register memory for temporarily storing instructions being executed and related data, as

well as cache memory for temporarily storing recently-used instructions and data.

[052] Memory 104 may be any form of computer-usable memory, including but not

limited to random access memory (RAM), read-only memory (ROM), and non-volatile memory

(e.g., flash memory, hard disk drives, solid state drives, compact discs (CDs), digital video discs

(DVDs), and/or tape storage). Thus, memory 104 represents both main memory units, as well as

long-term storage. Other types of memory may include biological memory.

[053] Memory 104 may store program instructions and/or data on which program

instructions may operate. By way of example, memory 104 may store these program instructions

11

1002799389

on a non-transitory, computer-readable medium, such that the instructions are executable by

processor 102 to carry out any of the methods, processes, or operations disclosed in this

specification or the accompanying drawings.

[054] As shown in Figure 1, memory 104 may include firmware 104A, kernel 104B,

and/or applications 104C. Firmware 104A may be program code used to boot or otherwise

initiate some or all of computing device 100. Kernel 104B may be an operating system,

including modules for memory management, scheduling and management of processes, input /

output, and communication. Kernel 104B may also include device drivers that allow the

operating system to communicate with the hardware modules (e.g., memory units, networking

interfaces, ports, and busses), of computing device 100. Applications 104C may be one or more

user-space software programs, such as web browsers or email clients, as well as any software

libraries used by these programs. Memory 104 may also store data used by these and other

programs and applications.

[055] Network interface 106 may take the form of one or more wireline interfaces, such

as Ethernet (e.g., Fast Ethernet, Gigabit Ethernet, and so on). Network interface 106 may also

support communication over one or more non-Ethernet media, such as coaxial cables or power

lines, or over wide-area media, such as Synchronous Optical Networking (SONET) or digital

subscriber line (DSL) technologies. Network interface 106 may additionally take the form of

one or more wireless interfaces, such as IEEE 802.11 (Wifi), BLUETOOTH@, global positioning

system (GPS), or a wide-area wireless interface. However, other forms of physical layer

interfaces and other types of standard or proprietary communication protocols may be used over

network interface 106. Furthermore, network interface 106 may comprise multiple physical

interfaces. For instance, some embodiments of computing device 100 may include Ethernet,

BLUETOOTH@, and Wifi interfaces.

12

1002799389

[056] Input / output unit 108 may facilitate user and peripheral device interaction with

computing device 100. Input / output unit 108 may include one or more types of input devices,

such as a keyboard, a mouse, a touch screen, and so on. Similarly, input / output unit 108 may

include one or more types of output devices, such as a screen, monitor, printer, and/or one or

more light emitting diodes (LEDs). Additionally or alternatively, computing device 100 may

communicate with other devices using a universal serial bus (USB) or high-definition

multimedia interface (HDMI) port interface, for example.

[057] In some embodiments, one or more computing devices like computing device 100

may be deployed to support an aPaaS architecture. The exact physical location, connectivity, and

configuration of these computing devices may be unknown and/or unimportant to client devices.

Accordingly, the computing devices may be referred to as "cloud-based" devices that may be

housed at various remote data center locations.

[058] Figure 2 depicts a cloud-based server cluster 200 in accordance with example

embodiments. In Figure 2, operations of a computing device (e.g., computing device 100) may

be distributed between server devices 202, data storage 204, and routers 206, all of which may be

connected by local cluster network 208. The number of server devices 202, data storages 204,

and routers 206 in server cluster 200 may depend on the computing task(s) and/or applications

assigned to server cluster 200.

[059] For example, server devices 202 can be configured to perform various computing

tasks of computing device 100. Thus, computing tasks can be distributed among one or more of

server devices 202. To the extent that these computing tasks can be performed in parallel, such a

distribution of tasks may reduce the total time to complete these tasks and return a result. For

purpose of simplicity, both server cluster 200 and individual server devices 202 may be referred

to as a "server device." This nomenclature should be understood to imply that one or more

13

1002799389

distinct server devices, data storage devices, and cluster routers may be involved in server device

operations.

[060] Data storage 204 may be data storage arrays that include drive array controllers

configured to manage read and write access to groups of hard disk drives and/or solid state

drives. The drive array controllers, alone or in conjunction with server devices 202, may also be

configured to manage backup or redundant copies of the data stored in data storage 204 to

protect against drive failures or other types of failures that prevent one or more of server devices

202 from accessing units of data storage 204. Other types of memory aside from drives may be

used.

[061] Routers 206 may include networking equipment configured to provide internal

and external communications for server cluster 200. For example, routers 206 may include one

or more packet-switching and/or routing devices (including switches and/or gateways)

configured to provide (i) network communications between server devices 202 and data storage

204 via local cluster network 208, and/or (ii) network communications between the server cluster

200 and other devices via communication link 210 to network 212.

[062] Additionally, the configuration of routers 206 can be based at least in part on the

data communication requirements of server devices 202 and data storage 204, the latency and

throughput of the local cluster network 208, the latency, throughput, and cost of communication

link 210, and/or other factors that may contribute to the cost, speed, fault-tolerance, resiliency,

efficiency and/or other design goals of the system architecture.

[063] As a possible example, data storage 204 may include any form of database, such

as a structured query language (SQL) database. Various types of data structures may store the

information in such a database, including but not limited to tables, arrays, lists, trees, and tuples.

14

1002799389

Furthermore, any databases in data storage 204 may be monolithic or distributed across multiple

physical devices.

[064] Server devices 202 may be configured to transmit data to and receive data from

data storage 204. This transmission and retrieval may take the form of SQL queries or other

types of database queries, and the output of such queries, respectively. Additional text, images,

video, and/or audio may be included as well. Furthermore, server devices 202 may organize the

received data into web page representations. Such a representation may take the form of a

markup language, such as the hypertext markup language (HTML), the extensible markup

language (XML), or some other standardized or proprietary format. Moreover, server devices

202 may have the capability of executing various types of computerized scripting languages,

such as but not limited to Perl, Python, PHP Hypertext Preprocessor (PHP), Active Server Pages

(ASP), JavaScript, and so on. Computer program code written in these languages may facilitate

the providing of web pages to client devices, as well as client device interaction with the web

pages.

II. Example Remote Network Management Architecture

[065] Figure 3 depicts a remote network management architecture, in accordance with

example embodiments. This architecture includes three main components, managed network

300, remote network management platform 320, and third-party networks 340, all connected by

way of Internet 350.

[066] Managed network 300 may be, for example, an enterprise network used by an

entity for computing and communications tasks, as well as storage of data. Thus, managed

network 300 may include client devices 302, server devices 304, routers 306, virtual machines

308, firewall 310, and/or proxy servers 312. Client devices 302 maybe embodied by computing

15

1002799389

device 100, server devices 304 may be embodied by computing device 100 or server cluster 200,

and routers 306 may be any type of router, switch, or gateway.

[067] Virtual machines 308 may be embodied by one or more of computing device 100

or server cluster 200. In general, a virtual machine is an emulation of a computing system, and

mimics the functionality (e.g., processor, memory, and communication resources) of a physical

computer. One physical computing system, such as server cluster 200, may support up to

thousands of individual virtual machines. In some embodiments, virtual machines 308 may be

managed by a centralized server device or application that facilitates allocation of physical

computing resources to individual virtual machines, as well as performance and error reporting.

Enterprises often employ virtual machines in order to allocate computing resources in an

efficient, as needed fashion. Providers of virtualized computing systems include VMWARE@

and MICROSOFT®.

[068] Firewall 310 maybe one or more specialized routers or server devices that protect

managed network 300 from unauthorized attempts to access the devices, applications, and

services therein, while allowing authorized communication that is initiated from managed

network 300. Firewall 310 may also provide intrusion detection, web filtering, virus scanning,

application-layer gateways, and other applications or services. In some embodiments not shown

in Figure 3, managed network 300 may include one or more virtual private network (VPN)

gateways with which it communicates with remote network management platform 320 (see

below).

[069] Managed network 300 may also include one or more proxy servers 312. An

embodiment of proxy servers 312 may be a server device that facilitates communication and

movement of data between managed network 300, remote network management platform 320,

and third-party networks 340. In particular, proxy servers 312 may be able to establish and

16

1002799389

maintain secure communication sessions with one or more computational instances of remote

network management platform 320. By way of such a session, remote network management

platform 320 may be able to discover and manage aspects of the architecture and configuration

of managed network 300 and its components. Possibly with the assistance of proxy servers 312,

remote network management platform 320 may also be able to discover and manage aspects of

third-party networks 340 that are used by managed network 300.

[070] Firewalls, such as firewall 310, typically deny all communication sessions that are

incoming by way of Internet 350, unless such a session was ultimately initiated from behind the

firewall (i.e., from a device on managed network 300) or the firewall has been explicitly

configured to support the session. By placing proxy servers 312 behind firewall 310 (e.g., within

managed network 300 and protected by firewall 310), proxy servers 312 may be able to initiate

these communication sessions through firewall 310. Thus, firewall 310 might not have to be

specifically configured to support incoming sessions from remote network management platform

320, thereby avoiding potential security risks to managed network 300.

[071] In some cases, managed network 300 may consist of a few devices and a small

number of networks. In other deployments, managed network 300 may span multiple physical

locations and include hundreds of networks and hundreds of thousands of devices. Thus, the

architecture depicted in Figure 3 is capable of scaling up or down by orders of magnitude.

[072] Furthermore, depending on the size, architecture, and connectivity of managed

network 300, a varying number of proxy servers 312 may be deployed therein. For example,

each one of proxy servers 312 may be responsible for communicating with remote network

management platform 320 regarding a portion of managed network 300. Alternatively or

additionally, sets of two or more proxy servers may be assigned to such a portion of managed

network 300 for purposes of load balancing, redundancy, and/or high availability.

17

1002799389

[073] Remote network management platform 320 is a hosted environment that provides

aPaaS services to users, particularly to the operators of managed network 300. These services

may take the form of web-based portals, for instance. Thus, a user can securely access remote

network management platform 320 from, for instance, client devices 302, or potentially from a

client device outside of managed network 300. By way of the web-based portals, users may

design, test, and deploy applications, generate reports, view analytics, and perform other tasks.

[074] As shown in Figure 3, remote network management platform 320 includes four

computational instances 322, 324, 326, and 328. Each of these instances may represent one or

more server devices and/or one or more databases that provide a set of web portals, services, and

applications (e.g., a wholly-functioning aPaaS system) available to a particular customer. In

some cases, a single customer may use multiple computational instances. For example, managed

network 300 may be an enterprise customer of remote network management platform 320, and

may use computational instances 322, 324, and 326. The reason for providing multiple instances

to one customer is that the customer may wish to independently develop, test, and deploy its

applications and services. Thus, computational instance 322 may be dedicated to application

development related to managed network 300, computational instance 324 may be dedicated to

testing these applications, and computational instance 326 may be dedicated to the live operation

of tested applications and services. A computational instance may also be referred to as a hosted

instance, a remote instance, a customer instance, or by some other designation. Any application

deployed onto a computational instance may be a scoped application, in that its access to

databases within the computational instance can be restricted to certain elements therein (e.g.,

one or more particular database tables or particular rows with one or more database tables).

[075] For purpose of clarity, the disclosure herein refers to the physical hardware,

software, and arrangement thereof as a "computational instance." Note that users may

18

1002799389

colloquially refer to the graphical user interfaces provided thereby as "instances." But unless it

is defined otherwise herein, a "computational instance" is a computing system disposed within

remote network management platform 320.

[076] The multi-instance architecture of remote network management platform 320 is in

contrast to conventional multi-tenant architectures, over which multi-instance architectures

exhibit several advantages. In multi-tenant architectures, data from different customers (e.g.,

enterprises) are comingled in a single database. While these customers' data are separate from

one another, the separation is enforced by the software that operates the single database. As a

consequence, a security breach in this system may impact all customers' data, creating additional

risk, especially for entities subject to governmental, healthcare, and/or financial regulation.

Furthermore, any database operations that impact one customer will likely impact all customers

sharing that database. Thus, if there is an outage due to hardware or software errors, this outage

affects all such customers. Likewise, if the database is to be upgraded to meet the needs of one

customer, it will be unavailable to all customers during the upgrade process. Often, such

maintenance windows will be long, due to the size of the shared database.

[077] In contrast, the multi-instance architecture provides each customer with its own

database in a dedicated computing instance. This prevents comingling of customer data, and

allows each instance to be independently managed. For example, when one customer's instance

experiences an outage due to errors or an upgrade, other computational instances are not

impacted. Maintenance down time is limited because the database only contains one customer's

data. Further, the simpler design of the multi-instance architecture allows redundant copies of

each customer database and instance to be deployed in a geographically diverse fashion. This

facilitates high availability, where the live version of the customer's instance can be moved when

faults are detected or maintenance is being performed.

19

1002799389

[078] In some embodiments, remote network management platform 320 may include

one or more central instances, controlled by the entity that operates this platform. Like a

computational instance, a central instance may include some number of physical or virtual

servers and database devices. Such a central instance may serve as a repository for data that can

be shared amongst at least some of the computational instances. For instance, definitions of

common security threats that could occur on the computational instances, software packages that

are commonly discovered on the computational instances, and/or an application store for

applications that can be deployed to the computational instances may reside in a central instance.

Computational instances may communicate with central instances by way of well-defined

interfaces in order to obtain this data.

[079] In order to support multiple computational instances in an efficient fashion,

remote network management platform 320 may implement a plurality of these instances on a

single hardware platform. For example, when the aPaaS system is implemented on a server

cluster such as server cluster 200, it may operate a virtual machine that dedicates varying

amounts of computational, storage, and communication resources to instances. But full

virtualization of server cluster 200 might not be necessary, and other mechanisms may be used to

separate instances. In some examples, each instance may have a dedicated account and one or

more dedicated databases on server cluster 200. Alternatively, computational instance 322 may

span multiple physical devices.

[080] In some cases, a single server cluster of remote network management platform

320 may support multiple independent enterprises. Furthermore, as described below, remote

network management platform 320 may include multiple server clusters deployed in

geographically diverse data centers in order to facilitate load balancing, redundancy, and/or high

availability.

20

1002799389

[081] Third-party networks 340 may be remote server devices (e.g., a plurality of server

clusters such as server cluster 200) that can be used for outsourced computational, data storage,

communication, and service hosting operations. These servers may be virtualized (i.e., the

servers may be virtual machines). Examples of third-party networks 340 may include AMAZON

WEB SERVICES@ and MICROSOFT® Azure. Like remote network management platform

320, multiple server clusters supporting third-party networks 340 may be deployed at

geographically diverse locations for purposes of load balancing, redundancy, and/or high

availability.

[082] Managed network 300 may use one or more of third-party networks 340 to deploy

applications and services to its clients and customers. For instance, if managed network 300

provides online music streaming services, third-party networks 340 may store the music files and

provide web interface and streaming capabilities. In this way, the enterprise of managed network

300 does not have to build and maintain its own servers for these operations.

[083] Remote network management platform 320 may include modules that integrate

with third-party networks 340 to expose virtual machines and managed services therein to

managed network 300. The modules may allow users to request virtual resources and provide

flexible reporting for third-party networks 340. In order to establish this functionality, a user

from managed network 300 might first establish an account with third-party networks 340, and

request a set of associated resources. Then, the user may enter the account information into the

appropriate modules of remote network management platform 320. These modules may then

automatically discover the manageable resources in the account, and also provide reports related

to usage, performance, and billing.

21

1002799389

[084] Internet 350 may represent a portion of the global Internet. However, Internet 350

may alternatively represent a different type of network, such as a private wide-area or local-area

packet-switched network.

[085] Figure 4 further illustrates the communication environment between managed

network 300 and computational instance 322, and introduces additional features and alternative

embodiments. In Figure 4, computational instance 322 is replicated across data centers 400A

and 400B. These data centers may be geographically distant from one another, perhaps in

different cities or different countries. Each data center includes support equipment that

facilitates communication with managed network 300, as well as remote users.

[086] In data center 400A, network traffic to and from external devices flows either

through VPN gateway 402A or firewall 404A. VPN gateway 402A may be peered with VPN

gateway 412 of managed network 300 by way of a security protocol such as Internet Protocol

Security (IPSEC) or Transport Layer Security (TLS). Firewall 404A may be configured to allow

access from authorized users, such as user 414 and remote user 416, and to deny access to

unauthorized users. By way of firewall 404A, these users may access computational instance

322, and possibly other computational instances. Load balancer 406A may be used to distribute

traffic amongst one or more physical or virtual server devices that host computational instance

322. Load balancer 406A may simplify user access by hiding the internal configuration of data

center 400A, (e.g., computational instance 322) from client devices. For instance, if

computational instance 322 includes multiple physical or virtual computing devices that share

access to multiple databases, load balancer 406A may distribute network traffic and processing

tasks across these computing devices and databases so that no one computing device or database

is significantly busier than the others. In some embodiments, computational instance 322 may

include VPN gateway 402A, firewall 404A, and load balancer 406A.

22

1002799389

[087] Data center 400B may include its own versions of the components in data center

400A. Thus, VPN gateway 402B, firewall 404B, and load balancer 406B may perform the same

or similar operations as VPN gateway 402A, firewall 404A, and load balancer 406A,

respectively. Further, by way of real-time or near-real-time database replication and/or other

operations, computational instance 322 may exist simultaneously in data centers 400A and 400B.

[088] Data centers 400A and 400B as shown in Figure 4 may facilitate redundancy and

high availability. In the configuration of Figure 4, data center 400A is active and data center

400B is passive. Thus, data center 400A is serving all traffic to and from managed network 300,

while the version of computational instance 322 in data center 400B is being updated in near

real-time. Other configurations, such as one in which both data centers are active, may be

supported.

[089] Should data center 400A fail in some fashion or otherwise become unavailable to

users, data center 400B can take over as the active data center. For example, domain name

system (DNS) servers that associate a domain name of computational instance 322 with one or

more Internet Protocol (IP) addresses of data center 400A may re-associate the domain name

with one or more IP addresses of data center 400B. After this re-association completes (which

may take less than one second or several seconds), users may access computational instance 322

by way of data center 400B.

[090] Figure 4 also illustrates a possible configuration of managed network 300. As

noted above, proxy servers 312 and user 414 may access computational instance 322 through

firewall 310. Proxy servers 312 may also access configuration items 410. In Figure 4,

configuration items 410 may refer to any or all of client devices 302, server devices 304, routers

306, and virtual machines 308, any applications or services executing thereon, as well as

relationships between devices, applications, and services. Thus, the term "configuration items"

23

1002799389

may be shorthand for any physical or virtual device, or any application or service remotely

discoverable or managed by computational instance 322, or relationships between discovered

devices, applications, and services. Configuration items may be represented in a configuration

management database (CMDB) of computational instance 322.

[091] As noted above, VPN gateway 412 may provide a dedicated VPN to VPN

gateway 402A. Such a VPN may be helpful when there is a significant amount of traffic

between managed network 300 and computational instance 322, or security policies otherwise

suggest or require use of a VPN between these sites. In some embodiments, any device in

managed network 300 and/or computational instance 322 that directly communicates via the

VPN is assigned a public IP address. Other devices in managed network 300 and/or

computational instance 322 may be assigned private IP addresses (e.g., IP addresses selected

from the 10.0.0.0 - 10.255.255.255 or 192.168.0.0 - 192.168.255.255 ranges, represented in

shorthand as subnets 10.0.0.0/8 and 192.168.0.0/16, respectively).

IV. Example Device, Application, and Service Discovery

[092] In order for remote network management platform 320 to administer the devices,

applications, and services of managed network 300, remote network management platform 320

may first determine what devices are present in managed network 300, the configurations and

operational statuses of these devices, and the applications and services provided by the devices,

and well as the relationships between discovered devices, applications, and services. As noted

above, each device, application, service, and relationship may be referred to as a configuration

item. The process of defining configuration items within managed network 300 is referred to as

discovery, and may be facilitated at least in part by proxy servers 312.

[093] For purpose of the embodiments herein, an "application" may refer to one or more

processes, threads, programs, client modules, server modules, or any other software that executes

24

1002799389

on a device or group of devices. A "service" may refer to a high-level capability provided by

multiple applications executing on one or more devices working in conjunction with one another.

For example, a high-level web service may involve multiple web application server threads

executing on one device and accessing information from a database application that executes on

another device.

[094] Figure 5A provides a logical depiction of how configuration items can be

discovered, as well as how information related to discovered configuration items can be stored.

For sake of simplicity, remote network management platform 320, third-party networks 340, and

Internet 350 are not shown.

[095] In Figure 5A, CMDB 500 and task list 502 are stored within computational

instance 322. Computational instance 322 may transmit discovery commands to proxy servers

312. In response, proxy servers 312 may transmit probes to various devices, applications, and

services in managed network 300. These devices, applications, and services may transmit

responses to proxy servers 312, and proxy servers 312 may then provide information regarding

discovered configuration items to CMDB 500 for storage therein. Configuration items stored in

CMDB 500 represent the environment of managed network 300.

[096] Task list 502 represents a list of activities that proxy servers 312 are to perform on

behalf of computational instance 322. As discovery takes place, task list 502 is populated.

Proxy servers 312 repeatedly query task list 502, obtain the next task therein, and perform this

task until task list 502 is empty or another stopping condition has been reached.

[097] To facilitate discovery, proxy servers 312 may be configured with information

regarding one or more subnets in managed network 300 that are reachable by way of proxy

servers 312. For instance, proxy servers 312 may be given the IP address range 192.168.0/24 as

25

1002799389

a subnet. Then, computational instance 322 may store this information in CMDB 500 and place

tasks in task list 502 for discovery of devices at each of these addresses.

[098] Figure 5A also depicts devices, applications, and services in managed network

300 as configuration items 504, 506, 508, 510, and 512. As noted above, these configuration

items represent a set of physical and/or virtual devices (e.g., client devices, server devices,

routers, or virtual machines), applications executing thereon (e.g., web servers, email servers,

databases, or storage arrays), relationships therebetween, as well as services that involve multiple

individual configuration items.

[099] Placing the tasks in task list 502 may trigger or otherwise cause proxy servers 312

to begin discovery. Alternatively or additionally, discovery may be manually triggered or

automatically triggered based on triggering events (e.g., discovery may automatically begin once

per day at a particular time).

[100] In general, discovery may proceed in four logical phases: scanning, classification,

identification, and exploration. Each phase of discovery involves various types of probe

messages being transmitted by proxy servers 312 to one or more devices in managed network

300. The responses to these probes may be received and processed by proxy servers 312, and

representations thereof may be transmitted to CMDB 500. Thus, each phase can result in more

configuration items being discovered and stored in CMDB 500.

[101] In the scanning phase, proxy servers 312 may probe each IP address in the

specified range of IP addresses for open Transmission Control Protocol (TCP) and/or User

Datagram Protocol (UDP) ports to determine the general type of device. The presence of such

open ports at an IP address may indicate that a particular application is operating on the device

that is assigned the IP address, which in turn may identify the operating system used by the

device. For example, if TCP port 135 is open, then the device is likely executing a

26

1002799389

WINDOWS@ operating system. Similarly, if TCP port 22 is open, then the device is likely

executing a UNIX@ operating system, such as LINUX@. If UDP port 161 is open, then the

device may be able to be further identified through the Simple Network Management Protocol

(SNMP). Other possibilities exist. Once the presence of a device at a particular IP address and

its open ports have been discovered, these configuration items are saved in CMDB 500.

[102] In the classification phase, proxy servers 312 may further probe each discovered

device to determine the version of its operating system. The probes used for a particular device

are based on information gathered about the devices during the scanning phase. For example, if

a device is found with TCP port 22 open, a set of UNIX-specific probes may be used.

Likewise, if a device is found with TCP port 135 open, a set of WINDOWS-specific probes

may be used. For either case, an appropriate set of tasks may be placed in task list 502 for proxy

servers 312 to carry out. These tasks may result in proxy servers 312 logging on, or otherwise

accessing information from the particular device. For instance, if TCP port 22 is open, proxy

servers 312 may be instructed to initiate a Secure Shell (SSH) connection to the particular device

and obtain information about the operating system thereon from particular locations in the file

system. Based on this information, the operating system may be determined. As an example, a

UNIX@ device with TCP port 22 open may be classified as AIX, HPUX, LINUX@,

MACOS, or SOLARIS®. This classification information may be stored as one or more

configuration items in CMDB 500.

[103] In the identification phase, proxy servers 312 may determine specific details about

a classified device. The probes used during this phase may be based on information gathered

about the particular devices during the classification phase. For example, if a device was

classified as LINUX@, a set of LINUX@-specific probes may be used. Likewise if a device was

classified as WINDOWS® 2012, as a set of WINDOWS@-2012-specific probes may be used.

27

1002799389

As was the case for the classification phase, an appropriate set of tasks may be placed in task list

502 for proxy servers 312 to carry out. These tasks may result in proxy servers 312 reading

information from the particular device, such as basic input / output system (BIOS) information,

serial numbers, network interface information, media access control address(es) assigned to these

network interface(s), IP address(es) used by the particular device and so on. This identification

information may be stored as one or more configuration items in CMDB 500.

[104] In the exploration phase, proxy servers 312 may determine further details about

the operational state of a classified device. The probes used during this phase may be based on

information gathered about the particular devices during the classification phase and/or the

identification phase. Again, an appropriate set of tasks may be placed in task list 502 for proxy

servers 312 to carry out. These tasks may result in proxy servers 312 reading additional

information from the particular device, such as processor information, memory information, lists

of running processes (applications), and so on. Once more, the discovered information may be

stored as one or more configuration items in CMDB 500.

[105] Running discovery on a network device, such as a router, may utilize SNMP.

Instead of or in addition to determining a list of running processes or other application-related

information, discovery may determine additional subnets known to the router and the operational

state of the router's network interfaces (e.g., active, inactive, queue length, number of packets

dropped, etc.). The IP addresses of the additional subnets may be candidates for further

discovery procedures. Thus, discovery may progress iteratively or recursively.

[106] Once discovery completes, a snapshot representation of each discovered device,

application, and service is available in CMDB 500. For example, after discovery, operating

system version, hardware configuration and network configuration details for client devices,

server devices, and routers in managed network 300, as well as applications executing thereon,

28

1002799389

may be stored. This collected information may be presented to a user in various ways to allow

the user to view the hardware composition and operational status of devices, as well as the

characteristics of services that span multiple devices and applications.

[107] Furthermore, CMDB 500 may include entries regarding dependencies and

relationships between configuration items. More specifically, an application that is executing on

a particular server device, as well as the services that rely on this application, may be represented

as such in CMDB 500. For instance, suppose that a database application is executing on a server

device, and that this database application is used by a new employee onboarding service as well

as a payroll service. Thus, if the server device is taken out of operation for maintenance, it is

clear that the employee onboarding service and payroll service will be impacted. Likewise, the

dependencies and relationships between configuration items may be able to represent the

services impacted when a particular router fails.

[108] In general, dependencies and relationships between configuration items may be

displayed on a web-based interface and represented in a hierarchical fashion. Thus, adding,

changing, or removing such dependencies and relationships may be accomplished by way of this

interface.

[109] Furthermore, users from managed network 300 may develop workflows that

allow certain coordinated activities to take place across multiple discovered devices. For

instance, an IT workflow might allow the user to change the common administrator password to

all discovered LINUX@ devices in single operation.

[110] In order for discovery to take place in the manner described above, proxy servers

312, CMDB 500, and/or one or more credential stores may be configured with credentials for

one or more of the devices to be discovered. Credentials may include any type of information

needed in order to access the devices. These may include userid / password pairs, certificates,

29

1002799389

and so on. In some embodiments, these credentials may be stored in encrypted fields of CMDB

500. Proxy servers 312 may contain the decryption key for the credentials so that proxy servers

312 can use these credentials to log on to or otherwise access devices being discovered.

[111] The discovery process is depicted as a flowchart in Figure 5B. Atblock520,the

task list in the computational instance is populated, for instance, with a range of IP addresses. At

block 522, the scanning phase takes place. Thus, the proxy servers probe the IP addresses for

devices using these IP addresses, and attempt to determine the operating systems that are

executing on these devices. At block 524, the classification phase takes place. The proxy servers

attempt to determine the operating system version of the discovered devices. At block 526, the

identification phase takes place. The proxy servers attempt to determine the hardware and/or

software configuration of the discovered devices. At block 528, the exploration phase takes

place. The proxy servers attempt to determine the operational state and applications executing

on the discovered devices. At block 530, further editing of the configuration items representing

the discovered devices and applications may take place. This editing may be automated and/or

manual in nature.

[112] The blocks represented in Figure 5B are for purpose of example. Discovery may

be a highly configurable procedure that can have more or fewer phases, and the operations of

each phase may vary. In some cases, one or more phases may be customized, or may otherwise

deviate from the exemplary descriptions above.

V. Embedding and Bundling of Client-Side Scripts

[113] Client-side scripts are programs stored on a server device (such as a web server

device), and delivered to a client device for execution thereon (often in a web browser).

References to client-side scripts (e.g., URLs) can be embedded in HTML or other markup

languages. When a web client application (hereafter "web client") downloads HTML, it may

30

1002799389

scan the HTML for scripts. For each script that it identifies, the web client may request this

script from the server device. Once the script arrives at the web client, the web client can

execute the script. Through the use of scripts, web pages can be dynamic (herein the term "web

application" or "web app" refers a web page with at least some dynamic components). In

particular, client-side scripts allow web applications to be immediately reactive to user input

often without requiring more information from the web server and any associated delays. For

example, scripts may be used to change the layout of a displayed web application based on user

input.

11141 An example HTML file with embedded client-side scripts is shown below. In

substance, the HTML includes references to two JavaScript scripts, modulel.js and module2.js.

A web client receiving this HTML file would determine that these references exist, and then

request modulel.js and module2.js by way of their respective URLs. Modulel.js and module2.js

may be implemented as individual files. In most cases, the web client would not be able to fully

execute or display the web application until both of these scripts are retrieved and executed.

<html>

<head>

<meta charset="utf-8">

<title>Example Website</title>

</head>

<body>

<script src="https://www.example.com/modulel.js"

type="text/javascript"></script>

<script src="https://www.example.com/module2.js"

type="text/javascript"></script>

31

1002799389

</body>

</html>

[115] It is not uncommon for modern web applications to refer to dozens, or even

hundreds, of scripts in this fashion. As such, the serial retrieval and execution of these scripts

can significantly delay the appearance of the rendered web application in the web client. This

can lead to user frustration.

[116] A script bundler, which can be software operating in a development environment,

may be configured to combine two or more of such modules referenced by a web application into

bundles. Advantageously, the bundler can automatically identify dependencies, such as libraries

and imported files, and include these in the appropriate bundle. For instance, if modulel.js

depends on (e.g., calls functions in) core.js, a bundle could include modulel.js, module2.js, and

core.js. In some cases, all modules are placed in a single bundle (e.g., bundle.js). In other cases,

the modules are split across more than one bundle. Regardless, the HTML may be updated to

refer to the bundle(s) (e.g., bundle.js) rather than the individual modules.

[117] An example of a bundler commonly used for JavaScript is WEBPACK@. A

bundler may also be configured to group together specific static resources (e.g., image files and

cascading style sheet (CSS) definitions) to take advantage of client device and/or web client

caching. Moreover, a bundle can also be configured with a "minification" process which

removes any characters that do not contribute to the functionality of the bundle, such as

whitespace, comments, and newline characters. Minification can reduce the overall size of the

bundle without changing the functionality of the code inside the bundle.

[118] Bundling typically occurs at build time (e.g., when the web application is

designed and bundled) rather than at run time (e.g., when the web application is requested and

delivered to the web client). As such, run time latency is reduced, as only a small number of pre

32

1002799389

packaged bundles are delivered to the web client. But these pre-packaged bundles need to be

able to operate together in order for the web application to execute properly. Furthermore, both

techniques (delivering scripts one at a time and bundling) can be inefficient when multiple

modules depend on the same modules for their proper operation.

[119] As an example, suppose that both modulel.js and module2.js depend on core.js.

The core.js file may be a library containing functions called by both modulel.js and module2.js.

But suppose further that each of modulel.js and module2.js is developed by or under the control

of different developers, teams, or organizations, and therefore are bundled separately. This is

common for large web application development projects where it is advantageous for these

entities to develop standalone modules independently from one another.

[120] A naive bundling solution may attempt to take these dependencies into account by

bundling (at build time) a copy of core.js with each module that depends on it. Thus, one entity

would bundle module.js with core.js to form bundlel.js, and the other entity would bundle

module2.js with core.js to form bundle2.js. The HTML would be updated to refer to both

bundlel.js and bundle2.js. But, this would result in two copies of core.js being delivered to the

web client when the web application is processed, one for module1.js and the other for

module2.js.

[121] Despite its advantages to developers, such behavior is inefficient and undesirable

for end users of the web application. Not only will it take longer for the web client to retrieve

both bundles (due to the two copies of core.js), but memory on both the web server and the web

client will be wasted while storing the extra copy of core.js. Therefore, more efficient bundling

embodiments are desirable, and will be explained in detail below with more involved examples.

A. Bundling Using Module Dependency Graphs

33

1002799389

[122] Figure 6A shows dependency graph 600 for a web application. Dependency

graph 600 includes main.js module 602, which serves as the root (e.g., the entry point of the

code). Unless stated otherwise, an arrow pointing from a first module to a second module (e.g.,

from main.js module 602 to button.js module 604) indicates that the first module has a

dependency on the second module. Thus, the first module includes, imports, or otherwise

requires the presence of the second module in order to operate properly.

[123] In Figure 6A, main.js module 602 depends on three other modules, button.js

module 604, navbar.js module 606, and search.js module 608 (these modules may represent GUI

widgets for a clickable button, a navigation bar, and a search box, for example). Further,

button.js module 604 requires util.js module 610, navbar.js module 606 requires util.js module

612 and jQuery module 616, and search.js module 608 requires jQuery module 614. jQuery

module 614 requires system.js module 618, and jQuery module 616 requires system.js module

620.

[124] Note that jQuery module 614 and jQuery module 616 contain the exact same

information, but are referenced as dependencies by two different modules (search.js module 608

and navbar.js module 606, respectively). Similarly, system.js module 618 and system.js module

620 are copies of the same information. Also, util.js module 610 and util.js module 612 are also

copies of the same information. Thus, a total of six additional modules are required by the web

client to execute main.js module 602, three of which are redundant. As a web application gets

more complex, dependency graph 600 can grow larger and the number of redundant modules

may increase.

[125] As noted above, a bundler may analyze the dependency relationships within script

modules referenced by a web application and automatically combine these modules into one or

more bundles. In practice, this means that a bundle can combine modules that were originally

34

1002799389

disposed within multiple files into a single file. For example, app.js bundle 622 can be in the

form of a single file that resolves all dependencies from graph 600 (the dotted arrow from graph

600 to app.js bundle 622 indicates that app.js bundle 622 is a combination of the modules in

graph 600, rather than a dependency - other dotted arrows in the figures have a similar meaning

unless defined differently).

[126] As a result of analyzing these dependencies, the bundler may include, in app.js

bundle 622, all dependencies specified in dependency graph 600. This would mean that two

copies of the util.js, JQuery, and system.js modules would be included. On the other hand,

dependency graph 600 can be improved or optimized so that there are no redundant

dependencies. For example, button.js module 604 and navbar.js module 606 can be made to both

depend on util.js module 610, and navbar.js module 606 and search.js module 608 can be made

to both depend on jQuery module 614. In this way, after analyzing the dependencies, the bundler

may include only one copy of each redundant module in the bundle (e.g., util.js module 612,

jQuery module 616, and system.js 620 can be omitted). Thus, with an efficient dependency

graph, a bundler can resolve complex relationships between modules and reduce the number of

files that a web client loads after requesting a web application.

[127] Available bundlers are designed under the assumption that bundles are created

using such a single dependency graph. But the resulting single bundle can be excessively large

and may slow initial load times when delivered to a web application. Further, in a distributed

development environment, bundling all modules into a single file may require cross-developer or

cross-team coordination that is difficult to maintain in practice. Thus, it is desirable to be able

place modules into bundles based on the logical relationships between the modules and/or the

organizational relationships between developers.

35

1002799389

[128] Therefore, a bundler may be configured to create multiple bundles from modules

represented by a dependency graph. While various arrangements and numbers of bundles can be

derived from any non-trivial dependency graph, not all arrangements of modules into bundles are

efficient or effective.

[129] For example, Figure 6B shows one possible example of multiple bundles

generated from dependency graph 600. Bundle2.js 626 contains a portion of the web

application, namely the search functionality. Bundle1.js 624 contains the remaining portion of

the web application. Bundle.js 624 has a dependency on bundle2.js 626, which is the only

dependency in the relationship between the modules of the original dependency graph 600.

[130] This arrangement may reflect a situation in which one developer or team is

responsible for main.js module 602, button.js module 604, and navbar.js module 606, and

another developer or team is responsible for search.js module 618. Each team is also responsible

for determining any dependencies on libraries or common modules. Thus, dependencies to

util.js, jQuery, and system.js are shown in Figure 6B where appropriate. Alternatively, Figure 6B

may reflect a situation where a single developer is attempting to logically organized a set of

interdependent modules.

[131] However, bundlel.js 624 and bundle2.js 626 still contain redundant files, namely

util.js module 610 and util.js module 612, jQuery module 614 and jQuery module 616, and

system.js module 618 and system.js module 620. Thus, the arrangement of Figure 6B still

results in excess memory utilization on both the web server device and in the client device

executing the web client due to these redundancies. Also, transferring this redundant information

to the web client unnecessarily increases latency. For example, each copy of jQuery might be 75

kilobytes or more in size.

36

1002799389

[132] Figure 6C shows how a bundler may be configured to reduce redundant modules.

A bundler could scan dependency graph 600 to discover duplicate files, and then organize

bundles with single representations of shared modules. As shown, there is only one copy of each

of system.js module 628, jQuery module 630, and util.js module 632. The single representations

of the shared modules are then bundled into vendor.js bundle 636 and common.js bundle 638.

The remaining modules are bundled into app.js bundle 634. When delivered to a web client,

app.js bundle 634 has only two dependencies. Furthermore, the size of each bundle is now

smaller, as redundant files have been eliminated.

[133] But the mapping of modules to bundles in Figure 6C has disadvantages as well. A

goal of web application development is to be able to mix and match different combinations of

web components represented by these modules in an HTML file. Thus, it is desirable for each of

button.js module 604, navbar.js module 606, and search.js module 608 to be bundled with their

dependencies as individual, reusable web components. In this fashion, a web application

designer can refer to these modules in an HTML file without having to be aware of these

dependencies. Furthermore, the arrangement of Figure 6C does not easily support a distributed

development process where different developers or teams are responsible for different modules.

B. Bundling with Distributed Development

[134] A distributed development system allows more than one developer to

independently create software applications. Such a system may be found in an enterprise, where

software applications may be developed by individual departments within the enterprise. Such

applications could include or take the form of web applications or distinct components of web

applications. In some cases, a web component could be associated to with a particular GUI

widget, such as a button, navigation bar, or search bar. Then, a web developer could use these

different independent components to compose a web application.

37

1002799389

[135] For sake of clarity, a web component herein may refer to a bundle that represents

a particular set of web application functionality, and may include one or more modules. As noted

above, each of button.js module 604 and its dependencies, navbar.js module 606 and its

dependencies, and search.js module 608 and its dependencies could be bundled as separate web

components.

[136] To that point, Figure 7 depicts these modules as separate and distinct web

components in the form of bundles. As discussed above, the process of bundling modules may

be referred to as "creating a build," and the resulting bundle(s) may be referred to as a "build."

Alternatively or additionally, a build can be defined as one or more bundles that make up at least

part of a useable web component.

[137] In Figure 7, build 702 contains a bundle of modules that provide a standalone

button web component, build 704 contains a bundle of modules that provide a standalone

navigation bar web component, and build 706 contains a bundle of modules that provide a

standalone search box web component. Each of these builds includes a single bundle, but as

noted multiple bundles per build are possible.

[138] Each bundle is referred to by a chunk ID, an identifier that is determined

internally to the bundler during the build process. Particularly, build 702 is referred to by chunk

ID A30, build 704 is referred to by chunk ID R63, and build 706 is referred to by chunk ID X43.

While the chunk IDs used for illustration herein each consist of a letter followed by a two-digit

number, chunk IDs can take other forms. For example, a chunk ID can be an alphanumeric or

binary string of arbitrary length.

[139] Each chunk ID may be assigned uniquely in each build, but can vary between

builds. For instance, if build 702 is built by two different computing devices, or at two different

times by the same computing device, its chunk ID can be different. In some embodiments, each

38

1002799389

module is also individually referred to with a module ID that is also unique per build in the same

general fashion. In some cases, module IDs and chunk IDs may be used interchangeably.

[140] Since each build in Figure 7 is independent of the other builds and there are no

cross-build dependencies, each of the button web component, navigation bar web component,

and search box web component can be designed and developed by different developers or teams.

Then, these bundles may be combined to create web applications and/or web application

components. For instance, an HTML file may contain links to button.js module 604, navbarjs

606, and search.js module 608 in any order and arrangement.

[141] However, while the distinct builds of Figure 7 resolve difficulties experienced

web component and web application developers, it reintroduces the inefficiency of providing

redundant copies of modules to the web client during run time. Namely, util.js module 610 and

util.js module 612, are provided to the web client whenever button.js module 604 and navbar.js

606 are both referenced in an HTML file. Likewise, jQuery module 614 andjQuery module 616,

as well as system.js module 618 and system.js module 620, are provided to the web client

whenever navbar.js 606 and search.js module 608 are both referenced in an HTML file.

[142] One way of identifying cross-build dependencies is shown in Figure 8. Similar to

the builds of Figure 7, build 802 contains modules for a button, build 804 contains modules for a

navigation bar, and build 806 contains modules for a search bar. But unlike the builds of Figure

7, multiple chunk IDs are used within each build in order to further differentiate between bundles

of modules. In the scenarios depicted herein, a chunk ID may have a one-to-one relationship

with a bundle, though it is possible for bundles to include more than one chunk ID.

[143] Build 802 contains two chunk IDs, chunk ID A30 for button.js module 604 and

chunk ID B43 for util.js module 612. The dependencies between these modules carry over to

their chunk IDs, so chunk ID A30 depends on chunk ID B43. Build 804 contains three chunk

39

1002799389

IDs, chunk ID P27 for navbar.js module 606, chunk IDs L56 for util.js module 612, and chunk

ID 192 for the combination of jQuery module 616 and system.js module 620. Chunk ID P27

depends on chunk IDs L56 and 192. Build 806 contains two chunk IDs, chunk ID X43 for

search.js and chunk ID Z33 for the combination of jQuery module 616 and system.js module

620. Chunk ID X43 depends on chunk ID Z33.

[144] Resolving the dependencies across builds is challenging, however, as the chunk

IDs generated in each build process are configured independently and can vary from machine to

machine. For example, chunk IDs 192 and Z33 contain identical content, but occur in separate

builds. As a result, chunk P27 would use chunk ID 192 to resolve a dependency on jQuery

module 616, and chunk ID X43 would use chunk ID Z33 to resolve a dependency on jQuery

module 616. Thus, in order to reference chunks in other builds, the build process for one build

would need to know about the chunk IDs in another build.

[145] Thus, the build process may identify further cross-build dependencies that can be

leveraged to reduce the overall number of bundles that are provided to a web client. For

example, the build process may determine that chunk ID A30 could potentially depend on chunk

ID L56 instead of chunk ID B43, because chunk ID L56 contains the same module as chunk ID

B43. This cross-dependency is represented with arrow 808. Further, the build process may

determine that chunk ID X43 could potentially depend on chunk ID 192 instead of chunk ID Z33,

because chunk ID 192 contains the same modules as chunk ID Z33. This cross-dependency is

represented with arrow 810.

[146] At run time, the web server may use these cross-dependencies to reduce the

number of modules delivered to a web client. Instead of delivering multiple copies of util.js

module 612, jQuery module 616, and system.js 620, the web server may use the identified cross

dependencies to provide only one copy of each. But this approach has a drawback - the build

40

1002799389

process would need access to all bundles in order to efficiently manage dependencies. And since

builds can happen in a distributed fashion (due to multiple developers working on a web

application), it would be cumbersome provide this access. Additionally, the chunk IDs can

change between two different builds of the same bundle, further complicating the process.

C. Bundling with Deterministic Identifiers

[147] As a more favorable alternative, the build software can be configured to generate

deterministic chunk IDs for at least some modules. This allows cross-bundle dependencies to be

more easily identified and maintained. To that point, Figure 9 illustrates distributed builds

configured to use deterministic identifiers to recognize and resolve cross-dependencies.

[148] Similar to Figures 7 and 8, Figure 9 includes three builds 902, 904, and 906.

Build 902 contains modules for a button, build 904 contains modules for a navigation bar, and

build 906 contains modules for a search bar. In addition, each build contains a pluggable

component 914 that is configured to be part of the build process.

[149] As the build process generates bundles, pluggable component 914 is configured to

assign the same chunk ID to identical modules and/or bundles across the builds. Thus, pluggable

component 914 may be a unit of software added to a bundler in order to modify the bundler's

default operation. Pluggable component 914 is shown "inside" of each build in Figure 9 in order

to represent its contribution to the builds. As noted above, pluggable component 914 may be part

of the build software and might not explicitly be represented in each build.

[150] In build 902, pluggable component 914 assigns util.js module 612 the chunk ID

U12, and in bundle 904, pluggable component 914 also assigns util.js module 612 the chunk ID

U12. At run time, both chunk ID A30 and chunk ID P27 would use chunk ID U12 to resolve

their dependencies on util.js module 612. Similarly, in build 904, pluggable component 914

assigns the combination of jQuery module 616 and system.js module 620 the chunk ID J12, and

41

1002799389

in bundle 906, pluggable component 914 also assigns the combination of jQuery module 616 and

system.js module 620 the chunk ID J12. At run time, both chunk ID P27 and chunk ID X43

would use chunk ID J12 to resolve their dependencies on jQuery module 616 and system.js

module 620. This allows modules from separate builds to be able to be efficiently combined

with one another.

[151] For example, if build 902 is transmitted to the web client first, the presence of

chunk IDs A30 and U12 may be taken into account when transmitting builds 904 and 906 to the

web client. Thus, chunk ID U12 may be omitted from build 904 when build 904 is transmitted to

the web client. Similarly, since build 904 contains chunk ID J12, this chunk ID may be omitted

from build 906 when build 906 is transmitted to the web client.

[152] As noted above, each chunk can contain multiple modules, and these modules can

also be assigned deterministic module IDs. In cases where a chunk contains a single module, the

chunk ID may serve as the module ID.

[153] To carry out the deterministic assignments, pluggable component 914 may have

access to a configuration file, configuration settings, or similar mechanism that defines which

modules and chunks are to be assigned deterministic IDs and/or the general format of these IDs.

While all modules and chunks can be assigned deterministic IDs, in practice this is often not

necessary. For example, in Figure 9, the chunk ID J12 contains jQuery module 616 and

system.js module 620. But none of the other modules call system.js module 620 directly.

Instead, they call jQuery module 616 which in turn calls system.js module 620. Therefore,

jQuery module 616 should be assigned a deterministic module ID, but system.js module 620

could be assigned a non-deterministic module ID.

[154] As to the format of the chunk and module IDs, any mechanism that produces

deterministic IDs can be suitable. In some embodiments, modules IDs are assigned based on the

42

1002799389

module name and version number. For example, version 1.2 of the util.js module 612 could be

assigned the module ID "util.js-1.2". In this way, dependencies on certain versions of modules

can be properly maintained. In other situations, where the version of the module is not

important, only the module name ("util.js") might be used as the module ID. Deterministic

chunk IDs can be generated based on the names of one or more modules within the associated

chunk. For example, the chunk with the chunk ID of J12 could be assigned a deterministic ID of

"jQuery-system.js" or just "jQuery". Other possibilities exist - for example, if there is only one

module in a chunk, the module ID can serve as the chunk ID or vice-versa.

[155] Figure 10 illustrates the process of assigning deterministic module IDs and chunk

IDs as flow chart 1000. Starting at entry point 1002, the bundler performs the operations of

section 1003 for each module. At step 1004, the bundler obtains the module. At step 1006, the

bundler determines whether the module ID for this module should be deterministic. For

example, a configuration file may specify one or more modules that should be assigned

deterministic module IDs. If the module is to be assigned a deterministic ID, this is done at step

1008. If the module is not to be assigned a deterministic ID, the module is assigned a non

deterministic ID at step 1010.

[156] Once module IDs are assigned to each module in the bundle, the bundler performs

the operations of section 1011 for each chunk in the bundle. At step 1012, the bundler obtains

the chunk. At step 1014, the bundler "optimizes" the chunk. This may involve the minification

described above. At step 1016 the bundler determines whether the chunk ID for this chunk

should be deterministic. As was the case for modules, a configuration file may specify one or

more chunks that should be assigned deterministic chunk IDs. If the chunk is to be assigned a

deterministic ID, this is done at step 1018. If the chunk is not to be assigned a deterministic ID,

43

1002799389

the chunk is assigned a non-deterministic ID at step 1020. Regardless, the chunk is written to

memory (e.g., as a file containing bundle) at step 1022.

VI. Example Operations

[157] Figure 11 is a flow chart illustrating an example embodiment. The process

illustrated by Figure 11 may be carried out by a computing device, such as computing device

100, and/or a cluster of computing devices, such as server cluster 200. However, the process can

be carried out by other types of devices or device subsystems. For example, the process could be

carried out by a portable computer, such as a laptop or a tablet device.

[158] The embodiments of Figure 11 may be simplified by the removal of any one or

more of the features shown therein. Further, these embodiments may be combined with features,

aspects, and/or implementations of any of the previous figures or otherwise described herein.

[159] Block 1100 may involve obtaining, by a bundler application executing on a

computing device, one or more modules of script code that are designated for bundling with one

another.

[160] Block 1102 may involve, possibly based on dependencies between the modules of

script code, organizing, by the bundler application, the modules of script code into one or more

chunks

[161] Block 1104 may involve, for each respective chunk of the one or more chunks,

the bundler application: (i) determining whether the respective chunk is to be assigned a

deterministic chunk identifier or a non-deterministic chunk identifier, and (ii) assigning the

respective chunk a chunk identifier as determined. Deterministic chunk identifiers may be

usable for referencing by additional modules of script code both within and not within in the

respective chunk, and the deterministic chunk identifiers may be independent of characteristics

of the computing device.

44

1002799389

[162] Block 1106 may involve writing, by the bundler application, the one or more

chunks to a bundle.

[163] In some embodiments, a server device has access to the bundle and an additional

bundle, where both the bundle and the additional bundle contain a particular chunk with a

particular deterministic chunk identifier. Additional operations may involve, possibly based on

presence of the particular deterministic chunk identifier, providing no more than one copy of the

particular chunk to a web client when the web client requests both the bundle and the additional

bundle.

[164] In some embodiments, the modules of script code are JavaScript modules.

[165] In some embodiments, determining whether the respective chunk is to be assigned

the deterministic chunk identifier or the non-deterministic chunk identifier comprises: reading,

from configuration settings, dependency information related to the respective chunk; and

assigning the deterministic chunk identifier or the non-deterministic chunk identifier based on

the dependency information related to the respective chunk.

[166] In some embodiments, the respective chunk is assigned the deterministic chunk

identifier, and the deterministic chunk identifier includes a module name of a particular module

of script code within the respective chunk. The deterministic chunk identifier may also include a

module version of the particular module of script code.

[167] In some embodiments, the respective chunk contains exactly one module of script

code. In some embodiments, the modules of script code are organized into exactly one chunk.

[168] Further operations may involve, for each respective module of the one or more of

the modules of script code: (i) determining whether the respective module is to be assigned a

deterministic module identifier or a non-deterministic module identifier, and (ii) assigning the

respective module a module identifier as determined. Deterministic module identifiers may be

45

1002799389

usable for referencing by additional modules of script code both within and not within in the

respective module, and may be independent of characteristics of the computing device. The

respective module may be assigned the deterministic module identifier, and the deterministic

module identifier may include a module name of the respective module. The deterministic

module identifier may also include a module version of the respective module.

VII. Conclusion

[169] The present disclosure is not to be limited in terms of the particular embodiments

described in this application, which are intended as illustrations of various aspects. Many

modifications and variations can be made without departing from its scope, as will be apparent to

those skilled in the art. Functionally equivalent methods and apparatuses within the scope of the

disclosure, in addition to those described herein, will be apparent to those skilled in the art from

the foregoing descriptions. Such modifications and variations are intended to fall within the

scope of the appended claims.

[170] The above detailed description describes various features and operations of the

disclosed systems, devices, and methods with reference to the accompanying figures. The

example embodiments described herein and in the figures are not meant to be limiting. Other

embodiments can be utilized, and other changes can be made, without departing from the scope

of the subject matter presented herein. It will be readily understood that the aspects of the

present disclosure, as generally described herein, and illustrated in the figures, can be arranged,

substituted, combined, separated, and designed in a wide variety of different configurations.

[171] With respect to any or all of the message flow diagrams, scenarios, and flow

charts in the figures and as discussed herein, each step, block, and/or communication can

represent a processing of information and/or a transmission of information in accordance with

example embodiments. Alternative embodiments are included within the scope of these example

46

1002799389

embodiments. In these alternative embodiments, for example, operations described as steps,

blocks, transmissions, communications, requests, responses, and/or messages can be executed

out of order from that shown or discussed, including substantially concurrently or in reverse

order, depending on the functionality involved. Further, more or fewer blocks and/or operations

can be used with any of the message flow diagrams, scenarios, and flow charts discussed herein,

and these message flow diagrams, scenarios, and flow charts can be combined with one another,

in part or in whole.

[172] A step or block that represents a processing of information can correspond to

circuitry that can be configured to perform the specific logical functions of a herein-described

method or technique. Alternatively or additionally, a step or block that represents a processing of

information can correspond to a module, a segment, or a portion of program code (including

related data). The program code can include one or more instructions executable by a processor

for implementing specific logical operations or actions in the method or technique. The program

code and/or related data can be stored on any type of computer readable medium such as a

storage device including RAM, a disk drive, a solid state drive, or another storage medium.

[173] The computer readable medium can also include non-transitory computer

readable media such as computer readable media that store data for short periods of time like

register memory and processor cache. The computer readable media can further include non

transitory computer readable media that store program code and/or data for longer periods of

time. Thus, the computer readable media may include secondary or persistent long term storage,

like ROM, optical or magnetic disks, solid state drives, compact-disc read only memory (CD

ROM), for example. The computer readable media can also be any other volatile or non-volatile

storage systems. A computer readable medium can be considered a computer readable storage

medium, for example, or a tangible storage device.

47

1003207878

[174] Moreover, a step or block that represents one or more information transmissions

can correspond to information transmissions between software and/or hardware modules in the

same physical device. However, other information transmissions can be between software

modules and/or hardware modules in different physical devices.

[175] The particular arrangements shown in the figures should not be viewed as

limiting. It should be understood that other embodiments can include more or less of each

element shown in a given figure. Further, some of the illustrated elements can be combined or

omitted. Yet further, an example embodiment can include elements that are not illustrated in the

figures.

[176] While various aspects and embodiments have been disclosed herein, other aspects

and embodiments will be apparent to those skilled in the art. The various aspects and

embodiments disclosed herein are for purpose of illustration and are not intended to be limiting,

with the true scope being indicated by the following claims.

[177] By way of clarification and for avoidance of doubt, as used herein and except

where the context requires otherwise, the term "comprise" and variations of the term, such as

"comprising", "comprises" and "comprised", are not intended to exclude further additions,

components, integers or steps.

48

1003207878

CLAIMS

What is claimed is:

1. A computing system including:

a computing device configured to build modules of script code into bundles, wherein the

computing device includes one or more processors and memory; and

a bundler application stored in the memory and configured to be executed by the one or

more processors, wherein the bundler application stores information from a previous build of a

distributed build process, and wherein execution of the bundler application causes the bundler

application to perform operations during the distributed build process including:

obtaining one or more of the modules of script code that are designated for

bundling with one another;

organizing the modules of script code into one or more chunks, each having one

or more modules of script code;

for each respective chunk of the one or more chunks: (i) identifying a cross-build

dependency of the respective chunk by determining that the respective chunk is identical

to a different chunk from the previous build of the distributed build process, wherein the

different chunk is associated with a chunk identifier, (ii) assigning the respective chunk

the same chunk identifier as the different chunk based on the cross-build dependency of

the respective chunk, and (iii) updating references to the respective chunk in the one or

more modules of script code to instead use the chunk identifier of the respective chunk;

and

writing, in the memory, the one or more chunks to a bundle.

49

1003207878

2. The computing system of claim 1, further including:

a server device with access to the bundle and an additional bundle, wherein both the

bundle and the additional bundle contain a particular chunk with a particular chunk identifier,

and wherein the server device is configured to:

based on presence of the particular chunk identifier, provide no more than one

copy of the particular chunk to a web client when the web client requests both the bundle

and the additional bundle.

3. The computing system of claim 1 or claim 2, wherein the modules of script code

comprise JavaScript modules.

4. The computing system of any preceding claim, wherein the chunk identifier of the

respective chunk includes a module name of a particular module of script code within the

respective chunk and the different chunk.

5. The computing system of claim 4, wherein the chunk identifier of the respective

chunk also includes a module version of the particular module of script code.

6. The computing system of any preceding claim, wherein the respective chunk

contains exactly one module of script code.

7. The computing system of any preceding claim, wherein the modules of script

code are organized into exactly one chunk.

50

1003207878

8. The computing system of any preceding claim, further including:

for each respective module of the one or more of the modules of script code: (i)

identifying a cross-build dependency of the respective module by determining that the respective

module is identical to a different module from a previous build of the distributed build process,

wherein the different module is associated with a module identifier, (ii) assigning the respective

module the same module identifier as the different module based on the cross-build dependency

of the respective module, and (iii) updating references to the respective module in the one or

more modules of script code to instead use the module identifier of the respective module.

9. The computing system of claim 8, wherein the respective module is assigned the

deterministic module identifier, and wherein the deterministic module identifier includes a

module name of the respective module.

10. The computing system of claim 9, wherein the module identifier of the respective

module also includes a module version of the respective module.

11. A computer-implemented method of performing a distributed build process,

including:

storing, by a bundler application executing on a computing device, information from a

previous build of the distributed build process;

obtaining, by the bundler application, one or more modules of script code that are

designated for bundling with one another;

organizing, by the bundler application, the modules of script code into one or more

chunks, each having one or more modules of script code;

51

1003207878

for each respective chunk of the one or more chunks, the bundler application: (i)

identifying a cross-build dependency of the respective chunk by determining that the respective

chunk is identical to a different chunk from a previous build of the distributed build process,

wherein the different chunk is associated with a chunk identifier, (ii) assigning the respective

chunk the same chunk identifier as the different chunk based on the cross-build dependency of

the respective chunk, and (iii) updating references to the respective chunk in the one or more

modules of script code to instead use the chunk identifier; and

writing, by the bundler application, the one or more chunks to a bundle.

12. The computer-implemented method of claim 11, wherein a server device has

access to the bundle and an additional bundle, wherein both the bundle and the additional bundle

contain a particular chunk with a particular chunk identifier, the computer-implemented method

further including:

based on presence of the particular chunk identifier, provide no more than one copy of

the particular chunk to a web client when the web client requests both the bundle and the

additional bundle.

13. The computer-implemented method of any one of claims 11 to 12, wherein the

chunk identifier of the respective chunk includes a module name of a particular module of script

code within the respective chunk and the different chunk.

14. The computer-implemented method of claim 13, wherein the deterministic chunk

identifier of the respective chunk also includes a module version of the particular module of

script code.

52

1003207878

15. The computer-implemented method of any one of claims 11 to 14, wherein the

respective chunk contains exactly one module of script code.

16. The computer-implemented method of any one of claims 11 to 15, wherein the

modules of script code are organized into exactly one chunk.

17. The computer-implemented method of any one of claims 11 to 16, further

including:

for each respective module of the one or more of the modules of script code: (i)

identifying a cross-build dependency of the respective module by determining that the respective

module is identical to a different module from a previous build of the distributed build process,

wherein the different module is associated with a module identifier, (ii) assigning the respective

module the same module identifier as the different module based on the cross-build dependency

of the respective module, and (iii) updating references to the respective module in the one or

more modules of script code to instead use the module identifier of the respective module.

18. An article of manufacture including a non-transitory computer-readable medium,

having stored thereon program instructions that, upon execution by a computing system, cause

the computing system to perform operations during a distributed build process including:

storing, by a bundler application executing on a computing device, information from a

previous build of the distributed build process;

obtaining, by the bundler application, one or more modules of script code that are

designated for bundling with one another;

53

1003207878

organizing, by the bundler application, the modules of script code into one or more

chunks, each having one or more modules of script code;

for each respective chunk of the one or more chunks, the bundler application: (i)

identifying a cross-build dependency of the respective chunk by determining that the respective

chunk is identical to a different chunk from the previous build of the distributed build process,

wherein the different chunk is associated with a chunk identifier, (ii) assigning the respective

chunk the same chunk identifier as the different chunk based on the cross-build dependency of

the respective chunk, and (iii) updating references to the respective chunk in the one or more

modules of script code to instead use the chunk identifier of the respective chunk; and

writing, by the bundler application, the one or more chunks to a bundle.

54

FI
G.

 1

PR
OC

ES
SO

R

NE
TW

OR
K

IN
TE

RF
AC

E

IN
PU

T
/ O

UT
PU

T
UN

IT

10
0

11
0

ME
MO

RY

10
4

FI
RM

W
AR

E

KE
RN

EL

AP
PL

IC
AT

IO
NS

10
2

10
6

10
8

10
4A

10
4B

10
4C

1/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

SERVER CLUSTER
200

SERVER DEVICES
202

DATA STORAGE
204

208

ROUTERS
206

NETWORK 212

210

FIG. 2
2/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 3

MA
NA

GE
D

NE
TW

OR
K

30
0

SE
RV

ER
 D

EV
IC

ES

30
4

CL
IE

NT
 D

EV
IC

ES

30
2

RO
UT

ER
S

30
6

FI
RE

W
AL

L
31

0

RE
MO

TE
 N

ET
W

OR
K

MA
NA

GE
ME

NT
 P

LA
TF

OR
M

32
0

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

4

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

2

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

8

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

6

TH
IR

D-
PA

RT
Y

NE
TW

OR
KS

34

0

IN
TE

RN
ET

35

0

PR
OX

Y
SE

RV
ER

S
31

2

VI
RT

UA
L

MA
CH

IN
ES

 30
8

3/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 4

MA
NA

GE
D

NE
TW

OR
K

30
0

CO
NF

IG
UR

AT
IO

N
IT

EM
S

41
0

FI
RE

W
AL

L
31

0
PR

OX
Y

SE
RV

ER
S

31
2

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

2

FI
RE

W
AL

L
40

4A

VP
N

GA
TE

W
AY

40

2A

LO
AD

 B
AL

AN
CE

R
40

6A

VP
N

GA
TE

W
AY

 41
2

DA
TA

 C
EN

TE
R

40
0A

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

2

FI
RE

W
AL

L
40

4B

VP
N

GA
TE

W
AY

40

2B

LO
AD

 B
AL

AN
CE

R
40

6B

DA
TA

 C
EN

TE
R

40
0B

US
ER

 41
4

RE
MO

TE
 U

SE
R

41
6

DA
TA

BA
SE

RE
PL

IC
AT

IO
N

4/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 5A

CO
NF

IG
UR

AT
IO

N
IT

EM
 50

8

CO
NF

IG
UR

AT
IO

N
IT

EM
 50

4

CO
NF

IG
UR

AT
IO

N
IT

EM
 51

2

CO
MP

UT
AT

IO
NA

L
IN

ST
AN

CE
32

2

PR
OX

Y
SE

RV
ER

S
31

2

CO
NF

IG
UR

AT
IO

N
IT

EM
 50

6

CO
NF

IG
UR

AT
IO

N
IT

EM
 51

0

TA
SK

LI

ST 50
2

CM
DB

50

0

.

CO
MM

AN
DS

DI
SC

OV
ER

ED

CO
NF

IG
UR

AT
IO

N
IT

EM
S

PR
OB

ES
 A

ND
RE

SP
ON

SE
S

MA
NA

GE
D

NE
TW

OR
K

30
0

5/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FIG. 5B

POPULATE TASK LIST

SCANNING PHASE:
PROBE IP ADDRESSES FOR DEVICES AND DETERMINE OPERATING SYSTEMS

CLASSIFICATION PHASE:
PROBE FOR OPERATING SYSTEM VERSION OF DISCOVERED DEVICES

IDENTIFICATION PHASE:
PROBE FOR CONFIGURATION OF DISCOVERED DEVICES

EXPLORATION PHASE:
PROBE FOR OPERATIONAL STATE AND SERVICES OF DISCOVERED DEVICES

FURTHER EDITING OF CONFIGURATION ITEMS IN CMDB

520

522

524

526

528

530

6/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 6A

m
ain

.js
 60

2

ut
il.j

s 6
10

se
ar

ch
.js

 60
8

bu
tto

n.
js

60
4

na
vb

ar
.js

 60
6

jQ
ue

ry
 61

4

60
0

ut
il.j

s 6
12

jQ
ue

ry
 61

6

sy
st

em
.js

 61
8

sy
st

em
.js

 62
0

ap
p.

js
62

2

7/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 6B

m
ain

.js
 60

2

ut
il.j

s 6
10

se
ar

ch
.js

 60
8

bu
tto

n.
js

60
4

na
vb

ar
.js

 60
6

jQ
ue

ry
 61

4

ut
il.j

s 6
12

jQ
ue

ry
 61

6

sy
st

em
.js

 61
8

sy
st

em
.js

 62
0

bu
nd

le1
.js

 62
4

bu
nd

le2
.js

 62
6

8/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 6C

m
ain

.js
 60

2

ut
il.j

s 6
32

se
ar

ch
.js

 60
8

bu
tto

n.
js

60
4

na
vb

ar
.js

 60
6

jQ
ue

ry
 63

0

sy
st

em
.js

 62
8

ap
p.

js
63

4

ve
nd

or
.js

 63
6

co
m

m
on

.js
 63

8

9/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 7

ut
il.j

s 6
10

se
ar

ch
.js

 60
8

bu
tto

n.
js

60
4

na
vb

ar
.js

 60
6

jQ
ue

ry
 61

4
ut

il.j
s 6

12
jQ

ue
ry

 61
6

sy
st

em
.js

 61
8

sy
st

em
.js

 62
0

Ch
un

k I
D:

 A
30

Ch

un
k I

D:
 R

63

Ch
un

k I
D:

 X
43

70
2

70
4

70
6

10/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FI
G.

 8

se
ar

ch
.js

 60
8

na
vb

ar
.js

 60
6

ut
il.j

s 6
12

jQ
ue

ry
 61

6

sy
st

em
.js

 62
0

bu
tto

n.
js

60
4

Ch
un

k I
D:

 A
30

Ch

un
k I

D:
 P

27

Ch
un

k I
D:

 X
43

Ch
un

k I
D:

 L
56

Ch

un
k I

D:
 I9

2

ut
il.j

s 6
12

jQ
ue

ry
 61

6

sy
st

em
.js

 62
0

Ch
un

k I
D:

 B
43

Ch

un
k I

D:
 Z

33

80
8

81
0

80
2

80
4

80
6

11/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

se
ar

ch
.js

 60
8

bu
tto

n.
js

60
4

na
vb

ar
.js

 60
6

ut
il.j

s 6
12

jQ
ue

ry
 61

6

sy
st

em
.js

 62
0

Ch
un

k I
D:

 A
30

Ch
un

k I
D:

 P
27

Ch
un

k I
D:

 X
43

Ch
un

k I
D:

 U
12

Ch
un

k I
D:

 J1
2

jQ
ue

ry
 61

6

sy
st

em
.js

 62
0

Ch
un

k I
D:

 J1
2

ut
il.j

s 6
12

Ch
un

k I
D:

 U
12

PL
UG

GA
BL

E
91

4
PL

UG
GA

BL
E

91
4

FI
G.

 9

PL
UG

GA
BL

E
91

4

90
2

90
4

90
6

90
8

91
0

12/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

SH
OU

LD
 ID

 B
E

DE
TE

RM
IN

IS
TI

C?

10
06

EN
TR

Y
PO

IN
T

10
02

SH
OU

LD
 ID

 B
E

DE
TE

RM
IN

IS
TI

C?

10
16

W
RI

TE

CH
UN

K
10

22

10
00

AS
SI

GN

DE
TE

RM
IN

IS
TI

C
ID

10

08

AS
SI

GN
 N

ON
-

DE
TE

RM
IN

IS
TI

C
ID

10

10

OB
TA

IN
 C

HU
NK

10

12 AS
SI

GN

DE
TE

RM
IN

IS
TI

C
ID

10

18

AS
SI

GN
 N

ON
-

DE
TE

RM
IN

IS
TI

C
ID

10

20

OB
TA

IN
 M

OD
UL

E
10

04

OP
TI

MI
ZE

10

14

10
03

PE
RF

OR
M

ON
CE

 P
ER

 M
OD

UL
E

10
11

PE
RF

OR
M

ON
CE

 P
ER

 C
HU

NK

FI
G.

 10

13/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

FIG. 11

OBTAIN, BY A BUNDLER APPLICATION EXECUTING ON A COMPUTING DEVICE,
ONE OR MORE MODULES OF SCRIPT CODE THAT ARE DESIGNATED FOR

BUNDLING WITH ONE ANOTHER

BASED ON DEPENDENCIES BETWEEN THE MODULES OF SCRIPT CODE,
ORGANIZE, BY THE BUNDLER APPLICATION, THE MODULES OF SCRIPT CODE

INTO ONE OR MORE CHUNKS

FOR EACH RESPECTIVE CHUNK OF THE ONE OR MORE CHUNKS: (I) DETERMINE
WHETHER THE RESPECTIVE CHUNK IS TO BE ASSIGNED A DETERMINISTIC
CHUNK IDENTIFIER OR A NON-DETERMINISTIC CHUNK IDENTIFIER, AND (II)
ASSIGN THE RESPECTIVE CHUNK A CHUNK IDENTIFIER AS DETERMINED,

WHEREIN DETERMINISTIC CHUNK IDENTIFIERS ARE USABLE FOR
REFERENCING BY ADDITIONAL MODULES OF SCRIPT CODE BOTH WITHIN AND
NOT WITHIN IN THE RESPECTIVE CHUNK, AND WHEREIN THE DETERMINISTIC

CHUNK IDENTIFIERS ARE INDEPENDENT OF CHARACTERISTICS OF THE
COMPUTING DEVICE

WRITING, BY THE BUNDLER APPLICATION, THE ONE OR MORE CHUNKS TO A
BUNDLE

1100

1102

1104

1106

14/14

20
19

26
17

68

 0
7

N
ov

 2
01

9

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

