实用新型名称
便携式现场和室内两用直剪试验仪
摘要
一种既能够在现场测试原位土体强度又能在室内测试原状土样、扰动土样的便携式现场和室内两用直剪试验仪。该试验仪包括取样设备，移动式垂直加压系统和水平张拉受剪系统，采用水平张拉受剪系统克服了现有技术的刚性顶推方式，解决了摩擦问题和取样的挠动问题，采用移动式垂直加压系统可确保测试过程中垂直压力不会偏心，提高测试精度。它是将在现场所取得的或在室内所制备的包含刚性框的土样放入固定在箱型框架上的刚性框底座里，通过安装在箱型框架上的移动式垂直加荷系统施加垂直力，采用张拉剪切框测试土体的强度，试验过程中不会限制试样垂直方向的体积变化；该仪器结构简单，操作方便，便于搬运。
权利要求书

1. 一种便携式现场和室内用直剪试验仪，包括取样设备、垂直加荷系统，其特征是它还包括水平张拉受剪系统，其中取样设备由剪切框架（2）与刚性框架（3）组成，剪切框架（2）置于刚性框架（3）的上部，垂直加荷系统是移动式的，其中两根横梁支柱（18）分别固定连接在滚轮系统（30）的两个滑枕（34）上，滑轮系统是由两根滚轮导轨（31），两个滚轮（32）嵌在滚轮导轨（31）的U型槽中，滚轮轴承（33）将滚轮（32）与滑枕（34）相连接；水平滑拉受剪系统中的两根链条（12）的一端分别连接在剪切框架（2）上的链条挂钩（11）上，另一端连接在连接件（14）一端的钢圆环上，连接件（14）的另一端通过螺纹连接在拉力传感器（13）上，拉力传感器（13）的另一端与具有螺纹的手轮推动杆（15）连接，手轮（16）与手轮推动杆（15）相连接，当转动手轮（16）时手轮推动杆（15）可前进或后退，水平拉受剪系统通过螺栓（17）固定在箱形框架（7）上。

2. 根据权利要求1所述的便携式现场和室内用直剪试验仪，其特征在于所述的剪切框架（2）为十字型架（28）的方形框架，剪切框架（2）的一侧面上有两个链条挂钩（11），其中央部位架设有水平位移计（6），所述的刚性框架（3）的尺寸与剪切框架（2）相同，二者下部外侧四个面均为斜口形状，将刚性框架（3）放置在刚性框架底座（4）内，用螺杆（18）固定，刚性框架底座（4）再用螺栓（27）固定在箱形框架（7）上。

3. 根据权利要求1所述的便携式现场和室内用直剪试验仪，其特征在于所述的垂直加荷系统中的传力柱（10）的下端固定在传力板（9）上，二者的中心在同一垂直直线上，且二者的中心线通过试样（1）的中心，传力板（9）的底面尺寸与剪切框架（2）的平面尺寸相同，传力板（9）的上部装有垂直位移计（5），传力柱（10）的下端通过杠杆轴承（19）与杠杆（24）和支点端盖（20）相连接，杠杆（24）的末端为吊盘（25），吊盘下端为砝码（26），支柱（29）具有螺纹，它的下端螺进支点端盖（20）里，并用支柱螺母Ⅰ（21）固定，支柱（29）上端放置在横梁（23）的中心孔内，可上下移动，这样就可使传力板（9）、传力柱（10）在垂直方向上根据需要上下调整高度，高度调整好之后，支柱（29）由支柱螺母Ⅱ（22）固定在横梁（23）上，横梁（23）由两根横梁支柱（18）支撑，并由螺杆（35）固定，横梁支柱（18）另一端有螺纹，它螺进滑枕（34）里，滑枕（34）套在滚轮导轨（31）外，滚轮导轨（31）有上、下两块，下滚轮导轨固定在箱形框架（7）上，两块滚轮导轨（31）的两端由固定上、下滚轮导轨的螺栓（36）固定。

4. 根据权利要求1所述的便携式现场和室内用直剪试验仪，其特征在于所述的水平张拉受剪系统中的链条（12）为两根钢链索或钢丝绳，每根长15cm。
便携式现场和室内两用直剪试验仪

一、技术领域

本实用新型涉及一种土体强度测试的直剪试验仪器，既能在现场方便、快捷地测试自然土坡、填方土坡、各种地基表面的强度参数，也能在室内测试原状土样、重塑土样的强度参数。

二、背景技术

直剪试验仪器分为室内试验直剪仪和现场试验直剪仪。常规的室内直剪试验仪有上、下两个剪切盒，试样放入剪切盒后，在试样顶部施加一定的垂直压力，推动剪切盒，使试样受剪至破坏，从而得到土体的强度参数。目前由于采用推动剪切盒的方法来使试样受剪，剪切盒与量力环之间必定是刚性连接。在剪切过程中，若试样发生体积变化，会在其接触点处产生摩擦力，而该摩擦力在试验中无法测定，从而使剪切面上的正应力与实际外加的正应力不一致，影响了土体强度的正确测试。现场试验直剪仪大多只是将室内试验直剪仪的尺寸加大，同样存在刚性连接点处的摩擦影响问题。

三、发明内容

本实用新型的目的在于解决常规直剪试验仪中刚性连接点处的摩擦影响问题。采用的技术方案是将试样受剪方式由刚性顶推方式改为柔性拉张方式；将取样装置直接作为下剪切盒，可直接在现场进行试验；且该直剪仪也可以在室内做原状样或重塑样直剪试验。整套仪器装置可装入一个箱型框架内，搬运方便。

本实用新型解决其技术问题所采用的技术方案：在承载所取得的或在室内所制备的包含刚性框架的土样放入刚性框架里，刚性框架固定于箱型框架上。通过安装在箱型框架上移动式垂直加荷系统，然后采用柔性绳链张拉剪切片，使试样受剪。试验过程中，试样在垂直方向的体积不会受到柔性绳链的限制。本试验仪简单性、操作简便，可快速地测定现场土体及室内原状样、重塑样的抗剪强度。整套装置可装入箱型框架内，搬运方便。

一种便携式现场和室内两用直剪试验仪，包括取样设备、垂直加荷系统，其特征是它还包括水平张拉受剪系统，其中取样设备由剪切盒 2 与刚性盒 3 组成，剪切盒 2 置于刚性盒 3 的上部，垂直加荷系统是移动式的，其中两根横梁支柱 18 分别固定连接在滚轮系统 30 的两个滑枕 34 上，滑轮系统是由两根滚轮导轨 31，两个滚轮 32 镶嵌在滚轮导轨 31 上 U 型槽中，滚轮轴 33 将滚轮 32 与滑枕 34 相连接；水平张拉受剪系统中的两根链条 12 的一端分别连接在剪切片 2 上的链条挂钩 11 上，另一端连接在连接件 14 一端的圆环上，连接件 14 的另一端通过螺纹连接在拉力传感器 13 上，拉力传感器 13 的另一端与具有螺纹的手轮推杆 15 连接，手轮 16 与手轮推杆 15 相连接，当转动手轮 16 时手轮推杆
可前进或后退，水平张拉受剪系统通过螺栓 17 固定在箱型框架 7 上。

上述的便携式现场和室内两用直剪实验仪，其特征在于所述的剪切刀 2 为十字型刀 28 的方形框，剪切框 2 的一侧面上有两个链条挂钩 11，其中央部位架设有水平位移计 6，所述的刚性框 3 净尺寸与剪切刀 2 相同，二者下端外部四个面均为刀口形状，将刚性框 3 放置在刚性框底座 4 内，用螺钉 8 固定，刚性框底座 4 再用螺栓 27 固定在箱型框架 7 上。

上述的便携式现场和室内两用直剪实验仪其特征在于所述的垂直加荷系统中的传力柱 10 的下端固定在传力板 9 上，二者在在同一垂直直线上，且二者的中心线通过试样 1 的中心，传力板 9 的底面尺寸与剪切刀 2 的平面尺寸相同，传力板 9 的上部装有垂直位移计 5，传力柱 10 的另一端通过杠杆轴 19 与杠杆 24 和支点端盖 20 相连接，杠杆 24 的中部为吊盘 25，吊盘下端为砝码 26，支柱 29 具有螺纹，它的下端螺进支点端盖 20 里，并用支柱螺母 I 21 固定，支柱 29 上端放置在横梁 23 的中心孔内，并可上下移动，这样就可使传力板 9、传力柱 10 在垂直方向上根据需要上下调整高度，高度调整好之后，支柱 29 由支柱螺母 II 22 固定在横梁 23 上，横梁 23 由两根横梁支柱 18 支撑，并由螺母 35 固定，横梁支柱 18 另一端有螺纹，它螺进滑枕 34 里，滑枕 34 套在滚轮导轨 31 外，滚轮导轨 31 有上、下两块，下滚轮导轨固定在箱型框架 7 上，两块滚轮导轨 31 的两端由固定上、下滚轮导轨的螺栓 36 固定。

上述的便携式现场和室内两用直剪实验仪的水平张拉受剪系统中的链条 12 为两根钢链条或钢丝绳，每根长约 15cm。

本实用新型的有益效果是：1) 整套设备结构简单，操作方便，便于携带；2) 克服了常规直剪试验刚性接触剪切刀所产生的摩擦力对测试结果的影响，能真实反映土体受剪时的体积变化情况；3) 兼有现场、室内两用的优点；4) 采用移动式垂直加荷系统施加垂直力，确保试验过程中垂直压力不会偏心。

四、附图说明

图 1 为便携式现场、室内两用直剪试验仪的结构示意图；
图 2 为便携式现场、室内两用直剪试验仪的平面示意图；
图 3 为便携式现场、室内两用直剪试验仪的侧面示意图；
图 4 为便携式现场、室内两用直剪试验仪的滚轴系统示意图。

五、具体实施方式

结合附图对本实用新型做进一步说明。

如图 1 至图 4，本实用新型的便携式现场和室内两用直剪试验仪，主要包括取样设备（剪切框 2 和刚性框 3）、水平张拉受剪系统（链条 12、手轮 16、拉力传感器 13 等）、移动式垂直加荷系统（滚轮系统 30、横梁支柱 18、横梁 23、支柱 29、传力板 9、传力柱 10、杠杆 24 等）及箱型框架 7、刚性框底座 4 和位移量测设备（垂直位移计 5、水平位移计 6）。

上述的剪切框 2 为十字型架 28 的方框，这样可以使得试样在剪切过程中应变较没有十字型剪切框的应变更为均匀；剪切框 2 的一侧面上有两个链条挂钩 11，其中央装有水平位移计 6，对于做粘性土及细沙的试验，剪切框 2 的净尺寸为：长×宽=141mm×141mm，高为 20mm，对于做颗粒粒径较大的土石料试验，其尺寸可适当放大；所述的刚性框 3 净尺寸与剪切框 2 相同，二者下端外部四个面均为刀口形状，将刚性框 3 放置在刚性框底座 4 内，用螺钉 8 固定，刚性框底座 4 再固定在箱型框架 7 上。

上述的移动式垂直加荷系统中的传力柱 10 的下端固定在传力板 9 上，二者的中心在同一垂直直线上，且二者的中心线通过试样 1 的中心，传力板 9 的底面尺寸与剪切框 2 的平面尺寸相同，传力板 9 的上部装有垂直位移计 5，传力柱 10 的另一端通过杠杆轴承 19 和杠杆 24 和支点端盖 20 接连接，杠杆 24 的末端为吊盘 25，吊盘下端为砝码 26，支柱 29 具有螺纹，它的下端螺进支点端盖 20 里，并用支柱螺母 I 固定，支柱 29 上端放置在横梁 23 的中心孔内，并可上下移动，这样就可使传力板 9、传力柱 10 在垂直方向上根据需要上下调整高度，高度调整好之后，支柱 29 由支柱螺母 II 固定在横梁 23 上，横梁 23 由两根横梁支柱 18 支撑，并由螺母 35 固定，横梁支柱 18 另一端有螺纹，它螺进滑枕 34 里，滑枕 34 套在滚轮导轨 31 外，滚轮导轨 31 有上、下两块，下滚轮导轨固定在箱型框架 7 上，两块滚轮导轨 31 的两端由固定上、下滚轮导轨的螺栓 36 固定。滚轮导轨长为 40cm，保证滑枕 34 在其上 5 cm 的移动位移。这样的垂直加荷系统的结构特点是：由于滚轮的滚动摩擦力很小，在试样剪切过程中，剪切框 2 移动会带动传力板 9、传力柱 10、杠杆 24、横梁 23、横梁支柱 18、滑枕 34、滚轮
32 一起移动，这样就实现了剪切过程中剪切模 2 与垂直加荷系统同步移动，保证了试验过程中垂直力不会偏心。

上述的水平张拉受剪系统中链条 12 为两根钢链条或钢丝绳 (这里以链条代替)，每根长约 15cm，两根链条 12 的一端分别连接在剪切模 2 上的链条挂钩 11 上；两根链条的另一端连接在连接件 14 的一端上，这一端为可以自由旋转的钢圆环；连接件 14 的另一端通过螺纹连接在拉力传感器 13 上，拉力传感器 13 的另一端与具有螺纹的手轮推动杆 15 连接，手轮 16 与手轮推动杆 15 相连接。转动手轮 16，手轮推动杆 15 可前进或后退。手轮 16 与常规室内剪切仪的手轮形同，它通过手轮固定螺栓 17 固定在箱型框架 7 上。

所述垂直位移计 5、水平位移计 6 为传感器设备，前者的触头架设于传力板 9 上，测试试样在试验过程中的垂直位移；后者的触头架设于剪切方向剪切模 2 正面的中央部位或是剪切方向传力板 9 正面的中央部位，测试试样在试验过程中的剪切位移。

具体实施步骤如下：
1. 把在现场所取得的或在室内所制备的包含刚性框 3 的土样放入固定在箱型框架 7 上的刚性框底座 7 里，并用刚性框固定螺钉 8 顶紧刚性框 3，图 1；
2. 将杠杆 24 安装在横梁 23 上，根据试验压力需要在吊盘 25 上加一定的砝码 26；
3. 安装量测设备，在传力板 9 上架设位移计 5，量测垂直位移；在剪切模 2 正面中央部位或传力板 9 正面中央部位上架设位移计 6，量测剪切位移；把拉力传感器 13 一端连接在手轮推动杆 15 上，另一端连接在连接件 14 上，量测水平拉力，链条 12 连在连接件 14 上和链条挂钩 11 上；
4. 把位移计 5、6 和拉力传感器 13 连接到数据转换箱上，数据转换箱连到微机上，设置好数据采集的参数，以一定的速率摇动手轮 16，进行剪切，试验过程中实现数据的自动采集；
5. 试验结束后，旋动支柱螺母 22，把包含传力板 9、传力柱 10 及杠杆 24 的整体加压设备提起，松动刚性框固定螺钉 8，拿出包含刚性框 3 和剪切模 2 的试样；
6. 数据整理：剪切面上的正应力 σ、剪应力 τ 按下式计算：
 \[
 \sigma = \frac{G_1 + 24G_2}{T} + \sigma_i
 \]
 \[
 \tau = \frac{T}{A}
 \]
其中：G_1为传力板 9 与传力柱 10 的总重量，G_2为所加砝码 26 的重量，σ_l为杠杆自重对试样产生的压力，T为拉力传感器 13 量测的水平拉力，A为剪切面面积。