
US 20150.074803A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0074803 A1

Johnson et al. (43) Pub. Date: Mar. 12, 2015

(54) SYSTEMAND METHOD OF INTERLOCKING Publication Classification
TO PROTECT SOFTWARE-MEDIATED
PROGRAMAND DEVICE BEHAVIOURS (51) Int. Cl.

G06F2L/4 (2006.01)
(71) Applicant: IRDETO CANADA (52) U.S. Cl.

CORPORTATION, Ottawa (CA) CPC G06F 21/14 (2013.01); G06F 222 1/0748
(2013.01)

(72) Inventors: Harold Joseph Johnson, Ottawa (CA); USPC .. 726/22
Yuan Xiang Gu, Ottawa (CA); Yongxin
Zhou, Mequon, WI (US)

(57) ABSTRACT
(73) Assignee: IRDETO CANADA

CORPORTATION, Ottawa (CA) Methods and devices for thwarting code and control flow
based attacks on Software. The source code of a Subject piece
of software is automatically divided into basic blocks of logic.
Selected basic blocks are amended so that their outputs are
extended. Similarly, other basic blocks are amended such that

O O their inputs are correspondingly extended. The amendments
Related U.S. Application Data E. Or Create E. between basic blocks such

(63) Continuation of application No. 1 1/709,654, filed on that tampering with one basic block's code causes other basic
Feb. 23, 2007, now Pat. No. 8,752,032. blocks to malfunction when executed.

(21) Appl. No.: 14/266,252

(22) Filed: Apr. 30, 2014

R: A H B (non-interlocked) B. G. E.

d d-l d: A - A = domain encoding
::BHB = codomain encoding

visible only during implementation
. " ' ' ' ' ' ' ' ' ' ' '

visible to attacker

Patent Application Publication Mar. 12, 2015 Sheet 1 of 6 US 2015/0074803 A1

mm mm-m-
O A R: A H B (non-interlocked) O B

d: A - A = domain encoding -l d d. c: B - B = codomain encoding ||

visible only during implementation. I
'''''''''''' visible to attacker O

mummummo
O A R: A - B' (interlocked) B

FIGURE 1

Patent Application Publication Mar. 12, 2015 Sheet 2 of 6 US 2015/0074803 A1

--- O - - - - --- O -- O
:F R: A H B (non-interlocked) B G E

dd-1 : A - A = domain encoding
c:BHB = codomain encoding

visible only during implementation/
"visible to attacker
am-Hummimp

A R: A H B (interlocked) Bl

FIGURE 2

Patent Application Publication Mar. 12, 2015 Sheet 3 of 6 US 2015/0074803 A1

Preproduction

Preconsumption

Patent Application Publication

if (c) {
W

else {

FIGURE 4A

Mar. 12, 2015 Sheet 4 of 6 US 2015/0074803 A1

U
switch (i) {
case v:
V;
break;
case v :
V,;
break;

case v:
V;
break;
default:
W

FIGURE 4B

Patent Application Publication

U

if (c) {
V

FIGURE 5A

Mar. 12, 2015 Sheet 5 of 6

U
switch (i) {
case v:
V;
break;

case v- :

break;
default:
W

FIGURE SB

US 2015/0074803 A1

Patent Application Publication Mar. 12, 2015 Sheet 6 of 6 US 2015/0074803 A1

receiving Source code of said software

Converting the Source code into an intermediate form defining
basic blocks and dominating relationships among the basic
blocks, wherein the intermediate form is represented as a

Control-flow graph

Selecting a Computation of a first basic block and a computation
of a second basic block, wherein the second basic block is

dominated by the first basic block

encoding the computation of the first and second basic blocks
using data encodings Computed with an encrypted function
Setting coefficients of the data encodings in the second basic
block to be dependent on outputs from the first basic block,

wherein tampering with the first basic block causes
computations in the second basic block to malfunction due to

incorrect data encodings
randomly selecting from automatically generated mixed

Boolean-arithmetic (MBA) identities and performing
substitutions according to the selected MBA identities in the
data encodings in the first and second basic blocks, wherein
said MBA identities are generated by means of a generator
based on at least one of converting bitwise expressions to

Finear MBA identities and deriving MBA identities from linearly
dependent truth tables

FIGURE 6

US 2015/0074803 A1

SYSTEMAND METHOD OF INTERLOCKING
TO PROTECT SOFTWARE-MEDIATED
PROGRAMAND DEVICE BE HAVIOURS

0001. This application is a Continuation of application
Ser. No. 1 1/709,654, filed on Feb. 23, 2007 (now pending),
the disclosures of which are hereby incorporated herein by
reference in their entirety.

FIELD OF THE INVENTION

0002 The present invention relates generally to compiler
technology. More specifically, the present invention relates to
methods and devices for thwarting control flow and code
editing based attacks on Software.

BACKGROUND TO THE INVENTION

0003. The following document makes reference to a num
ber of external documents. For ease of reference, these docu
ments will be referred to by the following reference numerals:
0004) 1. O. Billet, H. Gilbert, C. Ech-Chatbi, Cryptanaly
sis of a White Box AES Implementation, Proceedings of sac
2004 Conference on Selected Areas in Cryptography,
August, 2004, revised papers. Springer (LNCS 3357).

0005 2. Stanley T. Chow, Harold J. Johnson, and Yuan Gu.
Tamper Resistant Software Encoding. U.S. Pat. No. 6,594,
761.

0006 3. Stanley T. Chow, Harold J. Johnson, and Yuan Gu.
Tamper Resistant Software Control Flow Encoding. U.S.
Pat. No. 6,779,114.

0007 4. Stanley T. Chow, Harold J. Johnson, and Yuan Gu.
Tamper Resistant Software Encoding. U.S. Pat. No. 6,842,
862.

0008 5. Stanley T. Chow, Harold J. Johnson, Alexander
Shokurov. Tamper Resistant Software Encoding and
Analysis. 2004. U.S. patent application Ser. No. 10/478,
678, publication U.S. 2004/0236955 A1, issued as U.S.
Pat. No. 7,506,177.

0009. 6. Stanley Chow, Yuan X. Gu, Harold Johnson, and
Vladimir A. Zakharov, An Approach to the Obfuscation of
Control-Flow of Sequential Computer Programs, Proceed
ings of isc 2001—Information Security, 4th International
Conference (LNCS 2200), Springer, October, 2001, pp.
144-155.

0010 7. S. Chow, P. Eisen, H. Johnson, P. C. van Oorschot,
White-Box Cryptography and an AES Implementation Pro
ceedings of SAC 2002 Conference on Selected Areas in
Cryptography, March, 2002 (LNCS 2595), Springer, 2003.

0011 8. S. Chow, P. Eisen, H. Johnson, P. C. van Oorschot,
A White-Box DES Implementation for DRM Applications,
Proceedings of DRM 2002–2nd ACM Workshop on Digi
tal Rights Management, Nov. 18, 2002 (LNCS 2696),
Springer, 2003.

0012 9. Christian Sven Collberg, Clark David Thombor
son, and Douglas Wai Kok Low. Obfuscation Techniques
for Enhancing Software Security. U.S. Pat. No. 6,668,325.

0013 10. Extended Euclidean Algorithm, Algorithm
2.107 on p. 67 in A. J. Menezes, P. C. van Oorschot, S. A.
Vanstone, Handbook of Applied Cryptography, CRC
Press, 2001 (5th printing with corrections).

I0014) 11. Extended Euclidean Algorithm for Zx), Algo
rithm 2.221 on p. 82 in A. J. Menezes, P. C. van Oorschot,
S. A. Vanstone, Handbook of Applied Cryptography, CRC
Press, 2001 (5th printing with corrections).

Mar. 12, 2015

(0015 12. DES, S7.4, pp. 250-259, in A.J. Menezes, P. C.
van Oorschot, S. A. Vanstone, Handbook of Applied Cryp
tography, CRC Press, 2001 (5th printing with corrections).

(0016 13. MD5, Algorithm 9.51 on p. 347 in A. J. Men
ezes, P. C. van Oorschot, S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 2001 (5th printing with
corrections).

(0017 14. SHA-1, Algorithm 9.53 on p. 348 in A. J. Men
ezes, P. C. van Oorschot, S. A. Vanstone, Handbook of
Applied Cryptography, CRC Press, 2001 (5th printing with
corrections).

0018 15. National Institute of Standards and Technology
(nist), Advanced Encryption Standard (AES), FIPS Publi
cation 197, 26 Nov. 2001.

(0019 16. Harold J. Johnson, Stanley T. Chow, Yuan X. Gu.
Tamper Resistant Software Mass Data Encoding. U.S.
patent application Ser. No. 10/257,333, publication U.S.
2003/0163718A1 issued as U.S. Pat. No. 7,350,085.

(0020. 17. Harold J. Johnson, Stanley T. Chow, Philip A.
Eisen. System and Method for Protecting Computer Soft
ware Against a White Box Attack. U.S. patent application
Ser. No. 10/433,966, publication U.S. 2004/0139340 A1,
issued as U.S. Pat. No. 7,397,916.

0021 18. Harold J. Johnson, Philip A. Eisen. System and
Method for Protecting Computer Software Against a White
Box Attack U.S. Pat. No. 7,809,135.

0022, 19. Harold Joseph Johnson, Yuan Xiang Gu, Becky
Laiping Chang, and Stanley Taihai Chow. Encoding Tech
nique for Software and Hardware. U.S. Pat. No. 6,088,452.

0023, 20. Arun Narayanan Kandanchatha, Yongxin Zhou.
System and Method for Obscuring Bit-Wise and Two's
Complement Integer Computations in Software. U.S.
patent application Ser. No. 11/039,817, publication U.S.
2005/0166191 A1, issued as U.S. Pat. No. 7,966,499.

0024, 21. D. E. Knuth, The art of computer programming,
volume 2: semi-numerical algorithms, 3rd edition, ISBN
0-201-89684-2. Addison-Wesley, Reading, Mass., 1997.

0025, 22. Extended Euclid's Algorithm, Algorithm X on
p. 342 in D. E. Knuth, The art of computer programming,
volume 2: semi-numerical algorithms, 3rd edition, ISBN
0-201-89684-2. Addison-Wesley, Reading, Mass., 1997.

0026. 23. T. Sander, C. F. Tschudin, Towards Mobile
Cryptography, pp. 215-224, Proceedings of the 1998 IEEE
Symposium on Security and Privacy.

(0027 24. T. Sander, C. F. Tschudin, Protecting Mobile
Agents Against Malicious Hosts, pp. 44-60, Vigna, Mobile
Agent Security (LNCS 1419), Springer, 1998.

0028 25. Sharath K. Udupa, Saumya K. Debray, Matias
Madou, Deobfuscation: Reverse Engineering Obfuscated
Code, in 12th Working Conference on Reverse Engineer
ing, 2005, ISBN 0-7695-2474-5, pp. 45-54.

0029 26. VHDL
0030) 27. David R. Wallace. System and Method for
Cloaking Software. U.S. Pat. No. 6,192,475.

0031) 28. Henry S. Warren, Hacker's Delight. Addison
Wesley, ISBN-10: 0-201-91465-4; ISBN-13: 978-0-201
91465-8: 320 pages, pub. Jul. 17, 2002.

0032. 29. Glenn Wurster, Paul C. van Oorschot, Anil
Somayaji. A generic attack on checksumming-based soft
ware tamper resistance, in 2005 IEEE Symposium on
Security and Privacy, pub. by IEEE Computer Society,
ISBN 0-7695-2339-0, pp. 127-138.

0033. The information revolution of the late 20th century
has given increased import to commodities not recognized by

US 2015/0074803 A1

the general public as such: information and the information
systems that process, store, and manipulate Such information.
An integral part of Such information systems is the Software
and the Software entities that operate Such systems.
0034 Software Entities and Components, and Circuits as
Software. Note that software programs as such are never
executed—they must be processed in some fashion to be
turned into executable entities, whether they are stored as text
files containing source code in Some high-level programming
language, or text files containing assembly code, or ELF
format linkable files which require modification by a linker
and loading by a loader in order to become executable. Thus,
we intend by the term software some executable or invocable
behavior-providing entity which ultimately results from the
conversion of code in Some programming language into some
executable form.
0035. The term software-mediated implies not only pro
grams and devices with behaviors mediated by programs
stored in normal memory (ordinary Software) or read-only
memory such as EPROM (firmware) but also electronic cir
cuitry which is designed using a hardware specification lan
guage such as VHDL. Online documentation for the hardware
specification language VHDL26 states that
The big advantage of hardware description languages is the
possibility to actually execute the code. In principle, they are
nothing else than a specialized programming language ital
ics added. Coding errors of the formal model or conceptual
errors of the system can be found by running simulations.
There, the response of the model on stimulation with different
input values can be observed and analyzed.
0036. It then lists the equivalences between VHDL and
programmatic concepts shown in Table A.
0037 Thus a VHDL program can be used either to gener
ate a program which can be run and debugged, or a more
detailed formal hardware description, or ultimately a hard
ware circuit whose behavior mirrors that of the program, but
typically at enormously faster speeds. Thus in the modern
world, the dividing line among software, firmware, and hard
ware implementations has blurred, and we may regard a cir
cuit as the implementation of a software program written in an
appropriate parallel-execution language Supporting low-level
data types, such as VHDL. A circuit providing behavior is a
Software entity or component if it was created by processing
a source program in some appropriate hardware-description
programming language Such as VHDL or if Such a source
program describing the circuit, however the circuit was actu
ally designed, is available or can readily be provided.
0038 Hazards Faced by Software-Based Entities. An SBE

is frequently distributed by its provider to a recipient, some of
whose goals may be at variance with, or even outright inimi
cal to, the goals of its provider. For example, a recipient may
wish to eliminate program logic in the distributed Software or
hardware-software systems intended to prevent unauthorized
use or use without payment, or may wish to prevent a billing
function in the software from recording the full extent of use
in order to reduce or eliminate the recipients’ payments to the
provider, or may wish to steal copyrighted information for
illicit redistribution, at low cost and with consequently high
profit to the thief.
0039 Similar considerations arise with respect to battle
field communications among military hardware SBEs, or in
SBES which are data management systems of corporations
seeking to meet the requirements of federally mandated
requirements such as those established by legislated federal

Mar. 12, 2015

standards: the Sarbanes-Oxley act (SOX) governing financial
accounting, the Gramm-Leach-Bliley act (GLB) regarding
required privacy for consumer financial information, or the
Health Insurance Portability and Accountability Act
(HIPAA) respecting privacy of patient medical records, or the
comprehensive Federal Information Security Management
Act (FISMA), which mandates a growing body of NIST
standards for meeting federal computer system security
requirements. Meeting such standards requires protection
against both outsider attacks via the internet and insider
attacks via the local intranet or direct access to the SBE s or
computers hosting the SBE s to be protected.
0040. To provide such protections for SBEs against both
insider- and outsider-attacks, obscuring and tamper-proofing
Software are matters of immediate importance to various
forms of enterprise carried out by means of software or
devices embodying software, where such software or devices
are exposed to many persons. Some of whom may seek, for
their own purposes, to subvert the normal operation of the
software or devices, or to steal intellectual property or other
secrets embodied within them.

VHDL Concept Programmatic Equivalent

Entity interface
architecture Implementation, behavior, function
configuration model chaining, structure, hierarchy
process concurrency, event controlled
package modular design, standard solution, data types,

COInstants
library compilation, object code

VHDL Concepts and Programmatic Equivalent

0041 Various means are known for protecting software by
obscuring it or rendering software tamper-resistant: for
examples, see 2, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19. 20, 27.
0042 Software may resist tampering in various ways. It
may be rendered aggressively fragile under modification by
increasing the interdependency of parts of the Software: Vari
ous methods and systems for inducing Such fragility in vari
ous degrees are disclosed in 2, 3, 4, 6, 16, 17, 18, 19, 27. It
may deploy mechanisms which render normal debuggers
non-functional. It may deploy integrity verification mecha
nisms which check that the currently executing software is in
the form intended by its providers by periodically checksum
ming the code, and emitting a tampering diagnostic when a
checksum mismatch occurs, or replacing modified code by
the original code (code healing) as in Arxan EnforceITTM.
0043. These various protection mechanisms, which seek
to protect software, or the software-mediated behaviors of
hardware devices, must be executed correctly for their
intended protection functions to operate. If an attacker can
Succeed in disabling these protection mechanisms, then the
aggressive fragility may be removed, the integrity verification
may not occur, or the code may fail to be healed when it is
altered.
0044) Useful defenses against removal of such protec
tions, extending beyond more obscurity, are found in 2, 3, 4,
6, 16, 17, 18, 19, 27 and in Arxan EnforceITTM. For 19, this
protection takes the form of interweaving a specific kind of
data-flow network, called a cascade, throughout the code, in
an attempt to greatly increase the density of interdependen
cies within the code. Plainly such an approach involves a
significant increase in code size, since much of the code will
be extraneous to the normal computation carried out by the

US 2015/0074803 A1

Software, being present solely for protection purposes. For
3, the protection takes the form of a many-to-many mapping
of code sites to fragments of the software's functionality. Like
the code-healing approach of Arxan EnforceITTM, this
requires a significant degree of code replication (the same or
equivalent code information appears in the Software imple
mentation two or more times for any code to be protected by
the many-to-many mapping or the code-healing mechanism),
which can introduce a significant code-size overhead if
applied indiscriminately. For 27, data addressing is ren
dered interdependent, and variant over time, by means of
geometric transformations in a multidimensional space,
resulting in bulkier and slower, but very much more obscure
and fragile, addressing code.
0045. The overhead of broadly based (that is, applicable to
most software code), regionally applied (that is, applied to all
of the Suitable code in an entire code region) increases in
interdependency, as in 2, 3, 4, 6, 16, 19 and in the somewhat
less broadly-based 27, or of the code redundancy found in
various forms in 3, 6, 17, 18, 19.27 or in Arxan EnforceITTM,
varies considerably depending on the proportion of Software
regions in a program protected and the intensity with which
the defense is applied to these regions.
0046. Of course, tolerable overhead depends on context of
use. Computing environments may liberal use of various
scripting languages such as Perl, Python, Ruby, MS-DOSTM.
BAT (batch) files, shell scripts, and so on, despite the fact that
execution of interpreted code logic is at least tens of times
slower than execution of optimized compiled code logic. In
the context of their use, however, the ability to update the
logic in Such scripts quickly and easily is more important than
the added overhead they incur.
0047. The great virtue of the kinds of protection described
in 2, 3, 4, 5, 6, 9, 16, 19, 20, and to a lesser extent in 27, is
that they are broadly based (although 27 requires programs
with much looping, whether express or implied, for full effec
tiveness) and regionally applied: their natural use is to protect
substantial proportions of the code mediating the behaviors of
SBEs—a very useful form of protection given the prevalence
of various forms of attacks on SBEs, and one which does not
require careful identification of the parts of the software most
likely to be attacked.
0048 However, sometimes we need the utmost protection
for a small targeted set of specific SBE behaviors, but perfor
mance and other overhead considerations mandate that we
should either altogether avoid further overheads to protect
behaviors falling outside this set, or that the level of protec
tion for those other behaviors be minimized, to ensure that
performance, size, and other overhead costs associated with
Software protection are held in check. In such cases, use of the
instant invention, with at most limited use of regionally
applied methods, is recommended.
0049. Alternatively, sometimes significant overhead is
acceptable, but very strong protection of certain specific SBE
behaviors, beyond that provided by regionally applied meth
ods, is also required. In Such cases, use of both the instant
invention and one or more regionally applied methods is
recommended.

0050 Typically, the targeted set of specific SBE behaviors
is implemented by means of specific, localized software ele
ments, or the interactions of such elements—routines, control
structures such as particular loops, and the like—within the
software mediating the behavior of the SBE.

Mar. 12, 2015

0051 Existing forms of protection as described in 2, 3, 4,
5, 6, 9, 16, 19, 27 provide highly useful protections, but,
despite their considerable value, they do not address the prob
lem of providing highly secure, targeted, specific, and local
ized protection of Software-mediated program and device
behaviors.
0.052 The protection provided in 7, 8, 17, 18 is targeted
to a specific, localized part of a body of software (namely, the
implementation of encryption or decryption for a cipher), but
the methods taught in this application apply to specific forms
of computation used as building blocks for the implementa
tion of ciphers and cryptographic hashes, so that they are
narrowly, rather than broadly, based; i.e., they apply only to
very specific kinds of behaviors. Nevertheless, with strength
ening as described herein, Such methods can be rendered
useful for meeting the need noted below.
0053. The protection provided by 27, while not so tar
geted to specific contexts as those of 7, 8, 17, 18, is limited
to contexts where live ranges of variables are well partitioned
and where constraints on addressing are available (as in loops
or similar forms of iterative or recursive behavior) it lacks
the wide and general applicability of 2, 3, 4, 5, 6, 9, 16, 19.
It is very well suited, however, for code performing scientific
computations on arrays and vectors, or computations involv
ing many computed elements such as graphics calculations.
Of course, for graphics, the protection may be moot: if infor
mation is to be displayed, it is unclear that it needs to be
protected. However, if such computations are performed for
digital watermarking, use of 27 to protect intellectual prop
erty Such as the watermarking algorithm, or the nature of the
watermark itself, would be suitable.
0054 Based on the above, it is thus evident that there is a
need for a method which can provide strong protection of
specific, localized portions of the Software mediating a tar
geted set of specific SBE behaviors, thus protecting a tar
geted, specific set of SBE behaviors without the overhead of
and with stronger protection than, existing regionally applied
methods of software protection such as 2, 3, 4, 5, 6, 9, 16, 19,
20, 27 and applicable to a wider variety of behaviors than the
narrowly based methods of 7, 8, 17, 18.

SUMMARY OF THE INVENTION

0055. The present invention provides methods and devices
forthwarting code and control flow based attacks on software.
The source code of a Subject piece of software is automati
cally divided into basic blocks of logic. Selected basic blocks
are amended so that their outputs are extended. Similarly,
other basic blocks are amended such that their inputs are
correspondingly extended. The amendments increase or cre
ate dependencies between basic blocks Such that tampering
with one basic block's code causes other basic blocks to
malfunction when executed.
0056. In a first aspect, the present invention provides a
method for thwarting tampering with software, the method
comprising the steps of
0057 a) receiving source code of said software
0.058 b) dividing said source code into basic blocks of
logic, at least one first basic block not being dependent on
results from at least one second basic block when said soft
ware is run
0059 c) determining which basic blocks to modify based
on a logic flow of said source code
0060 d) modifying at least one first basic block to result in
at least one modified first basic block

US 2015/0074803 A1

0061 e) modifying at least one second basic block to
result in at least one modified second basic block wherein said
at least one modified first basic block is dependent on results
from said at least one modified second basic block.

BRIEF DESCRIPTION OF THE DRAWINGS

0062. A better understanding of the invention will be
obtained by considering the detailed description below, with
reference to the following drawings in which:
0063 FIG. 1 shows initial and final program states con
nected by a computation;
0064 FIG. 2 shows exactly the same inner structure as
FIG. 1 in a typical interlocking situation;
0065 FIG.3 shows a path through some Basic Block sets,
providing an alternative view of a computation Such as that in
FIG. 2:
0066 FIG. 4A shows pseudo-code for a conditional IF
statement with ELSE-code (i.e., an IF statement which either
executes the THEN-code or executes the ELSE-code);
0067 FIG. 4B shows pseudo-code for a statement analo
gous to that in FIG. 4A but where the choice among the code
alternatives is made by indexed selection;
0068 FIG. 5A shows pseudo-code for a conditional IF
statement with no ELSE-code:
0069 FIG. 5B shows pseudo-code for a statement analo
gous to that in FIG. 5A but where the choice among alterna
tives which have code and those which have no code is made
by indexed selection; and
0070 FIG. 6 illustrates in a flow chart a method in accor
dance with an embodiment of the present invention.

DETAILED DESCRIPTION

0071. In one preferred embodiment, the present invention
receives the source code of a piece of software and subdivides
that source code into various basic blocks of logic. These
basic blocks are, based on their contents and on their position
in the logic and control flow of the program, amended to
increase or create dependence between the various basic
blocks. The amendment to the basic blocks has the effect of
extending the outputs of some basic blocks while similarly
extending the inputs of other corresponding basic blocks. The
extended output contains the output of the original as well as
extra information introduced or injected by the code amend
ments. The extended input requires the regular input of the
original basic block as well as the extra information of the
extended output.
0072 The following description of preferred embodi
ments of the invention will be better understood with refer
ence to the following explanation of concepts and terminol
ogy used throughout this description.
0073. We define an interlock to be a connection among
parts of a system, mechanism, or device in which the opera
tion of some part or parts Y of the system is affected by the
operation of some other part or parts X, in Such a fashion that
tampering with the behavior of part or parts X will cause
malfunctioning or failure of the part or parts Y with high
probability.
0074 That is, the connection between parts of a system
which are interlocked is aggressively fragile under tamper
ing. The purpose of the instant invention is to provide a
general, powerful, targeted facility for inducing Such aggres
sive fragility affecting specific SBE behaviors.

Mar. 12, 2015

0075 When an attacker tampers with the data or code of a
program, the motivation is generally to modify the behavior
of the program in Some specific way. For example, if an
application checks some piece of data, such as a password or
a data token, which must be validated before the user may
employ the application, an attacker may wish to produce a
new version of the program which is similar to the original,
but which does not perform Such validation, thus obtaining
unrestricted and unchecked access to the facilities of the
application. Similarly, if an application meters usage for the
purpose of billing, an attacker may wish to modify the appli
cation so that it performs the same services, but its usage
metrics record little or no usage, thereby reducing or elimi
nating the cost of employing the application. If an application
is a trial version, which is constructed so as to perform nor
mally but only for a limited period of time, in hopes that
someone will purchase the normal version, an attacker may
wish to modify the trial version so that that limited period of
time is extended indefinitely, thereby avoiding the cost of the
normal version.
0076. Thus a characteristic of tampering with the software
or data of a program is that it is a goal-directed activity which
seeks specific behavioral change. If the attacker simply
wished to destroy the application, there would be a number of
trivial ways to accomplish that with no need for a sophisti
cated attack: for example, the application executable file
could be deleted, or it could be modified randomly by chang
ingrandom bits of that file, rendering it effectively unexecut
able with high probability. The protections of the instant
invention are not directed against attacks with Such limited
goals, but against more Sophisticated attacks aimed at specific
behavioral modifications.
0077. Thus the aggressive fragility undertampering which

is induced by the method and system of the instant invention
frustrates the efforts of attackers by ensuring that the specific
behavioral change is not achieved: rather, code changes ren
der system behavior chaotic and purposeless, so that, instead
of obtaining the desired result, the attacker achieves mere
destruction and therefore fails to derive the desired benefit.
0078. The instant invention provides methods and systems
by means of which, in the software mediating the behavior of
an SBE, a part or parts X of the software which is not inter
locked with a part or parts Y of the software, may be replaced
by a part or parts X", providing the original functionality of
part or parts X, which is interlocked with a part or parts Y',
providing the original functionality of part or parts Y. in Such
a fashion that the interlocking aspects of X" and Y are essen
tial, integral, obscure, and contextual. These required prop
erties of effective interlocks, and automated methods for
achieving these properties, are described hereinafter.
0079 Referring to Table A, the table contains symbols and
their meanings as used throughout this document.

TABLE A

Notation Meaning

B the set of bits = {0, 1}
N the set of natural numbers = {1, 2, 3,...}
No the set of finite cardinal numbers = {0,1,2,...}
Z. the set of integers = {..., -1, 0, 1,...}
X:-y X such that y
x iffy if and only ify
x||y concatenation of tuples or vectors x and y
x Wy logical or bitwise and of X and y
xVy logical or bitwise inclusive-or of X and y

US 2015/0074803 A1

Notation

extracta,b)(x)
extracta,b(V)

interleave(u, v)

TABLE A-continued

Meaning

logical or bitwise exclusive-or of X and y
logical or bitwise not of X
inverse of x
image of set Sunder MF f
applying MF fito X yields y and only y
applying MF f to X may yieldy
the result of applying MF f to X is undefined
transpose of matrix M
cardinality of set S
length of tuple or vector V
absolute value of number n
k-tuple or k-vector with elements x1,..., X
k-aggregation of MFs m1,..., m.
k-conglomeration of MFs m1, ..., m.
set of X1, ..., X
set of x such that C
set of members x of set S such that C
Hamming distance (= number of changed element
positions) from X to y
Cartesian product of sets S1, ..., S.
composition of MFs m1, ..., m.
x is a member of set S
set S is contained in or equal to set T
Sum of X1, ..., X
Galois field (= finite field) with n elements
finite ring of the integers modulok
identity function on set S
bit-field in positions a to b of bit-string X
(extractab(v1),...extractab(V)),
where V = (v1,...,v)
, where u = (u1,u.)
and V = (v1,...,v)

0080 Table B further contains abbreviations used
throughout this document along with their meanings

TABLE B

Abbreviation Expansion

AES Advanced Encryption Standard
agg aggregation
API application procedural interface
BA Boolean-arithmetic
BB basic block
CFG control-flow graph
DES Data Encryption Standard
DG directed graph
d dynamically linked library
GF Galois field (= finite field)
IA intervening aggregation
iff if and only if
MBA mixed Boolean-arithmetic
MDS maximum distance separable
MF multi-function
OE output extension
PE partial evaluation
PLPB point-wise linear partitioned bijection
RSA Rivest--Shamir-Adleman
RNS residual number system
RPE reverse partial evaluation
TR tamper resistance
SB Substitution box
SBE software-based entity
SO shared object
VHDL very high speed integrated circuit hardware description

language

0081. We write “:- to denote that “such that and we write
“iff to denote “if and only if. Table A summarizes many of
the notation, and Table B summarizes many of the abbrevia
tions, employed herein.

Mar. 12, 2015

0082 2.3.1 Set, Tubles, Relations, and Functions.
I0083. For a set S, we write ISI to denote the cardinality of
S (i.e., the number of members in set S). We also use in to
denote the absolute value of a number n.
I0084. We write {m, m, ..., m to denote the set whose
members are m, m2, m . (Hence if m, m2, m are
all distinct, |{m, m2,..., m}|-k.) We also write {x|C} to
denote the set of all entities of the form X such that the
condition Cholds, where C is normally a condition depending
O X.

I0085 Cartesian Products, Tuples, and Vectors. Where A
and B are sets, AxB is the Cartesian product of A and B; i.e.,
the set of all pairs (a,b) where aeA (i.e., a is a member of A)
and be B (i.e., b is a member of B). Thus we have (a,b)eAxB.
In general, for sets S. S. ..., S., a member of SxSX... xS
is a k-tuple of the form (S. S. ..., s) where seS, for i=1,2,
...,k. Ift S. s is a tuple, we write it to denote the length
oft (in this case, t-k; i.e., the tuple has k element positions).
For any X, we consider X to be the same as (X)—a tuple of
length one whose sole element is X. If all of the elements of a
tuple belong to the same set, we call it a vector over the set.
I0086 Ifu and v are two tuples, then 0 is the tuple of length
ul-I-IV obtained by creating a tuple containing the elements of
u in order and then the elements of V in order: e.g., (a, b, c,
d)|(x, y, Z)-(a, b, c, d, x, y, z).
I0087 We consider parentheses to be significant in Carte
sian products: for sets A, B, C, members of (AxB)xClook like
((a,b), c) whereas members of Ax(BxC) look likea (a, (b,c)),
where aeA, bel3, and ceC. Similarly, members of Ax(BxB)xC
look like (a, (b,b), c) where aeA, b, beB, and ceC.
I0088 Relations, Multi-functions (MFs), and Functions. A
k-ary relation on a Cartesian product Six . . . xS of k sets
(where we must have ke2) is any set RCSX ... xS. Usually,
we will be interested in binary relations; i.e., relations R
CAxB for two sets A, B (not necessarily distinct). For such a
binary relation, we write a R b to indicate that (a,b)eR. For
example, where R is the set of real numbers, the binary
relation
I0089 on pairs of real numbers is the set of all pairs of real
numbers (x,y) Such that X is Smaller thany, and when we write
Xsy it means that (x,y) Such that X is Smaller thany, and when
we write Xsy it means that (x, y)es.
(0090. The notation R::A) B indicates that RCAxB; i.e.,
that R is a binary relation on AxB. This notation is similar to
that used for functions below. Its intent is to indicate that the
binary relation is interpreted as a multi-function (MF), the
relational abstraction of a computation—not necessarily
deterministic—which takes an input from set A and returns an
output in set B. In the case of a function, this computation
must be deterministic, whereas in the case of an MF, the
computation need not be deterministic, and so it is a better
mathematical model for much software in which external
events may effect the progress of execution within a given
process. A is the domain of MF R, and B is the codomain of
MF R. For any set X CA, we define domain of MFR, and B
is the codomain of MF R. For any set X CA, we define
R{X}={yeBxeX:-(x,y)eR}. R{X} is the image of X under
R. For an MFR::AH) BandaeA, we write R(a)=b to mean R
{{a}}={b}, we write R(a)->b to meanthat beR{{a}}, and we
write R(a)= L(read"R(a) is undefined to mean that there is no
beE:-(a,b)eR.
(0091. For a binary relation R::AB, we define

0092 R is the inverse of R.

US 2015/0074803 A1

0093. For binary relations R::AHB and 5::BH9C, we
define SoR::AHC by

SoR={(a,c) be B:-aRb and b.Sc.

0094 SoR is the composition of S with R. Composition of
binary relations is associative; i.e., for binary relations Q, R,
S. (SoR)oQ-So(RoO). Hence for binary relations R. R. . .
... R, we may freely write Ro ... oRoR without parenthe
ses because the expression has the same meaning no matter
where we put them. Note that

in which we first take the image of X under R, and then that
image's image under R, and so on up to the penultimate
image's image under R, which is the reason that the R's in
the composition on the left are written in the reverse order of
the imaging operations, just like the R, s in the imaging
expression on the right.
0095. Where R::A, B, for i=1,..., k, R=R, ..., R.

is that binary relation:-
R.A, so exA.H) Bix - c oxB,

and

R(x1, ...,X,) (y1,...,y) if R(x)-ey, for i=1,...
.k.

R. R. is the aggregation of R. R.
Where R::Ax XA, B, for i=1,...,n, R=|R, ..
is that binary relation:-

. RP

R::Ax so exA.) Bix - c oxB,

and

i.

<R, ..., R is the conglomeration of R, ..., R.
0096. We write f:AH > B to indicate that f is a function
from A to B; i.e., that f:AH) B:- for any aeA and be B, if
f(a)->b, then f(a)=b. For any set S, id is the function for
which id(x)=x for every xeS.
0097 Directed Graphs, Control Flow Graphs, and Domi
nators. A directed graph (DG) is an ordered pair G=(N., A)
where set N is the node-set and binary relation A CNxN is the
arc-relation or edge-relation. (x, y)eA is an arc or or edge of
G.
0098. A path in a DG G=(N., A) is a sequence of nodes (n,
..., n) where neN for i=1,..., k and (n, n)eA for i=1,.
... k-1-0 is the length of the path. The shortest possible path
has the form (n) with length Zero. A path (n. n.) is
acyclic iff no node appears twice in it; i.e., iff there are no
indices i,jwith 1sisjsk for which n =n. For a set S, we define
S=Sx xS where Sappears r times and x appears r-1 times
(so that S=S), and we define S=SUSUSU the
infinite union of all Cartesian products for S of all possible
lengths. Then every path in C is an element of N.
0099. In a directed graph (DG) G=(N., A), a node yeN is
reachable from a nodexeN if there is a path in G which begins
with X and ends with y. (Hence every node is reachable from
itself.) Two nodes x, y are connected in G iff one of the two
following conditions hold recursively:

0100 there is a path of G in which both X and y appear,
O

0101 there is a node ZeN in G such that X and Z are
connected and y and Z are connected.

Mar. 12, 2015

(If Xy, then the singleton (i.e., length one) path (x) is a path
from x to y, so every node neN of G is connected to itself) A
DG G=(N., A) is a connected DGiffevery pair of nodes x, yeN
of G is connected.

I0102 For every node xen, |{y(x, y)eA}|, the number of
arcs in A which start at X and end at Some other node, is the
out-degree of nodex, and for every node yeN, {x (x,y)eA},
the number of arcs in A which start at Some node and endaty,
is in the in-degree of nodey. The degree of a node neN is the
Sum of nS in- and out-degrees.
0103) A source node in a DG G=(N., A) is a node whose
in-degree is zero, and a sink node in a DG G=(N., A) is a node
whose out-degree is Zero.
0104 ADG G=(N., A) is a control-flow graph (CFG) iffit
has a distinguished source node noeN from which every node
neN is reachable.

0105. Let G=(N., A) be a CFG with a source node no. A
nodexeNdominates a nodeyeNiffevery path beginning with
no and ending with y contains X. (Note that, by this definition
and the remarks above, every node dominates itself.
0106 With G=(N., A) and s as above, a nonempty node set
XCN dominates a nonempty node set X CN iff every path
starting with no and ending with an element of Y contains an
element of X. (Note that the case of single node dominating
another single node is the special case of this definition where
|X|=|Y=1).
0107 2.3.2 Algebraic Structures.
0108 Zdenotes the set of all integers and N denotes the set
of all integers greater than Zero (the natural numbers). Z/(m)
denotes the ring of the integers modulo m, for some integer
m-0. Whenever m is a prime number, Z/(m)=GF (m, the
Galois field of the integers modulom. B denotes the set {0,1}
of bits, which may be identified with the two elements of the
ring Z/(2)=GF(2).
0109) Identities. Identities (i.e., equations) play a crucial
role in obfuscation: if for two expressions X,Y, we know that
X=Y, then we can substitute the value ofY for the value of X,
and we can substitute the computation of Y for the computa
tion of X, and vice versa.
0110 That such substitutions based on algebraic identities
are crucial to obfuscation is easily seen by the fact that their
use is found to varying extents in every one of 2, 4, 5, 7, 8, 9.
17, 18, 19, 20, 23, 24, 27.
0111. Sometimes we wish to identify (equate) Boolean
expressions, which may themselves involve equations. For
example, in typical computer arithmetic,

(using signed comparison). Thus “iff equates conditions,
and so expressions containing “iff are also identities—spe
cifically, condition identities or Boolean identities.
0112 Matrices. We denote an rxc (r rows, c columns)
matrix M by

in 11 in 12 ... in 1c

m2.1 m2.2 ... in2.c
M =

in in 2 ... mc

US 2015/0074803 A1

I0113 where its transpose is denoted by M where

in 11 m2.1 ... in

in 12 m2.2 ... n.2

in 1c in2.c. ... mc

0114 so that, for example,

r C

C a c e = , ,
0115 Relationship of Z/(2") to Computer Arithmetic. On
B", the set of all length-n bit-vectors, define addition (+) and
multiplication () as usual for computers with 2's complement
fixed point arithmetic (see 21). Then (B",) is the finite
two's complement ring of order 2". The modular integer ring
Z/(2") is isomorphic to (B",), which is the basis of typical
computer fixed-point computations (addition, Subtraction,
multiplication, division, and remainder) on computers with
an n-bit word length.
0116 (For convenience, we may write xy (x multiplied by
y by Xy, i.e., we may represent multiplication by juxtaposi
tion, a common convention in algebra.)
0117. In view of this isomorphism, we use these two rings
interchangeably, even though we can view (B".+.) as con
taining signed numbers in the range-2'' to 2-1 inclusive.
The reason that we can get away with ignoring the issue of
whether the elements of (B", +,) occupy the signed range
above or the range of magnitudes from 0 to 2'-1 inclusive, is
that the effect of the arithmetic operations “+' and “” on
bit-vectors in B" is identical whether we interpret the numbers
as two’s complement signed numbers or binary magnitude
unsigned numbers.
0118. The issue of whether we interpret the numbers as
signed arises only for the inequality operators <, >, s, a.
which means that we should decide in advance how particular
numbers are to be treated: inconsistent interpretations will
produce anomalous results, just as incorrect use of signed and
unsigned comparison instructions by a C or C++ compiler
will produce anomalous code.
0119 Bitwise Computer Instructions and (B",V, W, i.). On
B', the set of all length-n bit-vectors, a computer with n-bit
words typically provides bitwise and (A), inclusive or (v) and
not (). Then (B",V, W,) is a Boolean algebra. In (B",V, W,
1), in which the vector-length is one, O is false and 1 is true.

8

TABLE C

Conjunction Binary Result

x A y Az OOO 1
x A y Az OO1 O
x W y Az O10 O
xA y A z O11 1
x A y Az 100 1
x AyA z 101 1
x A y Az 110 1
x A y A z 111 1

Truth Table for xV (yez)

Mar. 12, 2015

I0120 For any two vectors, u, vel3", we define the bitwise
exclusive or (€D) ofu and v, by u€Dv=(u A (iv))V((U) A v).
For convenience, we typically represent X by x. For
example, we can also express this identity as u€Dv=(u Av)
V (u/\v).
I0121 Since vector multiplication bitwise and (W) in a
Boolean algebra is associative, (B".6D, W) is a ring (called a
Boolean ring).
0.122 Truth Tables. To visualize the value of an expression
over (B, V, W,), we may use a truth table such as that shown
in Table C. The table visualizes the expression X W (yetz) for
all possible values of Booleans (elements of B) x, y, Z. In the
leftmost column, headed “Conjunction', we display the vari
ous states of x, y, Zby giving the only “and” (conjunction) in
which each variable occurs exactly once in either normal (v)
or complemented (v) form which is true (i.e., 1). In the middle
column, headed “Binary', we display the same information
as a binary number, with the bits from left to right represent
ing the values of the variables from left to right. In the right
column, headed “Result, we show the result of substituting
particular values of the variables in the expression XV (yetz).
E.g., if X/\ y AZ is true, (i.e., 1), then the values of x, y, z,
respectively, are 011, and XV (yetz)=0 V (16D1)=0 V (16D0)
=1.

I0123 Presence and Absence of Multiplicative Inverses
and Inverse Matrices. For any prime power, while in GF (m),
every element has a multiplicative inverse (i.e., for every
Xe(0, 1,..., m-1}, there is a ye0, 1,..., m-1}:-xy=1), this
is not true in general for Z/(k) for an arbitrary keN not even
if k is a prime power. For example, in Z/(2"), where neN and
n>1, no even element has a multiplicative inverse, since there
is no element which can yield 1, an odd number, when mul
tiplied by an even number. Moreover, the product of two
nonzero numbers can be zero. For example, over Z/(2),
2-4-0, since 8 mod 8-0. As a result of these ring properties, a
matrix over Z/(2") may have a nonzero determinant and still
have no inverse. For example, the matrix

is not invertible Z/(2") for any neN, even though its determi
nant is 2. A matrix over Z/(2") is invertible iff its determinant
is odd.

0.124. Another important property of matrices over rings
of the form Z/(2") is this. If a matrix M is invertible over
Z/(2"), then for any integer n>m, if we create a new matrix N
by adding n-m “0” bits at the beginning of the binary repre
sentations of the elements, thereby preserving their values as
binary numbers, but increasing the word size from m bits to
in bits, then N is invertible over Z/(2") (since increasing the
word-length of the computations does not affect the even/odd
property when computing the determinant).
0.125 Normally, we will not explicitly mention the deri
vation of a separate matrix N derived from M as above.
Instead, for a matrix M over Z/(2") as above, we will simply
speak of M“over Z(2"), where the intent is that we are now
considering the matrix N derived by increasing the word
size of the elements of M: i.e., we effectively ignore the
length of the element tuples of M, and simply consider the
elements of Mas integer values. Thus, when we speak of M

US 2015/0074803 A1

“over Z/(2")', we effectively denote M modified to have
whatever word (tuple) size is appropriate to the domain
Z/(2").
0126 Combining the Arithmetic and Bitwise Systems. We
will call the single system (B", +, , W.V.) obtained by
combining the algebraic systems (B", +,) (the two’s comple
ment ring of order 2") and (B", W.W. 1) (the Boolean algebra
of bit-vectors of length n under bitwise and, inclusive or, and
not) a Boolean-arithmetic algebra (a BA algebra), and denote
this particular baalgebra on bit-vectors of length n by BALn.
0127 BA1 is a special case, because + and €D are iden

tical in this BA algebra (€D is sometimes called “add without
carry', and in BA1 the vector length is one. So + cannot be
affected by carry bits.)
0128 We note that u-v-u--(-v) in Z/(2"), and that -v-9
v+1 (the 2's complement of v), where 1 denotes the vector (0.
0,..., 0, 1)eB" (i.e., the binary number 00 01eB"). Thus
the binary +,-, operations and the unary - operation are all
part of Z/(2").
0129. If an expression over BA in contains both opera
tions +,-, from Z/(2") and operations from (B", W.V.) we
will call it a mixed Boolean-arithmetic expression (an MBA
expression). For example, “(8234x)Vy” and “x+((yZ) WX)
are MBA expressions which could be written in C, C++, or
JavaTM as “8234*x-x” and “-x+(y*z & x), respectively.
(Typically, integral arithmetic expressions in programming
languages are implemented over BA32—e.g., targeting to
most personal computers—with a trend towards increasing
use of BA64—e.g. Intel Itanium.T.M.)
0130 If an expression E over BALn has the form

where c1 c2, ..., ceB' and e, e2,..., e are expressions of
a set of variables over (B", W.W.), then we will call Ealinear
MBA expression.
0131 Polynomials. A polynomial is an expression of the
form f(x)=x, "a,x=a+ +ax+ax+ao (where x'=1 for
any x). If a z0, then d is the degree of the polynomial. Poly
nomials can be added, Subtracted, multiplied, and divided,
and the result of such operations are themselves polynomials.
If d=0, the polynomial is constant; i.e., it consists simply of
the Scalar constantao. If d >0, the polynomial is non-constant.
We can have polynomials over finite and infinite rings and
fields.

0132 A non-constant polynomial is irreducible if it cannot
be written as the product of two or more non-constant poly
nomials. Irreducible polynomials play a role for polynomials
similar to that played by primes for the integers.
0133. The variable X has no special significance: as
regards a particular polynomial, it is just a place-holder. Of
course, we may substitute a value for X to evaluate the poly
nomial—that is, variable X is only significant when we Sub
stitute something for it.
0134. We may identify a polynomial with its coefficient
(d+1)-vector (a.a. ao).
0135 Polynomials over GF(2)=Z/(2) have special signifi
cance in cryptography, since the (d+1)-vector of coefficients
is simply a bit-string and can efficiently be represented on a
computer (e.g., polynomials of degrees up to 7 can be repre
sented as 8-bit bytes); addition and subtraction are identical;
and the Sum of two Such polynomials in bit-string represen
tation is computed using bitwise €D (exclusive or).

Mar. 12, 2015

0.136 Finite Fields. For any prime number p, Z/(p) is not
only a modular integer ring, but a modular integer field. It is
differentiated from a mere finite ring in that every element has
a unique inverse.
0.137 Computation in such fields is inconvenient since
many remainder operations are needed to restrict results to the
modules on a computer, and Such operations are slow.
0.138. For any prime number p and integer nail, there is a
field having p" elements, denoted GF(p"). The field can be
generated by polynomials of degrees 0 to n-1, inclusive, over
the modular ring Z/(p), with polynomial computations per
formed modulo an irreducible polynomial of degreen. Such
fields become computationally more tractable on a computer
for cases where p=2, so that the polynomials can be repre
sented as bit-strings and addition/subtraction as bitwise (D.
For example, the advanced encryption standard (AES) (15 is
based on computations over GF(2). Matrix operations over
GF(2") are rendered much more convenient due to the fact
that functions which are linear over GF(2") are also linear
over GF(2); i.e., they can be computed using bit-matrices.
Virtually every modern computer is a vector machine for
bit-vectors up to the length of the machine word (typically 32
or 64), which facilitates computations based on such bit
matrices.
I0139 2.3.3. Partial Evaluation (PE). While partial evalu

ation is not what we need to create general, low-overhead,
effective interlocks for binding protections to SBEs, it is
strongly related to the methods of the instant invention, and
understanding partial evaluation aids in understanding
those methods.

0140. A partial evaluation (PE) of an MF is the generation
of a MF by freezing some of the inputs of some other MF (or
the MF so generated). More formally, let f:XXYH) Z be an
MF. The partial evaluation (PE) off for constant ceY is the
derivation of that MF g::X > Z such that any xeX and ZeZ.
g(x)->Ziff f(x, c)->Z. To indicate this PE relationship, we
may also write g()=f(, c). We may also refer to the MF g
derived by PE off as partial evaluation (PE) off. That is, the
term partial evaluation may be used to refer to either the
derivation process or its result.
0.141. In the context of SBEs and their protection in soft
ware, fandgabove are programs, and X, care program inputs.
and the more specific program g is derived from the more
general program f by pre-evaluating computations in f based
on the assumption that its rightmost input or inputs will be the
constant c. X, c may contain arbitrary amounts of information.
0142. To provide a specific example, let us consider the
case of compilation.
0.143 Without PE, for compiler program p, we may have
p:SH) E where S is the set of all source code files and E is the
set of object code files. Then e=p(s) would denote an appli
cation of the compiler program p to the Source code file S,
yielding the object file e. (We take p to be a function, and not
just a multi-function, because we typically want compilers to
be deterministic.)
0144. Now Suppose we have a very general compiler q,
which inputs a source program S, together with a pair of
semantic descriptions: a source language semantic descrip
tion danda description of the semantics of executable code on
the desired target platform t. It compiles the Source program
according to the source language semantic description into
executable code for the desired target platform. We then have
q"Sx(DXT)H) E where S is the set of source code files, D is the
set of Source semantic descriptions, T is the set of platform

US 2015/0074803 A1

executable code semantic descriptions, and E is the set of
object code files for any platform. Then a specific compiler is
a PE p of q with respect to a constant tuple (d, t)eDXT, i.e., a
pair consisting of a specific source language semantic
description and a specific target platform semantic descrip
tion: that is, p(s)=q(S, (d, t)) for some specific, constant (d.
t)elDXT. In this case, X (the input set which the peretains) is
S (the set of source code files), Y (the input set which the pe
removes by choosing a specific member of it) is DXT (the
Cartesian product of the set D of source semantic descriptions
and the set T of target platform semantic descriptions), and Z
(the output set) is E (the set of object code files).
(0145 PE is used in 7, 8: the AES-128 cipher 15 and
the DES cipher 12 are partially evaluated with respect to the
key in order to hide the key from attackers. A more detailed
description of the underlying methods and system is given in
17, 18.
0146) Optimizing compilers perform PE when they
replace general computations with more specific ones by
determining where operands will be constant at run-time, and
then replacing their operations with constants or with more
specific operations which no longer need to input the (effec
tively constant) operands.
0147 2.3.4. Output Extension (OE). Suppose we have a
function f:UH) V. Function gUH) VxW is an output
extension (OE) off iff for every ue Uwe have g(u)=(f(u),
w) for some weW. That is, g gives us everything that f does,
and in addition produces extra output information.

0148 We may also use the term output extension (OE) to
refer to the process of finding Such a function g given such a
function f.
0149 Where function f is implemented as a routine or
other program fragment, it is generally straightforward to
determine a routine or program fragment implementing a
function g which is an OE of function f, since the problem of
finding Such a function g is very loosely constrained.
0150 2.3.5. Reverse Partial Evaluation (RPE).
0151. To create general, low overhead, effective interlocks
for binding protections to SBEs, we will employ a novel
method based on reverse partial evaluation (RPE).
0152 Plainly, for almost any MF or program g::XH)Z.
there is an extremely large set of programs or MFs f. sets Y.
and constants ceY, for which, for any arbitrary xeX, we
always have g(x)=f(x,c).
0153. We call the process of finding such a tuple (f, c, Y)
(or the tuple which we find by this process) a reverse partial
evaluation (RPE) of g.
0154) Notice that PE tends to be specific and deterministic,
whereas RPE offers an indefinitely large number of alterna
tives: for a giveng, there can be any number of different tuples
(f, c, Y) every one of which qualifies as an RPE of g.
0155 Finding an efficient program which is the PE of a
more general program may be very difficult—that is, the
problem is very tightly constrained. Finding an efficient RPE
of a given specific program is normally quite easy because we
have so many legitimate choices—that is, the problem is very
loosely constrained.
0156 2.3.6. Control Flow Graphs (CFGs) in Code Com
pilation.
0157. In compilers, we typically represent the possible
flow of control through a program by a control flow graph
(CFG), where a basic block (BB) of executable code (a
straight line code sequence which has a single start point, a
single end point, and is executed sequentially from its start

Mar. 12, 2015

point to its end point) is represented by a graph node, and an
arc connects the node corresponding to a BB U to the node
corresponding to a BB V if, during the execution of the
containing program, control either would always, or could
possibly, flow from the end of BBU to the start of BBV. This
can happen in multiple ways:
(1) Control flow may naturally fall through from BBU to BB
V.

0158 For example, in the C code fragment below, control
flow naturally falls from U to V:

switch (radix) {
case HEX:

U
case OCT:

V

0159 (2) Control flow may be directed from U to V by an
intra-procedural control construct such as a while-loop, an
if-statement, or a goto-statement.
0160 For example, in the C code fragment below, control

is directed from A to Z by the break-statement:

switch (radix) {
case HEX:

A.
break;

case OCT:
B

Z.

(0161 (3) Control flow may be directed from U to V by a
call or a return.

0162 For example, in the C code fragment below, control
is directed from B to A the call to f() in the body of g(), and
from A to C by the return from the call to f():

void f(void) {
A.

return;

int g (inta, float x) {
B

F ();
C

(0163 (4) Control flow may be directed from U to V by an
exceptional control-flow event.
0164. For example, in the C++ code fragment below, con
trol is potentially directed from U to V by a failure of the
dynamic cast of say, a referencey to a reference to an object
in class A:

#include-typeinfo->

int g (inta, float x) {

US 2015/0074803 A1

-continued

try {

Catch (bad cast c) f
V

(0165 For each node neN in a CFG C=(N, T) C for con
trol, T for transfer node n is taken to denote a specific BB,
and that BB computes an mf determined by the code which
BB n contains: some function f::X->Y, where X represents
the set of all possible values read and used by the code of n
(and hence the inputs function f), and Y represents the set of
all possible values written out by the code of n (and hence the
outputs from function f). Typically f is a function, but iff
makes use of nondeterministic inputs such as the current
reading of a high-resolution hardware clock, f is an MF but
not a function. Moreover, some computer hardware includes
instructions which may produce nondeterministic results,
which, again, may cause f to be an MF, but not a function.
0166 For an entire program having CFG C=(N, T) and
start node no we identify N with the set of BB s of the
program, we identify no with the BB appearing at the starting
point of the program (typically the beginning BB of the rou
tine main() for a C or C++ program), and we identify T with
every feasible transfer of control from one BB of the program
to another.
0167 Sometimes, instead of a CFG for an entire program,
we may have a CFG for a single routine. In that case, we
identify N with the set of BBs of the routine, we identify no
with the BB appearing at the beginning of the routine, and we
identify Twith every possible transfer of control from one BB
of the routine to another.
(0168 2.3.7. Alternative Interpretations of CFGs.
0169. In S2.3.6 we discuss the standard compiler-oriented
view of a control flow graph (CFG). However, the relation
ships among Sub-computations indicated by a CFG may
occur in other ways.
0170 For example, a CFG C=(NT) may represent a slice
of a computation, where a slice is that part of a computation
related to a particular subset of inputs and/or variables and/or
outputs. The concept of a slice is used in goal-directed analy
sis of programs, where analysis of the full program may
consume excessive resources, but if attention is focused on
only a part of the computation, a deeper analysis of that part
is feasible.
0171 In particular, we may have a multi-process or even
distributed parallel program C=(N, T) in which CFG C=(N,
T) occurs with respect to a slice of the computation, in which
only some of the BBs of the parallel program are included in
N (i.e., in which No N), and T represents the flow of execu
tion among elements of N when computations which are in C
but not in its Subset C are ignored. That is, the single-process
non-parallel program C may be embedded in a larger parallel
program C So that C occupies more than one process, but with
respect to the computations in the elements of N, the compu
tations are effectively sequential, but because of messaging
constraints or other constraints imposed by C.
0172 All of the methods of the instant invention apply
equally to programs which have a natural, single-process

10
Mar. 12, 2015

method of control, and to slices of larger, containing, parallel
programs, so long as the control-flow requirements of the
instant invention are met. We exploit this alternative view of
CFGs to implement the methods of $2.10.6.
(0173. In addition, the code within a BB is embodied in a
series of computer instructions, which instruct the computer
to change its state. Typically, an instruction affects a small
part of the state and leaves the remainder of the state
untouched. A BB may also include routines. A routine itself
contains a CFG, and is constructed to permit this CFG to be
executed by a call which passes into the routine initial parts of
its state (arguments), with execution returning immediately
after the call.
0.174 We may either view a routine as part of the normal
control flow (the detailed view), or we may abstract from the
detailed view and regard a routine-call as a sort of Super
instruction which causes the computer to perform a more
complex change of the state than the usual computer instruc
tion.
(0175 Both views are useful in connection with the instant
invention—we may choose whichever view of a particular
call is more convenient for a particular purpose. Thus when
we speak of the CFG of a program, we mean that CFG after
the chosen forms of abstraction have been applied. Moreover,
we may apply the instant invention to interlocking of different
aspects of a program by employing different views of the
same routine calls for different interlocks.
0176 2.4. Relational and Computational Structure of
Interlocks.
0177. In the straightforward construction of an SBE, there
will often be parts which are naturally entirely free of inter
lockS: that is, there are parts whose operation makes them
independent of one another. In order to protect specific behav
iors of an SBE, possibly including specific protective behav
iors added to an SBE, we must ensure that this is never the
case for those parts of an SBE which implement the specific
behaviors. Thus we must take parts of computations under
lying SBE behaviors which are initially independent, and
cause them to become dependent.
0.178 The instant invention describes a technique based on
the concepts of partial evaluation (PE) of MFs, output exten
sion (OE) of MFs, reverse partial evaluation (RPE) of MFs,
and dominating nodes and sets in control-flow graphs.
0179 2.4.1. Relational Structure of an Interlock.
0180. An interlock's minimal relational structure is shown
in FIG.1. In FIG. 1, initial and final program states connected
by a computation are shown. The upper path from the A State
to the B state represents a normal, unencoded or unobfuscated
computation, and the lower path from state A to state B'
represents an encoded or obfuscated computation from an
encoded or obfuscated state A (an obfuscation of state A) to
an encoded or obfuscated state B" (an obfuscation of state B)
(“” indicates a modified entity: an input-output encoded,
input-encoded, or output-encoded MF or an encoded data
state.) R' is the transfer MF: it carries interlocking informa
tion from state A" to state B'.
0181. In this minimal structure, R was an original compu
tation, transforming a computation state aeA to a state beE. (R
need not be deterministic.) R' is the computation after it has
been modified according to the instant invention. R' is the
modified computation, transforming an extended State a'eA
to an extended state b'eB'. By extended, we mean that a' and
b' contain all of the information in a and b, respectively, plus
additional information. The additional information can be

US 2015/0074803 A1

used to determine whether (1) b' arose from the intended
computation Rona', or (2) b' instead arose from code which
has been modified by an attacker, and/or from modified data
replacing a' due to tampering by an attacker. This extra infor
mation, and the fact that it can be checked for validity, is the
essential core of an interlock.
0182 (Normally, there will be further modifications
according to the instant invention, which will provide addi
tional initial computations to create the extra information at
the outset, and further modifications which will provide addi
tional final computations to consume the extra information,
and depending on the legitimacy of the final State, computa
tion proceeds normally thereafter if it is legitimate computa
tion will fail with high probability if it is illegitimate.
0183 Ifall of R, R', d, d, r, r" were not just relations, but
functions, then FIG. 1 would be commutative diagram for
computing with an encrypted function, as Suggested in 23,
24. (In category theory, such a diagram is used to indicate
relationships among functions such that different paths from
one node to another in the diagram are equivalent. E.g., the
diagram would indicate that R-coRod'.)
0184. However, for our purposes this is inadequate. First,
an interlock operates as protected code in a context of less
protected code. Thus the diagram shows only a specific, pro
tected part of the computation. (A more typical arrangement
is shown in FIG. 2, which has the same inner structure.)
0185. Secondly, producing an interlock which is essential,
integral, obscure, and contextual, as these properties are
defined hereinafter, requires a more powerful method. We do
not require that R, R', d, d', r, r" be functions, but we do
ensure the above-mentioned crucial properties by placing
strong requirements on R, R', d, d', r, r". Hence the arrows
in FIG. 1 denote MFs. E.g., the arrow from A to A' indicates
that do AXA': i.e., that d::AH) A". Hence there may be no
unique a'eA' corresponding to a specific aeA.
0186 FIG. 1 shows initial and final program states con
nected by a computation. This diagram applies to an interlock
operating in isolation, where no significant data states pre
cede the occurrence of the interlock and no significant data
states follow it: i.e., such an interlock is derived by omissions
from the interlock structure shown in FIG. 2 on: the (inter
lock-information-)production code F of the interlock, which
sets up (interlock-information-)produced State A" from Some
normal prologue state Pand transitions the state to A', and the
interlock-information-)consumption code of the interlock,
which transitions the (interlock-information)transferred state
B' to Some normal epilogue state E, are computed elsewhere.
For example, FIG. 1 would apply to the case of a transaction
processing program in a network in which (interlock-infor
mation-) transfer code R'::A'H) B' processes a transaction
derived from a normal, unprotected pretransfer (i.e., pre
interlock-information-transfer) computation R::AH) B, but
neither sets up the produced state of the interlock A' nor
restores normal computation after the transferred state B' of
the interlock is reached—nor induces computational failure if
tampering occurs between state A" and state B", the nonstand
ard variant of B' resulting from tampering. In this truncated
version of an interlock, the action is ‘off-stage, occurring at
some other site, and only the transfer portion of the interlock,
the computation R'::A'H) B', is present.
0187. The figure shows that starting state A" (derived from
A according to the domain encoding, d), the computation R
which converts state A to state B", and ending state B' (derived
from Baccording to the codomain encoding, c) are visible to

Mar. 12, 2015

the attacker. State A, the starting data state if no interlock had
been introduced, computation R, the computation which
would have converted A to B if no interlock had been intro
duced, and ending state B, the ending data state if no interlock
had been introduced, are not available to the attacker: they
have been eradicated by the insertion of the interlock into the
program. N.B.: The actual isolated interlock computation is
R. Computations R, d, d', r, r" and states A, B do not exist
in the final implementation; they are only used during con
struction of the interlock computation R' based on the non
interlock computation R.
0188 FIG. 2 shows exactly the same inner structure as
FIG. 1 in a typical interlocking situation, where execution
along the lower path is interlocked by diverting execution
from the A-to-B path at some preceding state P onto the
encoded or obfuscated A-to-B' path, and then returned to
normal, unencoded or unobfuscated computation at Some
unencoded or unobfuscated ending state E which ends the
interlock. The situation in FIG. 2 is the typical interlocking
situation, however, where, prior to introduction of the inter
lock into the code, there was a preceding prologue state P.
converted to the preproduced (i.e., pre-interlock-information
produced) state A by preproduction (i.e., pre-interlock-infor
mation-production) computation F, which in turn is converted
to pretransferred (i.e., pre-interlock-information-transferred)
state B by pretransfer computation R, which in turn is con
Verted to the epilogue state E by preconsumption (i.e., pre
interlock-information-consumption) computation G. We
have chosen to interlock A and B. After the introduction of the
interlock, we start in prologue state P, convert it to the pro
duced state A' by production computation F", where A is
related to A' by domain encoding relation d, convert A to the
transferred state B' by transfer computation R', where B is
related to B' by codomain encoding c, and convert B' to the
epilogue state E by consumption computation G'. (Production
of the interlock information brings it to a state in which it may
be used, and consumption of the interlock information uses
that information, and either functions normally if no tamper
ing interferes, or malfunctions iftampering interferes with its
operation.) The attacker has access only to the program after
the interlock has been inserted; i.e., the attacker can see only
states P. A. B", E and computations F", R'G'. The original
states A, B, computations F. R, G, the relationship d between
A and A', and the relationship c between B and B', have
disappeared in the final version of the program with the inter
lock installed. N.B.: The components of the installed inter
lock are the production F", the produced state A", the transfer
R", the transferred state B", and the consumption G'. The
corresponding components before installation of the inter
lock are named by adding the prefix "pre” to indicate that the
interlock installation modifications have not yet been made:
the preproduction F, the preproduced state A, the pretransfer
R, the pretransferred state B, and the preconsumption G. The
prologue state P and the epilogue state E are present both
before and after the interlock is installed.

(0189 F" is derived from F by output extension (OE). We
create an output extension of F: i.e., we modify F to compute
extra information J by output extension. We then encode AxJ;
i.e. we derive an encoding A'=(AXJ)', where the “” indicates
a modified or encoded entity. We then modify F to obtain
thus F" is an encoded version of an OEF of the original F.
(0190. R'::A'H'B' is derived from R::AHB by aggrega
tion. The original computation intervening between A and B,
namely R::AH) B, must be replaced by a computation which

US 2015/0074803 A1

takes us from A to B: First, we note that A=(AXJ)'. We choose
an MF (a computation) S::JH)K with the property that it loses
no information from J; i.e., that SOS is an identity function
(for an arbitrary MFM., it is quite possible that MoM is not
even a function, let alone an identity function) on J. So that
(SOS)(x)=x for any xe.J.
0191 Preserving Information. Functions which lose no
information are well known in computer arithmetic and in
finite rings and fields. For example, adding a constant closes
no information (the original can be recovered by Subtracting
c); exclusive-or with closes no information (the original can
be recovered by a second exclusive-or with c), multiplication
by a nonsingular (i.e., invertible) matrix over a finite field or
ring loses no information (the original vector is recovered by
multiplying by its inverse), application of a deeply nonlinear
bijective function to a vector, where the function is imple
mented according to the method described in The Solution:
Use Wide-Input Deeply Nonlinear Functions loses no infor
mation (the original vector is retrieved by applying the
inverse of that function derived as described in Inverting the
Constructed Deeply Nonlinear Function). A wide choice of
Such functions is available for anyone versed in the properties
of computer arithmetic and college algebra.
(0192 We define

and input-output-encode R, the intervening aggregation
(IA) of the interlock, where the information-preserving MFS
is constructed as noted above to preserve information, to
obtain

agg

G' is derived from G by reverse partial evaluation (RPE). We
create an RPE

of G. We then encode Grand BxK, where the encoding of
BXK is that chosen when we created R'. By encoding Ge,
we obtain

Thus G' is an encoded version of an RPEG of the original
G. N.B.: The actual interlocked computation is R. F. R. G. d,
d', r, r" and states A, B do not exist in the final implemen
tation; they are only used during construction of the interlock
production computation F", which transitions the state from P.
not modified by insertion of the interlock, to A', the state
which sets up the interlock dependency, the interlocked com
putation R', based on the non-interlocked computation R,
where R' is the computation which carries the interlock
dependency from state A' to state B", and the interlock epi
logue computation G', which transitions the state from B'
back to E, the interlock epilogue state, which is not modified
by the insertion of the interlock.
0193 2.4.2. Computational Structure of an Interlock.
0194 Let W be either a program or a routine within a
larger program, where W has the control-flow graph W=(N,
T) with start node (i.e., start BB) neN, and where N is the set
of BBs of W and T is the set of possible control-transfers in
any execution of W from the end of one BB of W to the start
of another BB of W.

0.195 (The correspondence between elements of the rela
tional and the computational views is shown in Table D).

Mar. 12, 2015

TABLED

Interlock Relational and Computational Views

Phase Relational View Computational View

Original Go Ric F::P) E W = (N, T)
interlocked Go Ric F"::P) E W = (N", T')
Pre- F::P). A BB set X = {x1,..., x}
production where F = BB x,

f U. . . Uf
f: Ph9 A

Pretransfer R::A) B V = BBs on paths between X
r: A H B, and Y (if any) (v, ... v.) path

(if nonempty)
between BBx, and BBy,

Pre- G::B). E BB set Y = y1,...,y,
consumption where G = BBy,

g1 U. . . Ug,
g: B, HE,

Production F'::P) A" BB set X = {x', ..., x'}
where F = BB x',
f U. . . Uf
f.: P. A.

Transfer R::A") B" V" = BBs on paths between X"
r: A'H'B', and Y (if any)

(v'v') path (if nonempty)
between BBx', and BBy,

Consumption G': B'h E BB set Y = {y',...,y'}
where G' = BBy,
g' U. . . Ug,
g: B.H. E.

(0196) Let BB set XC N (the preproduction BBs) dominate
BB set Yo N (the preconsumption BBs), with X?)Y=0,
X={x1,..., X,}, and Y={y,...,y,}, where

(0197) no acyclic path in W which begin with no has an
element of X in more than one position, and

(0198 no acyclic path in W which begin with no has an
element of Yin more than one position,

(0199 so that the BBs X are strict alternatives to one
another, and the BBs in Y are strict alternatives to one another.
0200 Let X, compute a relation f::P, H H A, for i=1,...,
m and lety, compute a relation g.::B, HE, for i=1,..., n. (In
practical insertion of interlocks, we will often have
|X=Y=1, but there are cases where it is useful to create
interlocks between larger sets of BBs.)
0201 On paths between the preproduction BBs in X and
the preconsumption BBs in Y lie the Zero or more pretransfer
BBs in V={v,..., V}. The intervening BBs in V compute
the pretransfer mf R::AH) B (and if V is empty, A-B and
R id). For any given X, eX, yeY, there is a set of paths p1, .

... peV, where each such path p has the form (V, V, V, .

.., V), and where
(0202) (X, V., V, V, ..., V, y) is a path in C,
(0203 (v., v. V.,..., v.i) computes an MFr C R where
R::A) B,

(0204 r-r, or oor, and
0205 V, computes r, for i=0, B, y, ... w, so that r is
computed Stepwise along with path (v. ..
would naturally expect.

0206. A possible path through these sets of BBs is shown
in FIG. 3, which shows a path through the BB sets, pre
interlocking (Post-interlocking, the path would be similar, but
instead of X. V.Y. X1, X2, Xs. . . . , X,. . . . , X, V, V. V.
vy, y-, y-, ...,y,...,y, the BB set and BB labels would
be X', V', Y', X1, X2, X's. . . . X', ..., X, v', Vp. v. ..., V r

y2 ya. . . .

.., V), as one

, y, y'.) FIG.3 shows a path through some Basic
Block sets, providing an alternative view of a computation
such as that in FIG. 2, where control flows through an initial

US 2015/0074803 A1

setup X (shown as the state P to the state A path in FIG. 2),
through an encoded or obfuscated computation V (shown as
the state A" to state B' path in FIG. 2), and finally through a
computation Y restoring normalcy (shown as the B' to Epath
in FIG. 2). In FIG. 3, we see control entering the interlock
region at BBX, whence control transfers to V., then V, then
V, then through some sequence of transfers not shown in the
figure, eventually reaching v, whence control transfers toy.
and then transfers out of the interlock region.
0207. We assume here that state information, as in the
prologue states P, ..., P., the preproduced States A,..., A.
the produced states A, ..., A', the pretransferred States B,
. . . , B, the transferred States B", B", and the epilogue
states E,..., E., includes program counter information; i.e.,
the current execution positions in the program is associated
with the state. Then, in terms of FIG. 2, we have P-PU. . .
UP, A AU. . . UA, Fif U. . . Ulf, B-B.U. . . UB,
G=g U. . . . Ug, and E-EU . . . UE,. The inclusion of
program counter information in the state information ensures
that, for reasonable mathematical interpretations of State
information as sets of mappings from location- and register
identified line-ups to their corresponding data contents (in
cluding a current program counter, i.e., the current execution
position), the unions are unambiguous.
0208. To create an interlock from BB set X to BB set to BB
set Y, we modify program or routine W. creating a program (or
routine) W, in which we modify the BBs of X, the BBs of V.
and the BBs of, and the BBs of Y of follows.
0209. There will generally be computations (called pre
transfer computations since transfer computations will be
injected into these BBs) performed by BBs V={v,..., V},
forming the BB set V, which intervene on paths lying between
X and Y. Corresponding to V, we create a set of transfer BBs
V" replacing those of V, which carry the information of the
output extension F" (the production) computed by X" (the
production BBs) to the RPEG' (the consumption) computed
by Y (the consumption BBs). That is, the BBs in V perform
the computation R in the unmodified program, and, with the
interlock installed, the BBs in V’s replacement set V" (the
transfer BBs) perform the computation R' (the transfer).
0210 For each BB XeX computing relation f.::P,) A,
modify it to become a BBX, computing a relation f::P, H2A,
where A,'-(A,XJ)', f, for and foe::A, h> A,XJ is an out
put extension of f.
0211 For each BB path (v. ..., V) intervening between
X, andy, in C(so that (X, V., V. V.,..., V, y) is a pathin C),
where (V, ..., V) computes Somer CR, modify the BBS in
V so that path is replaced by a new path (v. V.)
computing some ro R', where r"::A,'H'B', where A,'-(A,XJ)
'. B' (BXK), r'r', re: A,XJH) BXK, rers, l.
where the union of ther's is R, the union of risis R, the
union of the ss is S, and R. R. SI is the aggregation of
the original R with mf S as described in S2.4.1 above. Also as
noted above, r, and s is computed stepwise along the path
which is originally (v. ..., V) and finally is (v'a,v'w).
0212 For each BB yeY, computing relation g.:B, E,
modify it to become a BBy", computing a relation g ::B'xK
HYE, where B, BXK.g., gree, and gree::B;xKH) E, is an
output of g, with the property that, for every value xel output
by for the corresponding yeK provided as the right input to
a gree, makes gree,(, y) equivalent to g().
0213 Let us call the replacements for the X BBs X", the
replacements for the V BBS V', and the replacements for the
Y BB s Y". Then W contains X", V", and Y, whereas W

Mar. 12, 2015

contains XV, and Y. The above form of replacement of X by
X, V by V',Y by Y', converting W to W, is the installation of
the interlock we have created from the functionality of X to
the functionality of Y, which prevents tampering which would
break the dependent data link between A' and B'.
0214. In terms of FIG. 2, BBs X perform computation F,
BBSY perform computation G, BBs X' perform computation
F', BBSY' perform computation G', BBs V perform compu
tation R, and BBs V' perform computation R'.
(0215. During execution of W, when any yeY BB is
encountered, control has reachedy', by passing through some
x'eX' BB, since X dominates Y. When x, was executed, it
computed f, instead off, yielding some extra information
seJ which is encoded into A', Control reachesy, which com
putes g, via Some path (v1,..., v) computing R', which has
converted the extra information seJ to the extra information
teK which is encoded B', 'y', is an RPE which correctly com
putes g, only if this information reachesy, withouttampering
occurring to either X" or V".
0216. If the content t is modified due to tampering with
code or data by an attacker in X" or between a BB in X" and a
BB in Y', instead of computing an encoded version goe?(c, t),
yi computes an encoded version goe,(c, u) for Some value
uzt. This causes the G' computation to malfunction in one of
a variety of ways as described hereinafter. While we have
guaranteed in the original creation of the interlock that g',(c,
e) g(c), modulo encoding and RPE, if we have constructed
X and Y, BBs wisely, we almost certainly have g’,(c, t')zig,
(c) in effect, we have caused execution of y'eY to cause W
to malfunction as a result of tampering.
0217 2.4.3. Interlock OEs, IAS, and RPEs Benefit from
Diversity.
0218. In addition to the require forms of protections
described below, code modified according to the instant
invention to installan interlock benefits from diversity, either
in the modified interlock code itself, or in code in the vicinity
of code so modified, which makes the attacker's job much
harder by rendering internal behavior less repeatable or by
causing instances of an sbe to vary So that distinct instances
require separate attacks.
Diversity Occurs where

0219 (1) internal computations in, or in the vicinity of
an interlock vary among their executions where, in the
original SBE prior to modification according to the
instant invention, the corresponding computations
would not (dynamic diversity); or

0220 (2) among instances of the SBE, code and data in,
or in the vicinity of an interlock, varies where, among
instances of the original SBE prior to modification
according to the instant invention, the corresponding
pieces of code are identical (static diversity).

0221 2.4.4. Interlock RPEs Must be Essential.
(0222. In the above, we note that a modified y, BB com
putes a modified function g’,(c, e). We require that e be essen
tial in the evaluation of g. That is, we require that, for with
high probability, any change to the value e will cause g’, to
compute a different result. If this is not the case, then tamper
ing which modifies the value of extra informatione produced
by output extension into different information e' may well
leave the result produced by g, untouched.
0223) We must ensure that such insensitivity to the output
extension value is avoided, so that they', computation, g, is
highly sensitive to e, and, with respect to computing the

US 2015/0074803 A1

normal output ofg, the computation ofy, g, will malfunction
with high probability whenever any tampering affecting the
extra data input by g, occurs.
0224 2.4.5. Interlock OEs Must Be Integral.
0225. We can trivially output extend a routine implement
ing MF f:AH) B into a routine implementing function fA
H) BxE by having f" compute the same result as f, but with a
constant keE tacked on as an argument which is simply
ignored by the body of the routine. This is inappropriate for
interlocking. Even if the constant k is substantially used by
the body of the routine, the fact that it is a constant input
constitutes a weakness: the run-time constant values are eas
ily observed by an attacker, whose knowledge of Such con
stants provides an easy point of attack.
0226 Finding the constant is easy, since it is invariant, and
including in arbitrary X" code the production of Such a con
stant is also trivial. We want interlocks to be hard to remove,
So Such trivial output extension is disastrously inappropriate
for interlocking
0227. When we have a BB X which dominates a BB y,
where X computes fandy computes g. if we extend f as f" by
adding another constant output unaffected by the input (i.e., if
we modify the code of X into x', which produces, in addition
to its usual output, some constant value), then an attacker can
arbitrarily modify x into any arbitrary BB X" whatsoever, so
long as X" outputs the same constant as the original.
0228. A similar problem arises if we output extend an
implementation of MF f:AH) B into a routine computing
f:AH) BxE by having if compute the same result as f, but
with some result from an mf implementation g(a)->e where
aeA and eeE, where g uses a very limited part of the infor
mationina Such as depending on the value of a single variable
in the state a. This very limited dependence on the state aeA
provides a means whereby the attacker may focus an attack on
that very narrow portion of the computation, and by spoofing
the very small portion of the input which affects the result in
E, the attacker can remove the protection which would oth
erwise be provided by the interlock.
0229. Thus the same problem stated above for a constant
output extension applies similarly to a nonconstant output
extension, whenever the computation of the extra output from
the input is obvious. Anything obvious will be found by the
attacker and bypassed: precisely what we seek to avoid.
0230. Therefore, we must choose output extensions where
the extra output value is produced by computations integral to
the computation of the output extension f off computed by
the modified BB X' which replaces X. The more deeply we
embed the production of the extra value within the computa
tions off producing the original output of f, and the more
subcomputations modified by the production of the extra
value, the more integral to the computation off the produc
tion of the extra output becomes, and the harder it is for the
attacker to remove the interlock between x' and y'.
0231. The same consideration applies to the case where x

is replaced by a set of multiple BBs X and y is replaced by a
set of multiple BBs Y, where X dominates Y. The output
extensions must be integral to the computations of the modi
fied BBs in X: the more deeply and widely integral they are to
the computations in X, the better.
0232 2.4.6. Interlock OEs and RPEs Must be Obscure.
0233 Even if the RPEs are essential (see S2.4.4) and the
output extensions are integral (see S2.4.5), an interlock may
still be more susceptible to attack than we would wish unless
the output extensions and RPEs are also obscure.

Mar. 12, 2015

0234 Software can be rendered obscure by a variety of
techniques affecting various aspects of the code: see, for
example, 2, 3, 4, 5, 7, 9, 17, 18, 19, 20, 27. Use of some of
these techniques can also be used to make computation of the
extra output of an output extension integral to the original
computation: See, for example, 2, 3, 4, 5, 19.
0235. The employment of techniques such as the above in
creating output extensions and RPES for use in creation of
interlocks is part of the preferred embodiment of the instant
invention: especially, those techniques which, in addition,
can be used to make output extension computations produc
ing an extra value integral to the computation producing the
original output.
0236 2.4.7. Interlock OEs and RPEs Must Be Contextual.
0237 When we create interlocks using integral (S2.4.5),
obscure (S2.4.6) output extensions and essential (S2.4.4),
obscure (S2.4.6) RPE s, we should avoid a further possible
point of attack.
0238 If the code in such output extensions and RPE s is
obviously distinct from the original code which surrounds it
because different forms of computation, or unusual compu
tational patterns, are employed in them, then Such code is
effectively marked for easy discovery by an attacker, in some
what the same fashion that the vapor trail of a jet fighter
advertises the presence of that aircraft—certainly not a desir
able thing to do.
0239. Therefore, it is important to choose methods of inte
grating and obscuring computations, and of rendering com
putations essential, which are contextual: that is, they must be
chosen to resemble the computations which would otherwise
occur in the context of such code sites if the interlocks were
not added.

0240 Suppose we want to hide a purple duck in a flock of
white ducks. Three exemplary ways to make a purple duck
resemble the white ducks making up the remainder of its flock
are: (1) color the purple duck white; (2) color the white ducks
purple; or (3) color all of the ducks green.
0241 Analogously, when we obscure, integrate, or render
essential, the output extensions and RPEs we introduce to
create interlocks, we can make the resulting code less distinc
tive in three ways: (1) by choosing modifications which pro
duce code patterns which look very much like the surround
ing code; (2) by modifying other code to resemble the injected
output extension or RPE code (e.g., if Surrounding code is
also obscured using similar techniques, then obscured output
extensions and RPEs will not stand out); or (3) by modifying
both the code in the original context into which we inject the
output extension or RPE code, and the injected output exten
sion or RPE code, to have the same code pattern. That is, we
can inject code resembling code in the context in which it is
injected, or we can modify the code in the context of the
injection to resemble the injection, or we can modify both the
context and the injection into Some pattern not inherent to
either the context or the injections.
0242. Either one, or a mixture, of the above three tech
niques must be employed to hide interlock output extensions
and RPES. Such hiding by making Such output extensions and
RPEs contextual is part of the preferred embodiment of the
instant invention. Our preferred embodiment uses method
(3): i.e., our preference is to cause the original code at a site
and any injected code for an OE, aggregation, or RPE,
resemble one another by making them similar to one another,
using the methods described below.

US 2015/0074803 A1

0243 2.4.8. Interlock IAS Must be Obscure and Contex
tual.
(0244. An intervening aggregation R::AXJ->BxK
should not compromise the security of the interlock. This can
beachieved two ways

(0245] We may define J-K and R. R. id), so that the
code for R is identical to the code for R (since the
extra information produced by output extension is left
completely unmodified). In that case, the encoded out
put extension (OE) F" produces extra information
ignored by R', the encoding of R and subsequently
used, unmodified, by the encoded RPEG'.

0246 This is often sufficient, and introduces no extra over
head for R'.

(0247. Or, we may define R. R. SI for nontrivial MF
S:J)K, where we need not have J=K. In that case, once
R is encoded as R', the extra functionality of S must be
introduced in a fashion which is obscure (i.e. difficult to
reverse engineer) and contextual (i.e., resembling its
Surrounding code).

0248. This introduces extra overhead for the added func
tionality of S and its encoding, but increases the difficulty for
the attacker of reverse-engineering and disabling the inter
lock.
0249 2.5. BA Algebras and MBA Identities.
0250 Generation of obscure and tamper-resistant soft
ware requires the use of algebraic identities, as seen to vary
ing extents in all of 2, 4, 5, 7, 8, 9, 17, 18, 19, 20, 23, 24, 27.
0251 However, the unusually stringent requirements
which interlocking requires—namely, the need for essential
RPEs (S2.4.4), integral OEs (S2.4.5), obscure OEs, IAS, and
RPEs (S2.4.6 and S2.4.8), and contextual OEs, IAS, and RPEs
(S2.4.7 and S2.4.8)—requires a more powerful method than
naively searching for identities over particular algebraic
structures and collecting a list of Such identities. Identities of
Substantial complexity will be required in very large num
bers, well beyond what can be provided by use of any or all of
the identities found in the above-cited documents, however
useful those identities may be in the context of use indicated
in those documents.
0252. The first requirement, then, for the generation of
effective interlocks is that the process of identity-generation
be automated and capable of producing an effectively unlim
ited supply of identities.
0253) The second requirement is the following. Since
interlocks are targeted at tying together very specific parts of
the code, without a need for modifying large portions of a
containing program, it is essential that use of the identities
must generate code which is difficult to analyze. MBA
expressions, which combine two very different algebraic
structures, are ideal in this regard, because they are
0254 (1) compact in representation, since they are directly
supported by hardware instructions provided on virtually all
modern general-purpose binary digital computers, rather than
requiring expansion into more elementary expressions or
calls to a routine library, and
0255 (2) difficult to analyze using symbolic mathematics
tools such as MathematicaTM, Matlab'TM, or MapleTM, due to
the combination of two profoundly different domains (integer
computer arithmetic modulo the machine-word modulus,
typically 2 or 2, and the Booleanalgebra of bitwise opera
tions on Boolean vectors, typically 32 or 64bits long).
0256 In part, the reason that such expressions are hard to
analyze is that simple expressions in one of the two algebraic

Mar. 12, 2015

structures become complex expressions in the other of the
two algebraic structures. The table on page 4 of 20 shows
that the form of an expression becomes considerably more
complex for a Z/(2) encoding of simple operations over (B"
A.V.). A consideration of the formula for the Z/(2) “.”
(multiply) operation in terms of elementary Boolean opera
tions of (B'A.V. 1) shows that what is elementary in Z/(2")
becomes highly complex in (B' W.V. 1) and cannot be much
further simplified by using (B' W.V. 1) instead. The above
mentioned symbolic analysis packages deal with the usual
case of a single domain quite well, but are not adequate to
deobfuscate MBA expressions over BAn (i.e., to simplify
expressions obfuscated using MBA expression identities into
their original, unobfuscated forms).
0257 We will now teach methods for obtaining an effec
tively unlimited supply of MBA identities. Aside from the
many other benefits of such identities, they provide a power
ful source for static diversity (see S2.4.3) when we vary the
selections among Such identities randomly among generated
instances of SBEs.
0258 2.5.1. Converting Bitwise Expressions to Linear
MBAS.
0259 Suppose we have a bitwise expression—an expres
sion E over (BA.V. 1)—using t variables Xo, X, .
(For the truth table shown in Table C, t-3 and variables X, X,
x are just variables x, y, Z.) Then the truth table for any
bit-position within the vectors is a truth table for the same
expression, but taking X ..., X, to be vectors of length one,
since in bitwise operations, the bits are independent: the same
truth table applies independently at each bit position, so we
only need a truth table for single-bit variables. The truth table
has 2 distinct entries in its Conjunction column, 2 distinct
entries in its Binary column, and 2 corresponding result-bits
in its Results column (see Table C for an example). We can
identify this column of with a 2x1 matrix (a matrix with 2
rows and 1 column; i.e., a column vector of length 2').
0260 We now provide a rather bizarre method, based on
the peculiarities of computer arithmetic (i.e., based on the
properties of BAn where n is the computer word size) for
generating an alternative representation of bitwise expression

X-1.

E as an imba expression of the variables Xo, . . . , X, over
BAn.

0261 (1) Summarize E by a column vector P of 2
entries (that is, a 2x1 matrix) representing the contents
of the Results column of E's truth table, and also by a
column vector S-So S. . . . S-1', where S stands for
symbolic since it contains the symbolic expressions So S
... S-1, and column vector S is precisely the contents of
the Conjunction column of Es truth table.

0262 (2) Obtain an arbitrary 2x2 matrix A with entries
chosen from B={0,1} which is invertible over the field
Z/(2). (For example, generate Zero-one matrices ran
domly until one is obtained which in invertible.)

0263 (3) If there is any column C of A for which C=P add
a randomly-selected linear combination of the other columns
of A (with at least one nonzero coefficient) to column C to
obtain a new invertible matrix A in which column CzP. We
now have an invertible matrix A with no column equal to P.

0264 (4) Since A is invertible over Z/(2), A is invertible
over Z/(2") (with the word length of the elements
increased as previously described in S2.3.2 under the
sub-heading Presence and Absence of Multiplicative
Inverses and Inverse Matricies). Therefore the matrix
equation AV-P has a unique solution over Z/(2') which

US 2015/0074803 A1

can be found using Gaussian elimination or the like.
Solve AV=P for V. obtaining a column vector of 2 con
stants U over Z/(2"), where the solution is V=U and
U-uou... ul-li', say.

10265 (5) Then, over BA|n), we have E-X, ou, s, so
that we may substitute the MBA-expression sum on the
right for the bitwise expression E on the left. Hence for
any sequence of bitwise instructions computing E on a
machine with word-length n, we may substitute a mixed
sequence of bitwise and arithmetic instructions comput
ing 2, ou, S.

0266 (6) We can optionally make many additional deri
Vations as follows.

0267 From the equations 2, ou, s, above, we may
derive many other identities by the usual algebraic methods
Such as changing the sign of a term and moving it to the
opposite side, or any other such method well-known in the art.
Note also that if we derive, for any such sum, that 2, ou,
s, 0 over BALn), then if we derive a series of such sums, for
the same or different sets of variables, then since the sums are
equal to Zero, so is the Sum of any number of those indepen
dently derived sums.
0268. This further leads to the conclusion that multiplying

all of the coefficients (where E's coefficient is one and the
remaining coefficients are the us) by a constant yields
another Zero sum, for which yet further valid identities can
easily be derived.
0269. For example, suppose E-XVy so that t=2. Es truth
table is P-0111; i.e., XVy=0 only for the case x=0, y=0.
Let us take the word-length to be n=32 (which the algorithm
largely ignores: the machine word-length plays almost no role
in it).
0270. A may be an arbitrary invertible matrix over Z/(2)
with no column equal to P. So to keep the example simple, we
choose

1 O O O

O 1 O O
A =

0 0 1 0

O O O 1

i.e., the 4x4 identity matrix over Z/(2). Taking A's elements as
32-bit binary numbers over Z/(2'), the equation AV-P has a
unique solution U over Z/(2), and since A is the identity
matrix, the solution happens to be U-10111": i.e., in this very
simple case U-P.
0271 We have S=xAy xAy X Wy X Wy', so over
BA32, we have

=X iii.S.

= (X A y) + (x Ay) + (x A y)

Therefore, for an instruction sequence (normally a single
instruction) computing XVy, we may freely substitute an
instruction sequence computing.

16
Mar. 12, 2015

(0272 2.5.2. Deriving MBA Identities from Linearly
Dependent Truth-Tables.
(0273. In S2.5.1 above, for a bitwise expression E of t
variables, we used a corresponding truth-table bit-vector P of
length 2.
(0274) Now suppose for a given set X={Xo. X1, ..., X, of
variables we have a series bitwise expressions e. . . . , e, all
employing the same set X of t variables, so that e, has the
truth-table zero-one vector P, for i=1,..., k and further
suppose that{P, ..., P} is a linearly dependent set of vectors
over Z/(2") for some keN; i.e., that there are coefficients a .
. . . a over Z/(2"):-not all of the coefficients are Zero and
X, a P=0 0 Ol' over Z/(2").
(0275. The we also haveX, a, e-0 over BA|n). From this
equation, we may derive many other identities by the usual
algebraic methods such as changing the sign of a term and
moving it to the opposite side, or any other such method
well-known in the art. Note that also if we derive, for any such
sum, that X, “a, e, 0 over BAn), then if we derive a series of
such sums, for the same or different sets of variables, then
since the Sums are equal to Zero, so is the Sum of any number
of those independently derived sums.
0276. This further leads to the conclusion that multiplying
all of the as by a constant yields another Sum; i.e., for any
constant c in BAn), if we have X, ae, 0, we also have
cX., “a,e, X, “(ca.)e, 0, so by means of multiplying all
coefficients by a scalar, we can yet further extend the above
derivations for identities.
0277 As an example, consider the expressions
e=X, e, y, e, XVy, e = (xAy, es=1 where 1 denotes a
constant in which every bit-position is a 1 (a constant expres
sion, which could be expressed in C, C++, or JavaTM as -1 or
-0). Their corresponding truth tables are, respectively, P=0
0 1 1, P=0 1 0 1", P=0 1 11, P-11 1 0, and Ps=1
1 1 1, k=5 is the number of expressions, and where t-2
variables in these expressions so that the truth-table vectors
have length 2-4
(0278 If we choose coefficients (a ..., as)=(1,1,–1, 1,
-1), we find that X, a Pi—P+P-P+P-P=00 O', so
that P, ..., Ps are linearly dependent.
Thus we derive that, over BALns

since 1 is equivalent to -1 under a signed 2's complement
interpretation. With trivial algebraic manipulation, we then
easily derive, for example, that

so that we may freely substitute a code sequence computing
the left side expression above for a use of the constant 1. Or
we can multiply any integral value by the left side expression
above without changing it, no matter what the values of X and
yare.
0279 2.5.3. BAIn 2's Complement and Unsigned Com
parative Properties.
0280 Certain properties applying to 2's complement
arithmetic and comparisons on signed and unsigned quanti
ties with representation as elements of B' in the algebraic
structure BAn of computer arithmetic on n-bit words are
crucial for generating effective interlocks. We list them here.

US 2015/0074803 A1

0281 (1)-x-x--1 (so that x=-X-1).
0282 (2) 1 x=0 iff (-(XV (-x))-1<0 (using signed com
parison). This converts a test on all the bits to a test which only
needs the high-order bit in 2's complement computation.
0283 Since, in BAn, there is only one Zero, whether we

treat its elements as signed or unsigned, the above formula
applies whether or not we are interpreting X itself as signed.
(We can generally force signed computation; e.g., in C or C++
we can cast an unsigned quantity X into signed form. At the
machine code level, operands have no types, and we can force
signed computation by the choice of instructions used.)
0284. Once we isolate the Boolean result in a single bit of
the computed result r, we can easily manipulate it in other
Ways. E.g.,

ris-(n-1),

0285 where">'' is the right-shift operator as in C or C++,
replicates the Boolean result into all n bits of a word if the shift
is signed and converts it to the value 1 for true or 0 for false,
if the shift is unsigned.
0286 Since Xz0 iff (x=0) is false, the above properties can
be used to convert = and z comparisons over BAn into any
desired representation of their Boolean results.
0287. Typically, we would choose either the representa
tion true—00 01 and false=00 00 (where the Boolean
value is in the low-order bit and the other bits are Zero), or the
representation true=11 11 and false=00 00 (where the
Boolean value is represented in all of the bits).
0288 Let us call the former the one-bit Boolean represen
tation, and the latter the all-bit Boolean representation.
0289 (3) 2 x-y (signed or unsigned) if X-y=0 the dif
ference can be tested using the identity of (2) above.
0290. When xy, then x Vy=x Wy=x y, x-y=X6Dy=0, X
Vy=xeBy=1 (signed or unsigned)=-1 (signed), x Vy+1=xeD
y+1=0 (signed or unsigned), XVy+2=xeBy--2=1 (signed or
unsigned), and similarly, for any k, x Vy+k=X€Dyk-k-1
(signed or unsigned).
0291 (Many other such identities involving x and y are
easily derived by simple algebraic manipulation, or by com
bination with the identities disclosed or quoted in S2.5.3 or
those found by the methods given in S2.5.1 and S2.5.2. or
disclosed in 2, 4, 5, 20, or found in the extension of 20
given in S2.7.7, or described below in S2.5.4, all evident to
those skilled in the art of such derivations.)
0292 (4) 3 From Hacker's Delight 28): x<y (signed) iff
((XVy) W (((xety)) W(x-y)))<0 (signed). As above, this iso
lates the Boolean 1 (true) or 0 (false) outcome in the high
order bit of the result of the right-side computation

0293 (call it r), from whence we can convert it into any
desired Boolean representation. In addition,

0294 yox (signed) if x<y (signed)
0295) x>y (signed) if x<y (signed) is false, and
0296 ysX (signed) if xy (signed)

so the above formula permits us to convert the full range of
signed inequality operations over BAn into any desired
representation of their Boolean results, as noted in (2) above.
0297 (5) 4 From Hacker's Delight|28): x<y (usigned) iff
((xAy)V(xWy)) W(x-y)))<0 (signed). As above, this iso
lates the Boolean 1 (true) or 0 (false) outcome in the high
order bit of the result of the right-side computation

Mar. 12, 2015

(call it r), from whence we can convert it into any desired
Boolean representation. In addition,

0298 yox (signed) if x<y (unsigned)
0299 Xay (signed) if x<y (unsigned) is false, and
0300 ysX (signed) if Xay (unsigned)

so the above formula permits us to convert the full range of
signed inequality operations over BAn into any desired
representation of their Boolean results, as noted in (2) above.
0301 2.5.4. Combining Boolean Conditions.
0302 As noted in S2.5.3 above, we can obtain the results
of individual comparisons in Boolean form within BA n.
with false represented by a sequence of n 0-bits, and with true
represented by either a sequence of n-10-bits followed by a
single 1-bit (the one-bit Boolean representation) or by a
sequence of n 1-bits (the all-bit Boolean representation).
0303 We can convert the one-bit representation to the
all-bits representation by signed arithmetic negation (since
the 2s complement representations of 0 and -1 are 00 00
and 11 11, respectively), and we can convert the all-bits
representation to the one-bit representation by unsigned
right-shifting the value n-1 positions, where n is the word
size. I?

TABLE E

Computing With Boolean Representations

Logical Operator One-Bit Representation All-Bits Representation

W (and) bitwise A bitwise W
V(inclusive or) bitwise V bitwise V
€D (exclusive or) bitwise (D bitwise (D

(not) bitwise O see O1 (B bitwise

0304 We can combine such Boolean values to produce
new Boolean values in the same representation, as shown in
Table E above. Note that, except for one special case, the
BAnrepresentation of a logical operation is the correspond
ing bitwise operation. The single exception is that, in the
one-bit Boolean representation, we compute x=x as 00
016DX, which only inverts the low-order bit.
(0305 2.5.5. Finding Multiplicative Inverses in Z/(2") and
GF (2”).
0306 We often need to find the multiplicative inverse of an
element of Z/(2") or GF (2") in order to build matrices, linear
identities, encodings, and obfuscations, according to 17, 18,
20, and the like.
(0307. This can be done efficiently for a number in Z/(2) in
O(log n)) steps using a small, efficient algorithm: the
extended Euclidean algorithm 10, 22.
0308 Representing the function computed by this algo
rithm as E, we have, fora, beN withaab, that E(a,b)=(x, y, d)
where d is the greatest common divisor of a and b and
ax+by d in ordinary integer arithmetic (rather than over some
finite ring or other finite algebraic structure).
0309 Therefore, to find the multiplicative inverse of some
odd number b in Z/(2"), we compute E(2", b)=(x,b', 1). We
ignore X, b is the desired multiplicative inverse of b in
Z/(2”).
0310. Of course, once we have b', we know b for k>1
because b=(b).
0311 Similarly, for an element of GF (2), we can effi
ciently find a multiplicative inverse of an element of GF (2")
using the polynomial version of the extended Euclidean algo
rithm 11, whose computations are performed in the infinite
ring of polynomials over GF(2) rather than in GF(2"), which

US 2015/0074803 A1

finds an inverse in O(n) steps. Representing the function
computed by this algorithm as E', we have, for elements a,
beGF(2"), with the degree of a greater than that of b, that E(a,
b)=(x, y, d) where d is the greatest common divisor of a and b
and ax+by-dover GF(2"), where a, b, x, y, dare polynomials
in GF(2").
0312 Then letting Ibe the irreducible polynomial over GF
(2) used in the chosen representation of GF (2'), if b is the
polynomial 1, its inverse is itself. Otherwise, b is a polyno
mial of degree one or more, and to find its inverse, we com
pute E(I, b)=(x, b, 1). We discard X. b is the desired
multiplicative inverse.
0313. Of course, once we have b-1, we know b-kfor k>1
because b-k=(b-1)k, where the exponentiation is performed
in GF (2").
0314 2.5.6. Generality of MBAs.
0315. Any expression built up from integer-valued vari
ables by using integer addition, Subtraction, multiplication,
and exponentiation can be converted into an MBA expres
S1O.

0316. This follows immediately from the fact that any
variable can be represented as an additive equivalent; i.e., any
value V can be represented as a sum of values V+ +V for
some choice of v,..., V. Indeed, if we fix all but V, in the list
V. . . . , V, we can still produce the desired sum V by
appropriately choosing the unfixed V, of V. . . . , V, where
ke2.
0317 Thus we can readily substitute MBA expressions for
any of, or all of the above-mentioned fixed values V.
V. V. . . . , V, converting the variables into an MBA
expression of its additive equivalent V. V.
0318. Then for an arbitrary expression of na 1 variables a,
b, ..., V, ... Z, built up from those variables by using addition,
Subtraction, multiplication, and exponentiation, by Substitut
ing the additive partitions of the variables for the original
variables in the expression, we obtain an MBA expression
whose value is the same as the original expression.
0319. In addition to the above method, we can of course
opportunistically Substitute Subexpressions by employing the
unlimited Supply of MBA identities generated according to
the methods taught in S2.5.1 and S2.5.2. The combination of
these methods provides a powerful method for converting
arbitrary algebraic expressions of variables into MBA expres
S1O.S.

0320 2.6. Hiding Static and Dynamic Constant Values.
0321) A constant value may be a static constant (one hav
ing a value fixed at the time when the Software employing it is
compiled) or a dynamic (i.e., relative or temporary) constant
(one which is not available when the software using it is
compiled, but is not changed after it is first computed in the
Scope of the computational values it is intended to Support, so
that it is relatively constant, temporarily constant or con
stant over a dynamically occurring temporary interval of
time). An example of a dynamic/relative/temporary constant
might be a randomly chosen cryptographic session key,
which is used for a particular set of communications over a
limited period of time. Use of Such session keys is typical in
connection with public key cryptography, because public key
cipher systems such as the RSA public key cryptosystem, or
an elliptic curve public key cryptosystem, encrypt and
decrypt slowly compared to symmetric key ciphers such as
AES. Hence RSA is used to establish a session key, and then
the session key is used to handle the rest of the information
transfer occurring during the session.

Mar. 12, 2015

0322 We first consider the method of hiding static and
dynamic constants in its most general form, and then relate
that form to methods of obfuscation and tamper-proofing
included by reference and their extensions disclosed herein,
and to further methods of obfuscation and tamper-proofing
disclosed herein. Finally, we consider a method in which the
constants used in hiding constants are themselves dynamic
constants, so that different executions of the same program, or
Successive executions of the same part of a program making
use of transitory hidden constants, vary dynamically among
one another.

0323. The General Method.
0324 Suppose we have a system of equations (not neces
sarily linear) of the form

y1 = f(x1, x2, ... , Xn)
y2 = f(x1, x2, ... , Xn)

yn = f(x1, x2, ... , Xm),

or equivalently, with X=(x1, . . . , X), y=(y. . . . , y) and
f=<f. f>, we have y=f(x) where f is an nxm vector
function over BALn (typically, over BA32 or BA64). Sup
pose that f is efficiently computable on an ordinary digital
computer.
0325 If there is a specific index i, where 1 sism, and a
function g for which X, g(y) g(y1,...,y), where g is also
efficiently computable on an ordinary digital computer, then
we can use f as a means for hiding the static or dynamic
constant c X.
0326 Our method is to choose constants possibly
dynamic/relative/temporary—, where c-X, is the constant to
be hidden. Where feasible, we perform constant folding on
the computations in f a form of PE (see S2.3.3)—which
causes the distinguished constant c X, and the obfuscating
constants X1, . . . , X-1, X1, . . . , X, to be replaced by a
combination of computations and new constants. When we
have need for c, instead of fetching c, we replace a fetch of c
by a computation of g(y) g(y1,..., y).
0327 Of course, when hiding a dynamic constant, little
constant folding occurs because many Subexpressions will
have values unknown at the time when the constants are being
hidden, so that the relationship among vector X, the dynamic
constant y, function conglomeration f, and function g, is
partly symbolic until runtime, which means that the formulas
installed in the running program involve employing the actual
dynamic values, provided to the computation by variables,
rather than by static constants.
0328 Protecting Code in the Neighborhood of Access to
Hidden Constants.

0329. To complete the process, we then encode the code
which uses the constant, and in the immediate vicinity of that
code, by the methods of 2, 4, 5, 9, 17, 18, 19, 20, or the
extensions of those methods provided herein (see S2.7 and
S2.8), or by using the identities found using the methods of
S2.5.1 or $2.5.2. or the identities disclosed or quoted in S2.5.
3, or disclosed in S2.5.4, or by employing the methods of 20
extended with the new nonlinear forms of encoding described
in S2.7.7, or by any combination of the above.

US 2015/0074803 A1

0330 By means of the among-SBE-instances random
variations among chosen identities taught at the end of the
introduction of S2.5.1, we may add static diversity to such
protections.
0331 A Simple Example. If m=n and y=f(x) is defined by
an affine matrix-based function y=Mx+d where M is an nxn
matrix over Z/(2), y is a column vector. X is column vector,
and d is constant displacement column vector, and if M is
invertible (i.e., has an odd determinant), then we can deter
mine, for any choice of X1, ..., X, a formula for any i in the
range 1 sisn, by means of which we can determine X from y.
Therefore, by eliminating any unneeded computation, we can
derive a function c-X, g(y. . . . , y) which includes only
those computations needed to find c-X, omitting any com
putations needed only to find X. . . . , X_1, X1, . . . , X, by
derivingg from the larger computation of the inverse function
defined by X-My-M'd, which is itself an affine matrix
based function of the same form as the original function, but
with a different matrix, M', and a different constant dis
placement column vector-M' d.
0332 Many other kinds of nxm vector function f and
constant extraction functions g can be found by using the
identities disclosed in 2, 4, 5, 20, or disclosed or quoted in
S2.5.3 or disclosed in S2.5.4, or identities found using the
methods of $2.5.1 or $2.5.2. or identities found by applying
the inverses provided by the mappings in 20 or their exten
sion by means of the additional nonlinear mapping in S2.7.7,
or by any combination of the above, as would be evident to
persons versed in the art of algebraic manipulation. Only
straightforward derivations, readily performed by beginning
college-level students of modular integer rings, and therefore
readily automatable as manipulations performed by computer
programs, need to be considered—this provided a huge vari
ety of choices, more than Sufficient to provide adequate
obfuscation. N.B.: The mathematical domain off=<f,...,
J.C. and of g is irrelevant to the intended mathematical
domain of the constant c to be extracted by g. As an example,
the matrix method given above could employ a matrix over
the infinite ring of integers, and nevertheless return a value
interpreted as a bit-string representing a polynomial over GF
(2), with the bits of the constant representing the coefficients
of the polynomial. N.B.: Constant values of any size can be
accommodated by generating the constants in segments,
where each segment has a size convenient for the target plat
form of the software to be protected. For example, a matrix
constant can be generated by using the above method sepa
rately, once per matrix element.
0333
0334. In A Simple Example above, the functions f and g
are affine over Z/(2). We note that a solution g of a system of
equations given by f is trivially found (by ignoring outputs)
from f', as would be obvious to those versed in college
algebra.
0335 Thus we may employ a deeply nonlinear function f
constructed according to the method disclosed in The Solu
tion: Use Wide-Input Deeply Nonlinear Functions below
construct both f and an if derived according to the method
disclosed in Inverting the Constructed Deeply Nonlinear
Function; below: given f', g is then found by ignoring some
off's outputs.
0336 When this approach is used, we may wish to employ
anf, and hence anif' and ag, with encoded input and output

Greater Sophistication and Higher Security.

Mar. 12, 2015

elements. If so, we recommend that they be encoded employ
ing the approach proposed in An Alternative to Substitution
Boxes below.
0337 Adding Dynamic Randomness.
0338. The constant X=(x1,..., x) of The General Method
can be dynamic constants. That means that the solution func
tion g for retrieving c-X, given y=(y. . . . , y) will use
symbolic, general Solutions which are applied in a concrete,
specific case by Substituting the concrete values of X.
X_1, X1, . . . , X, for the variables holding those dynamic
constants. As a result, constant folding will achieve less opti
mization. However, the method remains valid.
0339. To obtain the dynamic constants x, we employ the
method disclosed in S2.10.7, thereby adding dynamic diver
sity (see S2.4.3).
0340 2.7. Methods and Systems Incorporated by Refer
ence and Extended Herein.
0341 We hereby incorporate by reference in this applica
tion the methods and systems all assigned to Cloakware
Corporation, Ottawa, Canada, as of Jul.18, 2006 of U.S. Pat.
No. 6,594,7612, U.S. Pat. No. 6,779,1143, U.S. Pat. No.
6,842,862 (4), U.S. patent application Ser. No. 10/478,678
5, U.S. patent application Ser. No. 10/257,333 16, U.S.
patent application Ser. Nos. 10/433,966 17 and 11/020,313
18), and U.S. patent application Ser. No. 11/039,817 20 in
their entirety for the purpose of improving them.
0342 (These patents and applications, and the patents
whose enhancements are described in S2.8).
0343 For use in interlocking, we recommend fortifying
the methods and systems of the above, since the focused,
targeted usages of these methods in interlocking require a
maximum of protective power. Accordingly, we disclose
below methods for strengthening the above-included meth
ods and systems.
0344 Among other things, we employ the above forms of
protection, and their extensions taught below, in establishing
the required properties of obscurity and contextuality in inter
lock components, as taught in S2.9.2.
0345 The methods and systems of 2, 3, 4, 5, 16, 17, 18,
20 all depend on provided entropy (effectively random infor
mation input seeding a stream of pseudo-random values on
which encoding and protection decisions made in applying
these methods and systems are based). Hence they all provide
high degrees of static diversity: each new use of these meth
ods and systems normally produces distinct results, thereby
making the attacker's job more difficult since the attacks on
instances of a given original unprotected SBE modified into a
protected SBE using the above methods and systems must
vary on a per-generated-instance basis.
0346. In addition, wherever the extensions taught in the
following subsections employ MBA identities discoverable
by the means taught in S2.5, by among-sbe-instances varia
tions in the identities employed, we can add static diversity to
their protections, as noted at the end of the introduction of
S2.5.
(0347 2.7.1. Adding New Encodings to U.S. Pat. Nos.
6,594,761 and 6,842,862.
(0348 U.S. Pat. No. 6,594,761 (2) contemplates data
encodings of many different kinds including one-dimen
sional (one scalar variable at a time) and multi-dimensional
(more than one variable at a time) linear and polynomial
encodings over the integer ring or approximated over the
floating point numbers, residue encodings based on the
modular decomposition of integers according to the Chinese

US 2015/0074803 A1

remainder theorem, bit-exploded encodings, and table
lookup encodings. us divisional U.S. Pat. No. 6,842,862 4
and U.S. patent application Ser. No. 10/478,678 5 add to
these encodings in which one variable's encoding depends on
anothers, or in which several variables are encoded so that
the representation of each varies with the representation of the
others, and the organization of many such encodings into
related systems of equations in order to coordinate the encod
ings of many different pieces of data, thereby inducing
aggressive fragility under tampering attacks. In general, the
combination of these patents and applications provides a
system by means of which we can take much of the compu
tation in a program, and, with respect to FIG. 1, restricting all
of d, d", c, c', R, R to be functions, we replace plain
computations over a region of a program with encoded ones
such that

0349 each datum is encoded, whether stored, con
Sumed as an input, or produced as an output, and

0350 computations are also encoded, computing from
encoded inputs to encoded outputs without ever produc
ing a plain value at any point, excepting only the bound
ary of the region, where data entering the boundary are
consumed in plain form and plain results are produced.
That is, everywhere within a region except at its periph
ery, computation corresponds to the bottom line of FIG.
1, where only encoded data and values are visible to the
attacker. Moreover, due to the coordinated systems of
encoding disclosed in 4. Such computations are inter
dependent and aggressively fragile under tampering, so
that any goal-directed purpose motivating an attacker to
tamper with the software so protected is most unlikely to
be achieved.

0351. The residue, bit-exploded, bit-imploded, custom
base, and bit-tabulated encodings of 2 and 4 can have
significant overheads. By adding encodings based on the
finite ring Z/(2"), where n is the target computer word size in
bits, we can reduce the overhead and strengthen the security
by employing the linear ring encodings of 20 and their
polynomial extension to quadratic, cubic, and quartic poly
nomials with quadratic, cubic, and quartic polynomial
inverses, as disclosed herein in S2.7.7.
0352 Moreover, we can further strengthen the existing
encodings of patents 2 and 4 by pre- and/or post-modify
ing the encodings employing Substitutions according to the
identities disclosed or quoted herein in S2.5.3, or disclosed in
S2.5.4, or discovered by employing the methods given herein
in S2.5.1 and S2.5.2, thereby rendering these encodings inca
pable of analysis using tools such as MathematicatM, Mat
labM, or MapleTM, due to the simultaneous use of multiple,
profoundly different mathematical domains within computa
tions.
0353 2.7.2. Adding New Celland Address Codings to Ser.
No. 10/257,333.
0354. The method of us patent application Ser. No.
10/257,33316), which describes a method and system for the
protection of mass data (arrays, I/O buffers and message
buffers, sizable data structures, and the like), requires the use
memory divided into cells, where the cells are addressed by
transformed cell numbers rather than the indices or offsets
which would have been used to access the data prior to encod
ing according to 16, and requires that data be fetched from,
and stored into, the cells in a transformed form.
0355. As a result, it makes considerable use of transfor
mations. One of the kinds of transformations suggested in

20
Mar. 12, 2015

16 is the point-wise linear partitioned bijection (PLPB)
described therein. We note that the encoding of 20 is a
special case of a high-speed, compactly implementable
PLPB. (20 discloses much additional inventive material,
Such as methods for employing Such encodings without any
use of the auxiliary tables contemplated for PLPBs in 16.)
0356. To maximize the protection afforded by the methods
of 16, we therefore recommend their augmentation by the
use of the encodings of 20, as extended herein in S2.7.7, for
use as the encodings of some or all of the cells and addresses
contemplated in 16. We further recommend that some or all
of the fetches from cells, stores into cells, and re-codings of
data contemplated by 16 be further protected by applying
identities disclosed or quoted in S2.5.3, those disclosed in
S2.5.4, or discovered by the means disclosed in S2.5.1, in
2.5.2, and in S2.5.4, to render it impossible for automated
algebraic analysis tools not to penetrate Such encodings effi
ciently.
0357 2.7.3. Protecting Dispatch Constants and Tables in
U.S. Pat. No. 6,779,114.
0358. A method and system are disclosed in U.S. Pat. No.
6,779,1143 whereby the control flow of a program may be
restructured into a form in which local transfers of control are
realized by means of multi-way branches with indexed con
trol (as in the switch statement of FIG. 4(b). Indexed control
is performed by data values, and the information needed to
store all the requisite data values is stored in a master table, or
split into multiple tables, as disclosed in 3 column 32, start
ing at line 15.
0359. This table, or these tables, will be far more secure if
both their contents and the indices used to address them are
encoded. We recommend the employment of the mass data
methods of 16 for this purpose, with each cell being a table
element, with the addition of the proposed extensions to 16
disclosed above in S2.7.2 to render Such encodings pro
foundly difficult to analyze by the employment of algebraic
analysis tools. Alternatively, the tables can employ the array
protections of 9 with the improvements disclosed herein in
S2.8.1, or, if the program to be protected is rich in looping—
express or implied—the array protections of 27.
0360 Moreover, software code protected according to the
method and system of 3 makes considerable use of con
stants in dispatching. Such constants, as they appear Subse
quent to encoding, can be hidden by means of the method
disclosed herein in S2.6, further protecting the software
against deobfuscation or effective tampering by an attacker.
0361 Finally, determination of dispatch constants used in
branching via dispatch tables will often be conditional due to
conditional branches in the original program. These condi
tions should be computed using code on which have been
performed the kinds of substitutions disclosed or quoted in
S2.5.3, or disclosed in S2.5.4, or those discovered by the
methods disclosed in S2.5.1 or S2.5.2. or those disclosed in 2,
4, 5, 20 or in the extension of 20 given in S2.7.7, and
preferably by a combination of some or all of these. Alterna
tively, the conditions may be rendered opaque using the
opaque predicate method of 9 with the improvements
thereto disclosed herein in S2.8.1.
0362. The above techniques can be yet further strength
ened by performing condition-dependent interlocking (as dis
closed in S2.10.4) to protect branches prior to applying U.S.
Pat. No. 6,779,1143 together with the improvements listed
above.

US 2015/0074803 A1

0363. It would be virtually impossible for the form of
attack described in 25 to Succeed against Software protected
according to us U.S. Pat. No. 6,779, 1143 with the improve
ments and additional protections which we just disclosed
above, since the critical assumptions on which this attack is
based fail for software so protected.
0364 2.74. Reducing Overhead in U.S. Pat. No. 6,779,
114.
0365. In S2.7.3 we disclosed a method for increasing the
security of the control-flow protection afforded by the method
and system of U.S. Pat. No. 6,779,1143).
0366. The overhead of 3), or of 3 extended according to
S2.7.3, can be substantial, since a lump (see column 16, item
5 in 3) generally contains at least two pieces (see column 16,
item 4 in 3), and each piece is typically included in more
than one lump, in order to achieve the m-to-n mapping (with
m-1 and n>1) of functionality to locations in the code. That
is, each individual computation in the code to be protected
typically appears two or more times in the modified code in
which the protections of 3 have been applied.
0367 Since we have a number of other means for provid
ing control-flow protection, such as those disclosed in S2.10,
in S2.10.5, and in S2.11.1, we may employ these and dispense
with those protections in 3 or its extension in S2.7.3 which
require code duplication. The effect of this is that each lump
contains only one piece, which eliminates the need to group
routines into very large routines (VLRs) or to provide the
code resulting from a lump with multiple entry points or
multiple exit points to perform virtual register (VR) switch
ing. Thus every piece is executed emulatively (i.e., to perform
useful computation), in contrast to the normal behavior of
code protected according to 3, in which some executions of
a given occurrence of a piece in a given lump are emulative,
while others are merely connective (i.e., carrying entropy
around for randomization purposes, but not performing com
putations of the original program).
0368. Of course, we retain the dispatch tables, but they are
significantly Smaller, and 1-dimensional instead of 2-dimen
sional, since they need merely address code on a per tag basis,
rather than on a per tag-role-pair basis, where a tag identifies
a particular lump in a dispatch table.
0369. We can apply the above overhead-reductions to a
Small, medium, or large proportion of the code to be pro
tected, or to all of the code to be protected.
0370 2.7.5. Adding Deep Nonlinearity to Ser. Nos.
10/433,966 and 11/020,313.
0371 Methods for creating cryptographic building blocks
which resist key-extraction, even when they are deployed in
the white box attack context (that is, even where the attacker
has full access to the execution of the application) are dis
closed in us patent application Ser. Nos. 10/433,966 17 and
11/020,313 18.
0372 An Alternative to Substitution Boxes.
0373) 17 makes use of substitution boxes (SBs), i.e.,
lookup tables, for arbitrary encodings. We note that such
tables can be large, and a valuable alternative for Such encod
ings is to employ arbitrary choices among the encodings of
20 with the enhancements thereto disclosed in S2.7.7; i.e.,
instead of strictly random functions, employ permutation
polynomials of orders 1 through 4 inclusive. For such func
tions, only the coefficients are needed rather than the entire
tables, which may provide a very great space saving, and
polynomials and their inverses according to the above meth
ods are easily composed.

Mar. 12, 2015

0374. The Problem.
0375. These methods are valuable, but by themselves, they
are subject to a certain published form of attack and its allies.
For example, the AES-128 implementation described in 7.
built using the methods of 17, has been penetrated using the
attack in 1. While this attack succeeded, the attack is quite
complex, and would require significant human labor to apply
to any particular software implementation, so even without
modifications, the methods of 17 are quite useful. It would
be extremely difficult to make the attack of 1 succeed
against an attack on an implementation according to 17
fortified according to 18. However, in connection with inter
locks, we seek extremely strong protection, and So it
behooves us to find ways to further bulwark the methods of
17, 18 in order to render attacks such as those in 1 entirely

infeasible.

0376 Much use is made in implementations according to
17, 18 of wide-input linear transformations (S4.0 in 17)
and the matrix blocking method described in S4.1 on pp. 9-10
(paragraphs (0195-0209 in 17I). It is true that the methods
of 17 produce non-linear encoded implementations of Such
linear transformation matrices. However, the implementa
tions are shallowly nonlinear. That is, Such a matrix is con
verted into a network of substitution boxes (lookup tables)
which necessarily have a limited number of elements due to
space limitations. The nonlinear encodings (arbitrary 1-to-1
functions, themselves representable as Substitution boxes;
i.e., as lookup tables) on values used to index such boxes and
on element values retrieved from such boxes are likewise
restricted to limited ranges due to space limitations.
0377 Thus any data transformation computed by an input
output-encoded implementation of Such a blocked matrix
representation, which is implemented as a network of substi
tution boxes, or a similar devices for representing essentially
arbitrary random functions, is linear up to I/O encoding; that
is, any such transformation can be converted to a linear func
tion by individually recoding each input vector element and
individually recoding each output vector element.
0378. The attack method in 1 is a particular instance of a
class of attacks based on homomorphic mapping. The attack
takes advantage of the known properties of linear functions,
in this case over GF(2) since that is the algebraic basis of the
computations in the AES. In particular, addition in GF(2) is
performed using bitwise €D (exclusive or), and this function
defines a Latin square of precisely known form. Thus it is
possible to search for a homomorphism from an encoded
table-lookup version of €D to an unencoded one, and it is
possible in the case of any function f=QoEDOQ' where (Dis
bitwise, to find an approximate solution Q=QoA for a par
ticular affine A (i.e., an approximation Q which is within an
affine mapping A of the real Q) with reasonable efficiency.
These facts are exploited in the attack of 11, and there are
other attacks which could similarly exploit the fact that the
blocked matrix function implementations of 17, 18 are lin
ear up to I/O encoding. While such attacks yield only partial
information, they may narrow the search for exact informa
tion to the point where the remaining possibilities can be
explored by exhaustive search. For example, a white-box
implementation of encryption or decryption using the build
ing blocks provided by 17, 18 may be vulnerable to key
extraction attacks such as that in 1, or related attacks based
on homomorphic mapping.

US 2015/0074803 A1

0379 The Solution: Use Wide-Input Deeply Nonlinear
Functions.

0380. The solution is to replace such matrix functions with
functions which are (1) wide-input; that is, the number of bits
comprising a single input is large, so that the set of possible
input values is extremely large, and (2) deeply nonlinear; that
is, functions which cannot possibly be converted into linear
functions by i/o encoding (i.e., by individually recoding indi
vidual inputs and individual outputs).
0381 Making the inputs wide makes brute force inversion
by tabulating the function over all inputs consume infeasibly
vast amounts of memory, and deep nonlinearity prevents
homomorphic mapping attacks such as that in 1.
0382 For example, we could replace the MixColumns and
InvMixColumns transformations in AES, which input and
output 32-bit (4-byte) values, with deeply nonlinear MDS
transforms which input and output 64-bit (8-byte) values,
rendering brute-force inversion of either of these impossible.
Call these variants MixColumns, and InVMixColumns.
(Since encryption of a message is done at the sender and
decryption at the recipient, these would not normally be
present on the same network node, so an attacker normally
has access only to one of them.).
0383 Suppose, for example, that we want to construct
such a deeply nonlinear vector-to-vector function over GF
(2) (where n is the polynomial—i.e., the bit-string -size for
the implementation) or, respectively, over Z/(2) (where n is
the desired element width). Let u+V-n, where u and v are
positive nonzero integers. Let G our chosen representation
of GF(2") (respectively, of Z/(2)), Gour chosen represen
tation of GF(2") (respectively, of Z/(2)), and G=our chosen
representation of GF(2) (respectively, of Z/(2)).
0384 Suppose we need to implement a deeply nonlinear
function f: GH) G', with ps3 and qe2; i.e., one mapping
p-vectors to q-vectors over our chosen representation G of GF
(2”).
0385. If we wanted a linear function, we could construct
one using a qxp matrix over
0386 G, and if we wanted one which was nonlinear, but
linear up to i/o encoding, we could use a blocked encoded
implementation of Such a matrix according to 17.18. These
methods do not suffice to obtain deep nonlinearity, however.
(0387 We note that elements of G, G, G, are all bit
strings (of lengths n, u, v, respectively). E.g., if n=8 and
u=v-4, then elements of Gare 8-bit bytes and elements of G,
and G, are 4-bit nybbles (half-bytes).
0388 We introduce operations extract r, s() and inter
leave (,) which are readily implementable on virtually any
modern computer, as would be evident to those versed in code
generation by compiler. For a bit-string

S-(bob1, ..., b),

we define

extractis (S)=(b,b b), - 2

i.e., extractr, s returns bits r to s, inclusive. For a vector of
bit-strings

V=(S,S2,S.),

0389 we define
extractis (V)=(extractis (S),extractis (S), ...

extracti;s(S)).

22
Mar. 12, 2015

i.e., extractr, S returns a new vector containing bits r to S,
inclusive, or each of the old vector elements. For two vectors
of bit-strings or the same length, say V=(S, S) and
W=(T, ..., T), we define

interleave(VW)=(STSIT, ..., SIT):

i.e. each element of interleave(V. W) is the concatenation of
the corresponding element of V with the corresponding of W.
0390 To obtain our deeply nonlinear function f:GHG'
above, we proceed as follows

7. Or 0391 (1) 1 Select a linear function L:Gifh G7,
equivalently, select a qxp matrix over G. (Since singular
square Submatrices can create Vulnerabilities to homomor
phic mapping, it preferred that most square Submatrices of the
matrix representation of L be nonsingular. If L is MDS, no
square sub-matrix of L is singular, so this preference is cer
tainly satisfied.)
0392 (2) Selectki>2 linear functions R,G,H > G, for i=0,

. . . . k-1, or equivalently, select ke2 qxp matrices over G.
(Since singular square submatrices can create Vulnerabilities
to homomorphic mapping, it is preferred that most square
Submatrices of the matrix representation of Ro, R. be
nonsingular. If Ro, ..., R. are MDS, no square Sub-matrix
of any R, is singular, so this preference is certainly satisfied.)
0393 (3) Select a functions:Gifh) {0, 1,..., k-1} for
which

(i.e., choose ans that is onto’ or subjective).
0394 Other than the requirement that s be onto, we could
choose S at random. However, even simple constructions Suf
fice for obtaining S. As an example, we give our preferred
construction for S, as follows.
0395. If ksu, we choose a linear functions:GAH). G, (or
equivalently, a 1xp matrix over G) and a function

0396 Similarly, if usks2u, we can choose a linear func
tions:G,H) G, and a functions:G,H) {0, 1,..., k-1},
and so on. Then lets=SOS. In the preferred embodiment, k
is 2, 4, 8, or some other power of two.
0397 Suppose k=2. Thens could return the low-order bit
of the bit-string representation of an element of G: if k 4, S.
could return the low-order 2 bits, in general if ksu, S. could
return the value of the bit-string modulo k, which for our
preferred choice of k=2", say, is obtained by extracting them
low-order bits of the S output.
0398. The above preferred method permits us to use a
blocked matrix implementation for S, so that the methods of
17, 18 apply to it. Moreover, we can straightforwardly
obtain an implementation off' when f is invertible, using
this preferred construction, by the method disclosed below,
which generatef' function whose construction is similar to
that off.
0399 (4) For any VeGP, let

V, extractIO, u-1)(V),

Vextractu,n-1 (V), and

f(V)=interleave(L(V).R,(V))

(0400 where j=S(V).

US 2015/0074803 A1

04.01 (5) The function f defined in step (4) above may or
may not be deeply nonlinear. The next step, then, is to check
for deep nonlinearity. We determine this using the following
text.

0402. If f is deeply nonlinear, then if we freeze all of its
inputs but one to constant values, and ignore all of its outputs
but one, we obtain 1x1 projection f. If we choose different
values for the frozen inputs, we may obtain differentf func
tions. For a linear function, or a function linear up to i/o
encoding, the number of distinct f functions obtainable by
choosing different values for the frozen inputs is easily com
puted. For example, if p q and f is 1-to-1 (i.e., if L. Ro.
R are 1-to-1) then there are exactly |G| Such functions. f
can only be 1-to-1 in this construction if qap.
0403. We simply count such f functions, represented as
|G|-vectors over G (e.g., by using a hash table to store the
number of occurrences of each vector as the p-1 frozen-input
constants are varied over all possibilities). If the number of
distinctif' functions could not be obtained by replacing f with
a pxq matrix, then f is deeply nonlinear.
0404 We can accelerate this test by noticing that we may
perform the above test, not on f, but on arbitrary 1x3 projec
tions goff, where g is obtained by freezing all but three of the
inputs to constant values and ignoring all but one of the
outputs. This reduces the number of function instances to
count for a given unfrozen input and a given unignored output
from IG' to IGI’, which may provide a substantial speedup.
Moreover, iff is deeply nonlinear, we generally discover this
fairly soon during testing: the very first time we find a pro
jection function count not obtainable from a matrix, we know
that g is deeply nonlinear, and therefore f is deeply nonlinear.
04.05 If we use the acceleration using g with a random
selection of three inputs and one output, and we do not suc
ceed in demonstrating deep nonlinearity of f, then f is prob
ably linear up to I/O encoding.
0406 (Note that it is possible that the projection instance
counts are obtainable by matrix but that f is still deeply
nonlinear. However, this is unlikely to occur by chance and
we may ignore it. In any case, if the above test indicates that
jf is deeply nonlinear, then it certainly is deeply nonlinear.
That is, in testing for deep nonlinearity, the above test may
generate a false negative, but never a false positive.)
0407 (6) If the test in step (5) does not show that f is
deeply nonlinear (or, for the variant immediately following
this list, sufficiently deeply nonlinear), we return to step (1)
and try again.
0408. Otherwise, we terminate the construction, having
obtained the desired deeply nonlinear function f.
04.09. As a variant of the above, we may wish to obtain a
function f which is deeply nonlinear, and not only that, but
that its projections are also deeply nonlinear. In that case, in
step (5) above, we may increase the number of g functions
with randomly selected distinct groups of three inputs and
one output, for which we must show that thef instance count
is not obtainable by matrix. The more of these we test, the
more we ensure that f is not only deeply nonlinear, but is
deeply nonlinear overall parts of its domain. We must balance
the cost of such testing against the importance of obtaining a
deeply nonlinear function which is guaranteed to be deeply
nonlinear over more and more of its domain.
0410 Experimental Verification.
0411 1,000 pseudo-random trials of the preferred
embodiment of the method for constructing deeply nonlinear
functions if were tried with pseudo-randomly generated MDS

Mar. 12, 2015

matrices L and R. R. (k=2) where f:GH). G, G=GF(2),
and G, G, GF(2). The MDS matrices were generated using
the Vandermonde matrix method with pseudo-randomly
selected distinct coefficients. Of the resulting 1,000 func
tions, 804 were deeply nonlinear; i.e., in 804 of the executions
of the construction method, step (5) indicated that the method
had produced a deeply nonlinear function on its first try.
0412. A similar experiment was performed in which,
instead of using the selector functions Sos according to the
preferred embodiment, function S was implemented as a
table of 16 1-bit elements with each element chosen pseudo
randomly from the set {0, 1}. Of 1 000 such functions, 784
were deeply nonlinear, i.e., in 784 of the constructions, step
(5) indicated that the construction methods first try had pro
duced a deeply nonlinear function.
0413 Finally, a similar experiment was performed in
which s was created as a table mapping from G, to pseudo
randomly selected elements of {0, 1}. In 1,000 pseudo-ran
dom trials, this produced 997 deeply nonlinear functions.
Thus this method produces the highest proportion of deeply
nonlinear functions. However, it requires a sizable table (512
bytes for this small experiment, and 2,048 bytes for a similar
function f: Gh G with the same I/O dimensions as the
MixColumns matrix of AES) to stores.
0414. We see, then, that the construction method given
above for creating deeply nonlinear functions over finite
fields and rings, and in particular, its preferred embodiment,
are quite efficient. Moreover, creating inverses of the gener
ated deeply nonlinear functions is straightforward, as we will
see below.
04.15 Properties of the Above Construction.
0416 A deeply nonlinear function f:GHG constructed
as described above has the following properties:
0417 (1) if L and R, ..., R are 1-to-1, then f is 1-to-1;
0418 (2) if L and R, ..., R are bijective (i.e., if they are
1-to-1 and onto, so that p-q), then f is bijective; and
0419 (3) if L and R, ..., R are all maximum distance
separable (MDS: see below), then f is MDS.
0420. The Hamming distance between two k-vectors, say
u(u,..., u) and v=(V, ..., V), is the number of element
positions at which u and V differ i.e., it is

0421. A maximum distance separable (MDS) function f:
SHS where S is a finite set and Se2, is a function for
which any x, y,eS, if A(x,y)=d-0, then A(f(x), f(y))aq-d+1.
If p=q, such an MDS function is always bijective. Any pro
jection f of an MDS function f:SPh) S obtained by freezing
map of the inputs to constant values and ignoring all but n-q
of the outputs, with n-1 (so that f:S"H) S") is also an MDS
function. If S is a finite field or finite ring and f is a function
computed by a qxp matrix (an MDS matrix, since the vector
transform it computes is MDS), say M, then any ZXZ matrix
M obtained by deleting all but Z of the rows of M and then
deleting all but Z of the columns (where Zel), is nonsingular;
i.e., every square sub-matrix of M is nonsingular.
0422. Such MDS functions are important in cryptography:
they are used to perform a kind of ideal mixing. For
example, the AES cipher 15 employs an MDS function as
one of the two state-element mixing functions in each of its
rounds except the last.
0423 Inverting the Constructed Deeply Nonlinear Func
tion. When we employ a 1-to-1 deeply nonlinear function
f:GH) G' for some finite field or finite ring G, we often need

US 2015/0074803 A1

an inverse, or at least a relative inverse, off as well. (Interms
of 17, 18, the corresponding situation is that we have a 1-to-1
linear function f:GH) G', which will be shallowly nonlinear
after I/O encoding, whose inverse or relative inverse we
require. However, we can strengthen 17, 18 significantly by
using deeply nonlinear functions and (relative) inverses
instead.)
0424. We now give a method by means of which such an
inverse (if p=q) or relative inverse (if p<q) is obtained for a
1-to-1 deeply nonlinear function f created according to our
method.
0425 For any bijective function f:S">S", there is a
unique function f:SYS":-folf' = f'of-idn. If f:S"
HS" and m-n, if cannot be bijective. However, f may still be
1-to-1, in which case there is a unique relative inverse f":
f{S}}S":-f' of idm. That is, if we ignore vectors in S"
which cannot be produced by calling f, then facts like an
inverse for vectors which can be produced by calling f.
0426 We now disclose a method for constructing such a
relative inverse for the deeply nonlinear functions f which we
construct, whenever L and all R. R. are 1-to-1 (in
which case qap). If p=q, then L and all of R. R. are
bijective, and such a relative inverse off is also the (ordinary)
inverse off.
0427. This method can be employed when functions (see
step (3) of the construction) is constructed from a linear
function S and a final function S is employed to map the
output of s onto {0, k-1}, where s is computed as the
remainder from dividing the S result by k. (If k is a power of
two, we may computes by taking the log k low-order bits of
the S result, which is a convenience, but is not actually
required for our current purpose).
0428 We define linear functions L and Ro',..., R. '
to be the relative inverses of L and R, ..., R., respectively.
(Since these functions are computed by a matrices, their
relative inverses can be obtained easily and efficiently by
Solving simultaneous linear equations by Gaussian elimina
tion or the like—i.e., by methods well known in the art of
linear algebra over finite fields and finite rings.)
0429. We have s=sos from the construction off. We
define s'=soL', where L' is the relative inverse of L. (This
s' is computed by a 1xq matrix over G easily discovered by
methods well known in the art of linear algebra over finite
fields and finite rings.) We define s'=sos'. We now have onto
function s'G'H) {0, ..., k-1}.
0430. The desired relative inverse—or ordinary inverse if
p=q is the function f:G'He G defined as follows.

For any WeG", let
0431

Wextract|O, u-1 (W)

Wextractu,n-1 (W), and

0432 where j=s'(W).
0433 When p=q, this is just the ordinary inverse of f.
When p-q, the function behaves like an inverse only for
vectors in f{G} CG7.
0434 If we have an unrestricted form fors, i.e., if it is not
constructed as in the preferred embodiment above, we can
still invert or relatively invert a bijective or 1-to-1 f. For
example, if s is simply a table over elements of Gf, then if we

24
Mar. 12, 2015

define a new table s'=soL', then the formula above for f',
but using this differents', remains correct. This new tables'
can be obtained by traversing all elements of e of Gf, deter
mining L(e), and filling in element L(e) element of s' with the
contents of element e of S.
0435. Using Deeply Nonlinear Functions to Strengthen
Ser. No. 10/433,966.
0436 When we incorporate the methods disclosed above
into the methods and system of 17, 18, we need to disguise
these functions, since their components are linear. That is, we
need to employ the encoding methods disclosed in 17, 18.
which is straightforward, since those encoding methods
apply easily to the matrix-blocked L, R, ..., R., and S and
implementations constructed according to the above method
for created deeply nonlinear functions. Note that, for the
above method of creating deeply nonlinear functions, one of
the effects will be to encode the output of the selection func
tion, S. So that the index, say i, used to select the appropriate
encoded R, implementation, is likewise encoded.
0437. There are three major uses of blocked matrix imple
mentations in connection in 17, 18.
0438. Two of them are analogous to cryptographic 'whit
ening, but aimed at increasing ambiguity for the white box
attacker rather than the gray box (side channel) attacker or the
black box (known plain- and/or ciphertext, adaptive known
plain-and/or ciphertext) attacker as in ordinary cryptography.
They resemble the kinds of protections applied in the gray
box context to protect Smart card cipher implementations
against differential power analysis, analysis of EM radiations,
and the like, but, since they are designed to protect against
attackers operating in the white box context, they involve
more profound transformations.
0439. The other usage is simply to implement a linear step
in a cipher—such linear steps are quite common in block and
stream ciphers of many kinds
0440 To summarize, such blocked matrix implementa
tions are employed in 17, 18 for the following purposes.
0441 (1) They are used for pre- and post-whitening; i.e.,
for mixing inputs and outputs to move the boundary of encod
ing outward, thereby rendering attacks on the internals of an
implementation according to 17, 18 more ambiguous to the
attacker.
0442 (2) They are used for mid-whitening, where an
internal computation is rendered more complex and is typi
cally made to distribute information more evenly during its
computation. This kind of mid-whitening is used, for
example, in the proposed DES implementation in S5.2.2,
paragraphs 0249-0267 of 17, 18.
0443 (3) They are used to implement linear parts of the
function to be obfuscated, and rendered tamper-resistant (in
the sense that tampering produces chaotic results which are
highly unlikely to satisfy any goal that an attacker might
have), which are linear, such as the MixColumns and
ShiftRows steps in AES, or any of the bit permutations of
DES. In particular, MixColumns is computed on 4-vectors
over GF(2) (i.e., 4-byte vectors) using a 4x4 MDS matrix.
ShiftRows, like the bit permutations of DES, simply repo
sitions information in vectors without further modifications.
0444 We may instead employ deeply nonlinear functions
created according to the extension of 17, 18 disclosed above
as follows.
0445 (1) Since pre- and post-whitening are simply encod
ings of the inputs and outputs of a cryptographic implemen
tation, we can directly apply constructions of wide-input

US 2015/0074803 A1

deeply nonlinear functions according to the above extension
to 17, 18, with matrices blocked and all parts of these
implementations encoded according to 17, 181 Such pre
and post-whitenings certainly render far more arduous
attacks on initial and final parts of a cryptographic implemen
tation (e.g., initial and final rounds of a cipher) using known
plain- or cipher-text attacks on its white box implementation.
0446 (2) Use of deeply nonlinear functions created as
disclosed above may improve security. However, since Such
uses of a deeply nonlinear function also involve its inverse,
the composition of the function and its inverse, even when
disguised by composition with another linear function,
results in a function linear up to I/O encoding, and thus opens
the door to homomorphic mapping attacks. Therefore, it is
recommended that (3) below be used instead wherever pos
sible.
0447 (3) Where possible, we should replace the linear
step with a step which is similar, but deeply nonlinear. For
example, we may replace the MixColumns MDS matrix of
AES with a deeply nonlinear MDS function. It is recom
mended that when this is done, the cipher (not AES but an
AES variant) be implemented so that implementations of
encryption and decryption do not occur in proximity to one
another, since this would permit homomorphic mapping
attacks. If only encryption, or only decryption, is available at
a given site, this method provides strong protection against
homomorphic mapping attacks.
0448 (4) In addition, where feasible, we should use very
wide inputs. E.g., the MixColumns matrix of AES maps
32-bit vectors to 32-bit vectors. Brute force inversion of a
function over a space of 2-four billion inputs requires sort
ing about four billion elements. This is large, but not utterly
infeasible in the current state of the art with current equip
ment. If it were twice as wide, however, such a sort would be
infeasible using current methods and equipment, since it
would require sorting a list of over 16 billion billion (1.6x
10') entries.
0449 2.7.6. Strengthening Ser. No. 10/478,678 while Pre
serving the Value of its Metrics.
0450. The system and method of U.S. patent application
Ser. No. 10/478,6785 are related to those of U.S. Pat. Nos.
6,594.761 2 and 6,842,862 4, but 5 adds some very
highly secure data encodings, and in addition, provides a
series of distinct data encodings together with the protective
power of those encodings, measured by methods distinct
from those in 9.
0451 9 proposes to measure security by means of met
rics which, while varying positively with the security of an
implementation, do not provide a security metric measuring
how much work an attacker must perform to penetrate the
security. 5, in contrast, provides a work-related metric: the
metric is the number of distinct original computations, prior
to encoding, which could map to exactly the same encoded
computation. (This possibility arises because the meaning of
an encoded computation depends on the context in which it
occurs. For example, if, according to 20, an encoded value
could be encoded according to y-ax+b, then so couldy'-a'x'+
b, wherea'-3a and x'=3'x and 3' is the finite ring inverse of
3 in the particular finite ring corresponding to the word size of
the target machine for the protected code.) The metric of 5
therefore directly measures the size of the search-space faced
by an attacker attempting to de obfuscate a computational
operation on protected data using a computation protected
according to the encodings of 5.

Mar. 12, 2015

0452 We note that performing substitutions according to
the identities listed in S2.5.3 and S2.5.4 or discovered accord
ing to the methods disclosed in S2.5.1, S2.5.2. or 2, 4, 5, 20.
or in the extension of 20 given in S2.7.7, or any combination
of the above, after protecting the data according to 5. cannot
invalidate the metric formulas provided in 5. At most, the
result will be that the degree of protection afforded, in terms
of the work load faced by an attacker attempting to deobfus
cate Such encodings, will exceed the figure given by the
formulas in 5.
0453 Such substitutions are therefore recommended as a
means of increasing the security provided by the methods of
5.5 already provides certain methods of encoding, such as
multinomials in residual representation, which are extremely
secure by the above-mentioned metric. The expectation is
that, by extending the methods of 5 as described immedi
ately above, data and computational encodings of well-nigh
cryptographic strength can be constructed.
0454 2.77.
0455 Adding Polynomial Encodings and MBA Identities
to Ser. No. 11/039,817. We incorporated the method of U.S.
patent application Ser. No. 11/039,817 20 by reference in
S2.7. We now provide formulas by means of which the linear
mappings over the modular ring Z/(2") of 20 can be
extended to polynomials of higher degree.
0456 Polynomials can be multiplied, added, and sub
tracted, as linear mappings can, and if we have inverses, we
can—after Solving the high degree problem as described
below proceed as in 20, but with polynomial inverses of
degree 2 or more replacing linear inverses, where the inverse
of the linear L(x)=SX--b (if invertible; i.e., if s is odd) is
L'(y)=S(y-b)=s'y-sb. (We find s' as described in
S2.5.5.). As degree rises, so do security and computational
overhead.
0457. An invertible polynomial mapping P is called a per
mutation polynomial because it maps the elements of Z/(2")
to the elements of Z/(2"):-P(x)=P(y) iffx-y; i.e. m it defines
a permutation of the elements of Z/(2").
0458. The high degree problem is this: the compositional
inverse of a permutation polynomial of low degree is typically
a permutation polynomial of very high degree—usually close
to the size of the ring (i.e., close to the number of elements it
contains, which for rings of size 2° or 2 is a very high
degree indeed). As a result, use of the polynomial inverses in
the quadratic (degree 2) or higher analogues of the method of
20 is prohibitively expensive due to the massive exponen
tiation needed to compute inverses.
0459. However, there are a few special forms of low-de
gree (namely, 2, 3, or 4) permutation polynomials in which
the degree of the inverse does not exceed the degree of the
polynomial itself. To form the quadratic (degree 2), cubic
(degree 3), or quartic (degree 4) analogues of the linear (de
gree 1) encodings of 20, we may therefore use permutation
polynomials of the special forms listed below.
0460 Despite the restrictions on the forms of such poly
nomials, the number of choices of Such polynomials over
typical modular integer rings based on machine word size
(typically Z/(2*) or Z/(2)) is still very large more than
adequate to render Such encodings secure. Moreover, by use
of Such higher-order analogues of the system of 20, we
eliminate the possibility of attacks using forms of analysis,
Such as Solving simultaneous linear equations by Gaussian
elimination, which can be used to subvert or undo the encod
ings provided by 20 due to their linearity.

US 2015/0074803 A1 Mar. 12, 2015
26

0461. In the following, all computations are performed -continued
over the appropriate integer modular ring typically, over
Z/(2) or Z/(2).

Quadratic Polynomials and Inverses.

0462) If P(x)=ax+bx +c where a=0 and b is odd, then Pis 0465. Further Obfuscating the Polynomials and Inverses.
invertible, and 0466. The above polynomial encodings can be made yet

more obscure by post-modifying them, employing Substitu
tions according to the identities disclosed herein in S2.5.3 and

where the constant coefficients are defined by S2.5.4 or discovered by employing the methods given herein
in S2.5.1 and S2.5.2, which provided access to an effectively
unlimited, and hence unsearchably large, set of identities, or

d = - some combination of two or more of the above, thereby
b3 rendering these encodings incapable of analysis using tools
ac 1 such as MathematicaTM, MatlabTM or MapleTM, due to the

e = 2 + . simultaneous use of multiple, profoundly different math
and ematical domains within computations.

2 0467 2.8. Other Systems and Methods Extended Herein.
f = - . 0468 Software obfuscation and tamper-resistance meth

ods alternative to those incorporated by reference in S2.7 are
provided in U.S. Pat. No. 6,668,3259, U.S. Pat. No. 6,088,
452 19, and U.S. Pat. No. 6,192.475 27. We will now

Cubic Polynomials and Inverses. disclose methods whereby their protections may be strength
ened for the purpose of making them useful lower-level build

0463. If P(x)=ax+bx +cx+d where a=b=0 and c is odd, ing blocks for the higher-level construction of interlocks.
then P is invertible and 0469 (These patents and applications, and the patents

whose enhancements are described in S2.7.)
0470 The methods and systems of 9, 19 depend on pro

where the constant coefficients are defined by vided entropy (effectively random information input seeding
a stream of pseudo-random values on which encoding and
protection decisions made in applying these methods and

C systems are based). Hence they provide high degrees of static
e = -1. diversity: each new use of these methods and systems nor

ad b mally produces distinct results, thereby making the attacker's
= 31-3, job more difficult since the attacks on instances of a given

1 ad ad bad original unprotected SBE modified into a protected
g = -61 + 3 +2s, 0471 SBE using the above methods and systems must
and vary on a per-generated-instance basis.

0472. 2.8.1. Strengthening the Obfuscations of U.S. Pat.

h=-ed'-(1-)-(-6f-ide 2 d. No. 6,668,325. of C C C 0473 U.S. Pat. No. 6,668,3259 lists a wide variety of
obfuscation techniques covering various aspects of software;
namely, control flow, data flow, data structures, and object
code. In addition, it proposes applying obfuscations from a

Quartic Polynomials and Inverses. library of such obfuscations until a desired level of protection
is achieved as measured by various metrics. In effect, in

0464). If P(x)=ax+bx +cx+dx+e where a=b=c=0 and Software engineering, clarity of programs is a goal: 9
d is odd, then P is invertible, and applies metrics but with merit lying with the opposite of

P'(x)=fx'+gc+hx^+ix-ti, clarity, i.e., with obscurity, so that 9 provides a mechanized
method for aggressively avoiding and/or reversing the read

where the constant coefficients are defined by ability and perspicuity mandated by Software engineering,
while preserving functionality. 9 divides the quality of an
obscuring transformation into three aspects: potency, which

f = - is the badness of a protected software in terms of perspicu
g5 ity, estimated by typical software engineering metrics such as

g = 4ae b cyclomatic complexity, resilience, which is the difficulty of
g5 it deobfuscating the transform by means of a deobfuscating
ae’ be c program Such as Mocha, and cost, which is the amount of

h = -6+3-, added overhead due to applying the transform (in terms of
4ae be ec 1 slower execution and/or bulkier code).

i = is -3-1 + 2 +, 0474 As in S2.7.6, the strengthening methods we now
provide for 9 do not affect its preferred embodiments for the
metric aspects of that invention, but do provide greater obscu

US 2015/0074803 A1

rity and tamper-resistance by rendering protected code more
difficult to analyze, even using analytic tools such as Math
ematicaTM, MatlabTM, or MapleTM, and more aggressively
fragile, and hence resistant to goal-directed tampering, due to
the simultaneous use of profoundly different algebraic
domains, and/or to the other protections disclosed below.
0475 9 proposes opaque computational values, and
especially opaque predicates (see 9 S6.1 column 15, S8
column 26) for protecting control flow by making conditional
branch (if) conditions obscure. After showing a method of
creating opaque predicates which the patent itself indicates is
too weak, it proposes two stronger methods in 9 S8.1 col
umn 26 (use of aliasing, since alias analysis is costly) and S8.2
column 26 (using computation in multiple threads, since par
allel program analysis is costly). Both of these incur heavy
costs in terms of bulkier code and slower execution.
0476 A much better method is to transform predicates
using Substitutions according to the identities disclosed or
quoted herein in S2.5.3, or disclosed in S2.5.4, or discovered
by employing the methods given herein in S2.5.1 and S2.5.2.
which provide virtually unlimited, and hence unsearchably
large, sets of usable identities, or preferably a combination of
two or more the above, thereby rendering these encodings
incapable of analysis using tools such as MathematicatM,
Matlab'TM, or MapleTM, due to the simultaneous use of mul
tiple, profoundly different mathematical domains within
computations, while incurring Substantially less overhead in
code bulk and permitting much faster execution.
0477 9 S7.1.1 column 21 suggests linearly encoding
variables in the program, and the first paragraph in column 22
reads "Obviously, overflow ... issues need to be addressed.
We could either determine that because of the range of the
variable ... in question no overflow will occur, or we could
change to a larger type.” Thus it is evident that linear encoding
over the integers is intended (or over the floating point num
bers, but this incurs accuracy problems which severely limit
the applicability of Such a naively linear floating point encod
ing). We recommend that the far Superior integer encodings of
20, with the extensions in S2.7.7, be employed. This avoids
the overflow problems noted in 9 (they become a legitimate
part of the implementation which maintains the modulus,
rather than a difficult problem to be solved), they preserve
variable size, and, with the use of MBA-based substitutions as
noted in S2.7.7, they are highly resistant to algebraic analysis
and reverse engineering.
0478 9 S7.1.3 column 23 proposes splitting a variable X
into multiple variables, say X, X, so that some function
X f(x,x) can be used to retrieve the value of X. We note that
so retrieving X causes the code to reveal the encoding of X,
which is undesirable. An encoding which permits computa
tions in encoded form is better; e.g., the residual number
system (RNS) encoding of 5 based on the Chinese remain
der theorem, with the extensions thereto in S2.7.6. This also
splits the variable, but does not generally require decoding for
SC.

0479 9 S7.2.1 column 24 proposes merging scalar vari
ables into one wider variable (e.g., packing two 16-bit vari
ables in the low- and high-order halves of a 32-bit variable).
This is not very secure, since any accessing code reveals the
trick. A better approach is to use the vector encodings of 2, 4,
5 as extended in S2.7.1 and S2.7.6, which provide many-to
many rather than one-to-many mappings, and of very much
higher obscurity, while also supporting computations on
encoded data rather than requiring decoding for use.

27
Mar. 12, 2015

048.0 9 S7.2.2 column 24 proposes that we obfuscate
arrays by restructuring them: that we merge multiple arrays
into one, split single arrays into multiple arrays, increase the
number of dimensions, or decrease the number of dimen
sions. We note that only limited obfuscation can be achieved
by altering the number of dimensions, since typically an array
is represented by a contiguous strip of memory cells; i.e., at
the object code level, arrays in compiled code are already
unidimensional irrespective of the number of dimensions
they might have in the corresponding high-level source code.
0481 Merging arrays can provide effective obfuscation if
combined with scrambling of element addresses. We there
fore recommend providing stronger obfuscation than that
provided by the methods of 9 S7.2.2 by merging arrays and
addressing them using permutation polynomials. A permuta
tion polynomial is an invertible polynomial. Such as the
degree-1 (affine) polynomials used for encoding in 20 or the
degree-2(quadratic), degree-3 (cubic), and degree-4 (quartic)
polynomials added thereto in S2.7.7. Such permutation poly
nomials map elements to locations in a quasi-random, hash
table-like manner, and applying pre- and/or post-modifica
tions of the indexing code employing Substitutions according
to the identities disclosed or quoted herein in S2.5.3, or dis
closed in S2.5.4, or discovered by employing the methods
given herein in S2.5.1 and $2.5.2, which provided access to an
effectively unlimited, and hence unsearchably large, set of
identities, or some combination of two or more of the above,
will render Such indexing computations incapable of analysis
using tools such as MathematicatM, Matlab'TM, or MapleTM,
due to the simultaneous use of multiple, profoundly different
mathematical domains within computations, and will thus
provide very much stronger obfuscation than that provided by
the teachings of 9 S7.2.2 without the enhancements dis
closed here.

0482 Alternatively, we can merge arrays into memory
arrays protected according to 16, strengthened according to
S2.72, thereby achieving all of the benefits of the above with
the additional obfuscation benefits of encoded data. More
over, such a form of protection applies, not only to arrays, but
to arbitrary data records and even linked data structures con
nected by pointers.
0483 2.8.2. Reducing U.S. Pat. No. 6,088,452 Overheads
while Increasing Security.
0484 U.S. Pat. No. 6,088,452.19 obfuscates software (or
hardware expressible programmatically in languages such as
VHDL) by introducing cascades which coverall regions to be
protected. A cascade according to 19 is a data-flow graph in
which every output depends on every input. Each BB of the
program has such a cascade. The computations in the cas
cades are essentially arbitrary; their purpose is to transmit
entropy without achieving useful work.
0485 The computations in the original program are then
intertwined with the cascades and one another, creating an
extremely dense data flow graph with extremely high levels of
interdependency, thereby establishing a condition of proximi
inversion: any Small change in the protected program, which
duplicates the behavior of the original program but with much
larger and quite different code, causes a large and chaotic
change in the protected programs behavior.
0486 The examples in 19 intertwine operations using
multi-linear (matrix) operations over the integers—19 is
primarily concerned with protecting programs whose data

US 2015/0074803 A1

items are integers. (This is in fact the case for many low-level
programs—entire operating systems can be built without
floating-point code.)
0487. The problem with integer computations, however,
including those employed in cascades and intertwining
according to 19, is that they can exceed the range limitations
of the data types they employ on the chosen target platform.
As a result, practical deployment of programs protected
according to 19 require larger integer representations than
those used in the original programs, prior to their protection
according to 19.
0488 We therefore prefer that all such computations,
whether in intertwining or in cascades, be performed over
BAn, where n is the target platforms preferred word size in
bits, so that arithmetic is performed over Z/(2")—see S2.3.2.
The intertwining matrices chosen should be invertible matri
ces (ones with odd determinants) over Z/(2"). Thus overflow
ceases to be a concern, larger data representations are unnec
essary, added code to handle multiple precision is avoided,
and the code is smaller and faster than would be the case
following the teachings of 19 without the enhancements
here disclosed. (Nevertheless, the full range of computation
in the original program remains Supported, as shown by the
Support of such computations in programs protected accord
ing to 20.)
0489. The level of protection afforded by 19 can be fur
ther improved by post modifying the intertwined computa
tions and cascades employing Substitutions according to the
identities disclosed or quoted herein in S2.5.3, or disclosed in
S2.5.4, or discovered by employing the methods given herein
in S2.5.1 and S2.5.2, which provided access to an effectively
unlimited, and hence unsearchably large, set of identities, or
some combination of two or more of the above, thereby
rendering the intertwined computations and cascades inca
pable of analysis using tools such as MathematicatM, Mat
labM, or MapleTM, due to the simultaneous use of multiple,
profoundly different mathematical domains within computa
tions.

0490 2.8.3. Increasing U.S. Pat. No. 6,192.475 Security
by Augmented Indexing Complexity.
0491. The system and method of U.S. Pat. No. 6,192,475
27 protects the variables and arrays of a software-based
entity by changing and augmenting the addressing of its vari
ables and arrays so that (A) their indexing is more complex
than the original indexing (possibly because originally there
was no indexing), and (B) variables and elements no longer
have fixed locations in the protected program. 27 depends
for its most effective operation on the nature of the software to
be protected: it works best for programs performing many
array operations in loops, whether the loops are express or
merely implied.
0492) 27 contemplates array operations with indices
which are merely integers—the natural understanding of
array indices in most programming languages. Its protections
can be rendered more powerful by two extensions.

0493 Use indices over modular rings of the form Z/(2")
for values k with properties as disclosed below.

0494 Secondarily encode indices by permutation poly
nomials permuting their ranges, so that an array index
ing Ai. i becomes an array indexing Ap (ii), .
., p(i,i) where p1, . . . , p, are permutation polyno

mials, with properties as disclosed below. The former

28
Mar. 12, 2015

extension is useless in itself. In combination with the
second, it causes the array indices to become thoroughly
scrambled.

0495 For each dimension of an array, we choose k to be
either a prime number, preferably the smallest prime at least
as large as that dimension, or a number of the form 2", pref
erably choosing the Smallest n for which 2" is at least as large
as that dimension. In the former case Z/(k)=GF(k), so that we
may use essentially ordinary matrix computations over that
field: a matrix is invertible precisely if its determinant is
nonzero. In the latter case, Z/(2) is a modular ring with a
modulus typically having fewer bits that the platforms pre
ferred computational word has, so that (unlike the other con
texts in which the instant disclosure employs such rings) the
modulus operation must be performed explicitly by a bitwise
W (and) operation which ands the results of computations
with a mask containing all Zeros except for n low-order 1-bits.
In that case, the linear algebra must be adjusted since a matrix
is only invertible if its determinant is odd.
0496 The permutation polynomials above should be of
low degree (for example, of degrees 1, 2, 3, or 4), but with
inverses of high degrees, since there is no need in this use of
permutation polynomials for inverting the polynomials. This
makes computation of the polynomials inexpensive and com
putation of their inverses expensive, which is just what we
want: it gives us Substantial obscurity at low cost. Finding
Such permutation polynomials is easy: most permutation
polynomials of low degree have inverses of high degree.
0497 Neither of these extensions, with their variants,
invalidates the essential aspects of the mathematics or meth
ods (mutatis mutandis) of 27. Their combination, however,
thoroughly scrambles the memory positions of variables, ele
ments, and Successive positions thereof during looping (ex
press or implied), rendering analysis of the system not only
NP-hard in the worst case, as in the unextended version of
27, but extremely difficult to analyze in virtually every case.
0498. These extensions greatly enhance the security of
27 at the cost of greater space and time overheads for the
executable form of portions of programs so obfuscated and
rendered fragile under tampering.
0499 2.9. Establishing the Required Properties.
0500. In this section, we teach how to establish the
requirements of instant method and system for installing
interlocks in SBES: that is, we teach how to generate integral,
obscure, and contextual OEs, obscure and contextual IAS, and
essential, obscure, and contextual RPEs.
0501) 2.9.1. Generating Integral OEs, Essential RPEs, and
Transfer IAS.

0502. As previously noted in S2.4.5, output extensions
(OEs) added to the computation of the preproduction F com
puted in the preproduction BB set X when converting them
into the production computation F" computed by the produc
tion BB set X must be integral; that is, the extensions must be
tied as much as possible into the normal computation prior to
installation of the interlock.

0503 As noted in S2.4.4, RPEs added to the computation
of the preconsumption G computed in the preconsumption
BB set Y when converting them into the consumption com
putation G' computed by the consumption BB set Y' must be
essential; that is, the RPEs must be so combined with the
normal computation which was present prior to installation of
the interlock that the normal functionality can only occur,
barring some extremely improbable coincidence, if the inputs

US 2015/0074803 A1

expected by the rpes on the basis of the production F" and the
transfer R' have not suffered tampering.
0504 If we consider the preproduction MFF computed by
the preproduction BB set X, there may be values produced by
computing F in X which are consumed by the preconsump
tion MF G computed by the preconsumption BB set Y. pos
sibly after further modification by the pretransfer MFR com
puted by the pretransfer BB set V. Computation of these
values is integral to the computation F by X, and normally,
possibly after further modification by computation of R by V.
they are essential to the computation of G by Y.
0505 Case 1: Absent or Weak X->Y Data Dependency.
0506 If there are no such values, or insufficiently many
such values computed in the preproduction BB set X and
Subsequently employed in the preconsumption BB set Y. pos
sibly after further modifications in the pretransfer BB set V.
we must add or increase the number of Such dependencies.
After this has been done to a sufficient degree, we have
established strong X->Y data dependency, and can proceed
as indicated in Case 2: Strong X->Y Data Dependency below.
0507 To increase the X->Y data dependency, we may
employ the encoding system of 20, or the extension thereof
taught in S2.7.7, in the specialized manner described below.
0508. In the encoding system of 20, for an integer value
X in BAn where n is the normal word size of the target
execution environment, we encode X as x'=SX+b, where S is
the scale and b is the bias.b is arbitrary, but s should be odd,
so as to preserve all of the bits of information in x. 20
teaches how we may compute with values so encoded without
decoding them, where different values have different scales
and biases, so as to incorporate all of the normal built-in
arithmetic, shift, and bitwise operations of C or C++. S.2.7.7
discloses methods to extend the encodings in 20 to polyno
mials of nonlinear degree.
0509. In order to increase X->Y data dependency, we
make use of values computed in the XBB set as bias values (in
terms of polynomials with variablex, the coefficients ofx') in
the original version of 20 or its extension to quadratic,
cubic, or quartic polynomials as disclosed in S2.7.7, since this
avoids the need to compute inverses dynamically. We then
encode computations in Yusing the biases obtained from X,
by means of which, by using Sufficiently many values com
puted in X, or values derived from them as described above,
as biases for encodings according to 20 of values used and
computations performed in Y, we can create arbitrarily strong
X->Y data dependence, and can therefore meet the precon
dition for use of the Case 2: Strong X->Y Data Dependency
method below, with which we then proceed.
0510) A similar method, using values in the preproduction
BB set X, or values simply derived from them, to provide
coefficients of encodings, can be used instead or in addition
where, instead of employing the encodings of 20, we
employ those of one or more of 2,4, 5, 17, 18. By doing this
for Sufficiently many values computed in X, or additional
values simply derived from values computed in X, and
employing them as coefficients to encode values and compu
tations in Y. we can create arbitrarily strong X->Y data depen
dence, and can therefore meet the precondition for use of the
method below under the heading Case 2: Strong X->Y Data
Dependency, with which we then proceed.
0511. Any or all of the above methods may be further
augmented by employing encodings obtained by further
modifying those encodings listed in 2, 4, 5, 17, 18, 20 by
employing the identities we disclose or quote in S2.5.3, or

29
Mar. 12, 2015

disclose in S2.5.4, or by means of identities created using the
methods taught herein in S2.5.1 or $2.5.2. or identities found
in the extension of 20 given in S2.7.7. By such means for
Sufficiently many computations in X and Y we can create
arbitrarily strong X->Y data dependence, and can therefore
meet the precondition for use of the method below under the
heading Case 2: Strong X->Y Data Dependency, with which
we then proceed.
0512 Finally, we may take computations in X, and create
additional versions of those same computations using differ
ent expressions, by making use of the identities we disclose or
quote in S2.5.3, or disclose in S2.5.4, or identities created
using the methods taught herein in S2.5.1 and S2.5.2. or
identities disclosed in 2, 4, 5, 20, or found in the extension
of 20 given in S2.7.7. Such additional versions are as inte
gral as the originals: there is no way that the originals and the
additional versions can be distinguished by inspecting the
code. At this point, these computations produce identical
results, but we should place them in new, separate values.
0513. We can then easily augment expressions in Y to
make use of these values in Such a fashion that no net change
takes place, by using the original and alternates of pairs of
values, one produced in X originally, and one added as
described above by making use of the above-mentioned MBA
identities. After further steps of obfuscation described here
inafter, these usages will well hidden. Moreover, since the
augmentations which have no net effect employ both original
and added values in X, we have the additional advantage that
tampering with the computations will cause the computation
in Y to fail by causing differences between the original and
identity-added values, thereby causing the expression aug
mentations in Y to have a net effect, thereby haphazardly
modifying the original computation in Y to compute different,
haphazard results.
0514 By creating Sufficiently such augmentations, we can
create any desired level of X->Y data dependence, thereby
meeting the conditions for employing the methods of Case 2
below, with which we then proceed.
0515 Plainly, we may also employ any combination of the
above methods to achieve a state of strong X->Y data depen
dence, and then proceed according to Case 2 below.
0516 Case 2: Strong X->Y Data Dependency.
0517. If there are enough such values computed in X and
employed in Y. possibly after further modifications in V, then
we may define J to be the state space of copies of these values,
Kto be the state space of these copies after being modified as
their originals are modified by R, and G to make use of the
copies as described hereinafter.
0518. Then we have F::P) AxJ:-F(x)=(x,x) where
XeK is obtained by performing the computation of the
selected values again so as to produce the copied results in K.
Of course, at this point, the output extension is insecure,
because the computations to produce X are copied from
existing subcomputations of F by X. We will address this
problem in further steps as described hereinafter. (Note that
X may include the values of many variables, since it is a copy
of some portion of a state space of the program.)
0519 (Duplicated values are the preferred embodiment,
but other information preserving alternatives exist, Such as
X, -X, X-X, X, X-k, or X, X (Dk, where k is a constant,

and €D denote bitwise operations, and + is performed in the
natural two’s complement modular ring of the target hard
ware. Many such information-preserving alternatives would
be obvious to those skilled in the art—so many, in fact, that it

US 2015/0074803 A1

would be easy to choose them algorithmically on the basis of
a random input during interlock installation.)

0520 We have mentioned copying values by copying
computations above. For any copied value c, it is evident
that, instead of copying c, we may instead copy the
values, say it. . . . , i, which are the inputs by means of
which c is computed, even if some of these inputs are
copies of computations which precede the code in X.
This permits us many more choices of what to copy,
thereby increasing the obscurity of the output extension
F. which we choose when installing the interlock.

0521. The purpose of choosing copied values, which are
at least initially identical to original values (or at least
information preserving alternate values), is to reduce the
probability of accidental matches. Alternatives to this
approach would be to choose related values: instead of
creating a copy, c, of a value, V, we could create a value,
r, related to the value of V—e.g., we could ensure that
r<v, or rev, or rzv, or V mod r=5, or the like. These are
legitimate and viable choices, but in the preferred
embodiment, we select identical values (or at the very
least, equivalent information) according to the following
reasoning. If we considera value, v', in some way related
to V, then the likelihood of achieving the relationship
accidentally by tampering decreases as the relationship
becomes more restrictive. A randomly chosen member
of BA32) will match v on average only once in 2-4.
29x10' random trials. However, a randomly chosen
member of BA32 will be typically be greater than, or
less than, V, Very much more often: i.e., these relations
are not preferred because they are not very restrictive. A
randomly chosen member of BA32 may make V mod
r=5 quite often: namely, once in Irl random trials which
is typically much more often than one in 2 random
trials. For this reason, the preferred embodiment is to use
copied values (or information-preserving alternate val
ues), so that tampering is virtually certain to cause a
mismatch with the expected copied values or expected
alternate values.

0522) Letus call the statex, as modified by computation of
R by the BBs in V. state V. Then continuing our extended data
state, since R(x) V, we have R(x,x)=(V, V), where V, is
the result of treating the copied variables in X, as their origi
nals are treated by R—again, we just copy those computa
tions, but applying them to the copies instead of the originals.
(If R never affects them, then VX in each case, so that KJ.)
0523 At this point, we must convert the preconsumption
computation G by the BB set Y into a consumption compu
tation Ge::BxKH) E. We seek to do this in such a way that
disturbance of the relationship between X and X, or the rela
tionship between V and V will cause the computation Gre to
fail.
0524 Our preferred method for doing this is to take advan
tage of the fact that the contents of the variables whose states
are captured in V are identical (at this point) to the states of
the corresponding variables captured in V, where the V. Vari
ables are a subset of the V variables.
0525 (Ofcourse, as noted above in discussing the genera
tion of the F output extension, we could have employed a
relationship or relationships other than equality, in which case
we would adjust the generation of the RPE to operate nor
mally only if those alternative relationship or relationships
hold, instead of only if the equality relationship holds. Or, if
we preserve information in an alternate form, instead of using

30
Mar. 12, 2015

X and X interchangeably, if we have an equation X f(x).
then we substitute f' (x,) freely for x. E.g., if x, x+k, we
Substitute the computation (X-k) freely for value X.)
0526 Now, as noted in item (3) in S2.5.3 above, when for
two variables V, V, we have V-V, we also have VVV-V
A v. v.-vi. v.-vi. viev 0, V V v, veDv. 1-1
(signed), and many other identities easily derivable by simple
algebraic manipulation, or by combination with the identities
disclosed or quoted in S2.5.3, or disclosed in S2.5.4, or iden
tities discovered by the methods disclosed in S2.5.1 or S2.5.2.
or the identities disclosed in 2, 4, 5, 20, or found in the
extension of 20 given in 2.7.7.
0527 Suppose v is part of v and V is part of V. We can
then generate many expressions which are identical only if
the equality of v and V is maintained. By freely substituting
in Such expressions using a random choice of V and V or a
mixture of both occurrences of V and V in G, which origi
nally uses only V, say, and doing this for a number of differ
ent V, V pairs, so that many of the variables used in G are
affected, we produce a variant Gre of G which functions
normally only if, for each V, V pair, V-V, otherwise, it
will almost certainly fail. Note that tampering either with G
or with R can produce a pair V, V, for which VizV2. We
thus create our required essential RPE. G.
0528 N.B.: Above, we speak of using the original values
and their duplicates. (More generally, this may be replaced
with the original values and their related values, or the inputs
to the computation of the original values and the duplicates or
values related to those inputs.) Instead of using the original
values and their duplicates, we may also employ values and
duplicates which are computed by means of these values; i.e.,
using these values as inputs, even if these values are computed
after execution of the code in Y. That is, we may use the
duplicates from X" to create more duplicates in Y', and then
employ those duplicates (or perhaps other forms of related
values) in computations so as to induce highly probable fail
ure when tampering occurs. This permits us many more
choices of what copies to employ in generating code failing
under tampering, thereby increasing the obscurity of the RPE
G which we choose when installing the interlock.
0529 Generating IAs.
0530 We have briefly mentioned that, in converting the
pretransfer computation R::AH) B performed by BB set V to
the computation R::AXJ->BxK, we may do any of the
following.
0531 (1) If R already modifies values computed in X, and
those modifications are employed in Y, then if those values
are replicated to create the integral OEF from F, we may
replicate the related computations in R to obtain R and
those replicates from R may then be employed in Gree,
with randomly selected use of original and duplicate val
ues, so as to render the RPEG essential to the preser
vation of G's functionality.
0532. This method applies irrespective of the complex
ity of the computations and flow of control through the
pretransfer BB set V.

0533 (2) If R modifies no values computed in X which we
wish to duplicate to create the integral OEF from F, then
we may simply leave the computations in BB set V which
computes R unmodified. This implies that K J and R
|R, idl, where J contains the duplicated values.
0534. This alternative (doing nothing) applies irrespec
tive of the complexity of the computations and flow of
control through the pretransfer BB set V.

US 2015/0074803 A1

0535 (3) If R modifies no values computed in X which we
wish to duplicate to create the integral OEF from F, then
we may add computations to V. So that, for any given pair
V, V, where V is an original result of computation F, and V.
is an added duplicate, and we may add a pair of computa
tions to R so that V is used in a number of computations
which, however, in the end still produce V, and V is used
in a different group of computations which, again, in the
end still produce V. That is, we perform distinct compu
tations on V and V which have no net effect. Then we still
have K J and R. R. idl, where J contains the dupli
cated values, but after further obfuscating steps described
hereinafter, this may either not be the case—although over
all functionality is still preserved—or, if still true, it is far
from obvious.
0536. This alternative requires that we be able to ana
lyze the net effect of computations added to Von the V,
V pairs. Such analysis may be very difficult if the data
and control-flow through V are sufficiently complex.
Therefore, this method is only applicable where it can be
restricted to modifications of a portion of the BBs in the
BB set V which is sufficiently simple with respect to
control- and data-flow to permit such computations with
no net effect to be added reliably. (The permissible level
of complexity will thus depend on the sophistication of
the available compiler data-flow analysis and control
flow analysis facilities.) The method is not always appli
cable, unlike alternatives (1) and (2) above.

0537 (4) If R modifies no values computed in X which we
wish to duplicate to create the integral OEF from F, then
we may add computations to V. So that, for any given pair
V, V, where V is an original result of computation F, and V.
is an added duplicate, and we may add a pair of computa
tions to R So that V is used in a number of computations
which in the end produce w, where normally wzv, and
V is used in a different group of computations which in the
end produce w, where normally wzV, and where V is
easily computed from w and V is easily computed from
w. That is, we perform distinct computations on V and V.
which have net effects, but still preserve the values of V
and V in the disguised forms w and w which V and V.
may be computed.
0538 We then modify code when producing Ge, so
that the code replaces uses of V duplicated uses of V
with uses of the expression for V in terms of w and uses
of the expression for V in terms of w respectively.

10539. Then we may well have KzJ, and R. R. S.
where S performs the above-mentioned computations of
w, w, from V. V. Ofcourse, this is true, not for one V,
V pair and its corresponding w, we pair, but for all V. V.
pairs we have determined, and for all of their corre
sponding W1, W2 pairs.

0540. After the obfuscation steps described hereinafter,
these computations may no longer yield the same values
for V, and V from the values w, and win the various
pairs—although overall functionality is still pre
served—or, if it does, that fact will be inobvious.

0541. As with alternative (3) above, this alternative
requires that we be able to analyze the net effect of
computations added to Von the V, V pairs, in this case,
to produce w w pairs. Such analysis may be very
difficult if the data- and control-flow through V are suf
ficiently complex. Therefore, this method is only appli
cable where it can be restricted to modifications of a

31
Mar. 12, 2015

portion of the BBs in the bb set V which is sufficiently
simple with respect to control- and data-flow to permit
Such computations with a specific net effect—the com
putation of the w, w, pairs according to known, value
preserving formulas to be added reliably. (The permis
sible level of complexity will thus depend on the
sophistication of the available compiler data-flow analy
sis and control-flow analysis facilities.) The method is
not always applicable, unlike alternatives (1) and (2)
above.

0542. Approaches (3) and (4) above suffer from the limi
tation that they can only be employed only where data- and
control-flow complexity in the pretransfer BB set V is low
enough to permit predictable addition of computations with
out net effect on output-extension duplicate pairs produced by
For with a known net effect preserving the values V, V of
output-extension duplicate pairs in disguised form w, w,
respectively.
0543. This limitation can be overcome using the method
described in S2.10.2.
(0544 2.9.2. Making OEs, IAS, and RPEs Obscure and
Contextual.
0545 Having installed the basic structures of our inter
locks according to $2.9.1, we must now obscure the interlock
code, making it difficult to analyze and obscuring its func
tionality, and further adding to its resistance to tampering, and
we must make the interlock code contextual, making it
resemble the Surrounding code.
(0546 For All Interlock Components.
0547 Our preferred method of achieving this is to apply
the same method or methods of injecting tamper-resistance to
both the code added to create the interlocks and to the other
code in the vicinity of that code, with the intensity of tamper
resistance varied from a high level for the interlock code itself
and code in its immediate vicinity, to decreasing intensities
for code increasingly remote from the interlock code, until
finally we reach the greater bulk of the SBE's code, which
may remain unchanged, since it is sufficiently remote from
the interlock code so that no special protection is required to
protect the installed interlocks.
0548. For the tamper-resistance methods in all of 2, 4, 5,
9, 19, 20, or their extensions in S2.7 and S2.8, the intensity of
the protection can be varied from high to low by transforming
a greater or lesser number of computations, a greater or lesser
number of values, and by choosing transformations with
higher or lower overheads and correspondingly higher or
lower security. Analysis of such choices is provided by 5.
Such methods are applicable to all interlock components.
0549. Additional tamper-resistance methods applicable to
all interlock components can be obtained by combining any
or all of 2, 4, 5, 9, 19, 20 or their extensions in S2.7 and S2.8
above with additional data and computation obfuscations
obtained by adding any number of the identities disclosed or
quoted in S2.5.3, or disclosed in S2.5.4, or generated by the
methods in S2.5.1 or $2.5.2 to the identities employed to
create the data and computation encodings of 2, 4, 5, 9, 19.
20, or the identities provided in the extension of 20 given in
S2.77.
0550 Alternatively, obfuscation of greater or lesser inten
sity can be obtained by performing larger or Smaller numbers
of substitutions of expressions in the code to be obfuscated,
where the Substitutions replace expressions by equivalent
expressions according to the identities disclosed or quoted in
S2.5.3, or disclosed in S2.5.5, or generated by the methods in

US 2015/0074803 A1

S2.5.1 or S2.5.2 to the identities employed to create the data
and computation encodings of 2, 4, 5, 9, 19, 20, or their
extensions in S2.7 and S2.8. The number of such identities
discoverable by such means grows so rapidly with the size of
expressions that the supply of identities is virtually unlimited.
Again, such obfuscation is applicable to all interlock compo
nentS.

0551 Tamper-resistance is preferred to mere obfuscation,
however, since tamper-resistance implies obscurity but also
chaotic behavior under fault-injection attacks and other code
modification attacks.
0552. Such forms of obfuscation can be easily manipu
lated and extended by those familiar with the arts of compiler
code transformation and of algebraic manipulations and deri
Vations.
0553 For Transfer IAs.
0554 Ifanattacker understands the control flow of a trans
fer IA, attacks on it are facilitated. Accordingly, we prefer to
both obscure and render tamper-resistant such control flow
among the BBs comprising a transfer IA, or in the BBs in their
vicinity, using the method and system of 3, extended
according to $2.7.3, possibly with overhead reduction
according to $2.7.4, where resource constraints require Such
reduction, or applying the control-flow protections of 9.
preferably with the improvements disclosed in S2.8.1.
0555 2.10. Variations on the Interlocking Method.
0556. There are a number of variations on the basic system
and method of interlocking taught above which greatly
increase its utility and breadth of applicability by broadening
the number of security properties which can be constructed in
the form of interlocks. We provide a number of such varia
tions below.
0557 2.10.1. Merged Interlocks.
0558 Suppose we have interlocked preproduction BB set
X via the intervening pretransfer BB set V to the preconsump
tion BB set Y, thereby convertingX into the production BB set
X, V into the transfer BB set V", and Y into the consumption
BBSet Y.
0559) Note that there is absolutely nothing preventing us
from choosing a new preproduction BB set X, and takingY'as
a new preconsumption BB set Y=Y', and choosing an appro
priate new pretransfer BB set V intervening between X andY.
and then interlocking X to Y, thereby converting X to produc
tion BB set X, V to transfer BB set V", and Y=Y' to consump
tion BBSet Y'=Y"
0560. This extends from re-interlocking to Y twice to re
interlocking to Y repeatedly any number of times, so that we
can interlock X to Y, and thenX to Y', and thenX to Y", and
SO. O.

0561. We call such successive interlocks interlocking
repeatedly to the same part of the program merged interlocks.
0562 2.10.2. Linked Interlocks and Interlock Chaining.
0563 The interlock chaining method we teach here is
useful in any situation where it is useful to tie together by
interlocking a chain of BB sets, where tampering at any point
will cause Subsequent failures throughout the chain, thereby
frustrating any intentions which a hacker may have had for
attempting to Subvert purposes of the original code.
0564. In addition, it can be used to circumvent the limita
tion of approaches (3) and (4) for the generation of IAS, which
can only be employed only where data- and control-flow
complexity in the pretransfer BB set V is low enough to
permit predictable addition of computations without net
effect on output-extension duplicate pairs produced by For

32
Mar. 12, 2015

with a known net effect preserving the values V, V of output
extension duplicate pairs in disguised form w, w, respec
tively.
0565 When interlocks are chained by the method we
teach below, we prefer to protect their chained control flow by
rendering the control flow of all components of the chained
interlocks (not just the BBs in the transfer IAS), and BBs in
their immediate vicinity, both obscure and tamper-resistant,
using the method and system of 3, extended according to
S2.7.3, possibly with overhead reduction according to S2.7.4,
where resource constraints require Such reduction, or the
control flow protection of the method and system of 9.
preferably with the improvements disclosed in S2.8.1.
0566. To chain interlocks together, we note that the rela
tion of being interlocked may be rendered transitive, so that if
X is interlocked to Y, and Y is interlocked to Z in a linked
fashion described below, then X is effectively interlocked to
Z

0567 To link of an interlock of X computing F to Y com
puting G and an interlock of Y computing G to Z computing
H, we note that X is basically interlocked to Y by identities
concerning pairs of values initially computed in an OE of F
and then employed in an RPE of G computed by Z in such a
fashion that tampering which causes the members of these
pairs to differ will cause G to fail to preserve the function
ality of G: i.e., it will cause computation of G to fail. To
ensure transitivity of the interlock, then, we must duplicate
pairs of Values from G to create a G. Such that the
new duplicate pairs computed in Got depend on the com
putations which fail in G if the above-mentioned pairs
differ—i.e., the new duplicate pairs are computed using both
members of a pair received by the computation in Such a
fashion that, in the new G computation, the new out
going pair will differ with high probability if the incoming
pair differs. When this is done, failure in G' will trigger failure
in H' once both interlocks—the X to Y and the Y to Z inter
locks—are installed.
0568. Thus to effect an interlock between X and Z., we may
instead forge an interlock between X and Y and then interlock
the resulting modified Y to Z by a linked interlock which is
linked to the preceding X to Y interlock. This can be applied
to any chain of interlocks: if in a sequence of BB sets X1, ...
X, we can interlock X to X if we can create a linked

interlock X, to X for i=1,..., k-1. There is nothing in the
methods we describe for installing interlocks which prevents
us from chaining linked interlocks in this fashion.
0569. For example, if the BB set V between X and Y is too
complex to be analyzed, we may instead break down the
complex paths through V by interlocking intermediate stages
in the paths from BB set X to BB set Y by linked interlocks,
thereby bringing the level of data- and control-flow complex
ity of the pretransfer BB set downto a level where approaches
(3) and (4) above become applicable.
(0570) 2.10.3. Multiple Consumptions and Interlock Trees.
0571 Normally, in constructing a basic interlock as
described in S2.4 through S2.9 above, there is one precon
sumption BB set Y which will be modified to create the
consumption BB set Y', where the preproduction BB set X,
which will be modified to create the production BB set X", is
a dominating set for BB set Yin the containing program.
Hence there is one pretransfer BB set V containing the Zero or
more BBs on the paths between BBs in X and those in Y.
which may or may not need to be modified into the transfer
BB set V" during the installation of the interlock.

US 2015/0074803 A1

0572. However, there is nothing forcing us to have only
one such preconsumption BB set Y. We can have any number
k of such BB sets Y. Y., with any number of (possibly
overlapping, possibly empty) corresponding pretransfer BB
sets V. V. So long as the conditions given at the
beginning of $2.4.2 are met and the BB sets Y,....Y. do not
overlap.
0573. When interlock trees are created by the method we
teach below, we prefer to protect their chained control flow by
rendering the control flow of all components of the interlocks
in the interlock tree (not just the BBs in the transfer IAS), and
BBs in their immediate vicinity, both obscure and tamper
resistant, using the method and system of 3, extended
according to $2.7.3, possibly with overhead reduction
according to $2.7.4, where resource constraints require Such
reduction, or using the control flow protection afforded by the
method and system of 9, preferably with the improvements
disclosed in S2.8.1.
0574) To install interlocks between X and each of Y. . . .

, Y, we create the OEF of F the computation of X, in the
normal fashion. Each of the RPES Gree, 1,..., Gree, is also
created in the normal fashion based on the duplicate values
produced in Fol.
0575 One complication is that paths from X to Y, may
overlap with the paths from X to Y, where izi. In that case, it
may be that the code in the overlapping BB sets and V, and v,
has sufficiently simple control- and data-flow that approach
(4) given above to the generation of the R, computation in
the modified V, and the generation of the R, computation
in the modified V, is straightforward. Otherwise, chaining can
be applied to reduce the complexity, as described in S2.10.2,
or approach (3) in which we construct the interlock without
modifications to V and V can be used. When this approach is
used, complexity of the pretransfer computation is permitted
to be arbitrarily high, since its complexity has no effect on the
difficulty of installing the interlock.
0576. By combining this variant with the interlock chain
ing taught in S2.10.2, we can create trees of interlocked BB
sets, allowing us to tie numerous program execution points
together in an interlocked fashion.
0577
0578. There are a number of constructs in typical pro
gramming languages in which a conditional value is used to
direct the flow of control during computation.
0579. For example, using C- or C++-like code, in FIG.
4(a), control flows from U to V if c is true, and from U to W
if c is false. In FIG. 4(b), control flows from U to V if i=v,
from U to V, if i=V.,..., from U to V if i-V, and U to W of
izv, for j=1,... k.
0580 We can modify the interlocking variant in S2.10.3 to
take advantage of such conditional control-flow and the asso
ciated condition as follows.

0581. Using the identities of 2, 4, 5, 9, 19, 20, or those
disclosed or quoted in S2.5.3, or those disclosed in S2.5.4, or
those computable using the methods of $2.5.1 or $2.5.2. or
the identities disclosed in S2.7.7, or any combination of these,
we can easily create an OE for the computation F of a pre
production BB which computes a condition in Such a fashion
that there are duplicate pairs which are equal only if the
condition is true, and other pairs which are equal only if the
condition is false (e.g., so that p q and qzrif c is true, and pzq
and q r if c is false). Suppose that control flows to BB set Y.
when c is true and to Y, when c is false.

2.10.4. Condition-Dependent Interlocking.

Mar. 12, 2015

0582. It is best not to do this starting with the conditions
themselves, but rather to examine the data used to compute
the values used to compute the conditions (or the values used
to compute the values used to compute the conditions, and so
on—the more levels of indirectness we add, the more secure,
but the higher the overhead). For example, if the condition is
“x<y' where we have prior assignments"x=4*a--(b & 1) and
“y=b+9-(a|0xFF), then we could use the condition

instead. (We call this process of moving the operands back
towards prior computations while maintaining equivalence
origin lifting, since we are lifting the origin of the operands
of a condition to an earlier computation, typically appearing
higher on a page in a code listing.)
0583. Then, in the preconsumption BB sets Y and Y, we
create an RPE forY which depends on the pairs such as p, q
which match when c is true, and we create an RPE for Y,
which depends on the pairs such as q, r which match when c
is false. As a result, any attempt to interfere with the flow from
X to Y and Y by subverting the normal effect of the condi
tion c will fail with high probability.
0584 Similarly, using the identities of 2, 4, 5, 9, 19, 20 or
those disclosed or quoted in S2.5.3, or disclosed in S2.5.4, or
those computable using the methods of $2.5.1 or $2.5.2. or
the identities given in the extension of 20 given in S2.7.7, or
any combination of these, we can easily create an OE for the
computation F of a preproduction BB which computes an
indexed condition Such as i in FIG. 4a in Such a fashion that
there are duplicate pairs which are equal only when the index
value is a particular constant, or only when it is not any of the
particular constant, and use these to interlock U (see FIG.
4(b)) to V, so that, if V, is executed, it uses pairs dependent on
having i V, for i=1,..., k, and interlocking U to Z so that it
uses pairs dependent on having izv, for j=1,...,k. As a result,
any attempt to interfere with the flow from U to V, ..., V or
W by subverting the normal effect of the index condition iwill
fail.
0585 2.10.5. Condition-Dependent Merging.
0586. In S2.10.4 above, we disclosed a method for protect
ing a branch against attacks such as branch jamming or other
methods of subverting the normal flow of control by tamper
ing. In that disclosed method, the branch continues to exist,
but execution will fail with high probability if its control-flow
is subjected to tampering.
0587 We now disclose a variant of this approach in which
the branch is removed, and the code present at the possible
destinations of the branch are merged together.
0588. In the method of S2.10.4 above, we create code at
the various destinations which functions properly only when
the value-matches created by the original condition reach the
code in the branch destinations without being altered by tam
pering. (Matching, i.e., equality, is preferred, but other rela
tionships may also be used.)
0589 When a conditional binary branch occurs, as in the
if-statement of FIG. 4(a), the condition c, typically computed
using values provided in U, controls which of V or W is
executed. This in turn affects values which are used in Zand
thereafter. Thus the effect of the if-statement is ultimately to
determine an effect on the state of the variables of the program
as seen by Z and its sequel. If we can produce that same
conditional effect without making V and W strictly alternative
to one another, we can produce the effect of the if-statement
without the conditional branch controlled by c.

US 2015/0074803 A1

0590 When conditional indexed multi-way branching
occurs as in FIG. 4(b), the conditional index i. typically com
puted using values provided in U, controls which of V OrV.
or or V or Wis executed. This in turn affects values which
are used in Z and thereafter. Thus the effect of the switch
statement is ultimately to determine an effect on the state of
the variables of the program as seen by Z and its sequel. If we
can produce that same conditional effect without making V,
..., V, W strictly alternative to one another, we can produce
the effect of the Switch-statement without the conditional
indexed branch controlled by i.
0591. Two Occupied Alternatives.
0592 First, we describe the method the case of two alter
natives, as in an if-statement in C or C++ in which both
alternatives contain computations, as in FIG. 4(a).
0593. In S2.5.3 we disclose certain methods, and quote
others, for converting conditions into the value 1 for true and
the value 0 for false, or alternatively, into the value T (all
1-bits, signed or unsigned)=-1 (signed) for true and the value
O for false.
0594 Once this is achieved, we can easily combine com
putations so that, in effect, computations to be performed if a
condition holds are retained by multiplying with 1 when the
condition is true, or Suppressed (Zeroed) by multiplying with
0 when the condition is false, or alternatively, are retained by
A with 1 (all 1-bits) when the condition is true and are sup
pressed (Zeroed) by W with 0 (all 0-bits) when the condition
is false. At the end of the computation, we select the retained
results by taking the two alternative results, one of which has
is normal value when the above method is applied, and one of
which has been Zeroed by applying the above method, and
combining them using +, V, or (D, so that we end up with a
single result which is correct for the state of the condition
choosing which alternative set of results should be produced.
0595. Three or More Occupied Alternatives.
0596. We now describe the method the case of more than
two alternatives, each of which contains code, as in a Switch
statement in C or C++ in which each alternative contains
computations, as in FIG. 4(b).
0597. In S2.5.3 we disclose some methods, and quote oth

ers, for converting conditions into the value 1 for true and the
value 0 for false, or alternatively, into the value T (all 1-bits,
signed or unsigned)=-1 (signed) for true and the value 0 for
false.
0598. In the method given above, we either retain compu
tations corresponding to truth of the controlling condition c
and Suppress those corresponding to falsity of c, or we Sup
press computations corresponding to truth of the controlling
condition c and retain those corresponding to the falsity of c.
Plainly, this is equivalent to having two condition, c and ca,
where we have cliff c=true and cliff c=false. Then we retain
the computations of V if c is true and Suppress the computa
tions of V if c is false, and we retain the computations of W
if c is true and Suppress the computations of W if c is false.
Add the end, we combine the corresponding values using V,
€D, or +, with the result that only the retained computations are
seen in Z and thereafter.
0599 To handle three or more alternatives, we proceed
according to the method in the above paragraph, but with the
following change: we have as many conditions as are needed
to handle the multi-way choice which would, prior to our
merging operation, be performed by branching. That is, we
have c, iffive for j=1,..., k, and we have cliff (izV) and

and (izV.). The one-bit or all-bits representation of any

34
Mar. 12, 2015

Such condition can be computed as discussed in S2.5.3 and
S2.5.4. We note that exactly one of c,..., c., is true and all
the rest are false. We can thus retain one of the computation
results of one of V. . . . , V, W, and suppress all of the
computation results of the remainder of V, ..., V. W. Then
we need only take each group of corresponding results for a
particular value (say, r1, ..., r) and combine them using V,
€D, or +; i.e., by computing r V Vr, or red €Dr.
or r+ +r, and since there is only one of the rs, say
which is retained, the result is to produce the result of the
single retained set of computations while eliminating any
results from the k suppressed sets of computations.
0600. In C or C++, alternative conditions may take a more
complex form than shown in FIG. 4(b). It is permitted to have
multiple case-labels, one after another, so that for a particular
V, the condition selecting execution of V, is (i-V,) V(i-V,2)
V V (i-V,), say. Such a condition is easily handled by
replacing the computation for the condition i-V, with the
computation for that more complex condition, employing the
methods disclosed or quoted in S2.5.3 or disclosed in S2.5.4.
Once this is done, retaining and Suppressing by means of the
condition are handled just as for the simpler conditions pre
viously discussed.
0601 Two Alternatives: One Empty.
0602 We may also have an if-statement such as that in
FIG. 5(a), which is similar to that in FIG. 4(a) except that the
else alternative is empty. In FIG. 5A, there is illustrated
pseudo-code for a conditional if statement with no else-code
(i.e. an if statement which either executes the then-code or
executes no code).
0603 As for two occupied alternatives, discussed above,
we make use of methods disclosed or quoted in S2.5.3 for
converting conditions into the value 1 for true and the value 0
for false, or alternatively, into the value I (all 1-bits, signed or
unsigned)=-1 (signed) for true and the value 0 (all 0-bits) for
false.
0604 We proceed much as we did for two occupied alter
natives above, but with this difference: for two occupied
alternatives, we retain values from V and Suppress values
from W when c is true, and we suppress values from V and
retain values from W when c is false, whereas for only one
occupied alternative, we retain new values computed in Vand
suppress the old values imported from U (whether computed
in U itself or prior to execution of U) when c is true, and we
Suppress the new values computed in V and retain the old
values imported from U when c is false.
0605. Three or More Alternatives: Some Empty.
0606. This situation, illustrated in FIG. 5(b), is similar to
that illustrated in in FIG. 4(b), except that not all alternatives
are occupied. FIG. 5B shows pseudo-code for a statement
analogous to that in FIG. 5A but where the choice among
alternatives which have code and those which have no code is
made by indexed selection (i.e. by the use of a switch state
ment with multiple alternatives) rather than by a boolean (true
or false) choice as was the case with the if statement in FIG.
S.A.

0607 Again, the way we handle this, is to convert the
controlling conditions for the occupied alternatives into
Boolean form, and to find an one-bit or all-bits Boolean
representation for the value of the condition. At most one of
these conditions can be true for a given execution of the
multi-way conditional. Unlike the situation when all alterna
tives are occupied, however, Some of the alternatives are
unoccupied, which implies that in the case that Such an alter

US 2015/0074803 A1

native would be selected, instead of having a value computed
by one of the occupied alternative code choices, we would
have values computed in or before the execution of U.
0608 To handle this situation, we create one further con
dition, which is true precisely when all of the conditions for
the occupied alternatives are false. When this condition is
true, we retain the results of the computations imported from
U (either computed in U or computed before U).
0609 Since, including this further condition, exactly one
of the above-mentioned conditions is true, and all of the rest
are false, we retain the results corresponding to the selection
of the alternative in the original program, and Suppress those
which, in the original program, would never have been evalu
ated. The result is that when Zis reached after execution of the
multi-way choice merged as described herein, the state of the
values seen by Z is precisely as if the original computation
had been performed, whether the selection corresponded to
an occupied or an unoccupied alternative of the multi-way
choice.
0610 2.10.6. Distributed and Segmented Interlocking.
0611. In some cases, a pretransfer computation may per
form a computation which consumes considerable comput
ing time or computing space, and we may wish to distribute
the work among computers in a network. In that situation, we
may perform the pretransfer computation on a server, with
jobs packaged and transmitted to the server by the preproduc
tion computation on a client, and the results of the pretransfer
computation received and unpackaged by a the same client or
a different client performing the preconsumption computa
tion.
0612. In that case, we could create an interlock to convert
the preproduction computation into a production computa
tion which packages a job for the server transfer computation,
with the results received, unpackaged, and interpreted by a
consumption computation on the same or a different client.
The interlock is structured almost in the normal way, but a
buffer containing many values is transmitted by the produc
tion client to the transfer server, and a buffer containing many
values is transmitted by the transfer server to the consumption
client. That is, what would be transmitted by being part of the
state of a process in the normal, single-site form of an inter
lock, is instead employed as an image of the relevant part of
the production state occupying a buffer, which then is
received by a transfer server, which uses the buffer as an
image of part of the starting transfer state, performs its trans
fer computation, places an image of the relevant part of the
final transfer state in a buffer, which is then transmitted to the
consumption client, which interprets the image in the buffer
as part of the initial consumption state.
0613 Such an interlock from a production client to a trans
fer server to a consumption client possibly on the same
computer in the network as the production client—is a dis
tributed interlock.

0614 The transfer portion of the interlock is an interlock
segment with the relational structure shown in FIG. 1. Simi
larly, the production and consumption portions of Such a
distributed interlock are interlock segments.
0615. There are other situations where distribution may be
useful. For example, it may be that there is no pretransfer
computation, and all of the activity is in the preproduction and
preconsumption portions of the computation. An example
would be the code implementing the sending and receiving
portions of a messaging mechanism on computers in a net
work, where for any given message, one computer does the

Mar. 12, 2015

sending and another does the receiving. To protect this mes
saging mechanism, we interlock the sender (preproduction)
computation and the receiver (preconsumption), with an
empty (identity-function—makes no data changes) pretrans
fer computation. This protects the messages by encoding
them and ensures that tampering with the sending or receiving
mechanisms will almost certainly fail due to tampering in a
fashion which will frustrate any stealthy hopes that an
attacker had for the results of such tampering. Such interlock
ing installs in the two ends of the communication a stealthy
and tamper-resistant built-in authentication mechanism
which is very difficult for an attacker to subvert by message
spoofing, or (with appropriate message contents) by replay or
other communications-based attacks, and at the same time
protects message contents by transmitting them in encoded
form due to the application of transforms inherent to the
process of installing Such an interlock.
0616 Making Image Messages
Tamper-Resistant.
0617. When the segments of a computation are part of a
distributed interlock, the communications among the net
work nodes holding the segments are typically exposed on the
network (e.g., on an Ethernet or a local radio network). It is
therefore important to provide effective protection for the
data images transferred among segments.
0618. In addition to, or in place of the protections which
we would normally apply for non-distributed computations,
we prefer to protect such inter-segment data image messages
by encoding them as memory arrays according to 16, with
the improvements thereto taught in S2.7.2, so that an image of
the memory array is transmitted from the sender to the recipi
ent, the sender prepares the data in mass-data-encoded form,
and the recipient employs the data in mass-data-encoded
form. If the memory images are arrays, we could alternatively
employ the array protections of 9 with the improvements
thereto disclosed herein in S2.8.1, or, if the code accessing the
arrays is rich in loops (express or implied), we could employ
the array protections of 27.
0619. In addition to, or in place of the above mass-data
encoded communication, the image (mass-data-encoded or
otherwise) of the transmitted data may be encrypted by the
sender and decrypted by the recipient using white box cryp
tographic methods according to 17, 18, with the improve
ments taught in S2.7.5, which provides a cryptographic level
of protection for the transmission of data images among dis
tributed segments.
0620. Both the mass-data-encoding and encryption pro
tections above have the desirable property of tamper-resis
tance, rather than mere obscurity, since any modifications to
mass-data-encoded data, or the code accessing Such data, or
encrypted data, or white-box encryption or decryption code,
produces chaotic, rather than purposeful, results with high
probability, thus frustrating any goals an attacker might have
for Such tampering.
0621 2.10.7. Ensuring Dynamic Randomness.
0622. In S2.9.1, the section entitled Case 1: Absent or
Weak X->Y Data Dependency describes a method by which,
in an interlock, the data dependency of Y on results produced
in X can be increased by encoding data values in Y using
values produced in X as coefficients.
0623 Suppose we want to cause the behavior of Y to vary
in an apparently random, unrepeatable fashion, so that an

Among Segments

US 2015/0074803 A1

attacker's ability to repeatedly observe behaviors mediated
by Y are compromised by apparently chaotic variations in the
computations at Y.
0624. We choose an X BB set which is a source of entropy,
either because it has access to the programs inputs, from
which we can compute a strong perhaps cryptographically
strong hash, so that every Small variation in the input dras
tically modifies the hash, or because it reads one or more
effectively random sources such as the low-order bits of a
high-speed hardware real-time clock or a randomness gen
eration device which uses an unstable electronic process to
produce noise and convert it to a (genuinely) random bit
Stream.

0625. We then interlock X to Y so that Y', the resulting
modified Y, is dependent on the values produced in X, includ
ing those depending on their entropy source, and create a data
dependency from X" to Y so that executions of Y vary ran
domly according to the entropy obtained in X', using the
method disclosed for creating Such data dependencies in Case
1: Absent or Weak X->Y Data Dependency.
0626. Due to the method disclosed in S2.10.1, we can, if
we wish, do this quite independently of any otherinterlocking
in the program; i.e., we can add dynamic randomness to the
execution of any part of the program where it is desired,
irrespective of any other interlocking present in the program.
0627 2.10.8. Ensuring Variable-Dependence.
0628 We can ensure variable dependence (the depen
dence of the data in the computations of the consumption BB
set on the values of variables in the production BB using the
method given in S2.10.7 with the modification that the X BB
set need not be an entropy source, so that none of the values
from them need carry entropy.
0629 2.10.9. Interlocks with Hardware Components.
0630. In the section above entitled
0631 Software Entities and Components, and Circuits as
Software, we noted that a circuit may be a software entity
because it is expressible as a program written in a circuit
description programming language such as VHDL.
0632. It follows that we may installan interlock between a
preproduction BB set comprising one or more hardware cir
cuits having a high-level description in VHDL or some simi
lar programming language, and a preconsumption BB set also
comprising one or more hardware circuits with a high-level
description in VHDL or a VHDL-like language.
0633 Installing the interlock will change the preproduc
tion set into the production set by modifying its VHDL or
VHDL-like description much as it would be modified in the
case of an ordinary programming language, thereby modify
ing the corresponding circuit created from the VHDL or
VHDL-like description.
0634. Similarly, installing the interlock will change the
preconsumption set into the consumption set by modifying its
VHDL or VHDL-like description much as it would be modi
fied in the case of an ordinary programming language,
thereby modifying the corresponding circuit created from the
VHDL or VHDL-like description.
0635 Along similar lines, we may interlock a circuit or
circuits as a preproduction BB set to software or firmware
code as a preconsumption BB set, or interlock software of
firmware code as a preproduction BB set to a circuit or cir
cuits as a preconsumption BB set. In addition, the pretransfer
Software may be, or may include, a circuit or circuits describ
able in VHDL or a VHDL-like language.

36
Mar. 12, 2015

0636. In each case, the process of interlocking affects the
hardware circuit by modifying it via modifications to its
descriptive software in VHDL or a VHDL-like language.
Specifically, a circuit or circuits comprising a preproduction
BB set is transformed into an encoded output extension (OE)
of its original functionality; a circuit or circuits comprising a
pretransfer BB set is transformed into an encoded intervening
aggregation (IA) of its original functionality with some bijec
tion transferring extended information from its inputs to its
outputs; and a circuit or circuits comprising a preconsump
tion BB set is transformed into an encoded reverse partial
evaluation (RPE) of its original functionality.
0637 2.11. Exemplary Applications of Interlocking to
Meet Specific Needs.
0638 We now turn our attention to ways of applying the
above teachings to particular applications of interlocking
which secure specific behaviors within an sbe, or to meet
specific security requirements.
0639 2.11.1. History Dependence.
0640 Suppose BBsy, ...,y, in a program is reached only
via branches from BBS X, ..., X. An attacker might modify
the program so that Some other BBs, say w, ..., w, distinct
from X1, ..., X, can branch to Some or all of y1,..., y, let
us call such attacker-added branches foreign branches.
0641. If we wish to ensure that foreign branches to y, ...

, y, cannot succeed, we choose X=(x1, . . . , X, as out
preproduction BB set, Y={y,...,y, as our preconsumption
BB set, and Ø (the empty set) as out pretransfer BB set, and
install an interlock from X to Y according to the general
method of the instant invention.
0642. As a consequence of this, the foreign branches will
induce chaotic behavior or failure.
0643. Thus installing such an interlock renders execution
history dependent: the affected software refuses to execute
normally unless, in its execution history, execution of a mem
ber of X immediately precedes execution of a member of Y.
0644 2.11.2. Integrity Verification by Checksumming.
0645. A common technique to prevent software tampering

is some variant of code checksumming: we treat the code as
data, and treating parts of the code as arrays of integer words
(or bytes), we compute a checksum of the arrays, with either
a single checksum or a combined checksum, or both indi
vidual and combined checksums. This can be done initially, to
verify that the loaded image matches what was in the load file,
or subsequently at periodic intervals, to verify that the code of
the program is not being modified by tampering.
0646. The most secure kinds of such checksums are com
puted using a cryptographically strong hash: a hash function
which has the property that, given a value for the checksum,
it is very difficult to find an array of integers, or modifications
to an array of integers, which will cause the checksum to have
that value. Examples of algorithms for computing Such
checksums are MD513 and SHA-1 14.
0647. Unfortunately, this kind of defense against software
modifications suffers from two very serious weaknesses.

0648 (1) An attacker can modify the code without trig
gering a failure due to checksum mismatch if the
attacker can modify the code so that checksum mis
match does not trigger failure. That is, rather than trying
to solve the potentially difficult problem of how to
modify the code while preserving the checksum, the
attacker may simply subvert the result of the mismatch
by performing a small change. Such as jamming the
branch taken on a failure condition (i.e., replacing that

US 2015/0074803 A1

conditional branch with an unconditional branch) so that
the failure branch never occurs irrespective of whether
the checksum matches or not.

0649. The attacker is aided in locating such checksum
Verifying code, and hence the code site at which branch
jamming will prevent a failure response, by the fact
that checksum algorithms, whether simple ones of low
security, or more secure ones such as MD5 13 and
SHA-1 14, are well known and hence recognizable.

0650 (2) When executing modem software on modem
operating systems, it is unusual for a program to be modi
fied once it has been loaded: a program typically performs
its entire job with a single, static body of code, residing in
memory whose access control-bits are set by the operating
system to a read-only state. This code stability makes pos
sible the form of attack described in 29. In this attack, the
Software image is simply duplicated. Many modern pro
cessors distinguish code accesses from data accesses. (In
part, this is done to allow an increased addressing capabil
ity without lengthening the address fields in instructions,
since it permits the same address to refer to different loca
tions, depending on whether it is fetched/stored as data—
data access—or fetched as an instruction-execute
access.) One of the duplicates is the modification code,
with which the attacker may tamper, and the other is the
original code, which is accessed by the Software for check
Summing purposes. Thus the intent of the Software's
authors that self-checksumming of the software by the
software should prevent tampering, is entirely defeated,
since the fact that the original code—which is not
executed—is unmodified in no way protects the modifica
tion code—which is executed with which the attacker
may tamper at will.
0651. This attack has surprisingly low overhead and is
quite easy for an operating system expert to perform.

0652 Weakness (1) above can be addressed by the method
given in S2.10.4. The preproduction BB set (normally just one
BB) computes and checks the checksum: the check of the
checksum controls a conditional branch to the checksum
success or checksum failure destination; the BB sets (nor
mally just one BB each) at the destination of the conditional
branch are preconsumption BBS, and the condition is check
Sum matching or failure to match. Installing such a condition
dependent interlock causes execution to fail if an attacker
modifies the checksum checking code (e.g., by jamming the
branch).
0653 Weakness (2) is more difficult to manage. Recent
commercial operating system releases make it increasingly
awkward to modify code in a program. Under this trend, an
attacker performing the kind of code-image attack described
in 291 would generally have the computer under complete
control running an operating system under the control of the
attacker. For example, this would certainly be feasible with
open-source operating systems such as Linux, Hurd, or Open
BSD.
0654) One approach is to divide the program to be pro
tected into regions. Code in the current region (the region into
which the program counter points) must be executable, but
code in other regions need not be. We can take advantage of
this fact to modify the image of the program prior to region
to-region transfers. Just before control transfers from region
M to region N, the exit-code for region M modifies the code
of M into an unexecutable state (except for the exit-code
itself) and modifies the code of N into an executable state.

37
Mar. 12, 2015

This modification need not be large: a few bytes here and
there are quite sufficient, if they are located strategically (e.g.,
if they form part of the code in the production BB set of an
interlock, so that any Small change causes failure). The pro
gram code has at least one state per region, in which that
region is executable and others are not, and hence at least one
checksum per state and hence per region. Checksum code
executed in a given region uses the checksum appropriate for
that region.
0655 This shuts down the attack noted in (2) above, since
the changes performed in the code must be performed on the
code image which is actually executed: if it is not, then trans
ferring into a new region will enter code which is in a non
executable state, and execution will fail, thus preventing any
further progress by the attacker.
0656. A refinement is to employ multiple non-executable
states and choose among them randomly (e.g., by selecting
among them using the low-order bits of a real-time clock or
process identifier or the like) or pseudo-randomly (e.g., by
employing entropy from the inputs of the program to produce
a hash and then employing the low-order bits of that hash to
select among them). This increases the difficulty for the
attacker in attempting to determine how to defeat such pro
tections.
0657 However, code which performs the code-state
change during region transfer is likely to be obvious since it
will use special instructions or system calls to achieve the
change. In order to prevent the removal of protections, the
final step is to interlock the computations which perform the
state change with those which perform the next checksum
check, and to perform interlock chaining among Such code
state changes and checks. Then modifications to either the
code-state changes or the code-state checks will cause chaotic
behavior with high probability, thus frustrating any specific
goals the attacker may have for behavioral changes to the
code.
0658) 2.11.3. Hiding Information in Complex Data Struc
tures.

0659 Suppose we wish to hide a secret datum (piece of
information) from an attacker. We review the previously dis
cussed methods for hiding it, and then disclose an alternative,
powerful method which handles Static and dynamic con
stants', whether small or large, and also non-constant pieces
of data, whether Small or large.
A dynamic constant is computed at run-time but does not change after it is
computed.
0660 Previously Disclosed Data Hiding Methods.
0661. If the datum is relatively small and a static or
dynamic constant, we may use the method taught in S2.6, or
the methods of 2, 4, 5, 19, 20 or their extensions disclosed
herein in S2.7 and S2.8, or we may substitute expressions
using the datum, and expressions in the vicinity of those uses,
according to identities disclosed or quoted in S2.5.3, or dis
closed in S2.5.4, or discovered by the methods disclosed in
S2.5.1 or S2.5.2.
0662. If the datum is large and a static or dynamic con
stant, we may use the method in S2.6 where we produce the
large constant in segments, each treated as a separate Small
COnStant.

0663 If the datum is not necessarily constant, but is small,
we may hide it by employing the methods of 2, 4, 5, 9, 19, 20
or their extensions listed in S2.7 and S2.8, or we may substi
tute expressions using the values, and expressions in the
vicinity of those uses, according to identities disclosed or

US 2015/0074803 A1

quoted in S2.5.3, or disclosed in S2.5.4, or discovered by the
methods disclosed in S2.5.1 or S2.5.2.
0664. If the datum is not necessarily constant, and is large,
we could use the same methods as in the previous paragraph,
but applied to Small values as segments of the entire value.
Alternatively, we could employ the method of 16, or its
extension as disclosed in S2.7.2, or, if it takes the form of an
array, the array protections of 9, with the improvements
disclosed herein in S2.8.1, or, if the datum is an array and the
code accessing it is rich in looping—express or implied—it
could be protected using the method of 27.
0665. The Complex Data Structures Method.
0666. There is a powerful alternative which can hide a
static or dynamic constant datum, whether large or Small, and
also a dynamically varying datum (a variable or particular
collection of variables), whether large or small.
0667 Consider a complex data structure, consisting of a
series of data-segments, where each data-segment contains
Some combination of Scalar variables, arrays of scalar vari
ables, pointers to other Such data-segments, and arrays of
pointers to other data-segments, in which the data-segments
are linked together so that, regarding each segment as a node,
and pointers as defining arcs, the structure is a directed graph,
most nodes have an out-degree greater than one, most nodes
have an in-degree greater than one, and for most pairs of
nodes, there is more than one path from that node to another
node. We choose one of the nodes (data segments) to be the
distinguished start node.
0668 Such a data structure can be implemented in the C or
C++ programming languages or their allies as a series of
structures (i.e., each is a struct in C or C++), containing scalar
variables, arrays of scalar variables, pointer variables, and
arrays of pointer variables), where the pointers are initialized
either at program startup or at Some Subsequent time prior to
their use as noted above for hiding a datum of some size.
Alternatively, the structures can be dynamically allocated
using the malloc () function or one of its allies in C or using
the new operatorin C++. Finally, we could employ an array of
struct variables, whether declared as an array or allocated
using malloc () or calloc () in C or the new operatorin C++,
and replace the pointer variables with array indices (which
would restrict the data segments all to the same internal
layout), or we could combine the array method with the
multi-linked, pointer-based forms above.
0669 We regard the above multi-linked (whether by
pointers or by indices or by both) data structure, whether
statically allocated, or declared in the body of a routine, or
allocated dynamically using malloc () in C, or new and/or
new II in C++, as a repository—where each scalar variable in
the repository stores a Scalar value.
0670. Then we hide information in the repository by using
two methods, both based on the data-hiding method of $2.6.
The first method determines how we address a particular
piece of data which is, or is an element of the datum we are
hiding. The second determines how that particular piece of
data is stored (i.e., how it is encoded).
0671 A path in the repository comprises a sequence of
values, where the values signify a series of Scalar or pointer
accesses. For example, we might assign numbers 1,..., 64 to
denote the first through 64" scalar data fields in a struct (or
elements, in an array), 65. . . . , 128 to denote the first through
64" pointer fields (or elements, in an array), 129, ..., 192 to
denote the first through 64" scalar array fields, 193,..., 255
to denote the first through 63 pointer array fields, and 0 to

Mar. 12, 2015

denote the end of the path. All of these values can be stored in
an (unsigned) eight-bit byte. Thus a path from the root data
structure can be indicated by a string of bytes ending in a Zero
byte just as a string is normally represented in C.
0672 For example, suppose to find a particular scalar
value, we begin at the root struct, follow the pointer in the 3r'
pointer field, which leads to another struct, select the 2n'
pointer array, index to the 9" pointer in the array, follow that
pointer to another struct, and then select the 8" scalar data
field. Then its path is represented by the byte-vector (67,194,
73,8.0).
0673. Many otherforms of path-encodings are possible, as
will be obvious from the above to anyone skilled in the art of
compiler-construction and the implementation of data-struc
ture accesses of various kinds for compiled languages such as
C or C++ Moreover, construction of code which interprets
Such an encoded path so as to access the target value of the
pathis likewise straightforward for anyone skilled in the art of
compiler-construction.
0674. Such a path is eminently suitable for concealment
according to the constant-hiding method of S2.6. Moreover,
S2.6 also discloses a method for ensuring that the constant
path is a dynamic constant (see the section above entitled
Adding Dynamic Randomness); i.e., it is not predictable, at
program startup—or at repository startup if the repository is
transient—exactly which path will apply to a particular Scalar
stored in the repository: its path will vary among program
runs, and among instantiations of the repository within a
program run if the repository is transitory.
0675 Normally the path ends at a scalar or a scalar array.
The instant complex data structure method is not much help in
concealing pointers, because a pointer must be in unencoded
form to be used. However, using the data-encoding methods
of 2, 4, 5, 9, 20 or their extensions disclosed herein in S2.7
and S2.8, by encoding both values and the code using them,
we can employ encoded values without decoding them, so the
instant complex data structure method is well-suited to the
protection of Scalar data.
0676 We can protect pointers as well as values if we store
the linked data structures in an encoded software memory
array according to the method and system of 16 or its exten
sion taught in S2.7.2. Pointers according to 16 or its exten
sion are encoded integer values which are both fetched and
stored without immediate decoding, so pointers, thus treated
as special values, are fully protected. In addition, the protec
tions of 16 or its extension taught in S2.7.2 permit us to
reduce the complexity of the concealing storage structures
stored in the Software memory array since the encoded soft
ware memory array itself provides Substantial protection.
0677 Alternatively, if the code accessing the data struc
tures is rich in loops—express or implied—we may represent
pointers as obscure and time-varying vectors of indices as
taught in 27, thereby concealing them.
0678. In order to protect the scalar data when it is being
stored, or fetched, or fetched and used immediately in com
putations, we store data in encoded forms and use the above
mentioned data and computation encoding methods to con
ceal the values stored, fetched, or fetched and immediately
used in computation as disclosed in 2, 4, 5, 9, 19, 20 or in the
extensions of these disclosed herein in S2.7 and S2.8.
0679 These above-mentioned methods employ (static or
dynamic) constant coefficients to distinguish among the vari
ous members of a family of encodings. For example, using the

US 2015/0074803 A1

encodings of 20, any particular encoding is determined by
its two coefficients: its scale, which should be odd, and its
bias, which is unrestricted.
0680 Again, we can represent all of the encodings for all
scalar locations in the repository by their coefficients. We
could also go one step further, and use further constant values
to identify the family of encodings to which particular coef
ficients belong. If we do not take this further step, then each
repository datum is identified with a specific family of encod
ings, and we only need its coefficients to disambiguate it.
0681 We hide the constant vector of coefficients, or of
family identifiers and coefficients, using the method of $2.6.
These constants can either be static or can be made dynamic
using the method given in S2.6 in the part entitled Adding
Dynamic Randomness and detailed in S2.10.7; their repre
sentations can be made dependent on data from other parts or
the program using the method taught in S2.10.8. The dynami
cally random or variable-dependent representations incur
greater overheads but provide more security, and are therefore
recommended where resource considerations permit.
0682. Use of either or both of the methods of S2.10.7 or
S2.10.8 converts this data concealment method into an inter
lock, which we recommend for security reasons where fea
sible.

0683
0684. When an application is linked together from various
object code files, it often will import code for library routines
which implement functionality common to many different
applications.
0685 Interlocking within library code, where all compo
nents are within the library code itself, is just ordinary inter
locking. There are variations, however, when Some interlock
components are in the library and others are in applications to
which library code may be subsequently linked.
0686. It may be that the functionality obtained by linking

to library code requires behavioral protection via interlock
ing—e.g., to ensure that the correct library routine is called,
rather than having its call omitted or diverted to some other
routine, or to ensure that, on exit from the library routine,
control is returned to the code following the call at the
expected call site, rather than being diverted elsewhere.
0687. The difficulty is that library code, in a fixed and
often simultaneously sharable piece of code usable by mul
tiple processes on a given platform, such as a dynamically
accessed shared object (a. So shared object-file for
UnixTM or Linux platforms; a. d11—dynamically linked
library file for WindowsTM platforms) cannot be modified in
order to install an interlock.
°For example, on WindowsTM platforms, a given group of library routines may
be mapped into an applications address space at Some time by a call to
LoadLibrary (...), routines in it may be accessed using GetProcAddress (..
.), and after the application is finished with the group of routines, the group may
be removed from the address space by calling FreeLibrary (...).

0688
0689 Interlocking from a set X of BBs in the library code

to the variable set Y of BBs in the application using the library
code is straightforward: we convert the preproduction code
into production code computing an integral oe in the usual
way, we let the IA be the identity IA—no modifications or
transfer code required—and we modify the preconsumption
code receiving information from the library into the con
sumption RPE in the usual way. Encoding is applied to form
X' and Y in the usual way. The only difference is that infor
mation about X's OE and the X encoding must be saved so

2.11.4. Binding Applications to Shared Libraries.

Interlocking from Library Code to Caller Code.

39
Mar. 12, 2015

that it can be used in preparing the code forY's RPE and the
Y' encoding for each of the calling application using the
library code.
(0690 Interlocking from Caller Code to Library Code.
0691. It is the reverse form of interlocking, from a set X of
preproduction BBS in the application employing the library
code to a set Y of preconsumption BBs in the called library
code which presents the problem, since the library code is
created in advance without detailed knowledge of the calling
application.
0692. When the code for a library routine is generated, we
cannot know details of the context in which the call is made.
What we do know, however, are details of the arguments
passed to the library routine’s API not the values of the
arguments, but their types, their formats, and any constraints
which they must obey to be legitimate arguments to the
library callee. Thus we are equipped with certain pieces of
information about every possible calling context: those spe
cifically concerned with the above-mentioned aspects of
argument-passing.
0693) We are thus in position to symbolically generate
code for a generic caller—the code in the generic preproducer
BB set X, say prior to establishing the interlock to the Y
preconsumption BB set in the library callee.
(0694. We then interlock the generic caller BB set X to the
actual library callee BB set Y, creating X's OE and Y's RPE,
and encoding these into X' and Y and establishing an inter
lock from the generic caller to the actual library callee. As
above in interlocking from library code to caller code, we let
the IA be the identity IA—no modifications to transfer code
required.
0695. Then to interlock from an actual caller's X BB set
performing a call to the library Y. BB set (where the library
actually contains code for the encoded post-interlock BB set
Y), we simply line up the OE of BB set X with that of
X which is always possible since X contains only the
generic code common to all callers—and encodeX and its OE
into X' exactly as X' was encoded—again, always possible,
since only generic code common to all callers is involved.
0696. It is possible that insufficient dependency would
exist from caller to called library code as a result of the above
approach, due to a Small number of simple arguments. In that
case, the Solution is, prior to establishing the generic interlock
above, to add more arguments and/or make the arguments
more complex, thereby creating a situation that, despite the
generic nature of the interlocking code in this case, the depen
dencies from caller to library callee will be sufficient to create
a secure interlock.
0697 Thus separating functionality into sharable libraries

is no barrier to interlocking, even where interlocking must
cross library boundaries, whether dynamic or otherwise, and
whether from library callee to caller or from caller to library
callee.
0698 Embodiments of the invention may be implemented
in any conventional computer programming language. For
example, preferred embodiments may be implemented in a
procedural programming language (e.g. “C”) or an object
oriented language (e.g. "C++). Alternative embodiments of
the invention may be implemented as pre-programmed hard
ware elements, other related components, or as a combination
of hardware and Software components.
0699 Embodiments can be implemented as a computer
program product for use with a computer system. Such imple
mentation may include a series of computer instructions fixed

US 2015/0074803 A1

either on a tangible medium, Such as a computer readable
medium (e.g., a diskette, CD-ROM, ROM, or fixed disk) or
transmittable to a computer system, via a modem or other
interface device, such as a communications adapter con
nected to a network over a medium. The medium may be
either a tangible medium (e.g., optical or electrical commu
nications lines) or a medium implemented with wireless tech
niques (e.g., microwave, infrared or other transmission tech
niques). The series of computer instructions embodies all or
part of the functionality previously described herein. Those
skilled in the art should appreciate that Such computer
instructions can be written in a number of programming lan
guages for use with many computerarchitectures or operating
systems. Furthermore, Such instructions may be stored in any
memory device. Such as semiconductor, magnetic, optical or
other memory devices, and may be transmitted using any
communications technology, Such as optical, infrared, micro
wave, or other transmission technologies. It is expected that
Such a computer program product may be distributed as a
removable medium with accompanying printed or electronic
documentation (e.g., shrink wrapped software), preloaded
with a computer system (e.g., on system ROM or fixed disk),
or distributed from a server over the network (e.g., the Internet
or World Wide Web). Of course, some embodiments of the
invention may be implemented as a combination of both
Software (e.g., a computer program product) and hardware.
Still other embodiments of the invention may be implemented
as entirely hardware, or entirely software (e.g., a computer
program product).

40
Mar. 12, 2015

0700 A person understanding this invention may now
conceive of alternative structures and embodiments or varia
tions of the above all of which are intended to fall within the
scope of the invention as defined in the claims that follow.

1. A method for thwarting tampering with software, the
method comprising the steps of

(a) receiving Source code of said software
(b) dividing said source code into basic blocks of logic, at

least one first basic block not being dependent on results
from at least one second basic block when said software
is run

(c) determining which basic blocks to modify based on a
logic flow of said source code

(d) modifying at least one first basic block to result in at
least one modified first basic block

(e) modifying at least one second basic block to result in at
least one modified second basic block

wherein said at least one modified first basic block is
dependent on results from said at least one modified
second basic block.

2. A method for hiding dynamic and static values in com
puter code, the method comprising the step of

replacing a value to be hidden with a plurality of compu
tations, said plurality of computation involving other
values and constants

said value to be hidden being accessed by executing said
plurality of computations.

k k k k k

