

United States Patent

[11] 3,620,564

[72] Inventors **Jerry A. Wenger
Owatonna;
Daryl D. Douglas, Owatonna; Harvey M.
Urch, West Concord; Leonard Nordman,
Owatonna; John N. Polivka, Minneapolis,
all of Minn.**

[21] Appl. No. **865,616**

[22] Filed **Oct. 13, 1969**

[45] Patented **Nov. 16, 1971**

[73] Assignee **Wenger Corporation**

2,155,876	4/1939	Stout	296/23.7
2,395,691	2/1946	Smith	296/23.7
2,831,722	4/1958	Hanson	296/23.7
3,494,655	2/1970	Linton	296/23.3

Primary Examiner—Philip Goodman
Attorney—Hofgren, Wegner, Allen, Stellman & McCord

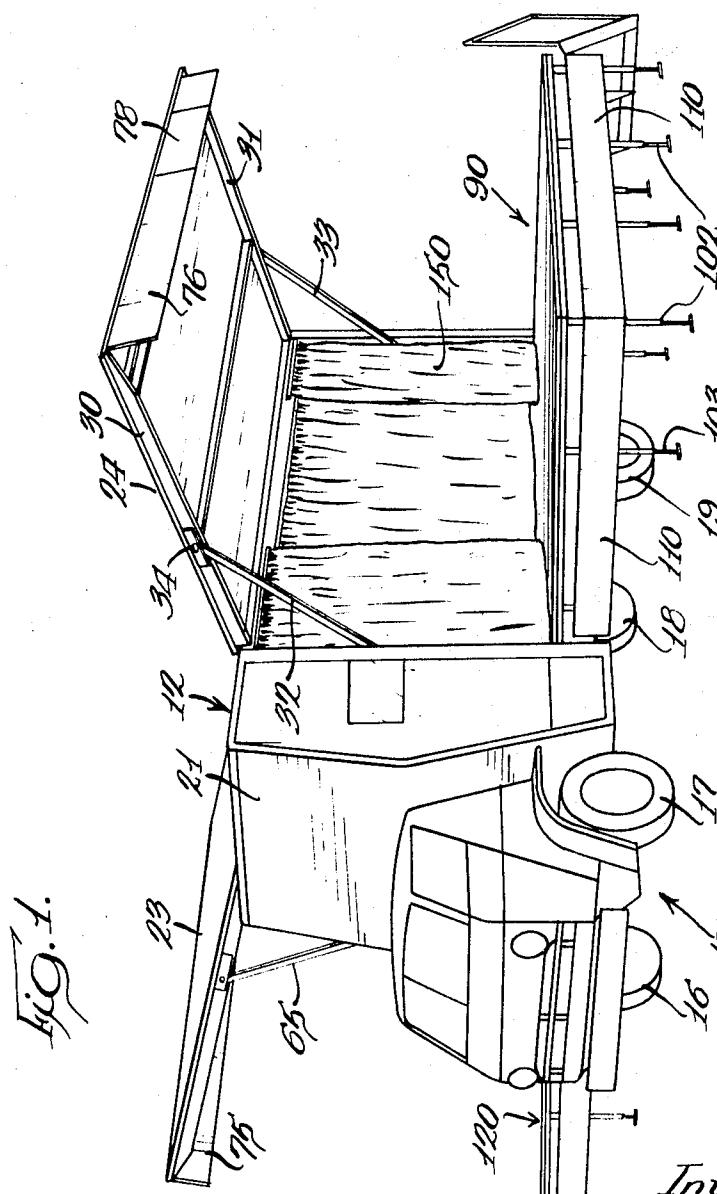
[54] **MOBILE CENTER**
15 Claims, 10 Drawing Figs.

[52]	U.S. Cl.....	296/23, 160/19, 52/69
[51]	Int. Cl.....	B60p 3/34
[50]	Field of Search.....	296/26, 23.2, 23.6, 56, 23.7; 52/68, 69; 160/19, 59, 82, 207; 49/199

[56] References Cited

UNITED STATES PATENTS

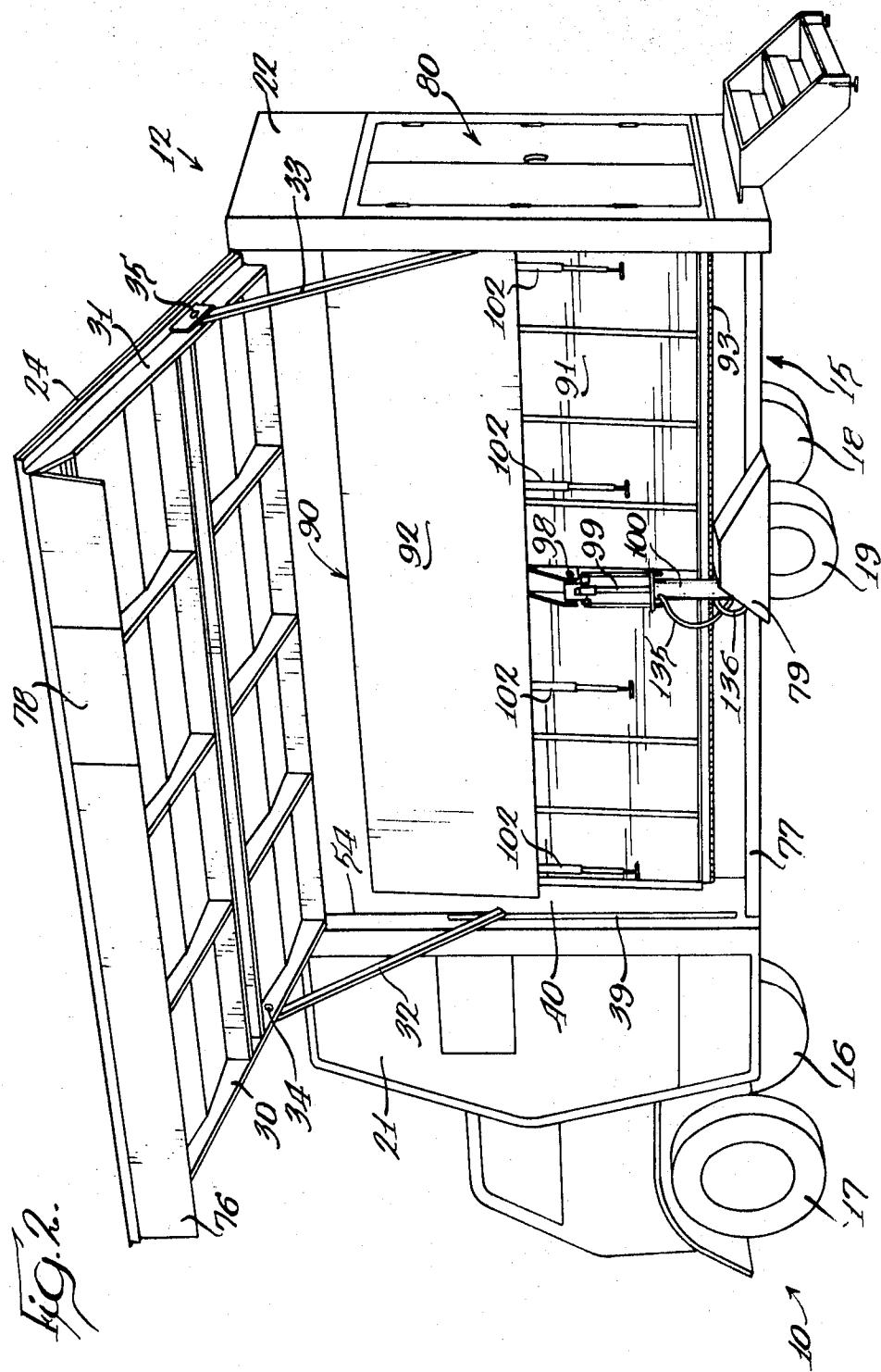
1,832,246 11/1931 Sampson 160/19


ABSTRACT: A mobile center having a body and chassis with ground-engaging wheels and with an over-the-road capability wherein the body has a roof, sides and ends with the sides being defined by a pair of raisable canopies and with a pair of floor structures disposed within the body and interiorly of the canopies for over-the-road travel. The floor structures can be lowered from each side of the body to provide floors beneath the canopies with powered actuating means for operating one or both of the canopies and floor structures between operative and inoperative positions. Also, enclosures are hingedly connected to the canopies and to the floor structures to enclose the space between the floor structures and canopies to provide additional uses for the mobile center.

PATENTED NOV 16 1971

3,620,564

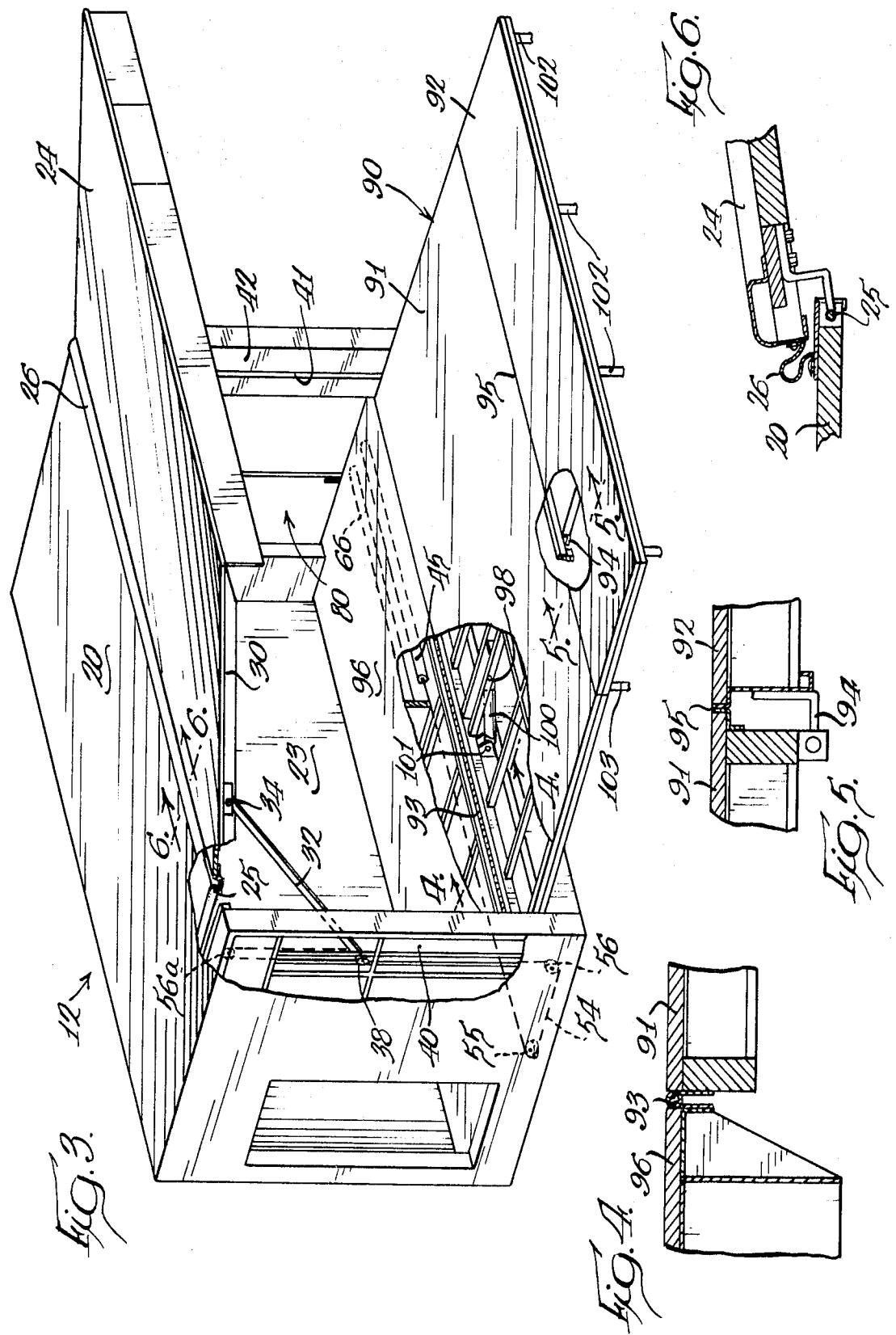
SHEET 1 OF 6


Inventors

Jerry A. Wegner
Harvey M. Urch
Daryl D. Douglas
Leonard Nordman
John N. Polivka
By Hofgren, Wegner,
Allen, Stellman & McCord
Attys

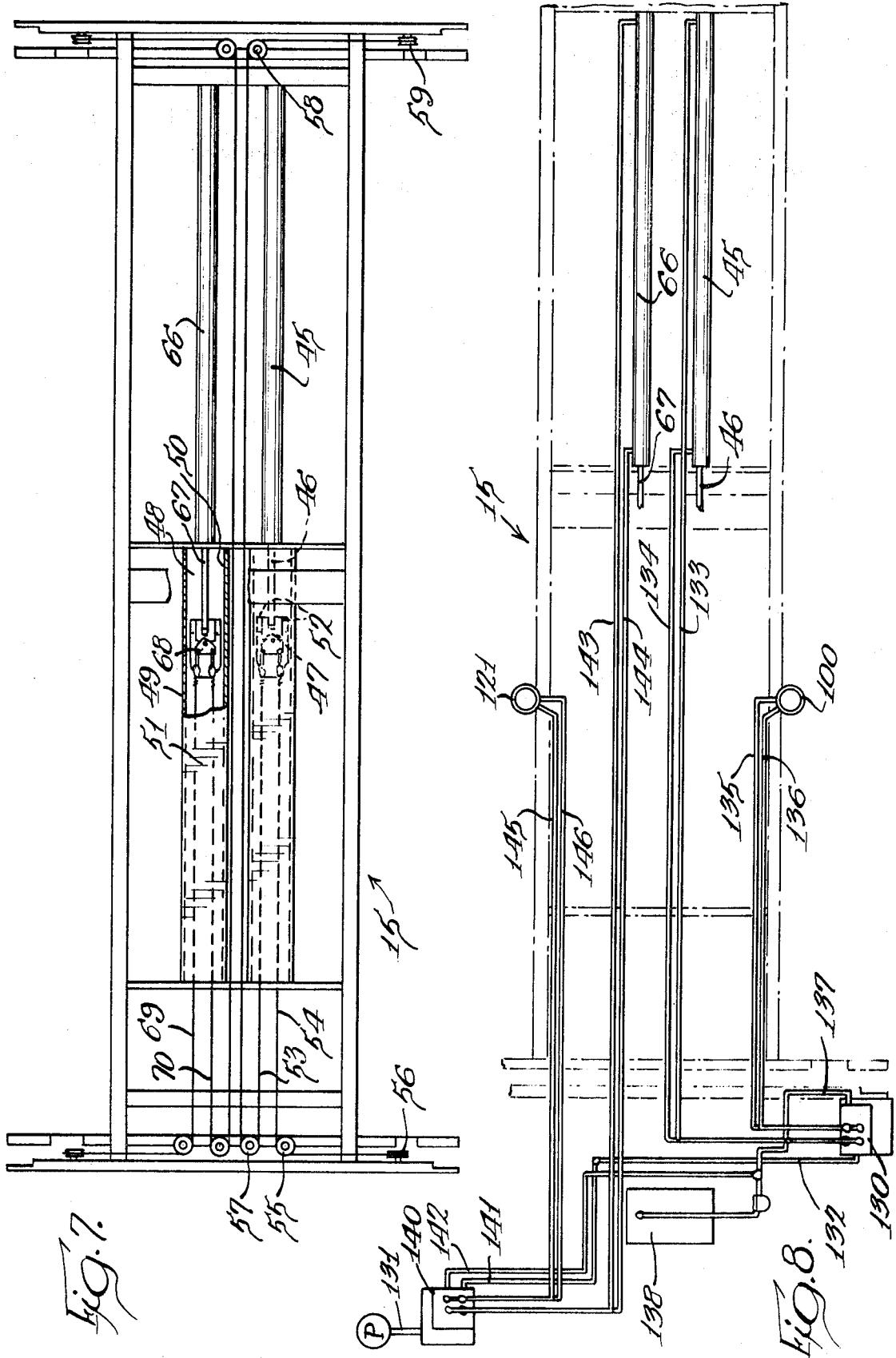
PATENTED NOV 16 1971

3,620,564


SHEET 2 OF 6

PATENTED NOV 16 1971

3,620,564


SHEET 3 OF 6

PATENTED NOV 16 1971

3,620,564

SHEET 4 OF 6

PATENTED NOV 16 1971

3,620,564

SHEET 5 OF 6

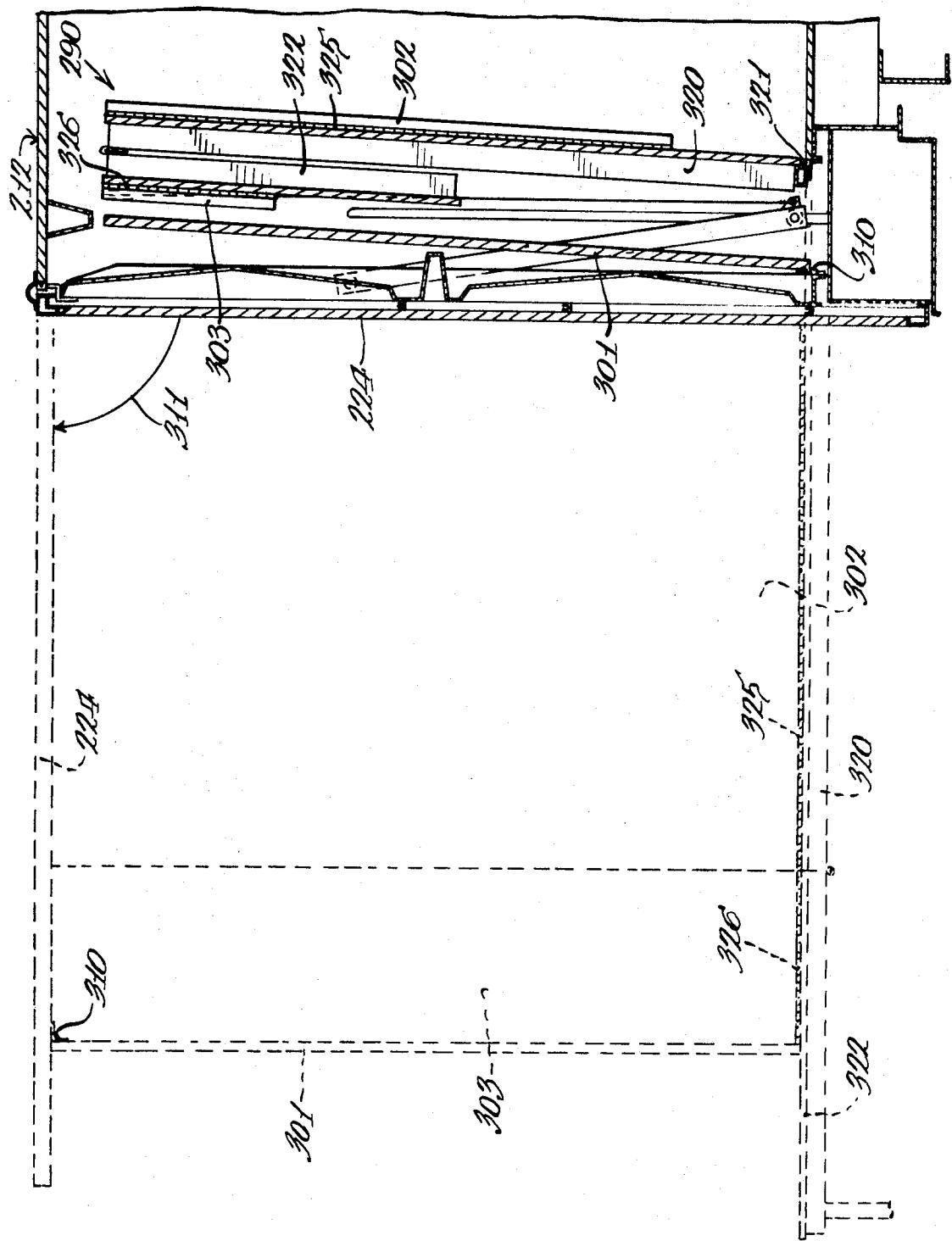
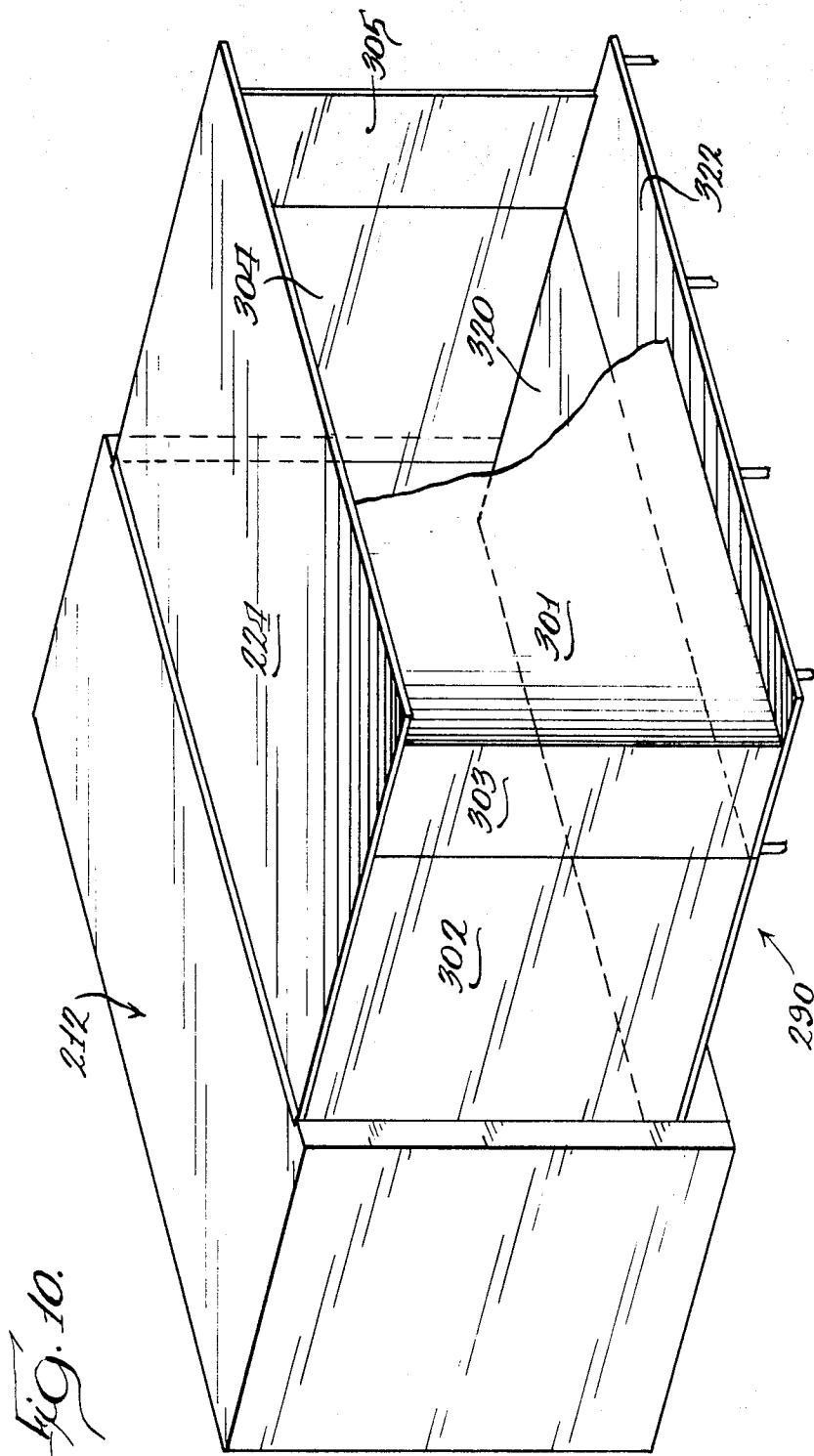



fig. 9.

PATENTED NOV 16 1971

3,620,564

SHEET 6 OF 6

MOBILE CENTER

BACKGROUND OF THE INVENTION

This invention pertains to mobile centers, either self-propelled or trailer, providing an easily set up stage for the performing arts and also providing expandable enclosures which can travel to particular locations to fulfill a need for an enclosed space, such as a field medical center. The assignee of this application is the owner of U.S. Pats. Nos. 3,181,203; 3,217,366; and 3,258,884, disclosing prior types of mobile centers which provided a raisable canopy and a form of floor structure transported with the mobile center which could be set up for use of the unit. These prior devices did not have the improved structure for raising a canopy which provides for additional interior access openings to the mobile center, nor did they provide for total expansion of the mobile center by operation of canopies and floor structures from both sides of the body. Additionally, such prior devices did not have floor structures which were permanently connected to the body and which could be moved into position by power structure. Also, such prior devices did not have enclosures associated with the canopy and floor structure for providing a totally-enclosed space.

Other prior art known to the applicants includes U.S. Pats. Nos. 1,521,803 and 2,155,876 and the following foreign patents:

French Pat. No. 644,431,

Swiss Pat. No. 302,346, and

British Pat. No. 12,992. These patents do not show the structures having the combination of features disclosed herein providing the new and improved results, as outlined hereinafter.

SUMMARY

An object of this invention is to provide a new and improved mobile center having all necessary structure for providing a portable stage or similar arrangement for the performing arts and other uses as well as total enclosures for additional uses and wherein all of the structure is permanently connected to the body of the mobile center and power means are provided for simple set up of the mobile center when it is at the desired location.

Still another object of the invention is to provide a mobile center, either self-propelled or trailer, having a body with a pair of sides and at least one side being defined by a canopy hingedly connected to the roof of the body for pivotal movement about an axis longitudinally of the body and with power means for raising the canopy including a pair of arms connected at one end to the canopy and having their other ends movable along generally vertical guide tracks, and power operated cables connected to said other ends whereby the canopy may be raised. The structure for raising the canopy is out of obstructing relation with access openings to the mobile center body.

Still another object of the invention is to provide a mobile center as defined in the preceding paragraph wherein floor structure is hingedly connected to said body and is stored within the interior of the body and interiorly of the canopy when folded down for easy transport of the mobile center and which can be power-operated to an operative position and with the floor structure having two hingedly connected sections to provide a maximum extent of floor area.

An additional object of the invention is to provide a mobile center, as defined in the preceding paragraphs, wherein there is a canopy and floor structure at each side of the body to provide a total floor area twice that of the two floor structures plus that of the main body of the mobile center. Power means for operation of each of said components is positioned at both sides of the body.

Still another object of the invention is to provide a mobile center, as defined in the preceding paragraphs, wherein the canopy and floor structure sections each hingedly mount additional panels, with a panel hinged to the outer end of the

canopy being movable down to provide an auxiliary sidewall and with end wall panels hingedly connected to the sections of the floor structure being movable upwardly to be positioned beneath the extended canopy and with the auxiliary sidewall enclosing the interior of the mobile center.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a self-propelled mobile center having the canopies and floor structures at both sides of the body extended in operative position;

FIG. 2 is fragmentary perspective view of the mobile center, looking generally from the rear thereof, showing an intermediate stage in the setup of the mobile center, with the canopy extended and with the floor structure still in storage position;

FIG. 3 is a perspective view of a portion of the mobile center showing the canopy and floor structure extended and with portions thereof broken away to show the operating mechanism for the canopy and floor structure;

FIG. 4 is a detail section, taken generally along the line 4-4 of FIG. 3;

FIG. 5 is a detail section, taken generally along the line 5-5 of FIG. 3;

FIG. 6 is a detail section, taken generally along the line 6-6 in FIG. 3;

FIG. 7 is a fragmentary plan view of a portion of the chassis of the mobile center showing the power means for operating the canopies;

FIG. 8 is a view, similar to FIG. 7, showing the hydraulic circuit for the power means and actuating means for the canopies and floor structures;

FIG. 9 is a fragmentary, central transverse section of a modified embodiment of a mobile center and showing certain parts thereof in extended operative position in broken line; and

FIG. 10 is a perspective view, similar to FIG. 3, showing the structure of FIG. 9 in set up position.

DESCRIPTION OF THE EMBODIMENTS

The mobile center is shown generally in FIGS. 1, 2 and 3 and in its preferred embodiment is self-propelled, with a truck-type structure including a cab, indicated generally at 10, having an engine providing power for over-the-road operation of the mobile center and a body, indicated generally at 12, on a chassis, indicated generally at 15, which chassis has front wheels 16 and 17 and dual rear wheels 18 and 19.

The body 12 has a roof 20, a front-end wall 21, a rear end wall 22, and a pair of sidewalls 23 and 24. Each of these canopies defining a sidewall is hingedly connected to the roof of the body along an edge thereof for pivotal movement about an axis extending longitudinally of the body. Such a hinge connection is shown in FIG. 6 for the canopy 24, wherein spaced-apart hinges 25 are connected between the roof and canopy and a weather seal, in the form of a continuous strip 26, extends along the joint. The hinge connection for the canopy 23 is similar to that shown in FIG. 6 for canopy 24.

Each of the canopies is formed of a connected frame structure, with a solid panel exterior and with front and rear ribs 30 and 31 each having an operating arm 32 and 33, respectively, pivotally connected thereto at 34 and 35, respectively. These arms have their other ends provided with a grooved roller with the roller 38 for the arm 32 being shown in FIG. 3. This roller is mounted on a pin extending transverse to the length of the arm whereby the grooved roller can travel in a slot 39 formed in a welded track 40 near the front end of the body. The arm 33 has a similar roller movable in a slot 41 in a welded track 42 at the rear end of the body. Each of the arms 32 and 33, at their inner ends mounting the slot-engaging rollers, is connected to an individual cable which transmits motion from power means in the form of a cylinder 45 (FIG. 7) mounted on and extending lengthwise of the chassis 15. The cylinder 45 has a rod 46 extending from an end thereof, with a carriage 47

affixed to the rod. The rod and carriage are disposed within a boxlike elongate enclosure fixed to the chassis whereby road contamination cannot reach the rod and carriage. This box enclosure, as shown particularly for structure to be described in connection with canopy 23 includes a bottom panel 48, side panels 49 and 50, and a top enclosing panel 51. The carriage 47 has a pair of rollers 52 which mount the carriage for guided movement in the enclosure and a pair of cables 53 and 54 are connected to the carriage by adjustable turnbuckles and extend outwardly of the enclosure. The cable 54 passes about a sheave 55 pivotally mounted on the chassis and, as shown in FIGS. 3 and 7, changes direction about a sheave 56 to extend upwardly and around a sheave 56a to then extend downward and connect with the arm 32.

The cable 53 passes about a sheave 57 to change direction and extend lengthwise of the chassis where it passes about a sheave 58 and then extends toward the side of the chassis and about a sheave 59 comparable in function to the sheave 56, which directs the cable upwardly to pass around another sheave and then connect with the arm 33.

The cylinder rod 46 is substantially extended when the canopy 24 is in folded down, body-enclosing position. When the canopy is to be raised, fluid under pressure is supplied to the rod end of the cylinder to draw the rod into the cylinder and pull on the cables 53 and 54 which results in raising the inner ends of the arms 32 and 33 for movement along the guide slots 39 and 41, with the result that the arms are raised and extended and move the canopy 24 outward. The canopy is releasably locked in lowered position and, additionally, suitable locking structure is provided to hold the canopy either in a horizontally extending position or an outwardly and upwardly inclined position, as shown in the drawings.

The canopy 23 is mounted for movement and moved by structure, the same as that described for the canopy 24, with one of the arms for the canopy 23 being shown at 65 corresponding to the arms 32. The operating arms for the canopy 23 are operated by a cylinder 66, shown in FIG. 7, having the rod 67 and the carriage 68 connected to cables 69 and 70, with the cable 69 passing about sheaves similarly to the cable 54 and to the point of connection with the canopy-operating arm 65. The cable 70 passes about sheaves similarly to the previously described cable 53 to extend to the rear of the chassis and about additional sheaves for connection to an operating arm (not shown) for the canopy 23, corresponding to the operating arm 33 of the canopy 24.

The canopies 23 and 24 each have a depending front flange 75 and 76, respectively. When the canopies are folded downwardly into travel position, the flanges overlie a chassis flange as shown at 77 (FIG. 2) for the skirt 76, with this chassis flange protecting the front flange from road contamination. In order to permit this positioning, the front flanges each have a removable panel 78 which, when removed, defines a notch in the flange to fit around the wheel guard 79, shown in FIG. 2.

With the operating structure disclosed herein for the canopies it is possible to have unobstructed access to both ends of the interior of the body. As shown in FIG. 2, a rear access can be provided by relatively wide door structure, indicated generally at 80, in the rear wall 22, while front access can be provided through a compartment at the front of the body 12. The body compartment immediately to the rear of the truck cab provides a space for various components, such as sound equipment and storage. A side door (not shown) opens thereto. The guide slots 39 and 41 for the operating arms 32 and 33 are formed in welded tracks which do not extend across the width dimension of the body and, therefore, do not limit the access openings.

Floor structure is indicated generally at 90 in FIGS 1, 2 and 3 and includes an inner floor section 91 and an outer floor section 92. The inner floor section is hingedly connected to the body by a piano-type hinge 93 (FIG. 3) for pivotal movement about an axis extending longitudinally of the body. The outer floor section 92 is hingedly connected to the inner floor section 91 by a hinge of the type shown in FIGS. 3 and 5, wherein

a series of hinge members 94 are pivotally connected between the floor sections 91 and 92 and with abutment, as indicated at 95, between the floor sections maintaining a planar relation between the floor sections when extended outwardly into an operative floor position, as shown in FIGS. 1 and 3. With the floor sections so extended, they form a continuation of an interior floor 96 which is fixed within the body of the mobile center. The floor structures 91 and 92 are constructed of welded beam members, as shown in FIG. 3, with a suitable covering. A pair of the beam members have a pivotal connection 98 therebetween for the rod 99 of an actuating means 100 in the form of a fluid cylinder. This cylinder is pivotally connected at 101 to the chassis of the mobile center at a level beneath the hinge 93.

15 A first series of outer legs 102 are pivotally connected to the outer edge of the outer floor section 92 whereby they can lie between the floor sections when they are folded in storage position, as shown in FIG. 2, and which can extend to ground-engaging position, as shown in FIG. 1. These legs are adjustable in length to adapt to the contour of the surface with which they are engaged. A second series of legs 103 are pivotally connected to the inner floor section 91 near the outer edge thereof for storage between the floor sections and for downward ground-engaging position, as shown in FIG. 1, with these legs also being adjustable in length as required for accommodation to the contour of the ground.

20 After the canopy 24 has been raised to the position shown in FIGS. 1, 2 and 3, the floor structure is then in the position shown in FIG. 2 and for extension thereof to operative position, the rod 99 of the cylinder 100 is retracted, which causes outward pivoting movement of the inner floor section 91 which carries the outer floor section 92 therewith. After a degree of outward pivoting of the inner floor section 91, it is necessary for the outer floor section to be manually engaged and pulled outwardly as the inner floor section descends under its own weight and as controlled by the circuit for the cylinder 100.

25 The floor structure when stored is tilted inwardly of the vertical; however, the cylinder axis is not beyond the vertical.

30 A series of skirt members 110 can be fastened to the floor-supporting legs 102 and 103 for decorative purposes and, in transport, these skirts are fitted between the folded floor sections 91 and 92 when they are in the position shown in FIG. 2.

35 The floor structure at the opposite side of the body is indicated generally at 120 and is of the same construction as the floor structure 90 and the operating means therefor is the same including a power cylinder 121 shown in FIG. 8.

40 The hydraulic circuit for control of the canopy-operating cylinders 45 and 66 and the floor-operating cylinders 101 and 121 is shown in FIG. 8, with the mechanism at each side of the body being operated independently of the other and from a control station at the same side of the body. Specifically, a control station for the canopy 24 and floor structure 90 and 55 for control of the cylinders 45 and 100 has a control valve 130. This control valve is provided with fluid under pressure from a pump 131 operated by a power source carried by the mobile center and has an output line 141 which passes unobstructively through valve 140 and extending to the control valve 130 by line 132. A pair of manually operable valve members are included in the control valve 130, with one of these manually operable valves controlling flow to lines 133 and 134 connected to opposite ends of the cylinder 45. The other manually operable valve member controls the supply of fluid to lines 135 and 136 connected to the floor-operating cylinder 100. Return flow to tank passes through a line 137 leading to tank 138.

50 A control station for the canopy 23 and floor structure 120 and for control of the cylinders 66 and 121 includes the master valve 140 having a supply line 141 and a line to tank 142. A first manually operable valve member controls lines 143 and 144 connected to opposite ends of the cylinder 66 and the second manually operable valve member controls lines 145 and 146 connected to the floor-operating cylinder 121.

With the structure disclosed herein, it is possible to have a self-propelled, mobile center which can be driven to a particular location and then set up for the desired use. For such setup, an operator first unlocks the canopy at one side of the body and then goes to the particular control station and with the pump operating operates the power cylinder for raising the unlocked canopy. The floor structure which normally is also locked for transport is then unlocked by release of suitable locking structure and at the same control station the valve is operated to supply fluid to the floor-operating cylinder. During lowering of the floor, the outer floor section 92 must be manually pulled outwardly to assist in full extension of the floor structure. The same steps can be repeated for the canopy and floor structure at the opposite side of the body.

When the mobile center is used as a stage, curtains 150 can be positioned as shown in FIG. 1.

An alternate embodiment of the invention is shown in FIGS. 9 and 10 providing for a completely enclosed space, as shown particularly in FIG. 10. In this embodiment, a canopy 224 extends outwardly from a body, indicated generally at 212, and is disposed in a horizontal plane and is constructed similarly to the canopy 24 of the first embodiment and with the same structure provided for operation and positioning thereof.

Similarly, a floor structure, indicated generally at 290 is constructed similarly to the floor structure 90 and is mounted and operated similarly to the floor structure 90. The total enclosure is obtained by the use of an auxiliary sidewall 301 extending lengthwise of the body and additional front and rear walls. At the front there are vertically extending enclosing walls 302 and 303, while at the rear there are similar vertically extending enclosing walls 304 and 305.

This assembly of walls is associated in the manner particularly shown FIG. 9 in full line wherein the canopy 224 has the auxiliary sidewall 301 hingedly connected at 310 to the lower edge thereof, as shown in FIG. 9, and which is the outer edge when the canopy is extended to the broken line position shown in FIG. 9 by movement indicated by the arrow 311. The auxiliary sidewall 301 is latched to the canopy 224 by suitable mechanism, not shown, for holding this auxiliary sidewall to the canopy as the canopy is extended. After the floor structure 290 has been extended, the auxiliary sidewall can be released. The floor structure 290 has the inner floor section 320 hingedly connected at 321 to the body of the mobile center and an outer floor section 322 hinged to the inner floor section, similarly to the first embodiment. The inner floor section 320 has the rear wall panel 304 hinged along the rear edge thereof by a hinge 325 and the outer floor section 322 has the rear wall panel 305 hinged along the rear edge thereof by a hinge 326. The front wall panels 302 and 303 are similarly hinged to the front edge of the floor sections 320 and 322. The front-to-rear length of the floor structure 290 is at least twice the height of the wall panels 302-305 whereby such wall panels can be positioned in a storage position in end-to-end relation and parallel with the floor sections, as shown in FIG. 9, while still permitting complete vertical spanning of the space between the canopy and floor structure when the wall structure is in operative position.

Suitable structure, not shown, can be provided for holding the various panels in erected position.

In use of the embodiment shown in FIGS 9 and 10, the canopy 224 is first moved outwardly to extended position and the auxiliary sidewall 301 is retained in locked relation to the canopy. The floor structure is then moved outwardly to a horizontal position, as shown in broken line in FIG. 9. The auxiliary sidewall 301 can then be lowered into position and the front wall panels 302, 303 and rear wall panels 304, 305 are then pivoted about their hinge connections to the sections of the floor structure to an upright position into engagement with the underside of the canopy 224 and the parts are then locked into position. With this construction, some extension of the canopy and floor structure lies beyond the auxiliary sidewall 301 which can be provided as a porch or other structure and with a suitable opening in the auxiliary sidewall 301 entry can be made into the enclosed space where a desired ac-

tivity may take place. A primary use of such self-propelled mobile center would be as a portable medical laboratory which can be taken to the desired location and readily set up with an enclosed space for the facilities required.

5 We claim:

1. A mobile center having a body with ends, sides, and a roof and with a chassis mounting a plurality of ground-engaging wheels, a canopy hinged along an edge of the roof to define a side of the body when lowered and projecting outwardly from the roof when raised, a pair of generally vertical guide tracks located one adjacent each end of said body, a pair of spaced-apart arms pivotally connected at one of their ends to opposite ends of said canopy, the other ends of said arms being movable along said pair of guide tracks, cable means connected to said other ends of each of said arms, and power means connected to said cable means to move said cable means and cause movement of said arms along said guide tracks.

10 2. A mobile center as defined in claim 1 including a floor structure positionable beneath said canopy, said floor structure including an inner section hinged along an edge of said body and an outer section hinged to said inner section, and actuating means pivotally connected between said body and the inner floor section to cause relative pivotal movement therebetween.

15 3. A mobile center as defined in claim 2 wherein there are a pair of said canopies hinged one to each side of said body.

20 4. A mobile center as defined in claim 2 wherein said power means and actuating means are hydraulic cylinders, a control station on said body, and valve means at said control station for controlling the operation of said power means and said actuating means.

25 5. A mobile center as defined in claim 2 wherein the space between said canopy and said floor structure can be enclosed comprising, an auxiliary sidewall hinged to the outer edge of the canopy whereby said auxiliary sidewall can fold down from the canopy when the canopy is raised, a first pair of end walls hinged to opposite ends of said inner floor section and a second pair of end walls hinged to opposite ends of said outer floor section, said first and second pair of end walls being movable to an upright position to close off the space defined by the floor structure, the canopy and the auxiliary sidewall.

30 45 6. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a pair of canopies hinged along opposite edges of the roof for pivotal movement about axes extending lengthwise of the body, said canopies defining the sides of the body when lowered and projecting outwardly from the roof when raised, two pairs of lift arms with one pair associated with one of said canopies, power means for operating said lift arms, a pair of floor structures each including inner and outer floor sections hinged together to fold together for storage and with said inner floor sections each hinged to said body along the length and at opposite sides thereof for movement between a storage position inside said body and a lowered floor position, actuating means for moving each of said floor structures including a connection between said body and the underside of an inner floor section, and a circuit for controlling said power means and said actuating means.

35 50 55 60 7. Mobile center as defined in claim 6 wherein at least one of said canopies has an auxiliary sidewall hinged to the outer edge thereof and the inner and outer floor sections therebeneath have end wall sections hinged to the front and rear edges thereof to provide an enclosed space.

65 70 75 8. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a canopy hinged along an edge of the roof to define a side of the body when lowered and projecting outwardly from the roof when raised, a pair of arms pivotally connected at one of their ends to said canopy, the other ends of said arms being movable along a pair of generally vertically extending guide tracks at each end of the body and adjacent said canopy when closed and associated one with each of said other arm ends,

and power means connected to said other arm ends for raising and lowering said arms.

9. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a canopy hinged along an edge of the roof to define a side of the body when lowered and an outward extension of the roof when raised and extended, a floor structure pivoted to said body and movable between a position stored inside said lowered canopy and an extended horizontal position, power operated mechanism for raising said canopy and for moving said floor structure, and an enclosure for said space between the extended canopy and floor structure comprising an auxiliary sidewall pivoted to the extended end of the canopy to extend downwardly to the floor structure, and end walls pivotally attached to the front and rear of the floor structure to be movable to upright positions to span the distance between the canopy and floor structure.

10. A mobile center as defined in claim 9 wherein the floor structure has an inner section with an outer section pivoted thereto, and each of the inner and outer sections having a portion of an end wall pivotally connected thereto.

11. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a canopy hinged along an edge of the roof to define a side of the body when lowered and projecting outwardly from the roof when raised, a pair of arms pivotally connected at one of their ends to said canopy, the other ends of said arms being movable along a pair of generally vertically extending guide tracks positioned at each end of the body adjacent a side thereof and associated one with each of said arm ends, power means for moving said arms to move said canopy including a cylinder mounted to and extending along the chassis and having a rod, a pair of cables connected to said rod with one cable extending to a connection with an end of an arm whereby movement of the rod relative to the cylinder causes simultaneous movement of both arms for movement of the canopy.

12. A mobile center as defined in claim 11 wherein said rod is connected to a carriage, and enclosed structure on the chassis for said carriage, guide rollers on said carriage mounting

40

the carriage for movement along the enclosed structure and the cables being connected to said carriage.

13. A mobile center as defined in claim 11 and including a floor structure positionable beneath said canopy, and actuating means pivotally connected between said body and the floor structure to cause relative pivotal movement therebetween.

14. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a canopy hinged along an edge of the roof to define a side of the body when lowered and projecting outwardly from the roof when raised, a pair of arms pivotally connected at one of their ends to said canopy, the other ends of said arms being movable along a pair of generally vertically extending guide

15. tracks associated one with each of said other arm ends, cable means connected to each of said arms, power means connected to said cable means to move said cable means and cause movement of said arms along said guide tracks, a floor structure positionable beneath said canopy, and actuating means pivotally connected between said body and the underside of the floor structure to cause relative pivotal movement therebetween.

16. A mobile center having a body with ends, sides, a roof and with a chassis mounting a plurality of ground-engaging wheels, a member defining a canopy hinged along an edge of the roof to define a side of the body when lowered and an outward extension of the roof when raised and extended, a member defining a floor pivoted to said body and movable between a position stored inside lowered canopy member and an extended horizontal position, power operated mechanism for raising said canopy member and for moving said floor member, and an enclosure for said space between the extended canopy and floor members comprising an auxiliary sidewall pivoted to an outward exposed end of one of the members for movement to an upright position spanning the distance between said members, and end walls pivotally attached to the front and rear of the floor members for movement to upright positions to span the distance between said members.

* * * * *

45

50

55

60

65

70

75