

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/066631 A1

(43) International Publication Date

10 May 2013 (10.05.2013)

(51) International Patent Classification:

H04B 10/035 (2013.01)

(21) International Application Number:

PCT/US2012/060843

(22) International Filing Date:

18 October 2012 (18.10.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/548,436 18 October 2011 (18.10.2011) US

(71) Applicant (for all designated States except US): THE GENERAL HOSPITAL CORPORATION [US/US]; 55 Fruit Street, Boston, MA 02114 (US).

(72) Inventors (for US only): NAMATI, Eman; 51 Marion Road, Apt.3, Belmont, MA 02478 (US). TEARNEY, Guillermo J.; 12 Fairmont Street, Cambridge, MA 01239 (US). BOUMA, Brett Eugene; 12 Monmouth Street, Quincy, MA 02171 (US). VAKOC, Ben; 36 Epping Street, Arlington, MA 02474 (US).

(74) Agents: ABELEV, Gary et al.; Dorsey & Whitney LLP, 51 West 52nd Street, New York, NY 10019 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: APPARATUS AND METHODS FOR PRODUCING AND/OR PROVIDING RECIRCULATING OPTICAL DELAY(S)

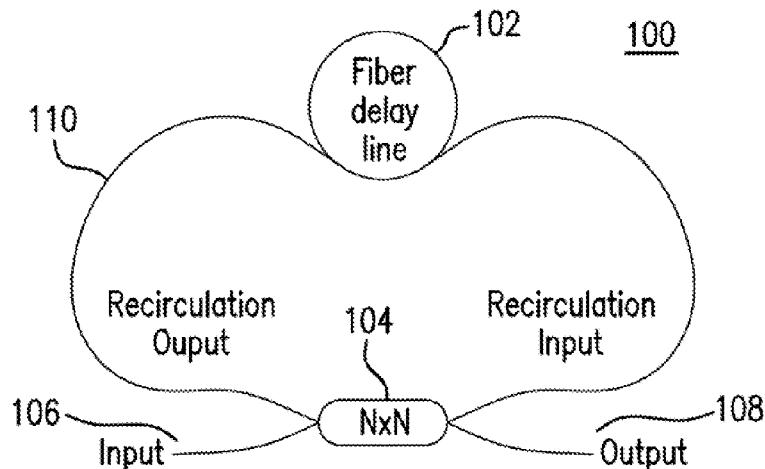


FIG. 1

(57) Abstract: Exemplary apparatus and method can be availed for providing at least one electromagnetic radiation. For example, it is possible to provide at least one first electromagnetic radiation having a frequency that changes over time with a first characteristic period. Further, with at least one hardware arrangement, it is possible to receive and modify the first electromagnetic radiation(s) into at least one second electromagnetic radiation having a frequency that changes over time with a second characteristic period. The second characteristic period can be smaller than the first characteristic period. The hardware arrangement(s) can include a resonant cavity having a round-trip propagation time for the first electromagnetic radiation(s) that can be approximately the same as the first characteristic period.

WO 2013/066631 A1

APPARATUS AND METHODS FOR PRODUCING AND/OR PROVIDING RECIRCULATING OPTICAL DELAY(S)

CROSS-REFERENCE TO RELATED APPLICATION(S)

5 [0001] This application is based upon and claims the benefit of priority from U.S. Patent Application Serial No. 61/548,436 filed on October 18, 2011, the entire disclosure of which is incorporated herein by reference.

FIELD OF THE DISCLOSURE

10 [0002] Exemplary embodiments of the present disclosure relate to optics, and more particularly, to apparatus and methods for producing and/or providing optical delays.

BACKGROUND INFORMATION

15 [0003] Recently, a multiple increase in the repetition rate of swept source lasers has been achieved through optical buffering of low duty cycle swept source lasers. In these arrangements, kilometer length and possibly multiple instances of fiber delay lines are typically utilized to achieve the appropriate optical buffering. When implementing buffering schemes greater than 4x, the length and number of fiber delay lines can become tedious to implement and difficult to manage. Swept source lasers for OCT imaging have been demonstrated with up to 16x buffer schemes. (See, e.g., Wolfgang Wieser et al., "Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second", Optics Express, Vol. 18, Issue 14, pp. 14685-14704 (2010)).

20 [0004] Accordingly, there may be a need to address at least some of the deficiencies described herein above.

OBJECTS AND SUMMARY OF EXEMPLARY EMBODIMENTS

[0005] Thus, at least some of the above-described issues and/or deficiencies can be addressed with the exemplary embodiments of the by providing exemplary systems and methods for producing and/or providing optical delays.

- 5 [0006] Accordingly, exemplary apparatus and method can be availed for providing at least one electromagnetic radiation. For example, using at least one first hardware arrangement, it is possible to provide at least one first electromagnetic radiation having a frequency that changes over time with a first characteristic period. Further, with at least one second hardware arrangement, it is possible to receive and modify the first electromagnetic
- 10 radiation(s) into at least one second electromagnetic radiation having a frequency that changes over time with a second characteristic period. The second characteristic period can be smaller than the first characteristic period. The hardware arrangement(s) can include a resonant cavity having a round-trip propagation time for the first electromagnetic radiation(s) that can be approximately the same as the first characteristic period.
- 15 [0007] In another exemplary embodiment of the present disclosure, it is possible, using at least one first hardware arrangement, to provide at least one first electromagnetic radiation having a frequency that changes repetitively over time with a first characteristic duty cycle, where the first characteristic duty cycle is less than 0.5. Further, e.g., using at least one second hardware arrangement, it is possible to receive and modify the first electromagnetic
- 20 radiation(s) into at least one second electromagnetic radiation with a second characteristic duty cycle that is greater than the first characteristic duty cycle. As one example, the first characteristic duty cycle can less than 1/3. The second characteristic duty cycle can be approximately 1.

[0008] According to a further exemplary embodiment of the present disclosure, the second arrangement(s) can include a coupling device which can be configured to admit the first electromagnetic radiation(s), and emit the second electromagnetic radiation(s). The coupling device can be an NxN waveguide device and/or an acousto-optical modulator. The first arrangement(s) can include a source arrangement, and the second arrangement(s) can include a recirculation loop.

[0009] In a further exemplary embodiment of the present disclosure, the second arrangement(s) can further comprise an amplifying device which can be configured to amplify the first electromagnetic radiation(s) and/or the second electromagnetic radiation(s).

[0010] These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the disclosure, when taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Further objects, features and advantages of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying drawings showing illustrative embodiments of the present disclosure, in which:

[0012] FIG. 1 is a diagram of an exemplary re-circulating optical buffering arrangement according to an exemplary embodiment of the present disclosure;

[0013] FIG. 2 is a diagram of the exemplary re-circulating optical buffering arrangement according to another exemplary embodiment of the present disclosure; and

[0014] FIG. 3 is a diagram of the exemplary re-circulating optical buffering arrangement according to yet another exemplary embodiment of the present disclosure.

[0015] Throughout the drawings, the same reference numerals and characters, if any and unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the subject disclosure will now be described in detail with reference to the drawings, it is done so in connection with the illustrative 5 embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject disclosure as defined by the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0016] According to certain exemplary embodiments of the present disclosure, a re-circulating optical buffering arrangement utilizing a single fiber delay line can be provided. 10 The exemplary re-circulating arrangement can include, e.g., an input port allowing light to be injected into the recirculation loop and an output port allowing light to be extracted at the end of one complete trip inside the loop. According to certain exemplary embodiments of the present disclosure, an NxN coupling device can connect the input and output ports to the 15 recirculation loop. The fiber delay line can be connected to the recirculation input and output ports of the NxN coupling device.

[0017] In a particular exemplary embodiment of the present disclosure, the exemplary re-circulating optical buffering arrangement 100 can utilize a single fiber delay line 102, as shown in FIG. 1. The exemplary re-circulating optical buffering arrangement 100 of FIG. 1 20 can utilize a 2x2 port 50/50 passive coupler 104 which can be provided to connect input port(s) 106 and output ports 108 to a recirculation loop 110. According to certain exemplary embodiments of the present disclosure, the light and/or other electro-magnetic radiation injected into the input port 106 can be simultaneously coupled, for example, with approximately a 3dB loss to the output port 108 and the recirculation loop 110. The light

and/or other electro-magnetic radiation exiting the recirculation loop 110 can be re-coupled into both the output port 108 and the recirculation loop 110 with, for example, an approximate additional 3dB loss. In certain exemplary embodiments of the present disclosure, a fixed input to output power ratio can be provided that can be incrementally reduced in amplitude with the fixed delay loop cycle. The total re-circulation loop path time delay can be chosen, for example, to be equal to the injected light ‘pulse’ width. The pulse can be an impulse or, for example, in the case of a swept source laser, the time for a single sweep. This exemplary re-circulating arrangement can ensure and/or facilitate that the beginning of the delayed light ‘pulse’ coincides with the end of the non-delayed or previous delayed ‘pulse’.

[0018] According to another exemplary embodiment of the present disclosure, an acousto optical modulator (“AOM”) 202 - as a dynamically adjustable coupling device - can be provided in another exemplary re-circulating optical buffering arrangement 200 that is shown, for example, in FIG 2. According to this exemplary embodiment, the light (or other electro-magnetic radiation) injected into an input port 204 can have, for example, multiple (e.g., two) possible paths, such as, e.g., (a) when the AOM 202 is off, the light and/or the electro-magnetic radiation can travel through the AOM 202 with preferably no diffraction, and can enter an output port 206 of the arrangement; and (b) when the AOM 202 is active, the light and/or the electro-magnetic radiation can travel through the AOM 202 with some diffraction efficiency given by the power applied to the AOM 202, and the non diffracted light can enter the output port 206 of the arrangement while the diffracted light can enter a recirculation loop 208. The light and/or the electro-magnetic radiation exiting the recirculation loop 208 can also have multiple, (e.g., two) possible paths, such as, e.g., (a) when the AOM 202 is off, the light can travel through the AOM 202 with no diffraction, and can re-enter the recirculation loop 208; and (b) when the AOM 202 is active, the light and/or

the electro-magnetic radiation can travel through the AOM 202 with some diffraction efficiency given by the power applied to the AOM 202, and the non diffracted light can enter the recirculation loop 208 while the diffracted light can enter the output port 206 of the exemplary arrangement 200.

5 [0019] This exemplary re-circulating arrangement 200 according to the present disclosure can facilitate a dynamically adjustable and optimized input to output power ratios for each fixed delay loop. For example, an initial injection of light and/or the electro-magnetic radiation into the recirculation arrangement (200) can occur with maximum power applied to the AOM 202, which can provide the highest diffraction efficiency. This exemplary configuration can facilitate, for example, the majority of light to be injected into the recirculation loop 208, while the non-diffracted light can enter the output port 206 and can become the non-delayed output. The total exemplary re-circulation loop path time delay can be selected to be equal to (or approximately the same as) the injected light “pulse” width. Where the pulse could be an impulse or, for example, in the case of a swept source laser, the 10 time for a single sweep can be used. This exemplary arrangement 200 can facilitate and/or ensure that the beginning of the delayed light ‘pulse’ coincides with the end of the non-delayed or previous delayed ‘pulse’.

15

[0020] The exemplary recirculation components and path can be chosen in such a manner to reduce the insertion loss, e.g., the zero order path of the AOM can be utilized. This can 20 maximize the number of achievable loops before the optical power loss is too great for a post buffer booster stage.

[0021] According to yet another exemplary embodiment of the present disclosure, an AOM 302 - as a dynamically adjustable coupling device - can be provided in yet another exemplary re-circulating optical buffering arrangement 300 as shown, for example, in FIG 3. According

to this exemplary embodiment, light and/or the electro-magnetic radiation injected into an input port 304 can preferably only enter a recirculation loop 308 when the AOM 302 is active. When the AOM 302 is not active, the light and/or the electro-magnetic radiation preferably travel through the AOM 302 with no diffraction and do not enter any port. In this exemplary arrangement, the injected light and/or the electro-magnetic radiation preferably no longer provide the first non-delayed output. However, this exemplary configuration can provide the lowest insertion loss for the input port to recirculation loop when the AOM 302 is active. The light and/or the electro-magnetic radiation exiting the recirculation loop 308 can have multiple (e.g., two) possible paths, such as, e.g., (a) when the AOM 302 is off, the light can travel through the AOM 302 with no diffraction and can re-enter the recirculation loop 308; and (b) when the AOM 302 is active, the light can travel through the AOM 302 with some diffraction efficiency given by the power applied to the AOM 302, and the non diffracted light and/or the electro-magnetic radiation can enter the recirculation loop 308 while the diffracted light can enter the output port 306 of the exemplary arrangement 300.

[0022] This exemplary embodiment of the present disclosure can facilitate a dynamically adjustable and optimized input to output power ratios for each fixed delay loop. For example, an initial injection of light into the recirculation arrangement 300 can occur with a maximum power applied to the AOM 302 providing, e.g., the highest diffraction efficiency. This exemplary configuration can facilitate a majority of the light and/or the electro-magnetic radiation to be injected into the recirculation loop 308, while the non-diffracted light and/or the electro-magnetic radiation can be lost. The total re-circulation loop path time delay can be selected to be equal to, or substantially the same as, the injected light ‘pulse’ width. Where the pulse could be an impulse or, for example, in the case of a swept source laser, the time for a single sweep is provided. This exemplary arrangement 300 can facilitate that the beginning of the delayed light ‘pulse’ coincides with the end of the previous delayed ‘pulse’.

[0023] The foregoing merely illustrates the principles of the present disclosure. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present disclosure can be used with and/or implement any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed September 8, 2004 which published as International Patent Publication No. WO 2005/047813 on May 26, 2005, U.S. Patent Application No. 11/266,779, filed November 2, 2005 which published as U.S. Patent Publication No. 2006/0093276 on May 4, 2006, and U.S. Patent Application No. 10/501,276, filed July 9, 2004 which published as U.S. Patent Publication No. 2005/0018201 on January 27, 2005, U.S. Patent Publication No. 2002/0122246, published on May 9, 2002, US Patent Application No. 61/649,546, U.S. Patent Application No. 11/625,135, and U.S. Patent Application No. 61/589,083, the disclosures of which are incorporated by reference herein in their entireties.

[0024] It should be understood that the exemplary procedures described herein can be stored on any computer accessible medium, including a hard drive, RAM, ROM, removable disks, CD-ROM, memory sticks, etc., and executed by a processing arrangement and/or computing arrangement which can be and/or include a hardware processors, microprocessor, mini, macro, mainframe, etc., including a plurality and/or combination thereof. In addition, certain terms used in the present disclosure, including the specification, drawings and claims thereof, can be used synonymously in certain instances, including, but not limited to, e.g., data and information. It should be understood that, while these words, and/or other words that can be synonymous to one another, can be used synonymously herein, that there can be instances when such words can be intended to not be used synonymously. Further, to the extent that

the prior art knowledge has not been explicitly incorporated by reference herein above, it can be explicitly incorporated herein in its entirety.

[0025] It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described 5 herein, embody the principles of the present disclosure and are thus within the spirit and scope of the present disclosure. Further, various exemplary embodiments described herein can be interchangeably used with all other exemplary described embodiments, as should be understood by those having ordinary skill in the art. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly 10 being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.

WHAT IS CLAIMED IS:

1. An apparatus for providing at least one electromagnetic radiation, comprising:
at least one first hardware arrangement which is configured to provide at least
one first electromagnetic radiation having a frequency that changes over time with a first
5 characteristic period; and

at least one second hardware arrangement which is configured to receive and
modify the at least one first electromagnetic radiation into at least one second
electromagnetic radiation having a frequency that changes over time with a second
characteristic period,

10 wherein the second characteristic period is smaller than the first characteristic period,
and

wherein the at least one second arrangement includes a resonant cavity having a
round-trip propagation time for the at least one first electromagnetic radiation that is
approximately the same as the first characteristic period.

15

2. The apparatus according to claim 1, wherein the at least one second arrangement
includes a coupling device which is configured to admit the at least one first electromagnetic
radiation, and emit the at least one second electromagnetic radiation.

20 3. The apparatus according to claim 2, wherein the coupling device is an NxN
waveguide device.

4. The apparatus according to claim 2, wherein the coupling device is an acousto-optical
modulator.

25

5. The apparatus according to claim 1, wherein the at least one first arrangement includes a source arrangement.

6. The apparatus according to claim 1, wherein the at least one second arrangement 5 includes a recirculation loop.

7. The apparatus according to claim 1, wherein the at least one second arrangement further comprising an amplifying device which is configured to amplify at least one of the at least one first electromagnetic radiation or the at least one second electromagnetic radiation.

10

8. An apparatus for providing at least one electromagnetic radiation, comprising:
at least one first hardware arrangement which is configured to provide at least one first electromagnetic radiation having a frequency that changes repetitively over time with a first characteristic duty cycle, wherein the first characteristic duty cycle is less than 15 0.5; and

at least one second hardware arrangement which is configured to receive and modify the at least one first electromagnetic radiation into at least one second electromagnetic radiation with a second characteristic duty cycle that is greater than the first characteristic duty cycle.

20

9. The apparatus according to claim 8, wherein the first characteristic duty cycle is less than 1/3.

10. The apparatus according to claim 8, wherein the second characteristic duty cycle is approximately 1.

11. The apparatus according to claim 8, wherein the at least one second arrangement 5 includes a coupling device which is configured to admit the at least one first electromagnetic radiation, and emit the at least one second electromagnetic radiation.

12. The apparatus according to claim 11, wherein the coupling device is an NxN waveguide device.

10

13. The apparatus according to claim 11, wherein the coupling device is an acousto-optical modulator.

14. The apparatus according to claim 8, wherein the at least one first arrangement 15 includes a source arrangement.

15. The apparatus according to claim 8, wherein the at least one second arrangement includes a recirculation loop.

20 16. The apparatus according to claim 8, wherein the at least one second arrangement further comprising an amplifying device which is configured to amplify at least one of the at least one first electromagnetic radiation or the at least one second electromagnetic radiation.

17. A method for providing at least one electromagnetic radiation, comprising:

providing at least one first electromagnetic radiation having a frequency that changes over time with a first characteristic period; and

with at least one hardware arrangement, receiving and modifying the at least one first electromagnetic radiation into at least one second electromagnetic radiation having a

5 frequency that changes over time with a second characteristic period,

wherein the second characteristic period is smaller than the first characteristic period,

and

wherein the at least one hardware arrangement includes a resonant cavity having a round-trip propagation time for the at least one first electromagnetic radiation that is

10 approximately the same as the first characteristic period.

18. A method for providing at least one electromagnetic radiation, comprising:

providing at least one first electromagnetic radiation having a frequency that changes repetitively over time with a first characteristic duty cycle, wherein the first

15 characteristic duty cycle is less than 0.5; and

receiving and modifying the at least one first electromagnetic radiation into at least one second electromagnetic radiation with a second characteristic duty cycle that is greater than the first characteristic duty cycle.

1/2

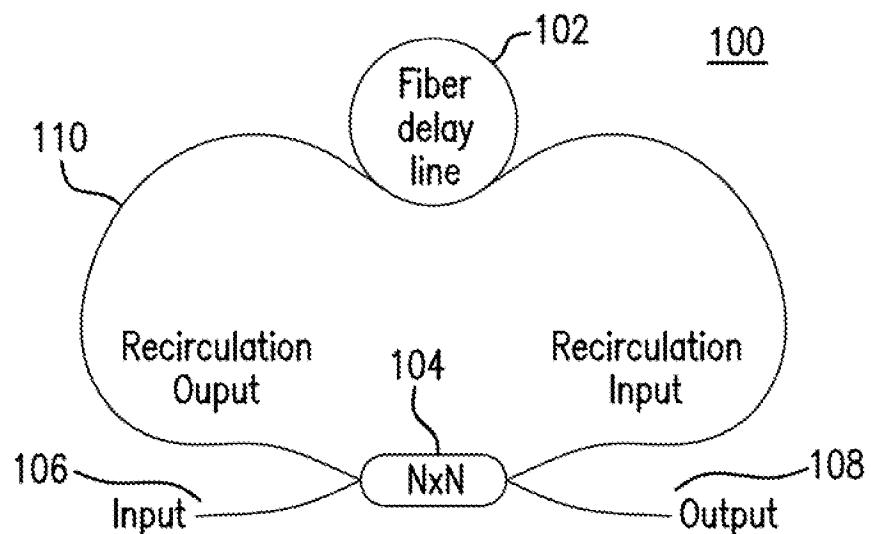


FIG. 1

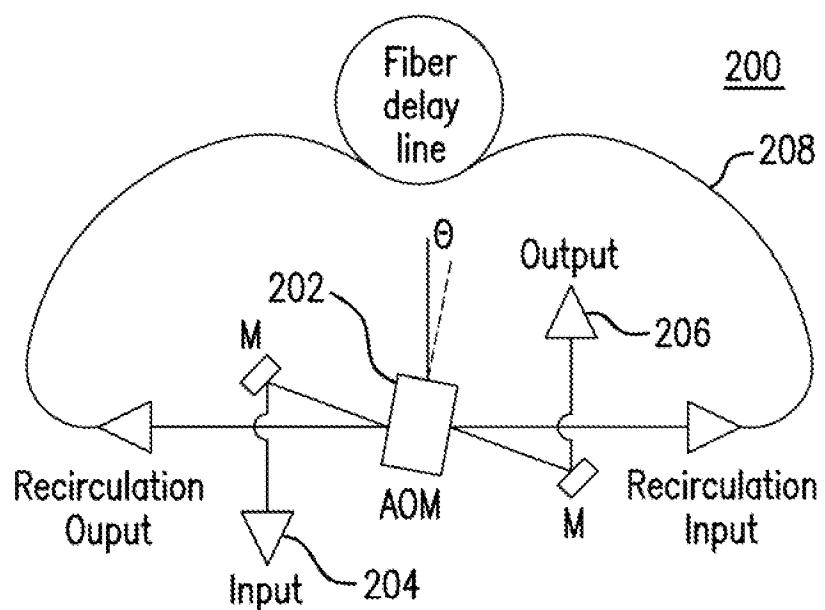


FIG. 2

2/2

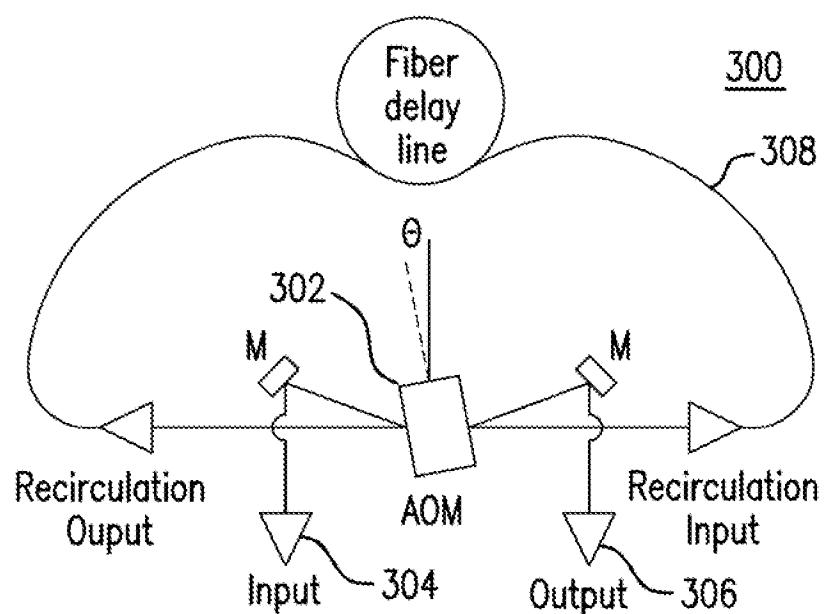


FIG.3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 2012/060843

A. CLASSIFICATION OF SUBJECT MATTER

H04B 10/035 (2013.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04B 10/00, G02B 6/00, G11C 11/42, G01S 7/40, H04B 10/035

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSearch (RUPTO internal), Esp@cenet, PAJ, USPTO

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	RU 2255426 C1 (YUZHNO-ROSSYSKY GOSUDARSTVENNY UNIVERSITET EKONOMIKI I SERVISA) 27.06.2005, claims, fig. 1-20, p. 5, par. 5, p. 10-13	1-3, 5-12, 14-18
Y		4, 13
Y	Viliyam K. Pratt. Lazernye sistemy svyazi. Moskva, Izdatelstvo "Svyaz", 1972, p. 68-70	4, 13
A	RU 2213421 C1 (YUZHNO-ROSSYSKY GOSUDARSTVENNY UNIVERSITET EKONOMIKI I SERVISA) 27.09.2003, claims, p. 8-10	1-18
A	RU 2149464 C1 (TAGANROGSKIJ GOSUDARSTVENNYJ RADIOTEKHNICHESKIJ UNIVERSITET) 20.05.2000	1-18
A	US 5177488 A (HUGHES AIRCRAFT COMPANY) 05.01.1993	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document but published on or after the international filing date		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed	"&"	document member of the same patent family

Date of the actual completion of the international search

26 December 2012 (26.12.2012)

Date of mailing of the international search report

31 January 2013 (31.01.2013)

Name and mailing address of the ISA/ FIPS
Russia, 123995, Moscow, G-59, GSP-5,
Berezhkovskaya nab., 30-1

Authorized officer

E. Surina

Facsimile No. +7 (499) 243-33-37

Telephone No. (499) 240-25-91