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INJECTION OF IO MESSAGES

[0001] This application is a continuation of U.S. patent
application Ser. No. 12/850,040 entitled “INJECTION OF
I/OMESSAGES” by Eric N. Lais et al. filed Aug. 4, 2010, the
disclosure of which is hereby incorporated herein by refer-
ence in its entirety for all purposes.

CROSS-REFERENCE

[0002] The present application is related to the following
copending patent applications, which are assigned to the
assignee hereof, filed on even date herewith, and incorporated
herein by reference in their entireties:

[0003] U.S. patent application Ser. No. 12/849,925 (Docket
No. AUS920100183US1);

[0004] U.S. patent application Ser. No. 12/849,958 (Docket
No. AUS920100184US1);

[0005] U.S. patent application Ser. No. 12/849,980 (Docket
No. AUS920100185US1); and

[0006] U.S. patent application Ser. No. 12/850,008 (Docket
No. AUS920100187US1).

BACKGROUND OF THE INVENTION

[0007] 1. Technical Field

[0008] The present invention relates in general to data pro-
cessing, and in particular, to input/output (I/O) in a data
processing system.

[0009] 2. Description of the Related Art

[0010] A data processing system may include multiple pro-
cessing elements and multiple input/output adapters (I0As)
to support connections to communication networks, storage
devices and/or storage networks, and peripheral devices. In
such data processing systems, the hardware resources of the
data processing system may be logically partitioned into mul-
tiple, non-intersecting sets of resources, each controlled by a
respective one of multiple possibly heterogeneous operating
system instances. The operating systems concurrently
execute on this common hardware platform in their respective
logical partitions (LPARs) under the control of system firm-
ware, which is referred to as a virtual machine monitor
(VMM) or hypervisor. Thus, the hypervisor allocates each
LPAR a non-intersecting subset of the resources of the data
processing system, and each operating system instance in turn
directly controls its distinct set of allocable resources, such as
regions of system memory and IOAs.

[0011] In any environment including multiple IOAs, it is
desirable to isolate IOAs so that each IOA can only obtain
access to the resources allocated to it. Isolating IOAs pro-
motes reliability, availability and serviceability of the data
processing system, and is especially important in environ-
ments supporting hardware virtualization (or logical parti-
tioning), so that IOAs can be individually allocated to differ-
ent logical partitions (LPARs) and so that any IOA errors be
isolated to the particular partition to which the IOA is allo-
cated. For example, for Peripheral Component Interconnect
(PCI) buses, if an IOA in one LPAR activates the System
Error (SERR) signal, the system must make the SERR signal
visible to all other LPARs absent some additional control.
Making [/O errors visible across LPAR boundaries require-
ment is, of course, contrary to the definition and intent of
logical partitioning.

Aug. 9,2012

[0012] One solution that addresses the partitioning prob-
lem with PCI errors is to require assignment of all IOAs
connected to one PCI Host Bridge (PHB) to the same LPAR
partition. However, this restriction mandates a high resource
granularity for IOAs that is not very useful or flexible. Ideally,
IOAs should be allocable to different LPARs regardless of the
PHB to which the IOA is connected. Alternative solutions
include the use of specially designed bridge chips external to
the PHBs as described in U.S. Pat. No. 6,643,727 or incorpo-
rating additional logic and data structures to enforce parti-
tioning between IO0As in differing LPARs within PHBs as
described in U.S. Pat. No. 7,398,427.

[0013] As also appreciated by the present disclosure, it
would be desirable to reduce the size of data structures within
PHBs utilized in handling routine messages, such as DMA
messages, interrupt messages, and /O error message.

SUMMARY OF THE INVENTION

[0014] In at least one embodiment, a data processing sys-
tem includes a processor core, a system memory coupled to
the processor core, an input/output adapter (I0A), and an
input/output (I/O) host bridge coupled to the processor core
and to the IOA. The I/O host bridge includes a register
coupled to receive /O messages from the processor core, a
buffer coupled to receive I/O messages from the IOA, and
logic coupled to the register and to the buffer that services I/O
messages received from the register and from the buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG.1isahighlevel block diagram of an exemplary
data processing system in accordance with one embodiment;
[0016] FIG. 2 is alogical view of a data processing system
showing the hardware and software resources of the data
processing system partitioned into multiple concurrently
executing logical partitions (LPARs);

[0017] FIG. 3 illustrates an I/O subsystem that provides [/O
resource isolation in a data processing system in accordance
with one embodiment;

[0018] FIG. 4 illustrates a more detailed view of an I/O host
bridge, such as a Peripheral Component Interconnect (PCI)
host bridge (PHB), in accordance with one embodiment;
[0019] FIG. 5 is a high level logical flowchart of an exem-
plary process by which firmware or software injects an I/O
operation in an I/O host bridge in accordance with one
embodiment;

[0020] FIG. 6 is a high level logical flowchart of an exem-
plary process by which an I/O host bridge services an 1/O
operation received from an I/O subsystem or firmware or
software in accordance with one embodiment;

[0021] FIG. 7A depicts a conventional Peripheral Compo-
nent Interconnect (PCI) host bridge (PHB);

[0022] FIG. 7B illustrates a conventional Translation and
Validation Entry (TVE) of a Translation and Validation Table
(TVT) in the PHB of FIG. 7A;

[0023] FIG. 8A depicts an improved Peripheral Compo-
nent Interconnect (PCI) host bridge (PHB) in one exemplary
embodiment;

[0024] FIG. 8B illustrates an improved Translation and
Validation Entry (TVE) of a Translation and Validation Table
(TVT) in the PHB of FIG. 8A;
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[0025] FIG. 9 is a high level logical flowchart of an exem-
plary process by which an 1/O host bridge, such as a PHB,
handles a DMA message in accordance with one embodi-
ment;

[0026] FIG. 10A depicts a conventional Peripheral Com-
ponent Interconnect (PCI) host bridge (PHB) including a PE
lookup table (PELT) in accordance with the prior art;

[0027] FIG. 10B illustrates a conventional PE Lookup
Entry (PELE) of the PELT in the prior art PHB of FIG. 10A;
[0028] FIG. 11A depicts an improved Peripheral Compo-
nent Interconnect (PCI) host bridge (PHB) in one exemplary
embodiment;

[0029] FIG. 11B illustrates an improved PE Lookup Entry
(PELE) utilized by the improved PHB of FIG. 11A;

[0030] FIG.12is a high level logical flowchart of an exem-
plary process by which 1/O host bridge, such as a PHB,
handles an I/O error message in accordance with one embodi-
ment;

[0031] FIG. 13A depicts handling of an interrupt by a con-
ventional Peripheral Component Interconnect (PCI) host
bridge (PHB);

[0032] FIG. 13B illustrates a conventional Message Sig-
naled Interrupt (MSI) Validation Entry (MVE);

[0033] FIG. 14A depicts an improved Peripheral Compo-
nent Interconnect (PCI) host bridge (PHB) in one exemplary
embodiment;

[0034] FIG. 14B illustrates an Interrupt Vector Entry (IVE)
in accordance with one exemplary embodiment;

[0035] FIGS. 15A-15B together form a high level logical
flowchart of an exemplary process by which an /O host
bridge, such as a PHB, processes a message signaled interrupt
(MS]) in accordance with one embodiment;

[0036] FIGS. 16A-16B together form a high level logical
flowchart of an exemplary process by which software or
firmware processes a message signaled interrupt (MSI) in
accordance with one embodiment; and

[0037] FIG.17 is a high level logical flowchart of an exem-
plary process by which an 1/O host bridge, such as a PHB,
processes a rejected message signaled interrupt (MSI) in
accordance with one embodiment.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

[0038] With reference now to the figures, and in particular
with reference to FIG. 1, there is depicted a high level block
diagram of an exemplary data processing system 100 in
accordance with one embodiment. In some embodiments,
data processing system 100 may be, for example, a symmetric
multiprocessor (SMP) system including a plurality of proces-
sors 102a-102n, each coupled for communication to a system
fabric 104, which may include one or more bused or switched
communication links. For example, data processing system
100 may be implemented with an IBM eServer, a product line
of International Business Machines Corporation of Armonk,
N.Y. In alternative embodiments, a data processing system
with a single processor 102 may be utilized.

[0039] In the depicted embodiment, each processor 102 is
preferably realized as a single integrated circuit chip having a
substrate in which semiconductor circuitry is fabricated as is
known in the art. As shown, processor 102 includes a plurality
of'processor cores 110 that process data through the execution
and/or processing of program code, which may include, for
example, software and/or firmware and associated data, if
any. Processor 102 further includes cache memory 112 pro-
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viding one or more levels of relatively low latency temporary
storage for instructions and data retrieved from lower levels
of the data storage hierarchy. In addition, processor 102
includes an integrated memory controller 114 that controls
access to an associated one of off-chip system memories 116.
[0040] Each processor 102 further includes a fabric inter-
face (FIF) by which processor 102 communicates with sys-
tem fabric 104, as well as one or more (and preferably mul-
tiple) host bridges supporting input/output communication
with various input/output adapters (IOAs) 130. In the
depicted embodiment, all of the host bridges are implemented
as Peripheral Component Interconnect (PCI) host bridges
(PHBs) 120, but in other embodiments the host bridges may
implement one or more additional or alternative I/O bus stan-
dards.

[0041] PHBs 120a, 120%, 120m and 120v provide inter-
faces to PCI local buses 122a, 1224, 122m and 122v, respec-
tively, to which I0As 130, such as network adapters, storage
device controllers, peripheral adapters, etc., may be directly
connected or indirectly coupled. For example, PCI IOA 130a
is coupled to PCI local bus 1224 optionally through an /O
fabric 124a, which may comprise one or more switches and/
or bridges. In a similar manner, PCI IOAs 130% and 130/ are
coupled to PCI local bus 122k optionally through an 1/O
fabric 124, PCI IOA 130m is coupled to PCI local bus 122m
optionally through I/O fabric 124m, and PCI IOAs 130v and
130w, which may comprise, for example, a display adapter
and hard disk adapter, are coupled to PCI local bus 122v
optionally through 1/O fabric 124v.

[0042] Data processing system 100 further includes a ser-
vice processor 140 that manages the boot process of data
processing system 100 and thereafter monitors and reports on
the performance of and error conditions detected in data
processing system 100. Service processor 140 is coupled to
system fabric 104 and is supported by a local memory 142,
which may include volatile (e.g., dynamic random access
memory (DRAM)) and non-volatile memory (e.g., non-vola-
tile random access memory (NVRAM) or static random
access memory (SRAM)). Service processor 140 is further
coupled to a mailbox interface 144 through which service
processor 140 communicates I/O operations with PCI bus
122a.

[0043] Those of ordinary skill in the art will appreciate that
the architecture and components of a data processing system
can vary between embodiments. For example, other devices
and interconnects may alternatively or additionally be used.
Accordingly, the exemplary data processing system 100
given in FIG. 1 is not meant to imply architectural limitations
with respect to the claimed invention.

[0044] Referring now to FIG. 2, there is depicted a logical
view of a data processing system 200 showing the hardware
and software resources of the data processing system parti-
tioned into multiple logical partitions (LPARs). Data process-
ing system 200 may have, for example, the same components
and/or architecture as data processing system 100 in FIG. 1
and accordingly identifies common components with like
reference numerals.

[0045] Data processing system 200 has a collection of par-
titioned hardware 202, including processors 102a-102z, sys-
tem memories 116a-116» and IOAs 130a-130w. Partitioned
hardware 202 may of course include additional unillustrated
components, such as additional volatile or nonvolatile storage
devices, ports, bridges, switches, etc. The hardware compo-
nents comprising partitioned hardware 202 (or portions
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thereof) can be assigned to various ones of logical partitions
(LPARSs) 2104-210p in data processing system 200 by system
firmware 204, also referred to herein as a virtual machine
monitor (VMM) or hypervisor. System firmware 204 sup-
ports the simultaneous execution of multiple independent
operating system instances by virtualizing the partitioned
hardware of data processing system 200.

[0046] In addition to the hardware resources allocated by
system firmware 204, each of LPARs 210a-210p includes a
respective one of multiple concurrently executed operating
system instances 212a-212p. In various embodiments, oper-
ating system instances 212a¢-212p, which may include, for
example, instances of Linux™, AIX™ and/or Windows™,
may be homogeneous or heterogeneous. Each LPAR 210 may
further include unillustrated application programs, as well as
arespective instance of partition firmware 214, which may be
implemented, for example, with a combination of initial boot
strap code, IEEE-1275 Standard Open Firmware, and runt-
ime abstraction software (RTAS). When LPARs 210a-210p
are instantiated, a copy of boot strap code is loaded onto
partitions 210a-210p by system firmware 204. Thereafter,
system firmware 204 transfers control to the boot strap code,
which in turn loads the open firmware and RTAS. The pro-
cessor(s) 102 assigned to each LPAR 210 then execute the
partition firmware 214 of that LPAR 210 to bring up the
LPAR 210 and initiate execution of the OS instance 212.
[0047] Inthe logically partitioned environment depicted in
FIG. 2, service processor 140 can be used to provide various
services, such as processing of errors in LPARs 210a-210p.
These services may also function as a service agent to report
errors back to a system administrator or vendor of data pro-
cessing system 200. Operation of the different LPARs 210
may further be controlled through a hardware management
console 220. In at least one embodiment, hardware manage-
ment console 220 can be implemented as a separate data
processing system from which a system administrator may
perform various functions within data processing system 200
including creating and destroying LPARs 210, as well as
reallocating hardware and software resources among [LPARs
210.

[0048] In a logical partitioned environment such as that
depicted in FIG. 2, it is not permissible for the hardware or
software resources in one LPAR 210 to consume the
resources of or to affect the operations in another LPAR 210.
Furthermore, to be useful, the assignment of resources to
LPARs 210 needs to be fine-grained. For example, it is often
not acceptable to assign all IOAs 130 under a particular PHB
120 to the same partition, as that will restrict configurability
of'the system, including the ability to dynamically reallocated
resources between partitions. Accordingly, PHBs 120 are
able to assign resources, such as individual I0As 130 (or
portions thereof) to different LPARs 210 while preventing the
assigned resources from accessing or affecting the resources
of other LPARs 210.

[0049] To support such isolation between the resources of
different LPARs 210, the I/O subsystem of a data processing
system is subdivided into multiple partitionable endpoints. A
“partitionable endpoint” or “PE” is defined herein as any
component or subcomponent of an I/O subsystem that can be
allocated to an LPAR independently of any other component
or subcomponent of the /O subsystem. For example, some
PEs may comprise a plurality of IOAs and/or I/O fabric com-
ponents that function together and, thus, should be allocated
as a unit to a single LPAR. Another PE, however, may com-
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prise a portion of a single IOA, for example, a separately
configurable and separately assignable port of a multi-port
IOA. In general, a PE will be identified by its function rather
than by its structure.

[0050] Referring now to FIG. 3, there is depicted a block
diagram of at least a portion of the /O subsystem 300 of a
logically partitioned data processing system, such as data
processing system 100 of FIG. 1, which exhibits resource
isolation between LPARs 210 in accordance with one
embodiment.

[0051] In the depicted embodiment, I/O subsystem 300
includes a PHB 120 coupled to a plurality of IOAs 3024-302¢g
through an /O fabric 124. /O fabric 124 in turn includes
switches 310a, 3105, PCI-Express (PCI-E) buses 320, 322,
324 and 326, PCI bridges 312a and 3125, and secondary
buses 340, 342, 344 and 346.

[0052] As further shown in FIG. 3, system firmware 204
groups various components of 1/O subsystem 300 to form a
plurality of PEs 350a-350d that are each independently
assignable to any of the LPARs 210 of the data processing
system. In the given example, PE 350a and PE 350c¢ each
comprise a single IOA, namely, IOAs 302a and 302d, respec-
tively. PE 3505, in contrast, comprises two I0OAs 3026 and
302c¢ that must be assigned to the same LPAR 210. PE 3504
comprises three IOAs 302¢, 302/ and 302g and PCI bridge
3125, which function together as a PE and therefore must be
assigned to the same LPAR 210. As noted previously, in other
embodiments, a PE may include only a portion (e.g., one or
more ports) of an IOA.

[0053] In I/O subsystem 300, the respective state of each
PE, referred to herein as the partitionable endpoint state, is
maintained in the associated PHB 120. Thus, for example,
PHB 120 of 1/O subsystem 300 includes partitionable end-
point state registers 360a-360d, which correspond to and
indicate the states of PEs 350a-3504, respectively.

[0054] System firmware 204 assigns each PE one or more
domain numbers (or requester IDs (RIDs)) that associate its
component(s) with that PE. In an exemplary embodiment, the
domain number (i.e., RID) assigned each PE comprises a
plurality of fields that can further be used to differentiate
between 1/0 components in the PE. For example, these fields
may include:

[0055] Bus number (Bus) field: provides the highest
level of division between 1/0O resources, with each bus
under a PHB having a unique bus number.

[0056] Device number (Dev) field: provides an interme-
diate level of division between I/O resources, with each
IOA on a given bus having a different device number.

[0057] Function number (Func) field: provides the low-
est level of division between I/O resources, with each
distinct function of an IOA having a different function
number.

[0058] As will be appreciated, the domain number (or RID)
supports the division of /O resources down to the lowest level
of /O functionality. For example, the domain number allows
separate functions of a multiple function IOA to be differen-
tiated. In data processing systems that do not require such a
fine granularity, the domain number can be defined by the Bus
field alone, allowing differentiation between the PEs con-
nected to the same PHB, or by the Bus field together with
either the Dev field or the Func field to permit differentiation
between IOAs of a PE or differentiation between functions of
an IOA in a PE that contains a multiple function IOA. The
sparseness of the domain number space consisting ofthe Bus,
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Bus/Dev, or Bus/Dev/Func fields makes it desirable in many
cases to condense the domain number space defined by these
fields to something less sparse for internal usage by the PHB
120.
[0059] Among the isolation functionalities included in
PHB 120 of FIG. 3 is the capability to isolate PE error
domains. In logically partitioned data processing systems,
different PEs may be assigned to different LPARs. Accord-
ingly, PHBs 120 enable an error occurring in one PE to be
isolated to the particular LPAR to which the PE is assigned.
More particularly, each PHB 120 includes the capability of
stopping 1/O operations to and from a PE when an error is
detected (referred to as the Stopped state). The stopping of 1/O
operations is preferably accomplished in such a way that:
[0060] 1. The PE is prevented from completing an I/O
operation in error,
[0061] a. such that the PE does not propagate an error
to any LPAR, and

[0062] b. such that a requester of the /O operation
does not use erroneous data.

[0063] 2. The stopping of operations should appear to a
device driver to be isolated to just that device driver.

[0064] 3. Software (at the device driver level or above)
for one PE does not introduce an error that can cause
another PE to enter the Stopped state.

[0065] 4. Fault information for problem determination
can be captured after the Stopped state occurs.

[0066] 5. Firmware can access the configuration space
below the PHB when any or all of the PEs are in the
Stopped state.

[0067] In order to achieve error handling in accordance
with these criteria, each PHB preferably provides isolation
functionality that identifies a particular error domain for an
1/O configuration operation. In a preferred embodiment, the
configuration operation error domain capability is enabled by
implementing a configuration PE number field in a register of
the PHB, which field can be set by the system firmware. In
addition, in a preferred embodiment, each PHB determines
one or more PE numbers affected by an /O message and
routes the /O message to only software specific to controlling
those PE(s).

[0068] Inaddition to providing effective isolation function-
ality, it is also desirable to reduce the size of data structures
within PHBs utilized in handling routine messages, such as
DMA messages, interrupt messages (i.e., message signaled
interrupts (MSIs)), and 1/O error messages, particularly in
embodiments in which PHBs are integrated into a common
integrated circuit chip with the processor. Accordingly, as
discussed further herein below, the footprint of data structures
implemented within PHBs can be reduced by an improved
determination of the PE(s) affected by /O messages, such as
DMA, interrupt messages and 1/O error messages.

[0069] Referring now to FIG. 4, there is depicted a more
detailed view of an exemplary 1/O host bridge, such as a PHB
120, in accordance with one embodiment. PHB 120, which is
coupled to processor cores 110 and one or more PEs 350 as
further illustrated in FIGS. 1 and 3, includes 1I/O interface
logic 400 that implements the I/O protocols of the /O bus or
link coupling PHB 120 to PE(s) 350. 1/O interface logic 400
is coupled to an I/O transaction buffer 1OTB) 402 including
one or more registers that buffer [/O messages received by
PHB 120 from PE(s) 350. As indicated, the messages
received by PHB 120 from PE(s) 350 can include, for
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example, direct memory access (DMA) messages, 1/O error
messages, and message signaled interrupts (MSIs).

[0070] PHB 120 further includes a memory-mapped Force
1/O Transaction Register (FITR) 404 that is coupled to receive
memory mapped /O (MMIO) messages from software or
firmware executing on processor cores 110. FITR 404, which
preferably employs the same bit layout as IOTB 402, thus
allows software or firmware to inject an I/O transaction into
the stream of /O transactions just as if the I/O transaction had
been generated by one of PEs 350. For example, firmware or
software may inject an interrupt into the /O operation flow so
that the PHB will queue up the interrupt and update the
interrupt state in the same manner as if an /O device pre-
sented that same interrupt. Alternatively, the software or firm-
ware may want to have PHB 120 re-queue an interrupt that the
software or firmware cannot process at the current time. Simi-
larly, the software or firmware may want to use PHB 120 to
manage writing or reading data to or from system memory
116, such that the memory access operation uses the hardware
of PHB 120 in the same way as if a DMA transaction was
received from an [/O device. Injection of a DMA transaction
in the manner could be useful, for example, in testing the
DMA handling capabilities of PHB 120.

[0071] FITR 404 and IOTB 402 are each coupled to an
input of a two-input multiplexer (mux) 406, which selects
among the I/O transactions presented by FITR 404 and IOTB
402 for processing, for example, utilizing a round robin or
other prioritization methodology as in known in the art. Mul-
tiplexer 406 passes an I/O transaction selected for processing
to decode logic 410, which decodes the I/O transaction and
presents the I/O transaction to the appropriate state machine
of PHB 120 for handling.

[0072] In the depicted embodiment, PHB 120 includes a
DMA state machine 420 having an associated DMA state
422, an error state machine 430 having an associated error
state 432, and an interrupt state machine 440 having an asso-
ciated interrupt state 442. In response to decoding an 1/O
transaction, decode logic 410 invokes the appropriate one of
state machines 420, 430 and 440, which in turn performs the
appropriate operation and updates its associated state 422,
432, or 442, as appropriate. As shown, in servicing I/O trans-
actions, DMA state machine 420 transmits DMA commands
to the relevant IMCs 114, while error state machine 430 and
interrupt state machine 440 communicate errors and inter-
rupts, respectively, to software and/or firmware 204 or 214
executing on processor cores 110.

[0073] With reference now to FIG. 5, there is illustrated a
high level logical flowchart of an exemplary process by which
firmware 204 or 214 or software injects an 1/O transaction
into the I/O transaction flow of an /O host bridge, such as a
PHB 120, in accordance with one embodiment. As a logical
rather than strictly chronological flowchart, it should be
understood that at least some of the illustrated steps may be
performed concurrently or in an order different than that
illustrated.

[0074] The illustrated process begins at block 500 and then
proceeds to block 502, which depicts firmware or software
determining to inject an I/O transaction into the I/O transac-
tion flow of a PHB 120. The firmware or software builds the
image of the I/O transaction to be written into FITR 404 at
block 504, and at block 506, issues one or more MMIO Store
operations to store the image of the I/O transaction into FITR
404. The process thereafter terminates at block 508.
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[0075] Referring now to FIG. 6, there is depicted a high
level logical flowchart of an exemplary process by which an
1/0 host bridge, such as a PHB 120, services an 1/O transac-
tion received from an I/O subsystem or firmware or software
in accordance with one embodiment. The process begins at
block 600 and the proceeds to block 602, which depicts a
PHB 120 receiving one or more I/O transactions in FITR 404
and/or IOTB 402. At block 604, multiplexer 406 selects and
decode logic 410 decodes the /O transaction. As indicated by
blocks 606-614, decode logic 410 then routes the /O trans-
action for servicing by the appropriate state machine
instance: DMA transactions to DMA state machine 420 (as
discussed further below with reference to FIGS. 7A-7B,
8A-8B and 9), 1/O error transactions to error state machine
430 (as discussed further below with reference to FIGS. 10A-
10B, 11A-11B and 12), and MSI transactions to interrupt
state machine 440 (as discussed further below with reference
to FIGS. 13A-13B, 14, 15A-15B, 16 A-16B and 17).

[0076] PHB 120 additionally determines at block 616
whether or not there are any more 1/O transactions to be
processed, either in FITR 404 or the IOTB 402. If so, the
process returns to block 604, which has been described. Ifnot,
the process depicted in FIG. 6 terminates at block 620.

[0077] Referring now to FIG. 7A, there is depicted a con-
ventional PHB 700 as described in U.S. Pat. No. 7,398,727,
which is implemented in an integrated circuit chip separate
from the processor. To facilitate processing of DMA transac-
tions, PHB 700 includes a wide data structure referred to as
Translation and Validation Table (TVT) 702. TVT 702
includes a plurality of Translation and Validation Entries
(TVEs) 704. As shown in FIG. 7B, each conventional TVE
704 comprises a number of fields including Requester ID
(RID) and RID Validate Control field 730 specifying a RID
and control information for validating the RID, a PE# field
732 indicating a PE associated with the RID, a Translation
Control Entry (TCE) table size field 737, an 1/O page size
field 736, and a TCE table start address field 738 indicating
the base address of the TCE table for the specified PE.

[0078] PHB 700 validates RIDs of Direct Memory Access
(DMA) requests and translates RIDs to particular PEs by
reference to TVT 702. As shown, PHB 700 receives a Direct
Memory Access (DMA) packet including a RID 710 (which
comprises a bus number, a device number and a function
number) and a DMA address 712. Several bits of DMA
address 712 form a TVE index (TVEI) 717 into TVT 702 that
selects a particular TVE 704 for access. Once the TVE 704 is
selected, the content of PE# field 732 is read out to determine
the current state of the PE. In addition, the content of RID and
RID Validate Control field 730 is compared with incoming
RID 710 as shown at block 720. If RID 710 does not match the
RID specified in field 730, PHB 700 does not permit the
requested DMA operation to be performed. As indicated at
block 722, PHB 700 also truncates the low order n bits of
DMA address 712 (where 2” is the /O page size specified by
1/0 page size field 736 of the selected TVE 704) and com-
pares the remaining DMA address bits below TVEI 717 with
TCE table size field 737 of the selected TVE 704. If DMA
address 712 specifies an address past the end of the relevant
TCE table, PHB 700 disallows the DMA operation. If, on the
other hand, the validations shown at block 720 and 722 are
successful, PHB 700 performs the requested DMA operation
utilizing the DMA address-to-real address translation con-
tained in the in-memory TCE table for the PE, which is
pointed to by the contents of TCE start address field 738.
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[0079] It should be noted that the conventional TVE 704
depicted in FIGS. 7A-7B contains numerous multi-bit fields,
and consequently conventional TVT 702 is a large data struc-
ture that requires considerable die area. In addition, each PE
does not have use of TVEI field 717 of DM A address 712 for
its own application, meaning that the DMA address space is
carved into different discontiguous spaces for the various
PEs.

[0080] With reference now to FIG. 8A, there is illustrated a
more detailed view of improved handling of DMA transac-
tions by an I/O host bridge, such as a PHB 120, in accordance
with one embodiment. In general, it is desirable to reduce the
die area of PHB 120, particularly in preferred embodiments in
which PHB 120 is integrated within the integrated circuit chip
of processor 102 as shown in FIG. 1. One factor contributing
to the reduction in the die area of PHB 120 is areduction in the
size of data structures within PHB 120 utilized to validate and
translate DMA, I/O error and MSI messages. Specifically, as
detailed further below, the 16-bit RID field and PE# field
formerly found in each conventional TVE 404 can be
removed, leading to a significant reduction in the width of
TVEs and a concomitant reduction in the overall footprint of
the TVT and PHB 120.

[0081] Inthe arrangement shown in FIG. 8A, a RID Trans-
lation Table (RTT) 800, which may be populated and main-
tained, for example, by system firmware 204 based upon its
allocation of I/O resources among [LPARs 210, includes a
plurality of RID Translation Entries (RTEs) 802. Each RTE
802 associates a respective RID, such as conventional 16-bit
PCIRID 410, with a PE. RTT 800 can be implemented either
in PHB 120, or more preferably, in an oft-chip storage loca-
tion, such as system memory 116. In embodiments in which
RTT 800 is implemented off-chip, PHB 120 can optionally
include a small on-chip RID Translation Cache (RTC) 804
(e.g., in decode logic 410) to provide lower latency access to
copies of the most recently accessed RTEs 802.

[0082] FIG. 8A further illustrates that PHB 120 includes a
streamlined TVT 810 including a plurality of TVEs 812. As
depicted in FIG. 8B, each TVE 812 comprises a small number
ot'bit fields including a Translation Control Entry (TCE) table
size field 834 indicating a table size of the TCE table 860 for
the PE originating the DMA, an /O page size field 836, and
aTCE table start address field 838 indicating the base address
of the in-memory TCE table 860 for the source PE. It should
be noted upon comparison to FIG. 7B that TVEs 812 lack
fields corresponding to conventional fields 430 and 432,
resulting in a significant size reduction in TVT 810.

[0083] The operation of PHB 120 in servicing a DMA
request will now be described with reference to FIGS. 8A-8B
and with additional reference to the high level logical flow-
chart provided in FIG. 9. The process begins at block 900 and
then proceeds to block 902, which illustrates PHB 120 receiv-
ing a Direct Memory Access (DMA) operation including a
conventional RID 710 and a DMA address 840. PHB 120
utilizes the RID 710 of the DMA operation to access a par-
ticular RTE 802, either from RTC 804 (if present) or from
RTT 800 (block 904). The accessed RTE 802 specifies a PE,
which PHB 120 utilizes to access the current state of the PE.
PHB 120 also utilizes the PE# specified by the accessed RTE
802 to access TVT 810 (block 906). In some embodiments in
which each PE has a single associated TVE 812, the PE#
directly indexes into TVT 810. In alternative embodiments in
which each PE may have one or more TVEs 812 (e.g., to
enable multiple /O page sizes for at least some PEs), then
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PHB 120 can additionally utilize one or more PE index (PEI)
bits 814 from DMA address 840 to select between the mul-
tiple TVEs 812 associated with the selected PE. It should be
appreciated that the use of PEI 814 does not carve up the
DMA address space between different PEs, as does TVEI 714
of FIG. 7A, but only divides the DMA address space within
the selected PE’s address space, thus advantageously making
the entire DMA address space available to each PE.

[0084] Following block 906, the process of FIG. 9 proceeds
to block 908, which depicts DMA address validation logic
850 (e.g., in DMA state machine 420) truncating the low
order nbits of DM A address 840 (where 2” is the [/O page size
specified by /O page size field 836 of the selected TVE 812)
and comparing the remaining upper order DMA address bits
with the contents of TCE table size field 834 of the selected
TVE 812. As indicated at block 910, if DMA address 840
specifies an address past the end of the relevant TCE table
860, the validation fails, and PHB disallows the DMA opera-
tion as indicated by the process terminating at block 920. If,
on the other hand, DMA address 840 passes validation, as
indicated by a positive determination at block 910, PHB 120
(i.e., DMA state machine 420) translates DMA address 840 to
a real address in system memory 116 (block 912). In one
embodiment, PHB 120 performs the address translation by
reference to the in-memory TCE table 860 utilizing the par-
ticular TCE therein pointed to by an address formed by com-
bining the contents of TCE table start address field 838 of the
selected TVE 812 and the mid-order bits of DMA address 840
between PEI 814 and the n low-order address bits. PHB 120
then transmits the DMA operation to the IMC 114 of the
target system memory 116 using the system memory (e.g.,
real) address obtained by the address translation in order to
invoke performance of the requested DMA operation (block
914). If the DMA operation is a DMA Read, DMA state
machine 420 additionally returns the requested data to the
DMA requester (e.g., software, firmware or PE 350) as shown
at block 916. Thereafter, the process shown in FIG. 9 termi-
nates at block 920.

[0085] A similar technique for providing isolation between
PEs while minimizing the size of data structures in PHBs 120
is also applicable to the isolation of I/O error messages, as
discussed further below with reference to FIGS. 10A-10B,
11A-11B and 12.

[0086] With reference first to FIG. 10A, there is illustrated
a second view of conventional PHB 700 of FIG. 7A that
depicts the data structure utilized in handling I/O (e.g., PCle)
error messages in the prior art. As shown, in addition to the
data structures previously discussed, PHB 700 includes a
wide data structure referred to as PE Lookup Table (PELT)
1000. PELT 1000, which is implemented in expensive con-
tent-addressable memory (CAM), includes a plurality of PE
Lookup Entries (PELEs) 1002. As shown in FIG. 10B, each
conventional PELE 1002 comprises Requester ID (RID) and
RID Validate Control field 1010 specitying a RID and control
information for validating the RID, as well as a PE Lookup
Vector (PELV) field 1012 indicating by set bits (e.g., 1’s)
which PE number(s) are affected by the I/O error.

[0087] In the prior art, PHB 700 receives a PCle error
message 1004 together with a RID 710 identifying which I/O
component is the source of PCle error message 1004. In
response, PHB 700 utilizes RID 710 to perform a CAM
access to PELT 1000 to identify a matching PELE 1002
containing a matching RID in its RID and RID Validate Con-
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trol field 1010. PHB 700 then processes the PCle error mes-
sage for each PE specified by the PELV field 1012 of the
matching PELE 1002.

[0088] Referring now to FIG. 11A, there is depicted a more
detailed view of improved handling of I/O error transactions
by a PHB 120 in accordance with one embodiment. As noted
above, it is desirable to reduce the die area of PHB 120,
particularly in preferred embodiments in which PHB 120 is
integrated within processor 102 as shown in FIG. 1. One
factor contributing to the reduction in the die area of PHB 120
is the elimination of the RID field found in each conventional
PELE 1002, leading to a significant reduction in the width of
PELEs and a concomitant reduction in the overall footprint of
PHB 120. It is further desirable to reduce or eliminate utili-
zation of expensive CAM, such as that utilized to implement
conventional PELT 1000.

[0089] Consequently, in the arrangement shown in FIG.
11A, RTT 800, which is preferably implemented in system
memory 116, is again utilized to associate each possible RID
that may be received by PHB 120, such as conventional 16-bit
PCI RID 710, with a PE. As noted above, to reduce access
latency in embodiments in which RTT 800 is implemented
off-chip, PHB 120 can optionally include a small on-chip
RTC 804 (e.g., in decode logic 410) to provide lower latency
access to copies of the most recently accessed RTEs 502.

[0090] FIG. 11A further illustrates that system memory
116, which is preferably implemented with a low cost non-
CAM technology (e.g., DRAM), preferably implements a
streamlined PELT 1110 including a plurality of PELEs 1102.
As depicted in FIG. 11B, each PELE 1102 comprises a PELV
1104 containing a plurality of bits each corresponding to a
respective one of a plurality of PE numbers. As described
above, PELV 1104 identifies with one or more set bits (e.g.,
1’s) the PE(s) against which an error occurring a given RID
should be processed. Multiple PEs can be implicated in an
error, for example, if the error related to an /O component
coupled to multiple PEs (e.g., a switch 310) or to multiple
functions associated with a single device (e.g., multiple ports
of an IOA 130). It should be noted that PELEs 1102 lack a
field corresponding to conventional field 1010, resulting in a
significant size reduction in PELT 1100.

[0091] The operation of PHB 120 in handling an 1/O error
message will now be described with additional reference to
the high level logical flowchart provided in FIG. 12. The I/O
error message handling process begins atblock 1200 and then
proceeds to block 1202, which illustrates a PHB 120 receiv-
ing an I/O error message packet containing an error message
704 and a RID 410 identifying the source of the /O error
message. PHB 120 (e.g., decode logic 410) utilizes the RID
410 of the I/O error packet to access a particular RTE 502,
either from RTC 504 (if present) or from RTT 500 (block
1204). The accessed RTE 502 specifies a PE#, which PHB
120 (e.g., error state machine 430) utilizes as a direct index to
access PELT 1100 (block 1206). It should be noted that since
a direct index into PELT 1100 is available, it is not necessary
to implement PELT 1100 in expensive CAM.

[0092] Next, at block 1208, PHB 120 (e.g., error state
machine 430) determines which PEs are affected by the I/O
error by examining which bit or bits are set in the PELV field
1104 of the selected PELE 1102 in PELT 1100. In response to
the determination of the affected PE(s), error state machine
430 in PHB 120 signals the I/O error as appropriate to only the
error handling software or firmware (e.g., device driver soft-
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ware of one or more OSs 212) responsible for handling errors
for the affected PE(s) (block 1210). The error handing process
then completes at block 1212.

[0093] With reference now to FIG. 13 A, there is illustrated
athird view of conventional PHB 700 of FIG. 7A that depicts
the data structure utilized in handling message signal inter-
rupts (MSIs) in the prior art. A MSIincludes a RID 710 and a
MSI vector, which includes a DMA address 1300 specifying
an address in a system-specific address range allocated to
interrupts (e.g., bits 61:60 of an 8-byte DMA address set to
0b01) as well as DMA data 1302. Several mid-order bits of
DMA address 1300 form a MSI Validation Entry (MVE)
index (MVEI) 1304 into a MSI Validation Table (MVT) 1310
in PHB 700.

[0094] Each MVE1312inMVT 1310 contains a number of
fields, which as indicated in FIG. 13B, includes RID and RID
control field 1314 and PE number field 1316. After accessing
an MVE 1312 utilizing MVEI 1304, PHB 700 validates the
specified RID 710 by reference to RID and RID control field
1314, as depicted at block 1318. If the two RIDs do not match,
PHB 700 does not allow the MSI.

[0095] PHB 700 additionally utilizes the low order bits of
DMA data 1302 as an eXternal Interrupt Vector Entry (XIVE)
index to select an XIVE 1322 in an eXternal Interrupt Vector
Table (XIVT) 1320 in PHB 700. The selected XIVE 1320
contains interrupt information and state, as well as the PE
number that is allowed to access the interrupt represented by
the XIVE 1322. As indicated at block 1330, PHB 700 vali-
dates the PE number obtained from the selected XIVE 1322
and the selected MVE 1322, and if the two PE numbers do not
match, the MSl is ignored. However, if PHB 700 successfully
validates the PE#, PHB 700 presents the interrupt information
to the system based on the state information in the selected
XIVE 1322.

[0096] The conventional structures and MSI handling tech-
niques employed by PHB 700 have the disadvantage of
implementing a 16-bit RID and associated RID control bits in
each MVE 1312, thus requiring considerable die area for
MVT 1310. In addition, PHB 700 is required to internally
track the entire state of each interrupt, including clearing of
that state when the interrupt is signaled by the system as
complete.

[0097] Referring now to FIG. 14 A, there is depicted a view
of'an I/O host bridge, such as PHB 120, detailing the handling
of MSIs by an interrupt state machine 440. As discussed
above, PHB 120 receives MSIs via FITR 402 or IOTB 404
that each include a conventional RID 710, as well as a MSI
vector comprising DMA data 1402 and a DMA address 1400
specifying an address in a system-specific address range allo-
cated to interrupts.

[0098] As with the DMA and I/O error messages described
above, PHB 120 employs RID 710 as a direct index to select
an RTE 802 of RTT 800, either from RTT 800 itself or from
RTC 804 (ifimplemented). The selected RTE 802 has a single
field containing the PE# associated with RID 710 of the
incoming MSI. It should be noted by comparison to the prior
art MVE 1312 shown in FIG. 13B that RTE 802 omits RID
and RID validate control field 1314, resulting in a signifi-
cantly smaller entry. Further, because a single data structure
(i.e., RTT 800) is utilized to determine the PE# for DMA, 1/0
error and MSI messages, significant efficiency is achieved.
[0099] Interrupt state machine 440 includes combinational
logic that performs a logical OR (as shown at reference
numeral 1404) or adds portions of the DMA address 1400 and
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DMA data 1402 to obtain a MSI scalar. For example, in the
illustrated embodiment, logical OR 1404 combines the 4
lowest order bits (i.e., bits 3:0) of DMA data 1402 with bits
8:4 of DMA address 1400 to obtain a five-bit MSI scalar. As
further shown in FIG. 14 A, interrupt state machine 440 forms
an interrupt vector entry (IVE) offset 1406 including high
order bits (e.g., bits 19:9) from DMA address 1400, mid-
order bits from the MSI scalar, and zeroed low-order bits
(e.g., bits 3:0) aligning IVE offset 1406 on the IVE size.
Interrupt state machine 440 includes a logical OR 1408 that
combines IVE offset 1406 with the base system memory
(physical) address of an interrupt vector table (IVT) 1410
specified by an IVT base address register (BAR) 1414 to form
an index that selects an IVE 1412 from among the plurality of
IVEs in IVT 1410 in system memory 116. If IVE offset 1406
determined by logical OR 1404 exceeds the predetermined
value in the IVT length register 1409, then the interrupt vector
is invalid, and the MSI is ignored.

[0100] The selected IVE 1412 contains interrupt informa-
tion and state for the MSI, as well as the PE# allowed to access
the MSI represented by the selected IVE 1412. Specifically,
as shown in FIG. 14B, an exemplary embodiment of an IVE
1412 includes a priority field 1420, which specifies a priority
of the interrupt packet to be communicated to the interrupt
presentation layer of data processing system 100 (which may,
for example, be implemented in an OS 212 and/or system
firmware 204). IVE 1412 further includes a server number
field 1422 that identifies a server number to be communicated
to the interrupt presentation layer in the interrupt packet. The
interrupt packet additionally includes the interrupt source
number 1407, comprising, for example, bits 19:9 of IVE
offset 1406 depicted in FIG. 14A.

[0101] Still referring to FIG. 14B, IVE 1412 additionally
includes is a Presented (P) field 1424, which indicates
whether or not the interrupt has already been presented to the
system so that duplicate incoming MSIs are not presented, but
are dropped. In addition, a Queued (Q) field 1426 of IVE 1412
indicates if one or more additional interrupts are received for
the same IVE 1412 so that interrupts are not lost during
interrupt processing of a previously presented interrupt.
Finally, IVE 1412 includes a PE number field 1428 indicating
a PE 350 authorized to issue the MSI and a reserved field 1430
enabling expansion of interrupt handling functionality and
alignment of IVEs 1412 on binary boundaries to make com-
putation of IVE offset 1406 more efficient.

[0102] Because a MSI is simply a DMA packet with a
particular address, an interrupt source may produce an inter-
rupt vector that is not valid (e.g., that accesses another PE’s
interrupt). Accordingly, interrupt state machine 440 provides
interrupt isolation between PEs by validating that the inter-
rupt source is authorized to access the IVE 1412 and to issue
the associated interrupt. To perform this validation, interrupt
state machine 440 additionally includes a comparator 1440
that receives and compares the PE# specified by the selected
RTE 802 and the PE# specified by PE number field 1428 of
the selected IVE 1412. If comparator 1440 detects a match,
interrupt state machine 440 presents the interrupt packet to
the interrupt presentation layer of data processing system 100
based upon the state information contained in the selected
IVE 1412, as discussed further below. If comparator 1440
does not detect a match, interrupt state machine 440 ignores
the MSI.

[0103] It should be appreciated that the interrupt presenta-
tion layer may not be able to accept an interrupt packet pre-
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sented to it and may consequently reject the interrupt.
Accordingly, the interrupt source layer, comprising system
memory 116, PHB 120 and interrupt state machine 440, sup-
ports queuing and re-presentation of rejected interrupts. In
particular, system memory 116 includes a reject bit array
(RBA) 1450 identifying rejected interrupts. PHB 120 identi-
fies the physical address of RBA 1450 in system memory 116
in a RBA BAR 1452. PHB 120 additionally includes a reject
represent timer (RRT) 1454 and reject represent counter
(RRC) 1456 used to control the re-presentation of rejected
interrupts as discussed further below with reference to FIG.
17.

[0104] With reference now to FIGS. 15A-15B, there is
illustrated a high level logical flowchart of an exemplary
process by which an I/O host bridge, such as a PHB 120,
handles an MSI in accordance with one embodiment. The
process begins at block 1500 in response to selection of an
MSI for processing from FITR 404 or IOTB 402 by multi-
plexer 406. As illustrated at block 1502, PHB 120 accesses an
RTE 802 of RTT 800 (either in system memory 116 orin RTC
804) utilizing the RID 710 specified by the MSI as an index
(block 1502). This access to RTE 802, which is preferably
performed during the decoding of the MSI by decode logic
410, indicates which PE number is permitted to issue the
received MSI.

[0105] PHB 120 additionally determines at block 1504
whether or not the PE identified by the PE number obtained
from the selected RTE 802 is in the Stopped State by refer-
ence to the PE state register 360 of the PE. If PHB 120
determines that the relevant PE is in the Stopped State, PHB
120 ignores the MSI, as indicated at block 1506. Thereafter,
the process passes through page connector E, and processing
of the MSI terminates at block 1560. If, however, PHB 120
determines at block 1504 that the relevant PE is not in the
Stopped State, then decode logic 410 invokes handling of the
MSI by interrupt state machine 440 at block 1510.

[0106] Block 1510 depicts interrupt state machine 440
determining whether or not the DMA address 1400 specified
by the MSI is aligned on an IVE boundary, that is, if the
appropriate number of low-order address bits are zeroes. If
interrupt state machine 440 determines that the DMA address
1400 is not properly aligned, interrupt state machine 440
places the relevant PE into the Stopped State by setting the
appropriate PE state register 360, as shown at block 1512. The
process then proceeds to block 1506 and following blocks,
which have been described.

[0107] Returning to block 1510, if interrupt state machine
440 determines that the DMA address 1400 of the MSI is
properly aligned, then interrupt state machine 440 logically
combines (e.g., adds or performs a logical OR) the mid-order
bits of DMA address 1400 (e.g., bits 19:4) and the low-order
bits of DMA data 1402 (e.g., bits 3:0) to form IVE offset 1406
(block 1520). Interrupt state machine 440 then determines at
block 1522 whether or not IVT offset 1406 is greater than the
length of IVT 1410 specified by IVT length register 1409. If
s0, then an error is detected, and the process proceeds to block
1512 and following blocks, which have been described.

[0108] If interrupt state machine 440 determines at block
1522 that IVE offset 1406 does not exceed the length of IVT
1410 specified by IVT length register 1409, then processing
proceeds to block 1524. Block 1524 depicts logical OR 1408
ofinterrupt state machine 440 logically combining IVE offset
1406 with the base system memory address specified by IVT
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BAR 1414 to obtain the real address of an IVE 1412, which is
then read from system memory 116 by interrupt state
machine 440.

[0109] Comparator 1440 of interrupt state machine 440
then checks at block 1526 whether or not the PE# in the
selected IVE 1412 matches the PE# read from the RTE 802
selected by RID 710. If comparator 1440 does not detect a
match, an interrupt isolation error is detected, and the process
passes to block 1512 and following blocks, which have been
described. If, however, comparator 1440 validates the PE# at
block 1526, interrupt state machine 440 handles the MSI in
accordance with the states ofthe P field 1424 and Q field 1426
of the selected IVE 1412, as indicated at block 1530-1534.
Specifically, if the P field 1424 and Q field 1426 have values
0100, 01, 10 or 11, processing proceeds to FIG. 15B via page
connectors A, B, C, or D, respectively.

[0110] IfP field 1424 and Q field 1426 have values of 00,
then following page connector A, interrupt state machine 440
of PHB 120 checks whether or not priority field 1420 is set to
OxFF to designate that the interrupt is disabled. If priority
field 1420 is set to indicate that the interrupt is disabled,
interrupt state machine 440 set Q field 1426 of IVE 141210 1,
indicating that an interrupt from the interrupt source corre-
sponding to IVE 1412 is awaiting processing if interrupt
processing is enabled (block 1544). Thereafter, processing of
the MSI by PHB 120 ends at block 1560.

[0111] Returning to block 1540, if interrupt state machine
440 determines that priority field 1420 is set to indicate that
the interrupt is enabled (i.e., has a value other than OxFF),
interrupt state machine 440 set P field 1424 of IVE 1412 to 1
(block 1542). In addition, interrupt state machine 440 pre-
sents to the interrupt presentation layer an interrupt packet
including the priority field 1420 and server number field 1422
from the selected IVE 1412 and an interrupt source number
1407 comprising bits 19:4 of IVE offset 1406. Thereafter,
interrupt processing by PHB 120 ends at block 1560.

[0112] IfP field 1424 and Q field 1426 have values of 01 or
11, then following page connector B or page connector D,
interrupt state machine 440 of PHB 120 drops the interrupt
because a previous interrupt from the same interrupt source is
already queued, as indicated by Q field 1426 (block 1550).
Interrupt processing by PHB 120 thereafter ends at block
1560.

[0113] IfP field 1424 and Q field 1426 have values of 10,
then following page connector C, interrupt state machine 440
sets Q field 1426 to 1 in IVE 1412 to indicate the queuing of
the interrupt for processing by the interrupt presentation
layer. Thereafter, interrupt processing by PHB 120 ends at
block 1560.

[0114] Referring now to FIGS. 16 A-16B, there is depicted
a high level logical flowchart of an exemplary process by
which firmware and/or software of a LPAR 210 processes an
interrupt in accordance with one embodiment. The process
begins at block 1600 of FIG. 16 A and then proceeds to block
1602, which depicts firmware or software issuing a Load
instruction to the interrupt presentation layer to retrieve an
interrupt source number 1407 from an interrupt packet. Based
on interrupt source number 1407, the firmware or software
computes an offset into IVT 1410 and issues a Load instruc-
tion to read the IVE 1412 for the interrupt source (block
1604). The software or firmware then processes the interrupt
in accordance with the values of P field 1424 and Q field 1426
as illustrated as by the process proceeding to FIG. 16B
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through page connectors F, G, H, or I if the values of P field
1424 and Q field 1426 are 00, 01, 10, or 11, respectively.
[0115] IfP field 1424 and Q field 1426 have values of 00,
processing proceeds from page connector F to block 1620 of
FIG. 16B, which depicts software or firmware classifying the
interrupt as a spurious interrupt based upon the settings of P
field 1424 and Q field 1426. A spurious interrupt can occur,
for example, due to timing issues, such as when PHB 120
hardware sends an interrupt and software or firmware clears
the interrupt prior to the interrupt being received from PHB
120. Software or firmware ignores spurious interrupt, and the
process shown in FIG. 16B ends at block 1650.

[0116] IfP field 1424 and Q field 1426 have values of 01,
software or firmware understands that an interrupt is queued
(as indicated by Q field 1426 being set to 1), but no interrupt
has yet been presented (as indicated by P field 1424 having a
value of 0). Consequently, the process proceeds from page
connector G to block 1622, which depicts software or firm-
ware resetting Q field 1426 to 0 in the selected IVE 1412 and
queuing the interrupt for processing with the interrupt source
number 1407 received from the interrupt presentation layer.
The process shown in FIG. 16B thereafter ends at block 1650.
[0117] IfP field 1424 and Q field 1426 have values of 10,
then following page connector H, software or firmware resets
P field 1424 to O in the selected IVE 1412 and queues an
interrupt for processing with the interrupt source number
1407 received from the interrupt presentation layer (block
1624). In addition, the software or firmware issues an MMIO
Load targeted to a register in PHB 120, which causes the
pending write to the Q field 1426 for the specified interrupt
source number 1407 to complete prior to the Load returning
the data for the targeted register (block 1626). (A pending
write to Q field 1426 would indicate that another interrupt
from the same interrupt source had been received while a
previous interrupt from that interrupt source is being pro-
cessed.) The software or firmware also issues a L.oad instruc-
tion at block 1628 to obtain the IVE 1412 for the specified
interrupt source number 1407 (block 1628). If Q field 1426
has not yet been reset to 0, then the software or firmware
processing of the interrupt proceeds through page connector
G to block 1622, which has been described. If, however, Q
field 1626 has been reset to 0 to indicate that the interrupt has
already been queued, then processing of the interrupt ends at
block 1650.

[0118] IfP field 1424 and Q field 1426 have values of 11,
then software or firmware recognizes that multiple instances
of the same interrupt have occurred and that it is permissible
to ignore the duplicates. Therefore, following page connector
1, the software or firmware resets P field 1424 to 0 at block
1640. The process then passes through page connector G to
block 1622, which has been described.

[0119] With reference now to FIG. 17, there is illustrated a
high level logical flowchart or an exemplary process by which
an 1/O host bridge, such as PHB 120, processes interrupts
rejected by an interrupt presentation layer in accordance with
one embodiment. An interrupt may be rejected, for example,
if the software and firmware responsible for servicing the
interrupts is not processing interrupts at the rate at that inter-
rupts are being presented. In such cases, rather than dropping
the interrupts that cannot be serviced immediately, interrupts
are requeued by the I/O host bridge for presentation again at
a later time.

[0120] The illustrated process begins at 1700 in response to
receipt by PHB 120 receiving a rejected interrupt from the
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interrupt presentation layer, for example, in FITR 404. At
block 1702, interrupt state machine 440 of PHB 120 records
the rejected interrupt by indexing into Reject Bit Array (RBA)
1450 with the interrupt source number 1407 of the rejected
interrupt and setting the bit at that location to a 1. Interrupt
state machine 440 also determines at block 1704 if the Reject
Represent Counter (RRC) 1456 has a count value of 0. If not,
the process proceeds to block 1708, which is described below.
However, in response to a determination at block 1704 that
RRC 1456 has a count value of 0, interrupt state machine 440
initializes RRC 1456 by placing the value present in Reject
Represent Timer (RRT) 1454 into RRC 1456. Thereafter,
interrupt state machine 440 decrements RRC 1456 (block
1708) and tests to determine if RRC 1456 has reached a count
value of 0 (block 1710). If not, meaning that insufficient time
has elapse to re-present the rejected interrupt, the process
returns to block 1708, which has been described.

[0121] Returning to block 1710, in response to a determi-
nation that RRC 1456 has reached a count value of 0, meaning
that it is time to re-present a previously rejected interrupt, the
process proceeds to block 1712. Block 1712 illustrates inter-
rupt state machine 440 of PHB 120 scanning RBA 1450
beginning at the base address identified by RBA BAR 1452 to
identify a bit set to 1, which indicates that an interrupt from
the interrupt source represented by that bit has been rejected.
At block 1714, interrupt state machine 440 resets the bit
detected at block 1712 to 0 and uses the index of that bitas an
interrupt source number to access the IVE 1412 associated
with the interrupt source. Next, interrupt state machine 440
determines at block 1716 if priority field 1420 in the relevant
IVE 1412 indicates that the interrupt is disabled (e.g., has a
value OxFF). If so, interrupt state machine 440 sets Q field
1426 in IVE 1412 to a 1 (block 1720), and the process passes
to block 1722, which is described below.

[0122] Returning to block 1716, if interrupt state machine
440 determines at block 1716 that priority field 1420 does not
indicate that the interrupt is disabled, then interrupt state
machine 440 sends the interrupt to the interrupt presentation
layer using priority field 1420 and server number field 1422
from IVE 1412, as well as bits 19:4 of IVE offset 1406 as
interrupt source number 1407. At block 1722, interrupt state
machine 440 determines if all bits in RBA 1450 have been
scanned, and thus, all rejected interrupts have been processed.
If not, the process depicted in FIG. 17 returns to block 1712,
which has been described. If, however, interrupt state
machine 440 determines at block 1722 that all rejected inter-
rupts have been processed, the process shown in FIG. 17 ends
at block 1724.

[0123] As has been described, in one embodiment, a data
processing system includes a processor core, a system
memory including a first data structure including a plurality
of entries mapping requester identifiers (IDs) to partitionable
endpoint (PE) numbers, and an input/output (I/O) subsystem
including a plurality of PEs each having an associated PE
number, where each of the plurality of PEs including one or
more requesters each having a respective requester ID. An1/O
host bridge, responsive to receiving an [/O message including
a requester ID and an address, determines a PE number by
reference to a first entry from the first data structure, and
responsive to determining the PE number, accesses a second
entry of the second data structure utilizing the PE number as
an index and validates the address by reference to the
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accessed entry in the second data structure. The /O host
bridge, responsive to successful validation, provides a service
indicated by the I/O message.

[0124] In another embodiment, a data processing system
includes a processor core, a system memory including a first
data structure including entries mapping requester identifiers
(IDs) to partitionable endpoint (PE) numbers and a second
data structure, and an input/output (I/O) subsystem including
an I/O bridge and a plurality of PEs each including one or
more requesters each having a respective requester ID. The
1/0 host bridge, responsive to receiving an /O message
including a requester ID, determines a PE number by refer-
ence to a first entry from the first data structure, and respon-
sive to determining the PE number, accesses a second entry of
the second data structure utilizing the PE number as an index,
where the second entry indicating one or more of the plurality
of PEs affected by the message. The I/O host bridge services
the I/O message with reference to each of the plurality of PEs
indicated by the second entry.

[0125] Inanother embodiment, firmware and/or software is
permitted to inject I/O messages, such as DM A messages and
interrupt messages, into an I/O host bridge as if the injected
interrupts were received from the I/O subsystem.

[0126] The foregoing description has been presented for
purposes of illustration and elaboration, and is not intended to
be exhaustive or limited to the structures and processes dis-
closed. Many modifications and variations will be apparent to
those of ordinary skill in the art. Various embodiments were
chosen and described in order to best explain the principles of
operation, the practical application, and to enable others of
ordinary skill in the art to understand and apply the disclosed
teachings in various embodiments with any modifications
suitable for the particular use contemplated.

[0127] While the present invention has been particularly
shown as described with reference to one or more preferred
embodiments, it will be understood by those skilled in the art
that various changes in form and detail may be made therein
without departing from the spirit and scope of the invention.
For example, while the present invention has been described
in the context of a fully functioning data processing system,
those of ordinary skill in the art will appreciate that the pro-
cesses of the present invention are capable of being distrib-
uted in the form of a computer program product including a
computer readable storage medium having program code
stored therein. Examples of computer readable storage media
include hard disk drives, RAM or other volatile memory,
non-volatile memory, and optical storage media.
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What is claimed is:

1. A method of data processing in a data processing system
including a processor core, a system memory coupled to the
processor core, an input/output adapter (I0A), and an input/
output (I/O) host bridge, the method comprising:

the I/O host bridge receiving I/O messages from the pro-

cessor core in a register;

the I/O host bridge receiving I/O messages from the [OA in

a buffer; and

the I/O host bridge forming a stream of I/O messages from

those received in the register and the buffer; and

the I/Ohost bridge servicing [/O messages from the stream.

2. The method of claim 1, wherein forming the stream
comprises selecting I/0 messages from the register and from
the buffer for servicing in accordance with a prioritization
scheme.

3. The method of claim 1, wherein:

the I/O host bridge includes a plurality of state machines

that each service a respective one of a plurality of dif-
ferent types of I/O messages; and

the servicing includes determining a type of each of the /O

messages and routing each of the I/O messages to an
appropriate one of the plurality of state machines for
servicing.

4. The method of claim 3, wherein said plurality of differ-
ent types of /O messages include Direct Memory Access
(DMA) messages, error messages and interrupt messages.

5. The method of claim 3, wherein:

the data processing system includes a plurality of partition-

able endpoints (PEs) each having an associated PE num-
ber, each of the plurality of PEs including one or more
requesters each having a respective requester identifier
(RID);
the data processing system includes a data structure includ-
ing a plurality of entries each associating a respective
RID with a PE; and
the method further comprises:
prior to the routing, indexing into the data structure
utilizing a RID provided with an /O message to vali-
date authorization a message source to issue the [/O
message.

6. The method of claim 1, wherein:

the register is a memory-mapped register; and

receiving I/O messages from the processor core in the

register comprises receiving the /O messages from the
processor core in the memory-mapped register.
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