
(12) United States Patent
Schaal et al.

USOO8458790B2

US 8.458,790 B2
Jun. 4, 2013

(10) Patent No.:
(45) Date of Patent:

(54) DEFENDING SMART CARDS AGAINST
ATTACKS BY REDUNDANT PROCESSING

(75) Inventors: Albet Schaal, Tübingen (DE); Torsten
Teich, Sindelfingen (DE)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 752 days.

(21) Appl. No.: 12/445,282

(22) PCT Filed: Sep.19, 2007

(86). PCT No.: PCT/EP2007/059882

S371 (c)(1),
(2), (4) Date: Apr. 10, 2009

(87) PCT Pub. No.: WO2008/043647
PCT Pub. Date: Apr. 17, 2008

(65) Prior Publication Data

US 201O/OO31357 A1 Feb. 4, 2010

(30) Foreign Application Priority Data

Oct. 12, 2006 (EP) O6122157

(51) Int. Cl.
G06F2L/00

(52) U.S. Cl.
USPC ... 726/22; 713/187

(58) Field of Classification Search
USPC 726/22: 714/E11.002, E11.03, E11.055;

713/187
See application file for complete search history.

(2006.01)

110

Command Execution Control

Command Receive Command.
Request 1110

Invoke Application
(1st execution): 1120

Switch To Sub
sequent Step: 1130

Invoke Application
(2nd execution): 1140

Commit: 1150

Command Send Response:
Response 1160

Op. 1: verity certificate over
input data: 1210

Op. 2: update volatile
application data: 1220

Op. 3: update transaction
data from EEPROM: 1230

Op. 4: generate response
Certificate: 1240

Op. N. return response:
1250

(56) References Cited

U.S. PATENT DOCUMENTS

6,571,363 B1 5/2003 Steiss
6,792,560 B2 * 9/2004 Francis et al. T14? 30
7,185,367 B2 * 2/2007 Munson T26/23

2006/0104438 A1* 5/2006 Giraud............................ 380/28
2007/0113230 A1* 5/2007 Bourdon et al. T18, 100

FOREIGN PATENT DOCUMENTS

FR 2838262 A1 10, 2003
WO O3O85881 A1 10, 2003
WO 2004086220 A2 10, 2004

* cited by examiner

Primary Examiner — Jung Kim
Assistant Examiner — Ngoc DNguyen
(74) Attorney, Agent, or Firm — Steven L. Nichols; Van
Cott, Bagley, Cornwall & McCarthy P.C.

(57) ABSTRACT

A method is provided which defends a computer program
against attacks independently of the complexity of the pro
gram. A request to invoke the application is received. A pro
cess execution state is set to indicate a first execution. The
application is executed in response to the request, and appli
cation data and control information calculated by the appli
cation is stored while the application is executed. The process
execution state is set to indicate a Subsequent execution. At
least part of the application is executed for at least one Sub
sequent time. Application data and control information cal
culated by the application during Subsequent executions is
compared with the data/information stored during first execu
tion. The comparison is done by operation system services
which are responsive to the process execution state. When the
comparison shows a discrepancy in the compared application
data and control information, appropriate errorhandling takes
place.

15 Claims, 6 Drawing Sheets

120 130

Operating System Kernel

Verify Certificate:
1310

Write Wolatile
Memory: 1320

Application

Security
Control:

Write Nonvolatile 1300
Memory: 1330

Generate
Certificate. 1340

U.S. Patent Jun. 4, 2013 Sheet 1 of 6 US 8.458,790 B2

19: INPUT / OUTPUT

12: OPERATING 15: DATA AREA /
SYSTEM DATA FILES 21: VOLATILE

DATA
18: APPLICATION 18: APPLICATION

11: Program Storage 13: Non-VOlatile Data 14: Volatile
Storage Data Storage

Aig. 1
(Prior Art)

U.S. Patent Jun. 4, 2013 Sheet 2 of 6 US 8.458,790 B2

First Execution Subsequent Executions

Verify Validity of input Data Ensure Validity of Input
210 (e.g. Load Sequence, Data (e.g. Load Sequence, 215

PurSe ACCOUnt Number Purse Account Number)

Check that Load Amount Ensure that Load Amount
220 does not exceed Maximum does not exCeed Maximum 225

Balance Balance

Update Error Counter of Compare Updated Error
230 Certification Key Counter of Certification Key 235

Verify Certificate of Input Ensure Certificate of input
240 Data Data is COrrect 245

Calculate New Balance =
250 Old Balance + LOad Amount

Verify that New Balance =
old Balance + Load Amount 255

Write New Balance to File Compare New Balance
260 With File 265

Copy New Balance to Compare New Balance
270 Output Data with value in Output Data 275

Generate Certificate and Verify Certificate with value
28O append to Output Data in Output Data 285

Aig. 2

US 8.458,790 B2 U.S. Patent

0 || ||

U.S. Patent Jun. 4, 2013 Sheet 4 of 6 US 8.458,790 B2

ProCeSS Execution Operating System Service
State Decrease Purse Balance

First/
Subsequent

Subtract Amount Verify That Previous
From PurSe Balance Less the

Balance, Store Amount Gives The
Previous Balance Actual Balance

Aig. 4

U.S. Patent Jun. 4, 2013 Sheet 5 of 6 US 8.458,790 B2

Process Execution Operating System Service
State Update Application Data

First/
Subsequent

Write to Data Compare Data
Storage and Save With Actual
Previous Contents Contents of the
in a Shadow Area Data Storage

Aig. 5

U.S. Patent Jun. 4, 2013 Sheet 6 of 6 US 8.458,790 B2

"Third kind" data object

Initial Value ACtual
Ye20

Copy

610

630
Initial Value New 1

First "Third kind" data object
Execution 610

Initial Value

-Update (NewValue Update

Read-ol

625 Subsequent "Third kind" data object
Execution 610

Initial Value

Verify/Compare

Read-o

615

-Update (NewValue)

"Third kind" data object

-Fixation
Copy

Alig. 6

610

US 8,458,790 B2
1.

DEFENDING SMART CARDS AGAINST
ATTACKS BY REDUNDANT PROCESSING

CROSS-REFERENCE TO RELATED
APPLICATIONS

Pursuant to 35 U.S.C. SS119(a) and 365(b), the present
application claims priority from PCT Application No. EP
2007/059882, filedon Sep. 9, 2007, the disclosure of which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to computing systems and in
particular to a method for tracking the execution of a com
puter program during execution thereofand detection of unin
tended behavior.

Prior art computing systems mainly consist of an execution
engine, program or code memory, data memory, and other
functional parts. The execution engine sequentially reads
instruction codes (and instruction code arguments) from the
code memory. The data memory is used to store variable and
constant data. It is accessed (i.e., read from and written to) by
special instruction codes. In conventional computing sys
tems, the content of code memory and data memory form the
actual computer program.

Additionally, there are today interpreter based computing
systems. In this case the data memory contains virtual instruc
tion codes, and data of the program. The virtual instruction
codes cannot be executed by the execution engine. An inter
preter is used instead, which reads virtual instructions and
their arguments from the data memory, and executes them
according to the rules, which are stored in the interpreter
itself. One example of such an interpreter is the Java Virtual
Machine.

In conventional or interpreter based computing systems,
computer programs consist of instructions that are executed
in sequence. It is expected that this sequence follows the
programmed path; branching is expected to happen only as
programmed in dependency of known events and data.

Unfortunately, the microprocessor that executes the
instructions can be disturbed, e.g. through electromagnetic
fields, X-ray, laser light, or by fast changes in the electrical
system powering the device, in a way that can lead to execu
tion of code outside the intended/programmed flow of the
execution path. This gives attackers the possibility to manipu
late program execution in a way that a program path is fol
lowed that was not intended by the programmer, or that the
program operates with wrong data. Especially in sensitive
computing areas where security is of high importance. Such
disturbances and manipulations can cause great damage.

BRIEF SUMMARY OF THE INVENTION

A method of tracking execution of an application in a
computing system includes receiving a request to invoke the
application, setting a process execution state to indicate a first
execution, executing the application for a first time in the
computing system in response to the request, storing appli
cation data and control information calculated by the appli
cation while the application is executed for the first time,
setting the process execution state to indicate a Subsequent
action, executing at least a part of the application for at least
one Subsequent time in the same computing system in
response to the request, comparing application data and con
trol information calculated by the application during Subse
quent executions with respective data information stored dur

10

15

25

30

35

40

45

50

55

60

65

2
ing the first execution, and proceeding to error handling when
the comparison shows a discrepancy in the compared appli
cation and control information. The comparison is done by
operation system services invoked by the application, where
the operation system services are responsive to the process
execution state.
A Smart Card has a chip circuit including a programmed

functional hardware component for performing the steps of
receiving a request to invoke the application, setting a process
execution state to indicate a first execution, executing the
application for a first time in the computing system in
response to the request, storing application data and control
information calculated by the application while it is executed
for the first time, setting the process execution state to “sub
sequent execution', executing at least part of the application
for at least one Subsequent time in the same computing system
in response to the request, comparing application data and
control information calculated by the application during Sub
sequent executions with the data/information stored during
first execution, and proceeding to error handling when the
comparison shows a discrepancy in the compared application
data and control information. The comparison is done by
operation system services invoked by the application, where
the operation system services are responsive to the process
execution state.
A computer program product for tracking execution of an

application in a computer system has a computer usable
medium with computerusable program code embodied there
with. The computer usable program code includes: computer
usable program code configured to receive a request to invoke
the application, computer usable program code configured to
set a process execution state to indicate a first execution,
computer usable program code configured to execute the
application for a first time in the computing system in
response to the request, computer usable program code con
figured to store application data and control information cal
culated by the application while it is executed for the first
time, computer usable program code configured to set the
process execution state to indicate a Subsequent execution,
computer usable program code configured to execute at least
part of the application for at least one Subsequent time in the
same computing system in response to the request, computer
usable program code configured to compare application data
and control information calculated by the application during
Subsequent executions with the data/information stored dur
ing first execution, and computer usable program code con
figured to proceed to error handling when the comparison
shows a discrepancy in the compared application data and
control information. The comparison is done by operation
system services invoked by the application, where the opera
tion system services are responsive to the process execution
State.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings illustrate various embodi
ments of the principles described herein and are a part of the
specification. The illustrated embodiments are merely
examples and do not limit the Scope of the claims.

FIG. 1 is a diagram of illustrative structural elements of a
computing system (e.g. a Smartcard) consistent with one
exemplary embodiment of the principles described herein.

FIG. 2 is a flow diagram of an illustrative method for
tracking execution of an application in a computing system
according to one exemplary embodiment of the principles
described herein.

US 8,458,790 B2
3

FIG. 3 is a block diagram illustrating the interaction of
various illustrative functional components according to one
exemplary embodiment of the principles described herein.

FIG. 4 is a flow diagram of an illustrative control flow
during invocation and execution of an operating system ser
Vice implementing a security control mechanism according to
one exemplary embodiment of the principles described
herein.

FIG. 5 is a flow diagram of an illustrative control flow
during invocation and run of an operating system service
implementing a security control mechanism according to one
exemplary embodiment of the principles described herein.

FIG. 6 is a diagram of the interaction between various
illustrative methods and illustrative data objects, according to
one exemplary embodiment of the principles described
herein.

Throughout the drawings, identical reference numbers
designate similar, but not necessarily identical, elements.

DETAILED DESCRIPTION OF THE INVENTION

Smart Cards for financial systems are one example for
computer systems where errors or attacks in the execution
flow can be of great harm. Today several prior art techniques
exist to detect and react to errors in program execution, but
none of these approaches is suitable for Smart Card applica
tions. Various approaches to resolving the problem of detect
ing and reacting to errors in program execution exist in the
prior art, these approaches are not desirable Redundant com
puting on two different execution units is not a solution in this
area because of the limited size of the SmartCard and the
limited available computing resources.

In one type of prior art Solution, sensitive industries like
financial systems, aviation, or power plant controlling often
use more than a single computer to run a critical program, and
the results are periodically compared to detect malfunctions.
A disadvantage thereof is that either multiple execution

engines (processors) must be built into one single computer
system, or multiple computer systems must be used. This
increases costs of such a system in every aspect. For Smaller
devices such as Smart Cards, where size and available com
puting resources are issues, this technique is not practical.

Another type of prior art Solution takes advantage of the
fact that every instruction is divided by a processor into mul
tiple execution stages—for example the so-called pico-in
structions—, techniques have been developed in prior art to
ensure correct and complete execution of the pico-instruc
tions. Accordingly, hardware means can be used to generate a
signature corresponding to a macrocommand portion of a
given instruction. Particular registers are necessary to store
the "expected signature. During runtime the signature is
calculated and compared to the stored one.

Such methods are disadvantageously limited to errors,
which occur while one instruction is executed by the proces
sor. Manipulations to the program flow are not recognized as
long as every instruction is completely executed. Another
disadvantage is that the method is not applicable on most of
today’s processors, including those found in Smart Cards,
since special hardware elements must be included in the
processor to achieve the desired error prevention functional
ity.

In yet another type of prior art solution, path information is
used to check the correct execution of branches by a proces
sor. A disadvantage in Such solutions is that this method
detects errors in execution only at branch positions in the code
flow. Another disadvantage is the need for special hardware
elements in a processor which hold and check the path infor

10

15

25

30

35

40

45

50

55

60

65

4
mation. Most Smart Cards are not configured to include Such
hardware elements. Further, a significant effort is needed to
compute trees of execution paths beside? during the program
development.

In still another type of prior art Solution, the consequences
oferroneous program execution are targeted rather than react
ing to an event that caused the error. For example, data opera
tions may be stored on a backup system and restored after a
loss or malfunction.

This type of prior art Solution is also not practical for use
with Smart Cards, as these methods typically utilize multiple
computing systems as backup facilities, which is difficult to
implement on a single Smart Card.

Even if a solution were found to develop an application
program Such that a Smart Card were resistant to nearly all
conceivable attacks, the development of this software would
likely be a very time-intensive endeavor, thereby incurring
significant costs. Even in a non-complex business process
realized by the Smart Card Software, security management is
a difficult Subject requiring much effort, even for program
mers having large experience in this special field. However, as
the business processes implemented by the Smart Card soft
ware gets more complicated, attack prevention and security
management require increasingly more Substantial amounts
of work in Software development, and often these costs are a
feasible investment for manufacturers or developers of Smart
Cards.

Accordingly, the present specification discloses a method
which defends a computer program against attacks indepen
dent of the complexity of the functionality implemented by
the computer program.

With reference to FIG. 1, a prior art computing system
having a central processing unit (CPU) 20 and input/output
facilities 19 often contains a base or kernel operating system
12 implementing the basic access routines to the hardware
and providing these routines as 'services' to the applications
18 in the computing system. The applications 18 run in the
Program Storage 11 usually "on top of the operating system
12, i.e., the applications are invoked and controlled by the
operating system. These services provided by the operation
system 12 include routines for writing and reading the data
storages. Therefore, a Non-volatile Data Storage 13 is pro
vided to persistently store application data, preferably but not
necessarily structured in files. The Non-volatile Data Storage
typically contains data files 15. Further, the operating system
12 provides services for reading and writing volatile data 21.
Therefore, Volatile Data Storage 14 is present in a computing
system.

Further, cryptographic routines for calculating crypto
grams like Certificates, Message Authentication codes, etc.
are also known.

There are usually three kinds of data objects used within a
computing system implementing the inventional methods:
The “first kind' comprises data objects which are only

read—not written—during processing of an application. An
example is a client name, or an account number in a purse
card.
The “second kind’ comprises data objects which are the

result of the processing of an application. The value of the
data object prior to the execution is not relevant, therefore,
this prior value does not influence the result eventually stored
in the data object. An example are data which are only stored
for logging purposes, e.g. current date and time.
The “third kind' comprises data objects of the “second

kind', but in addition, their value prior to the execution influ
ences the final value of the data object. An example is the
electronic cash balance of a purse card, which is increased or

US 8,458,790 B2
5

decreased by a certain amount, and its original value influ
ences the final result. An inventional characteristic of this data
class is that it retains its original value and returns it when read
or compared. The new value written with update operations
replaces the original value only with a “fixation operation.

These three kinds of data are available for persistent (non
Volatile) and the transient (volatile) storage. Those data types
are herein referred to as "classes' of data as well.

With a closer look to the invention, the first class of data is
obviously not critical for the implementation of any redun
dant processing because its state and its value does not change
and will be the same for the first execution and the subsequent
executions.
The second class of data is not critical either, since its value

is just calculated using the values from application input
values or other data objects.
The third class of data is the one to be preferably consid

ered when implementing the invention. This will be described
in more detail within the illustrative embodiment next below.
The application designer may indicate which data objects

are of the third type. The operation system then handles the
data objects of the third type as described in this specification.
Alternatively (although not so efficiently) all data objects to
which a value is written can be automatically handled this
way by the operation system.

In some embodiments of the invention, handling of data
objects of the third type in the non-volatile memory makes
use of the EEPROM write routine, which keeps a copy of an
updated value and an original value. There is thus no need to
separately write a copy of the original value in the non
Volatile memory. The transaction roll-back mechanism keeps
automatically a copy of the original value.

With general reference to the Figures, particularly FIG. 2,
an exemplary command flow within a computing system is
depicted. The differences between the first execution (left
column) and Subsequent executions (right column) of a com
mand is shown in FIG. 2. This command comprises a number
of steps, each of which is executed normally using appropri
ate operating system services. Each step is repeated according
to the invention in order to detect a possible attack, as follows.

In a first step 210 some input parameters are checked for
validity. In the case of a load transaction of a purse card, these
parameters could be for example: a load sequence number
and/or a purse account number. According to the invention, in
a verification step 215 of the subsequent execution the same
input parameters are checked once again. If there is mis
match, error handling is initiated. This first step 210 does not
update any data object and can be repeated (step 215) without
any special provisions. If the verification operation in step
210 during the first execution is laid out such that invalid
values lead to an abortion of the transaction, then a negative
treatment during Subsequent executions can be treated as
attack or incident.
A second step 220 performs a comparison of two param

eters, for example using a memory comparison service of the
operating system. During Subsequent execution in step 225
the operation of the service is modified such that a negative
comparison leads to an error handling as this could only be
caused by an attack or incident during first execution.

In a third step 230 an application data element (here: error
counter of a certification key) is updated. This is an example
for a “third kind’ data element. Also here, in a step 235 the
inventional repeated execution of step 230 is modified such
that the updated error counter is compared. In particular, an
attack or incident is assumed, if the value written during first
execution differs from the value to be written in subsequent
executions.

10

15

25

30

35

40

45

50

55

60

65

6
In a further fourth step 240 the authenticity of application

input data is checked. In order to do that, a certificate over the
input data is calculated and verified with a reference value
received within the same input data. In the inventional sub
sequent step 245 the certificate generation is performed again.
This is preferably done by repeating step 240 with the same
input data. Only data of type 1 are involved in this step, so the
operation can repeated in Subsequent execution steps. More
over, in case the certificate is wrong in Subsequent executions,
an attack or incident can be assumed.

Then, in a fifth step 250, a new Balance is calculated by
adding the Load Amount as received in the input data to the
actually stored Balance. The Balance field is a data element of
the “third kind'. In the inventional subsequent execution the
operation is repeated, as shown in step 255. Because the
Balance field is a data object of the “third kind', it will return
its previous value when it is read, even if it has been updated
with a new value by a write operation in a previous execution
step. Due to the nature of this data class, the result of subse
quent executions can be verified with the result, which was
written during first execution, thus an attempt to attack this
operation or similar incidents will be detected. The data
object of the third kind will receive the final result with a
fixation operation.

Step 260 writes the new Balance into Non-Volatile Stor
age. The functionality of the “third kind’ data object class
allows that the value written can be verified during subse
quent executions in step 265, comparing the freshly written
data of step 260 with the same data present in a repeated write
step 265. If the data does not match, then error handling will
be initiated.

Then, in a seventh step (270) the result of step 250 is moved
into an output data buffer. The result is an exemplary data
object of the “second type'. In a repeated copy step 275,
performed according to the invention, the data element (here:
New Balance) is compared with the value copied during the
first execution in step 270.

In a last step 280 the response data copied into the Output
Buffer in step 270 are signed. In order to do that a certificate
is generated. In the inventional repeated certificate generation
step 285 the result is verified with the certificate generated in
step 280. Again, if the verification step 285 reveals a differ
ence in the two certificates, then an attack or similar incident
must be assumed and appropriate error handling will be ini
tiated.

Next, and with reference to FIG.3, the interaction between
three Software components residing on a computing system
and forming part of the inventional method is described in
more detail. The first component is a process 110 of the
operating system. This can be seen as a software layer, having
the purpose to control the command execution of the second
component, i.e. the application 120. The third component is
the operating system kernel 130, wherein operating system
services and a general Security control component are imple
mented.
The application component 120 comprises different opera

tions, five in this example. The first operation 1210 is to verify
the certificate over the input data. The second operation 1220
is to update the Application Data in the Volatile Data Storage
14, as it was described in the example above with reference to
step 250. The third operation 1230 is to update the non
volatile application data. This operation has been described in
steps 230 and 260. A further operation 1240 is to generate a
response certificate as it was described above with step 280. A
last operation 1250 is to return the response of the application
to the user.

US 8,458,790 B2
7

The command execution control component 110 receives a
command request which is input by a user. In the case of a
Smart Card this might be a command to load the card with
new electronic value, i.e. “money. This command is depicted
as step 1110. After the command has been received the con
trol component 110 invokes the application 120, in order to
perform the first execution of the application. The application
intends to verify the certificate over the input data in step
1210, to calculate the new balance as denoted by “update
volatile application data in step 1220, to write the new bal
ance permanently to the respective data file ("update transac
tion data in EEPROM, in step 1230), to generate a certificate
over the response data in step 1240, and to return the response
data to the caller in step 1250.

After the first execution of the application 120 has been
completed, control is given back to the Command Execution
Control component 110, which performs a switch 1130 for
any Subsequent execution of the application 120. The purpose
of the switch 1130 is to inform the Security Control instance
1300 of the Operating System Kernel 130 that the application
120 is executed a second, or more general, a Subsequent time.
This causes the operating system services to behave differ
ently compared to the function they usually provide when
they are invoked in “first execution” mode. Examples of such
operating system services are shown in steps 1310, 1320,
1330, and 1340 of FIG. 3.
The Command Execution Control 110 now invokes the

Application 120 for a second time, and optionally for further
times. This occurs transparent to the application, as the appli
cation receives the same input data, and the operating system
services ensure that Volatile and nonvolatile data maintain
their previous contents, even if they were updated during first
execution of the Application.
An important aspect of the invention is that the Command

Execution Control 110 can invoke the application 120 at any
point (e.g. at any of the aforementioned steps 1210 to 1240),
from which the application returns after executing the
selected step or any number of steps following the selected
one, until it returns to the Command Execution Control. The
following provisions are made to accomplish this: (i) The
Application is split into enumerated Steps known to the Com
mand Execution Control. (ii) The Command Execution Con
trol specifies, at which of the steps the Subsequent execution
shall start and, optionally, how many steps will be executed.

With reference to FIG. 4, an exemplary implementation of
the operating system service "Decrease Purse Balance' is
illustrated. When this function is invoked, it behaves differ
ently depending on the Process Execution State 1400 imple
menting an indication whether this is a first execution invo
cation or a subsequent execution invocation (405). This
information is evaluated in step 410 yielding a YES/NO
decision. In the YES-decision 420 the Amount is subtracted
from the actual Purse Balance, whereas in the NO-decision
430 the operation is repeated and the result compared with the
Balance calculated in the first execution. This is a “third kind'
data operation. If verification fails, then an attack or incident
is detected and the operating system reacts according to its
security policy, which is not shown in the Figure.

FIG. 5 illustrates an exemplary implementation of the
operating system security function "Update Application
Data”, which is also a “third kind’ data operation. Similar to
FIG. 4 the Process Execution State 1500 is evaluated in step
510, which yields also a YES/NO-decision; wherein in the
YES-decision 520 the function writes data into the volatile or
non-volatile storage, whereas in the NO-decision 530 the data
already written during the first execution is compared with the
actual data. If comparison fails, then an attack or incident is

10

15

25

30

35

40

45

50

55

60

65

8
detected and the operating system reacts according to its
security policy which not shown in the Figure.

FIG. 6 illustrates exemplary methods working on above
mentioned critical “third type' data object class, shown in an
object-oriented representation within an illustrative embodi
ment of the inventional method, wherein each box illustrates
different methods of the same data object 610, each evaluat
ing the value of the program execution state 615 and 625, and
a data field 620 used to store an actual value, and a new value
field 630, which is used to store the updated values.
As it was already described above, the “third kind’ data

object class is characterized by the fact that the value of the
data object prior to the command or to the transaction influ
ences the final value of the data object. An example is the
balance of a purse card. If the purse card is used to pay an
amount of S2.00, and if the initial balance is S10.00, then the
final value of the balance field is S8.00.

This “third kind’ data object class implements the mecha
nisms required to perform the redundant processing for attack
preventions proposed by the present invention. A typical
implementation of these mechanisms is the provision for a
data object class providing the following methods:
Method “Construct:
This method creates and initializes a data object 610 stored

in data area 15 of the non-volatile data storage 13, or in the
volatile data area 21 of the volatile data storage 14 while
keeping the original data in the “Actual value field'' 620 and a
copy of the original data in the “New value field 630.
Method “Update':
This method is represented immediately below the top

most box in FIG. 6 updating the copy of the data element. If
the program execution control denotes the “first execution”
615, the “New value field'' 630 is actually updated with the
new data.
When the program execution control has been switched to

“subsequent execution' 625, as shown in the third box in FIG.
6, the update operation is replaced by a verification operation.
The method assures that the value set during the first execu
tion is identical to the value calculated during the current, i.e.
Subsequent execution.

There could be variations of the Update method like opera
tions manipulating bits or other predefined data types. In this
case a bit set operation is replaced by a bit verify operation.
Method Fixation:
This method tells the data object 610 that this processing

step has been concluded and the original data in field 620 can
be updated with the new value contained in the “New data
field 630. This can be done by actually copying the data or by
just Switching object pointers.

Advantageously the update operation of the non-volatile
storage could be combined with a transaction mechanism.
This saves additional write time and optimizes memory
uSage.

Cryptographic routines may also be aware of the “first and
“subsequent modes as well. A “Generate Signature' method
for example may perform a Signature Verification in a Subse
quent execution or, alternatively, generate a signature again
and compare the latest signature to a signature generated
during the first execution.
The present invention can be realized in hardware, soft

ware, or a combination of hardware and software. An 'attack
defending tool according to the present invention can be
realized in a centralized fashion in one computer system or in
a distributed fashion where different elements are spread
across several interconnected computer systems. Any kind of
computer system or other apparatus adapted for carrying out
the methods described herein is suited. A typical combination

US 8,458,790 B2
9

of hardware and software is a SmartCard, or RFID tag, or any
other system with a computer program that, when being
loaded and executed, controls the computer system such that
it carries out the methods described herein. Further typical
applications of the inventional method are security tokens 5
used generally in any kind of program applications. The
present invention can also be embedded in a computer pro
gram product, which comprises all the features enabling the
implementation of the methods described herein, and
which when loaded in a computer system—is able to carry
out these methods.

Computer program means or computer program in the
present context mean any expression, in any language, code
or notation, of a set of instructions intended to cause a system
having an information processing capability to perform a
particular function either directly or after either or both of the
following: a) conversion to another language, code or nota
tion; and b) reproduction in a different material form.

The invention can take the form of an entirely hardware 20
embodiment, an entirely software embodiment or an embodi
ment containing both hardware and Software elements. In an
illustrative embodiment, the invention is implemented in soft
ware, which includes but is not limited to firmware, resident
Software, microcode, etc. 25

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer- 30
usable or computer readable medium can be any apparatus
that can contain, Store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device.
The medium can be an electronic, magnetic, optical, elec- 35

tromagnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. Examples of a computer
readable medium include a semiconductor or Solid State
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM), 40
a rigid magnetic disk and an optical disk. Current examples of
optical disks include compact disk-read only memory (CD
ROM), compact disk-read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or

executing program code will include at least one processor 45
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor
age of at least some program code in order to reduce the 50
number of times code must be retrieved from bulk storage
during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control- 55
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems, 60
cable modemand Ethernet cards are just a few of the currently
available types of network adapters.
The foregoing detailed description of embodiments of the

invention is provided for the purposes of illustration and is not
intended to be exhaustive or to limit the invention to the 65
embodiments disclosed. The scope of the present invention is
defined by the appended claims.

10

15

10
The invention claimed is:
1. A method for tracking execution of an application in a

computing system comprising processing circuitry, the
method comprising:

receiving in said processing circuitry a request to invoke
the application,

setting a process execution state in said processing cir
cuitry to indicate a first execution,

executing the application for a first time with said process
ing circuitry of the computing system in response to the
request,

storing application data and control information calculated
by the application while the application is executed for
the first time with said processing circuitry;

setting the process execution state in said processing cir
cuitry to indicate a Subsequent execution,

executing at least part of the application for at least one
Subsequent time with the processing circuitry of the
same computing system in response to the request,

comparing, with said processing circuitry, application data
and control information calculated by the application
during Subsequent executions with respective data and
information stored during said first execution, and

proceeding to error handling responsive to a discrepancy
detected with said processing circuitry in the compared
application data and control information,

wherein the comparison is performed by operating system
services invoked by the application, said operating sys
tem services being responsive to said process execution
State.

2. The method according to claim 1, further comprising
modifying operation of at least one operating system service
invoked by the application in response to said process execu
tion state indicating a Subsequent execution.

3. The method according to claim 1, further comprising:
calculating security-related control data with said process

ing circuitry when the application is executed for the first
time, and

verifying said security-related control data during said
comparing.

4. The method according to claim 1, further comprising
said processing circuitry sending a response based on data
calculated by said application, when said comparison Suc
ceeds.

5. The method according to claim 4, wherein said requestis
a command request for a Smart Card and said response is a
command response of said Smart Card.

6. The method according to claim 1, further comprising:
performing an update operation with said processing cir

cuitry of a transaction mechanism on a non-volatile stor
age when said application is executed for the first time,
and

performing a fixation operation with said processing cir
cuitry of the transaction mechanism after executing said
application said at least one Subsequent time.

7. An electronic device comprising:
memory circuitry configured to store executable code for

an operating system, executable code for an application,
data for said application, and a process execution state of
said application; and

processing circuitry communicatively coupled to said
memory circuitry;

wherein said processing circuitry is configured to:
redundantly execute said application at least vice in

response to a single request to invoke said application

US 8,458,790 B2
11

and store calculated application and control data cor
responding to each said execution of application in
said memory circuitry;

update said process execution state during said execu
tion of said application to indicate whether said appli
cation is being executed for a first time or a subse
quent time; and

invoke an error handling process in response to said
operating system detecting a discrepancy between
said application data and control information corre
sponding to said application being executed for said
first time and said application data and control infor
mation corresponding to said application being
executed for at least one said subsequent time.

8. The electronic device according to claim 7, wherein said
memory circuitry comprises volatile memory configured to
store pairs of calculated and verified security-related control
data, wherein said pairs of security-related control data are
compared to detect said discrepancy.

9. A computer program product for tracking execution of
an application in a computer system, said computer program
product comprising:

a computer usable medium comprising a memory device
having computer usable program code embodied there
with, the computer usable program code comprising:
computer usable program code configured to receive a

request to invoke the application,
computer usable program code configured to set a pro

cess execution state to indicate a first execution,
computerusable program code configured to execute the

application for a first time in the computing system in
response to the request,

computerusable program code configured to store appli
cation data and control information calculated by the
application white it is executed for the first time,

computer usable program code configured to set the
process execution state to indicate a subsequent
execution,

computer usable program code configured to execute at
least part of the application for at least one subsequent
time in the same computing system in response to the
request,

10

15

25

30

35

40

12
computer usable program code configured to compare

application data and control information calculated
by the application during subsequent executions with
the data/information stored during first execution, and

computer usable program code configured to proceed to
error handling when the comparison shows a discrep
ancy in the compared application data and control
information,

wherein the comparison is done by operating system ser
vices invoked by the application, said operating system
Services being responsive to said process execution
State.

10. The electronic device of claim8, wherein said process
ing circuitry is further configured to calculate said security
related control data when said processing circuitry executes
said application for said first time.

11. The electronic device of claim 7, wherein said process
ing circuitry is further configured to send a response based on
data calculated by said application when no discrepancy is
detected between said application data and control informa
tion corresponding to said application being executed for said
first time and said application data and control information
corresponding to said application being executed for said at
least one subsequent time.

12. The electronic device of claim 7, wherein said elec
tronic device comprises a Smart Card.

13. The computer program product of claim 9, wherein said
application comprises a Smart Card application.

14. The computer program product of claim 9, wherein said
computer usable program code further comprises computer
usable program code configured to calculate security-related
control data when the application is executed for the first time,
and Verify said security-related control data during said com
paring.

15. The computer program product of claim 9, wherein said
computer usable program code further comprises computer
usable program code configured to send a response based on
data calculated by said application when said comparison
succeeds.

