

(12) UK Patent Application (19) GB (11) 2 385 501 (13) A

(43) Date of A Publication 20.08.2003

(21) Application No 0303462.6

(22) Date of Filing 14.02.2003

(30) Priority Data

(31) 02008350

(32) 16.02.2002

(33) KR

(51) INT CL⁷

H03M 13/35, H04L 1/00, H04Q 7/38

(52) UK CL (Edition V)

H4P PEP

(56) Documents Cited

EP 1289167 A1 EP 1248485 A1

Third Generation Partnership Project (3GPP) ETSI

Technical Specification 25.222, version 5.3.0, Release 5, dated December 2002, pages 40-43 & 63-64

Third Generation Partnership Project (3GPP) Technical Specification 25.212, version 5.0.0, Release 5, dated March 2002, pages 65-67

Third Generation Partnership Project (3GPP) Technical Specification 25.212, version 2.3.0, dated October 1999, pages 36-38

(58) Field of Search

UK CL (Edition V) H4P

INT CL⁷ H03M, H04L, H04Q

Other: Online: WPI, EPODOC, JAPIO, TXTE, INSPEC, INTERNET

(71) Applicant(s)

LG Electronics Inc.

(Incorporated in the Republic of Korea)

20 Yoido-Dong, Yongdungpo-Ku, Seoul,
Republic of Korea

(72) Inventor(s)

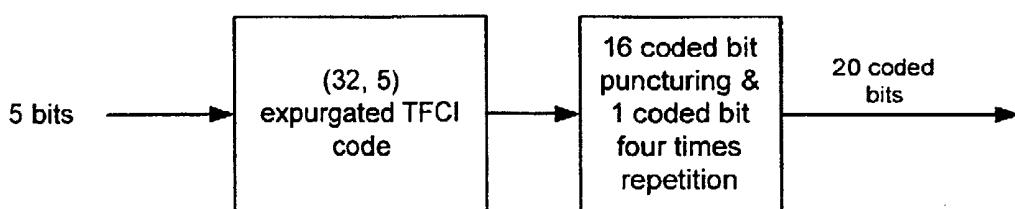
Dong-Wook Roh

Min-Seek Oh

Joon-Kui Ahn

(74) Agent and/or Address for Service

Boult Wade Tennant


Verulam Gardens, 70 Gray's Inn Road,
LONDON, WC1X 8BT, United Kingdom

(54) Abstract Title

Channel Quality Information (CQI) coding method for HS-DPCCH

(57) A coding method for generating (20, 5) channel quality information (CQI) comprises the steps of inputting 5 information bits, creating basis sequences for generating (32, 5) TFCI (Transport Format Combination Indicator) codes from (32, 10) TFCI codes, puncturing 16 bits from each of the (32, 5) TFCI codes in a predetermined bit pattern, repeating a predetermined bit (most significant bit) of each punctured code four times and using the results to encode the 5 information bits into a 20 bit CQI output codeword. In alternative embodiments (16, 5) TFCI codes are used. The CQI is encoded so as to maximise system throughput and provide an optimal CQI coding scheme for HSDPA (High Speed Downlink Packet Access). The CQI codewords are used to provide feedback e.g. in adaptive modulation/coding schemes (AMC) and hybrid automatic repeat request systems (HARQ).

FIG.9a

GB 2 385 501 A

FIG.1

1/6

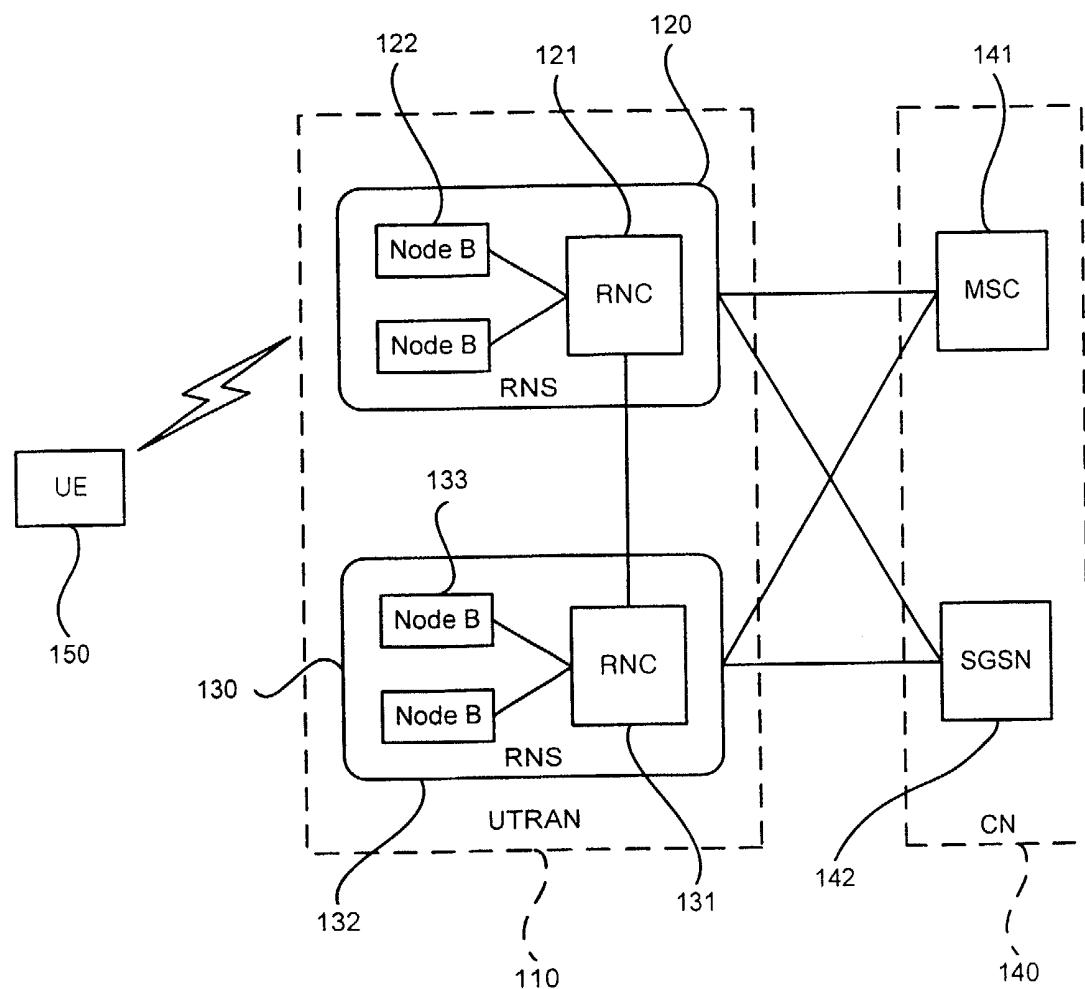


FIG.2

2/6

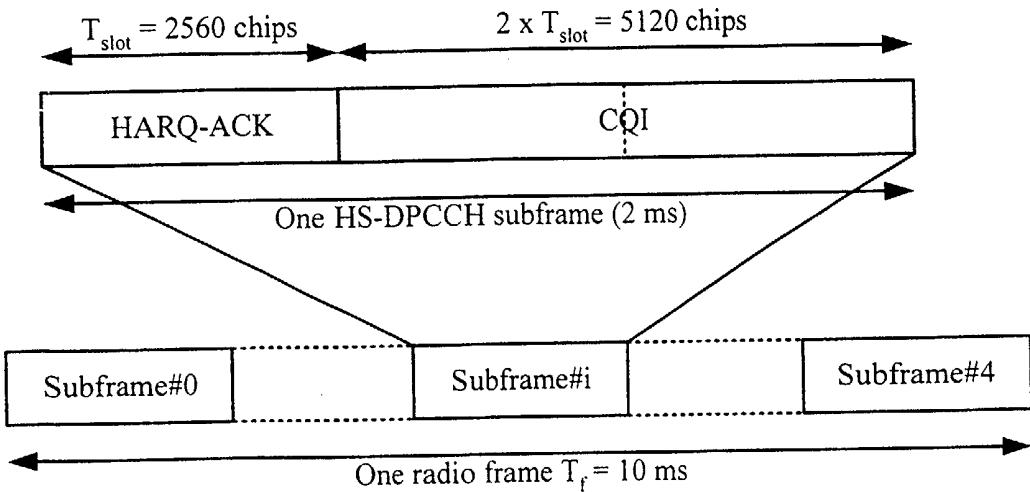


FIG.3a

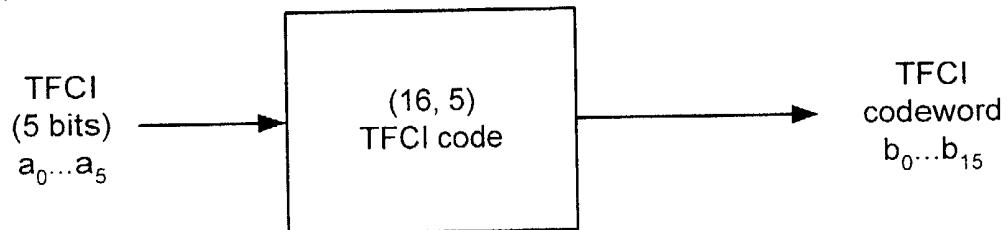


FIG.3b

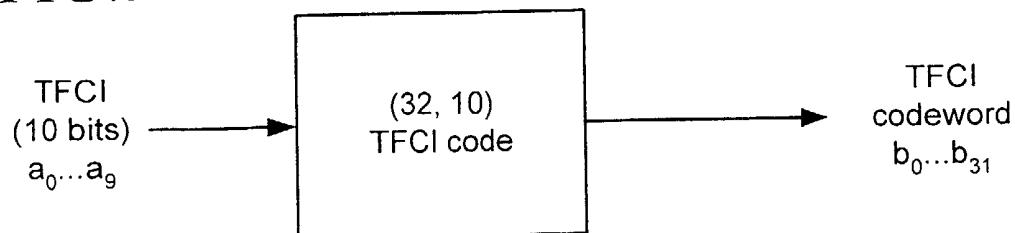


FIG.4

3/6

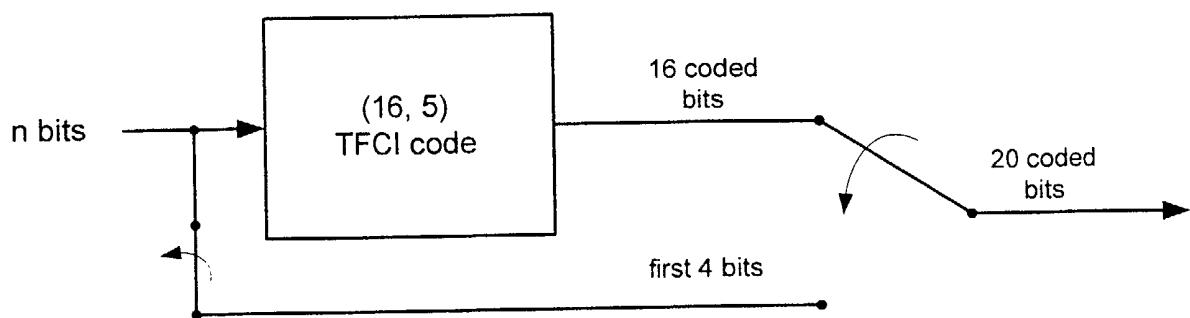


FIG.5a

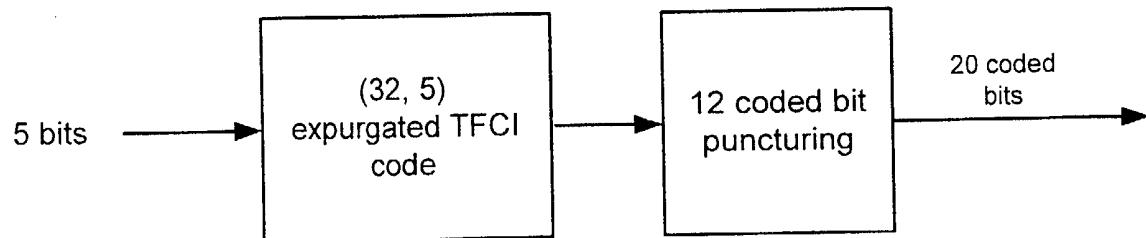


FIG.5b

Puncturing pattern	Used basis
2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 30	$M_{0,1}, M_{1,1}, M_{2,1}, M_{3,1}, M_{4,1}$

FIG.6

4/6

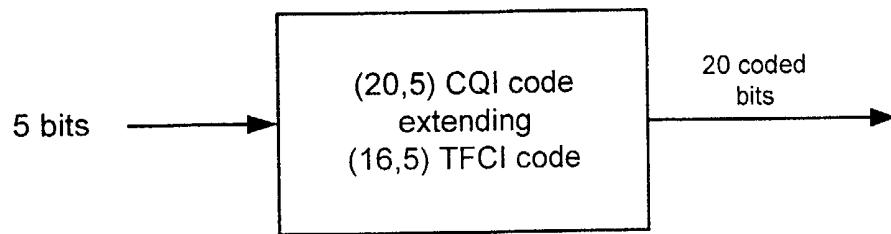


FIG.7a

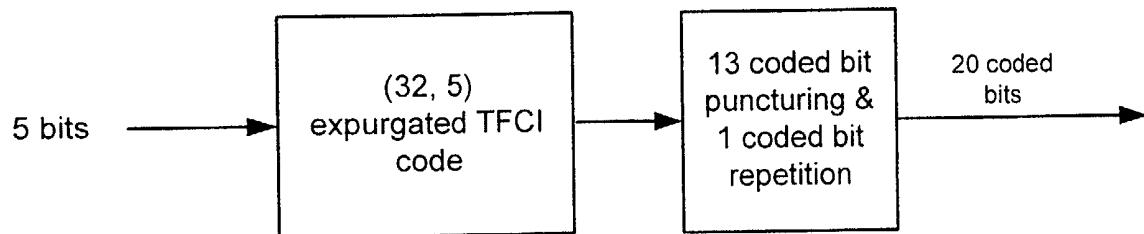


FIG.7b

Puncturing pattern	Repetition pattern	Used basis
0, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 30	31	$M_{0,l}, M_{1,l}, M_{2,l}, M_{3,l}, M_{4,l}$

FIG.8a

5/6

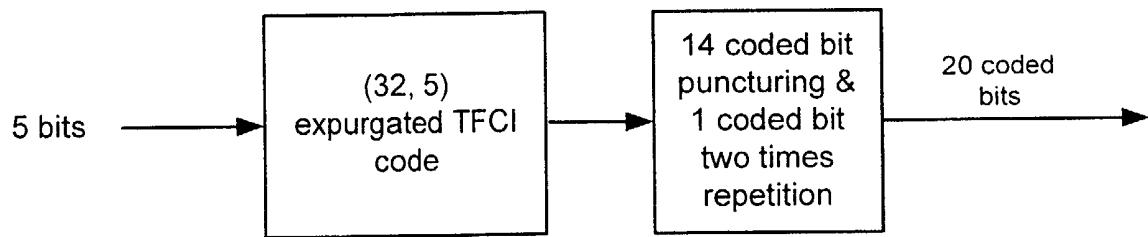


FIG.8b

Puncturing pattern	Repetition pattern	Used basis
0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 30	31, 31	$M_{0,1}, M_{1,1}, M_{2,1}, M_{3,1}, M_{4,1}$

FIG.9a

6/6

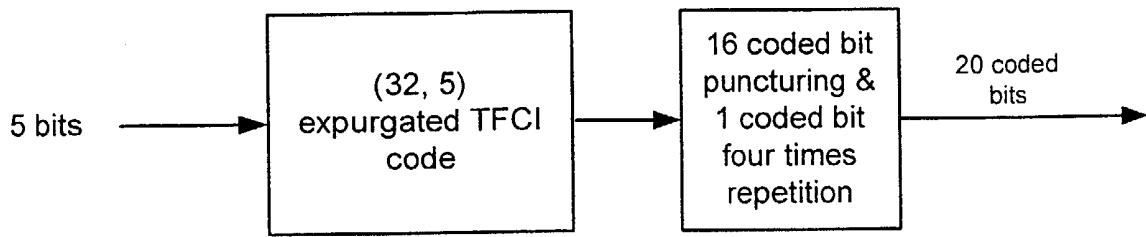


FIG.9b

Puncturing pattern	Repetition pattern	Used basis
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 30	31, 31, 31, 31	$M_{0,1}, M_{1,1}, M_{2,1}, M_{3,1}, M_{4,1}$

CQI CODING METHOD FOR HS-DPCCH

BACKGROUND OF THE INVENTION

5 1. Field of the Invention

The present invention relates to a wireless communication system and, more particularly, to a reliable uplink channel quality information (CQI) coding method for HS-DPCCH in HSDPA system for 3GPP. (RTM)

10 2. Description of the Background Art

UMTS (Universal Mobile Telecommunications System) is the third generation mobile communication system evolved from GSM (Global System for Mobile Communications) and a European style mobile communication standard. It is intended to provide improved mobile communication services on the basis of a 15 GSM core network (CN) and a Wideband Code Division Multiple Access (WCDMA) access technology.

For the purpose of making a standard for third generation mobile communication systems (IMT-2000 systems) based on evolved GSM core network and WCDMA radio access technology, a group of standard developing 20 organizations including ETSI of Europe, ARIB/TTC of Japan, T1 of U.S., and TTA of Korea established the Third Generation Partnership Project (3GPP).

For the purpose of efficient management and technological development, five Technical Specification Groups (TSGs) are organized under 3GPP in consideration of network construction factors and their operations.

25 Each TSG is in charge of approving, developing and managing

specifications related to a pertinent area. Among them, RAN (Radio Access Network) group has developed functions, requirements and interface specifications related to UE (User Equipment) and UMTS terrestrial radio access network (UTRAN) in order to set a new radio access network specification to the 5 third generation mobile communication system.

The TSG-RAN group consists of one plenary group and four working groups.

WG1 (Working Group 1) has been developing specifications for a physical layer (Layer 1), and WG2 has been specifying functions of a data link layer (Layer 10 2) between UE and UTRAN. In addition, WG3 has been developing specifications for interfaces among Node Bs (the Node B is a kind of base station in the wireless communications), Radio Network Controllers (RNCs) and the core network. Lastly, WG4 has been discussing requirements for radio link performance and radio 15 resource management.

FIG. 1 illustrates a structure of the UTRAN defined in 3GPP.

As depicted in FIG. 1, the UTRAN 110 includes at least one or more radio network sub-systems (RNSs) 120 and 130, and each RNS includes one RNC and at least one or more Node Bs. For example, Node B 122 is managed by RNC 121, and receives information transmitted from the physical layer of the UE 150 through 20 an uplink channel and transmits a data to the UE 150 through a downlink channel.

Accordingly, the Node B is considered to work as an access point of the UTRAN from the UE point of view.

The RNCs 121 and 131 perform functions of allocation and management of radio resources of the UMTS and are connected to a suitable core network 25 element depending on types of services provided to users.

For example, the RNCs 121 and 131 are connected to a mobile switching center (MSC) 141 for a circuit-switched communication such as a voice call service, and are connected to a SGSN (Serving GPRS Support Node) 142 for a packet switched communication such as a radio Internet service.

5 The RNC in charge of a direct management of the Node B is called a Control RNC (CRNC) and the CRNC manages common radio resources.

On the other hand, the RNC that manages dedicated radio resources for a specific UE is called a Serving RNC (SRNC). Basically, the CRNC and the SRNC can be co-located in the same physical node. However, if the UE has been moved
10 to an area of a new RNC that is different from SRNC, the CRNC and the SRNC may be located at physically different places.

There is an interface that can operate as a communication path between various network elements. The interface between a Node B and a RNC is called a lub interface, and an interface between RNCs is called an Iur interface. And an
15 interface between the RNC and the core network is called an Iu.

High Speed Data Packet Access (HSDPA) is standardization work within the 3GPP for realizing high speed, high-quality wireless data packet services. To support HSDPA, various advanced technologies such as Adaptive Modulation and Coding (AMC), Hybrid Automatic Repeat Request (HARQ), Fast Cell Selection
20 (FCS), Multiple Input Multiple Out (MIMO), and etc. are introduced.

Well known are the benefits of adapting the transmission parameters in a wireless system to the changing channel conditions. The process of modifying the transmission parameters to compensate for the variations in channel condition is known as link adaptation (LA) and AMC is one of the link adaptation techniques.
25 The principle of AMC is to change the modulation and coding scheme according to

variations in the channel conditions, subject to system restrictions. That channel conditions can be estimated based on feedback from the UE. In a system with AMC, the UEs in favorable positions, i.e., close to the cell site, are typically assigned higher order modulation with higher code rate (e.g. 64 QAM with R=3/4

5 Turbo Code), while UEs in unfavorable positions, i.e., close to the cell boundary, are assigned lower order modulation with lower code rate (e.g. QPSK with R=1/2 Turbo Code). The main benefits of AMC are the higher data rate available for UEs in favorable positions which in turn increases the average throughput of the cell and the reduced interference variation due to link adaptation based on variations

10 in the modulation/coding scheme instead of variations in transmit power.

In conventional ARQ, ARQ process should be performed along up to the upper layer of the UE and the node B, while in the HSDPA, ARQ process is conducted within the physical layer. The key characteristic of the HARQ is to transmit the un-transmitted portion of the encoded block when the NACK (No

15 Acknowledgement) is received from the receiver, which enables the receiver to combine each portion of received codewords into the new codewords with the lower coding rate so as to obtain much coding gain. Another feature of the n-channel HARQ is that a plurality of packets can be transmitted on n channels even when an ACK/NACK (Acknowledgement/No acknowledgement) is not received

20 unlike in the typically Stop and Wait ARQ which allows the node B to transmit the next packet only when the ACK signal is received from the receiver or to retransmit the previous packet when the NACK signal is received. In other words, the node B of HSDPA can transmit a plurality of next packets successively even if it does not receive the ACK/NACK for the previous transmitted packet, thereby

25 increasing channel usage efficiency. Combining AMC and HARQ leads to

maximize transmission efficiency-AMC provides the coarse data rate selection, while HARQ provides fine data rate adjustment based on channel conditions.

FCS is conceptually similar to Site Selection Diversity Transmission (SSDT). Using FCS, the UE indicates the best cell which should serve it on the downlink, through uplink signaling. Thus while multiple cells may be members of the active set, only one of them transmits at a certain time, potentially decreasing interference and increasing system capacity. Determination of the best cell may not only be based on radio propagation conditions but also available resources such as power and code space for the cells in the active set.

MIMO is one of the diversity techniques based on the use of multiple downlink transmit/receiver antennas. MIMO processing employs multiple antennas at both the base station transmitter and terminal receiver, providing several advantages over transmit diversity techniques with multiple antennas only at the transmitter and over conventional single antenna systems.

Due to the introductions of these new schemes, new control signals are configured between the UE and the node B in HSDPA. HS-DPCCH is a modification to UL DPCCH for supporting HSDPA.

FIG. 2 shows a frame structure for uplink HS-DPCCH associated with HS-DSCH transmission. The HS-DPCCH carries uplink feedback signaling consisted of HARQ-ACK/NACK and channel-quality indicator (CQI). Each subframe of length 2ms (3 x 2560 chips) consists of 3 slots, each of length 2560 chips. The HARQ-ACK/NACK is carried in the first slot of the HS-DPCCH subframe and the CQI is carried in the second and third slot of the HS-DPCCH subframe. There is at most one HS-DPCCH on each radio link and the HS-DPCCH can only exist together with an uplink DPCCH.

To support fast link adaptation, the UE is to provide node B with information about the downlink channel quality, i.e., CQI. Regarding the channel coding for HS-DPCCH CQI, a number of uplink CQI coding methods have been proposed and most proposals assume that the CQI is to be coded into 20 channel bits. The CQI coding methods are based on the Transmit Format Combination Indicator (TFCI) coding method of 3GPP specification. FIG. 3a shows a (16, 5) TFCI encoder, which is similar to the (32, 10) TFCI encoder in FIG. 3b except that five information bits are used so as to generate (16, 5) TFCI codeword. The basis sequences for (16, 5) TFCI code are shown in table 1a and the basis sequences for (32, 10) TFCI code are illustrated in table 1b.

Detailed methods of generating TFCI codeword are revisited below. First, (16, 5) TFCI encoding method is described. In table 1a, let the TFCI information bits a_0, a_1, a_2, a_3, a_4 and $M_{i,n}$ a basis sequence for n-th TFCI information bit. Then output codeword bits b_i are given by

$$15 \quad b_i = \sum_{n=0}^4 (a_n \times M_{i,n}) \bmod 2 \quad \text{where } i = 0, 1, 2, \dots, 15$$

The output bits are denoted by b_i , $i = 0, 1, 2, \dots, 15$.

In a similar manner, the generation of (32, 10) TFCI codeword can be defined. In table 1b, let the TFCI information bits $a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9$ and $M_{i,n}$ a basis sequence for n-th TFCI information bit. Then output codeword bits b_i are given by

$$20 \quad b_i = \sum_{n=0}^9 (a_n \times M_{i,n}) \bmod 2 \quad \text{where } i = 0, 1, 2, \dots, 31$$

The output bits are denoted by b_i , $i = 0, 1, 2, \dots, 31$.

The basis sequences for (16, 5) TFCI in Table 1a are included in the basis

sequences for (32, 10) TFCI in Table 1b if the information bits are limited to the first 5 bits and the some 16 output bits are selected from 32 output bits. The common part between two basis sequences is highlighted by shadow in table 1b. The CQI coding method is based on the conventional TFCI coding method.

5 The CQI requires 5 information bits and 20 coded bits, i.e. (20, 5) CQI code. Therefore, the (16, 5) TFCI code and (32, 10) TFCI coding method should be modified to fit the required number of bits for CQI coding. The (16, 5) TFCI code should be extended to (20, 5) CQI code by adding each basis sequence by 4 bits.

10 The (32, 10) TFCI code can be used to generate (20, 5) CQI code through two steps. First, the (32, 10) TFCI code should be expurgated to the (32, 5) modified TFCI code by deleting last 5 basis sequences. Hereinafter the (32, 5) modified TFCI code by deleting last 5 basis sequences is referred to (32, 5) expurgated TFCI code. Secondly, the (32, 5) expurgated TFCI code should be punctured and repeated to meet the (20, 5) CQI code. The basis sequences for the (32, 5) expurgated TFCI code are as follows in table 1c. The common part of basis sequences between (16, 5) TFCI code and (32, 5) expurgated TFCI code is shadowed. The table 1c also include the basis sequences for (16, 5) TFCI code, i.e. table 1a. It means that the generating method based on the (32, 10) TFCI code can be represented by another form of generating method based on the (16, 5) TFCI code, vice versa.

15

20

<table 1a>

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1

6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1

<table 1b>

i	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}	M _{i,5}	M _{i,6}	M _{i,7}	M _{i,8}	M _{i,9}
0	1	0	0	0	0	1	0	0	0	0
1	0	1	0	0	0	1	1	0	0	0
2	1	1	0	0	0	1	0	0	0	1
3	0	0	1	0	0	1	1	0	1	1
4	1	0	1	0	0	1	0	0	0	1
5	0	1	1	0	0	1	0	0	1	0
6	1	1	1	0	0	1	0	1	0	0
7	0	0	0	1	0	1	0	1	1	0
8	1	0	0	1	0	1	1	1	1	0
9	0	1	0	1	0	1	1	0	1	1
10	1	1	0	1	0	1	0	0	1	1
11	0	0	1	1	0	1	0	1	1	0
12	1	0	1	1	0	1	0	1	0	1
13	0	1	1	1	0	1	1	0	0	1
14	1	1	1	1	0	1	1	1	1	1
15	1	0	0	0	1	1	1	1	0	0
16	0	1	0	0	1	1	1	1	0	1
17	1	1	0	0	1	1	1	0	1	0
18	0	0	1	0	1	1	0	1	1	1
19	1	0	1	0	1	1	0	1	0	1
20	0	1	1	0	1	1	0	0	1	1
21	1	1	1	0	1	1	0	1	1	1
22	0	0	0	1	1	1	0	1	0	0
23	1	0	0	1	1	1	1	1	0	1
24	0	1	0	1	1	1	1	0	1	0
25	1	1	0	1	1	1	1	0	0	1
26	0	0	1	1	1	1	0	0	1	0
27	1	0	1	1	1	1	1	1	0	0
28	0	1	1	1	1	1	1	1	1	0
29	1	1	1	1	1	1	1	1	1	1
30	0	0	0	0	0	1	0	0	0	0

31	0	0	0	0	1	1	1	0	0	0
----	---	---	---	---	---	---	---	---	---	---

<table 1c>

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	0
1	0	1	0	0	0
2	1	1	0	0	0
3	0	0	1	0	0
4	1	0	1	0	0
5	0	1	1	0	0
6	1	1	1	0	0
7	0	0	0	1	0
8	1	0	0	1	0
9	0	1	0	1	0
10	1	1	0	1	0
11	0	0	1	1	0
12	1	0	1	1	0
13	0	1	1	1	0
14	1	1	1	1	0
15	1	0	0	0	1
16	0	1	0	0	1
17	1	1	0	0	1
18	0	0	1	0	1
19	1	0	1	0	1
20	0	1	1	0	1
21	1	1	1	0	1
22	0	0	0	1	1
23	1	0	0	1	1
24	0	1	0	1	1
25	1	1	0	1	1
26	0	0	1	1	1
27	1	0	1	1	1
28	0	1	1	1	1
29	1	1	1	1	1
30	0	0	0	0	0
31	0	0	0	0	1

FIG. 4 illustrates an encoder for generating an extended (16, 5) TFCI code. In FIG. 4, (16, 5) TFCI code, is reused with each codeword extended with the four least reliable information bits for (20, 5) CQI code. This CQI coding

scheme is designed so as to have the optimal minimum distance.

FIG. 5a illustrates an encoder for generating punctured (32, 5) expurgated TFCI code. In this CQI coding scheme, (32, 5) expurgated TFCI code with 5 puncturing 12 symbols is proposed. The puncturing pattern and used basis sequences are as in FIG. 5b.

However, (20, 5) CQI coding schemes using the extended (16, 5) TFCI code in FIG. 4 and the punctured (32, 5) expurgated TFCI code in FIG. 5 are equivalent to each other. That is because the resultant basis sequences based on 10 the (16, 5) TFCI code are the same as the resultant punctured basis sequences based on the (32, 5) expurgated TFCI code after puncturing. The only difference is the order of codeword bits. However, since the difference of bit position doesn't have any effect on the coding performances and properties, both coding schemes of FIG 4 and FIG 5 are equivalent each other.

15 Since the (20, 5) CQI coding scheme based on the (16, 5) TFCI code can be expressed as that based on the (32, 5) expurgated TFCI code, vice versa, the extended (16, 5) TFCI code and the punctured (32, 5) expurgated TFCI code are commonly expressed as the basis sequences in table 2. It means that the (20,5) CQI coding scheme based on both the (16, 5) TFCI and (32, 5) expurgated TFCI 20 code is to decide what the basis sequence pattern is in the blank in table 2. Hereinafter, the basis sequence part which is the same as 3GPP technical specifications will be omitted for convenience.

<table 2>

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
...

14	1	1	1	1	1
15	0	0	0	0	1
16					
17					
18					
19					
20					

To be filled with the extended patterns in the embodiments

FIG. 6 illustrates another encoder for generating extended (16, 5) TFCI code. In order to extend from (16, 5) to (20, 5), the basis sequence is extended and the extended parts are filled as in table 3.

5 <table 3>

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
...
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	1	0

Here $M_{i,4}$ is the most significant bit (MSB). This arrangement gives significant extra protection to the MSB, and a little more robustness to the next most significant bit.

10 The conventional CQI coding schemes and their performances are varied according to the extended parts of basis sequence table. In this approach, to select optimum CQI coding scheme means just to find optimum extended part of the basis sequence table.

15 The above CQI coding schemes are developed in consideration of BER performance and unequal error protection (RMS error reduction) but system throughput. However, the coding schemes have tradeoffs between BER and unequal error protection. In other words, in view of the BER performance the first

and second CQI coding schemes are superior to that of the third one. On the other hand, in view of the unequal error protection the third CQI coding scheme is superior to those of the first and second ones.

However, since HSDPA system has been designed in order to increase
5 the system throughput, it is desirable to use the system throughput as one of the criteria in order to select optimum CQI coding scheme.

SUMMARY OF THE INVENTION

The present invention has been made in an effort to solve the above
10 problem.

It would be desirable _____ to provide a method for generating basis sequences for CQI coding capable of maximizing a system throughput.

To achieve the object, in one aspect of the present invention the channel quality information (CQI) coding method comprises (a) creating first basis sequences for generating (32, 5) expurgated TFCI code from (32, 10) TFCI code, (b) puncturing each of the (32, 5) expurgated TFCI codes in a predetermined bit pattern in order to maximize system throughput, (c) repeating a predetermined bit of each (32, 5) expurgated TFCI code for predetermined times in order to maximize system throughput, and (d) encoding 5 information bits into CQI codes
15 using a second basis sequences generated through (b) and (c).

Each (32, 5) expurgated TFCI code may be punctured as many as 16 bits in order of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits, and a 31st bit of the (32, 5) expurgated TFCI code is repeated 4 times.

Preferred first basis sequences are already shown in table 1c.

25 Preferred second basis sequences are as in following table:

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	0	1

where $i=0, \dots, 19$.

In other aspect of the present invention the channel quality information (CQI) coding method comprises inputting 5 information bits, generating 32 bit sub-codes with the information bits using a basis sequences, generating 20 bit codewords by puncturing 16 bits from each of the sub-codes in a predetermined bit pattern and repeating a predetermined bit of the sub-code.

The sub-codes may be punctured 16 bits in order of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits and 31st bit is repeated 4 times.

The resultant basis sequences may be represented by

10 $M_{i,0}=10101010101010100000, \quad M_{i,1}=01100110011001100000,$
 $M_{i,2}=00011110000111100000, \quad M_{i,3}=0000000111111100000, \quad \text{and}$
 $M_{i,4}=11111111111111111111, \text{ where } i=0, \dots, 19.$

In other aspect of the present invention the channel quality information

(CQI) coding method comprises (a) obtaining first basis sequences from (16, 5) TFCI code, (b) extending basis sequences to (20,5) CQI code in a predetermined pattern in order to maximize system throughput, (c) encoding 5 information bits into CQI codes using a second basis sequences generated through (a) and (b).

5 The second extended basis sequences are the same as the upper table.

In other aspect of the present invention the channel quality information (CQI) coding method comprises (a) encoding 5 information bits into (16, 5) TFCI codes using (16, 5) TFCI basis sequences (b) repeating the MSB of information bits 4 times in order to maximize system throughput.

10

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:

15 FIG. 1 is a conceptual view showing a structure of the UMTS radio access network (UTRAN);

FIG. 2 is a drawing illustrating a frame structure for uplink HS-DPCCH associated with HS-DSCH transmission;

FIG. 3a is a schematic block diagram illustrating a (16, 5) TFCI encoder;

FIG. 3b is a schematic block diagram illustrating a (32, 10) TFCI encoder;

20 FIG. 4 is a schematic block diagram illustrating an encoder for generating a conventional (20, 5) CQI code based on the (16,5) TFCI code;

FIG. 5a is a schematic block diagram illustrating an encoder for generating conventional (20, 5) CQI code based on the expurgated (32, 5) TFCI code;

25 FIG. 5b is a table showing a puncturing pattern and used basis adapted to the encoder of FIG 5a;

FIG. 6 a schematic block diagram illustrating another encoder for generating (20, 5) CQI code by extending (16, 5) TFCI code;

FIG. 7a is a schematic block diagram illustrating an encoder for generating (20, 5) CQI code according to a first embodiment of the present invention;

5 FIG. 7b is a table showing a puncturing pattern, repetition pattern, and used basis adapted to the encoder of FIG. 7a;

FIG. 8a is a schematic block diagram illustrating an encoder for generating (20, 5) CQI code according to a second embodiment of the present invention;

10 FIG. 8b is a table showing a puncturing pattern, repetition pattern, and used basis adapted to the encoder of FIG. 8b;

FIG. 9a is a schematic block diagram illustrating an encoder for generating (20, 5) CQI code according to a third embodiment of the present invention; and

FIG. 9b is a table showing a puncturing pattern, repetition pattern, and used basis adapted to the encoder of FIG. 9a.

15

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will be described with reference to the accompanying drawings hereinafter.

FIG. 7a is a block diagram illustrating an encoder for generating (20, 5) code according to a first embodiment of the present invention and FIG. 7b is a table for illustrating how the encoder of FIG. 7a generate the (20, 5) code.

20 Referring to FIG. 7a and FIG. 7b, once 5 information bits are inputted, the encoder linearly combines the information bits with basis sequences so as to generate a (32, 5) expurgated TFCI code. The expurgated TFCI code of 32 bit length is punctured by 13 bits in a puncturing pattern (0, 2, 4, 5, 6, 8, 9, 10, 11, 12,

13, 14, and 30th bits) and the 31st bit is repeated one time such that the code word of 20 bit length is obtained. The basis sequences are $M_{i,0}, M_{i,1}, M_{i,2}, M_{i,3}, M_{i,4}$. The basis sequences generated according to the first embodiment are as following in table 4. In other aspect of the first embodiment is to construct basis sequences by

5 extending from (16, 5) TFCI code to the basis sequence of table 4.

<table 4>

i	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
...
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	1	0
18	0	0	1	0	0
19	0	1	0	0	0

Each of the basis sequences according to the first embodiment can be expressed as follows:

$$M_{i,0}=1010101010101010100000$$

10 $M_{i,1}=01100110011001100001$

$$M_{i,2}=00011110000111100010$$

$$M_{i,3}=00000001111111100100$$

$$M_{i,4}=111111111111111111000$$

FIG. 8a is a block diagram illustrating an encoder for generating (20, 5) code according to a second embodiment of the present invention and FIG. 8b is a table for illustrating how the encoder of FIG. 8a generate the (20, 5) code.

Referring to FIG. 8a and FIG. 8b, the encoder linearly combines 5 inputted information bits with basis sequences so as to generate a (32, 5) expurgated TFCI code. The expurgated TFCI code of 32 bit length is punctured by 14 bits in a puncturing pattern (0, 1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, and 30th bits) and the

31st bit is repeated two times such that the code word of 20 bit length is obtained. The basis sequences generated according to the second embodiment of the present invention are as following in table 5. In other aspect of the second embodiment is to construct basis sequences by extending from (16, 5) TFCI code to the basis sequence of table 5.

<table 5>

i	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}
0	1	0	0	0	1
...
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	1	0
19	0	0	1	0	0

Each of the basis sequences according to the second embodiment can be expressed as follows:

$$M_{i,0}=1010101010101010100000$$

$$M_{i,1}=01100110011001100000$$

$$M_{i,2}=000111100001111100001$$

$$M_{i,3}=00000001111111100010$$

$$M_{i,4}=111111111111111111100$$

FIG. 9a is a block diagram illustrating an encoder for generating (20, 5) code according to a third embodiment of the present invention and FIG. 9b is a table for illustrating how the encoder of FIG. 9a generate the (20, 5) code.

Referring to FIG. 9a and FIG. 9b, the encoder linearly combines 5 inputted information bits with basis sequences so as to generate a (32, 5) expurgated TFCI code. The expurgated TFCI code of 32 bit length is punctured by 16 bits in a puncturing pattern (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits) in

order to maximize the system throughput and the 31st bit is repeated 4 times in order to maximize the system throughput such that the code word of 20 bit length is obtained. The basis sequences generated according to the third embodiment of the present invention are as following in table 6.

5 <table 6>

i	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}
0	1	0	0	0	1
...
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	0	1

Each of the basis sequences according to the third embodiment can be expressed as follows:

$$M_{i,0}=1010101010101010100000$$

$$M_{i,1}=01100110011001100000$$

$$M_{i,2}=00011110000111100000$$

$$M_{i,3}=00000001111111100000$$

$$M_{i,4}=11111111111111111111$$

In other aspect of the third embodiment, the channel quality information (CQI) coding method comprises (a) obtaining first basis sequences from (16, 5) TFCI code, (b) extending basis sequences to (20, 5) CQI code in a predetermined pattern in order to maximize system throughput, (c) encoding 5 information bits into CQI codes using a second basis sequences generated through (a) and (b).

The second extended basis sequences are the same as table 6.

In other aspect of the third embodiment, the channel quality information

20 (CQI) coding method comprises (a) encoding 5 information bits into (16, 5) TFCI

codes using (16, 5) TFCI basis sequences (b) repeating the MSB of information bits 4 times.

To support the superiority of the CQI coding schemes of the present invention to the conventional ones, the CQI coding schemes of the embodiments and the conventional ones were simulated and compared with respect to BER, RMS error, and system throughput for selecting optimum CQI coding scheme. Since there is a trade-off between BER and RMS error, the system throughput is considered as a criterion. For simplification, the conventional CQI coding schemes characterized in table 2 and table 3 are referred as C1 and C2.

In the simulations result, the order of the BER performance as follows.

The performance gap between the worst and the best is approximately 0.5 dB at BER 10^{-5} .

In order to measure the unequal error protection capability, the root-mean-square (RMS) error as the criterion is introduced. The RMS error means the root mean square of difference between transmitted codewords and received codewords. The order of the RMS error reduction performance is as follows.

The performance gap between the worst and the best is approximately 1.5 dB at -3dB EbNo/Slot.

The system throughput is calculated using simplified system level simulation. And the conventional analytic system level simulator and uplink CQI

coding schemes are joined. With combined system level simulation and uplink CQI coding, the BER and RMS error are considered at the same time. The throughput of BER performance is as follows.

Embodiment 3 > C2 > embodiment 2 > embodiment 1 > C1

(\leftarrow better ,,, worse \rightarrow)

The performance gap between the worst and the best is approximately 79kbps at 3dB.

In the present invention, the CQI coding schemes are classified with respect to the extended parts of the basis sequence tables and the system throughput is introduced as a criterion for evaluating the CQI coding schemes because there is a trade-off between BER and RMS error. Moreover, during the system throughput simulation, both BER and RMS error effect are already considered together. Also, since HSDPA system has been designed in order to increase the system throughput, the third embodiment of the present invention, which shows the best system throughput in the simulation, can be the optimum CQI coding scheme for HS-DPCCH.

While embodiments of the invention have been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

What is claimed is:

1. A channel quality information (CQI) coding method of wireless communication system for increasing downlink channel capacity by improving accuracy of a CQI which is received through an uplink channel, wherein the CQI coding method is characterized in that the CQI is encoded in such a manner that information bits of the CQI are assigned different significances .
5
2. The method of claim 1, wherein the information bits of the CQI are allocated the significances in consideration of bit error rate (BER), root mean square (RMS) value, and system throughput.
10
3. A channel quality information (CQI) coding method comprising:
creating first basis sequences for generating sub-codes of 32 bits;
creating second basis sequences for generating codewords of 20 bits
15 using the first basis sequences, the second basis sequences maximizing system throughput; and
encoding a predetermined number of information bits into CQI codes using the second basis sequences.
20
4. The method of claim 3, the number of information bits are 5.
- 25 5. The method of claim 3, wherein creating the second basis sequence including:
puncturing each of the sub-codes in a predetermined bit pattern; and
repeating a predetermined bit of each sub-code for predetermined times.

6. The method of claim 5, wherein each sub-code is punctured as many as 16 bits in order of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits.

5 7. The method of claim 5, wherein a 31st bit of the sub-code is repeated 4 times.

8. The method of claim 3, wherein the second basis sequences are as in following table:

I	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	0	1

10 where i=0, ..., 19.

9. A channel quality information (CQI) coding method comprising:

(a) creating first basis sequences for generating sub-codes of 32 bits;

(b) puncturing each of the sub-codes in a predetermined bit pattern in order to maximize system throughput;

(c) repeating a predetermined bit of each sub-code for predetermined times in order to maximize system throughput; and

5 (d) encoding 5 information bits into CQI codes using a second basis sequences generated through (b) and (c).

10. The method of claim 9, wherein each sub-code is punctured as many as 16 bits in order of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits.

11. The method of claim 10, wherein a 31st bit of the sub-code is repeated 4 times.

15. 12. The method of claim 11, wherein the second basis sequences are as in following table:

I	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1
16	0	0	0	0	1

17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	0	1

where $i=0, \dots, 19$.

13. A channel quality information (CQI) coding method comprising:

inputting 5 information bits;

5 generating 32 bit sub-codes with the information bits using a basis sequences;

generating 20 bit codewords by puncturing 16 bits from each of the sub-codes in a predetermined bit pattern and repeating a predetermined bit of the sub-code in order to maximize system throughput.

10

14. The method of claim 13, wherein the punctured 16 bits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits of the sub-codes.

15. The method of claim 13, wherein the repeated bit is 31st and is repeated 4 times.

16. The method of claim 13, wherein the resultant basis sequences are

$$M_{i,0}=10101010101010100000, \quad M_{i,1}=01100110011001100000,$$

$$M_{i,2}=00011110000111100000, \quad M_{i,3}=0000000111111100000, \quad \text{and}$$

20 $M_{i,4}=11111111111111111111$, where $i=0, \dots, 19$.

17. A channel quality information (CQI) coding method comprising;

(a) creating first basis sequences for generating (32, 5) expurgated TFCI

code from (32, 10) TFCI code;

(b) puncturing each of the (32, 5) expurgated TFCI codes in a predetermined bit pattern in order to maximize system throughput;

5 (c) repeating a predetermined bit of each (32, 5) expurgated TFCI code for predetermined times in order to maximize system throughput; and

(d) encoding 5 information bits into CQI codes using a second basis sequences generated through (b) and (c).

18. The method of claim 17, wherein (32, 5) expurgated TFCI code is
10 punctured as many as 16 bits in order of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 30th bits.

15 19. The method of claim 17, wherein 31st bit of the (32, 5) expurgated TFCI is repeated 4 times.

20. The method of claim 17, wherein the first basis sequences for (32, 5) expurgated TFCI code are as in following table:

I	M _{i,0}	M _{i,1}	M _{i,2}	M _{i,3}	M _{i,4}
0	1	0	0	0	0
1	0	1	0	0	0
2	1	1	0	0	0
3	0	0	1	0	0
4	1	0	1	0	0
5	0	1	1	0	0
6	1	1	1	0	0
7	0	0	0	1	0
8	1	0	0	1	0
9	0	1	0	1	0
10	1	1	0	1	0
11	0	0	1	1	0
12	1	0	1	1	0

13	0	1	1	1	0
14	1	1	1	1	0
15	1	0	0	0	1
16	0	1	0	0	1
17	1	1	0	0	1
18	0	0	1	0	1
19	1	0	1	0	1
20	0	1	1	0	1
21	1	1	1	0	1
22	0	0	0	1	1
23	1	0	0	1	1
24	0	1	0	1	1
25	1	1	0	1	1
26	0	0	1	1	1
27	1	0	1	1	1
28	0	1	1	1	1
29	1	1	1	1	1
30	0	0	0	0	0
31	0	0	0	0	1

where $i=0, \dots, 19$.

21. The method of claim 19, wherein the second basis sequences are as in following table:

I	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1

18	0	0	0	0	1
19	0	0	0	0	1

where $i=0, \dots, 19$.

22. A channel quality information (CQI) coding method comprising

- (a) obtaining first basis sequences from (16, 5) TFCI code;
- 5 (b) extending basis sequences to second basis sequences for (20, 5) CQI code in a predetermined pattern in order to maximize system throughput; and
- (c) encoding 5 information bits into CQI codes using a second basis sequences generated through (a) and (b).

10 23. The method of claim 22, wherein the extended second extended basis sequences are as in following table:

I	$M_{i,0}$	$M_{i,1}$	$M_{i,2}$	$M_{i,3}$	$M_{i,4}$
0	1	0	0	0	1
1	0	1	0	0	1
2	1	1	0	0	1
3	0	0	1	0	1
4	1	0	1	0	1
5	0	1	1	0	1
6	1	1	1	0	1
7	0	0	0	1	1
8	1	0	0	1	1
9	0	1	0	1	1
10	1	1	0	1	1
11	0	0	1	1	1
12	1	0	1	1	1
13	0	1	1	1	1
14	1	1	1	1	1
15	0	0	0	0	1
16	0	0	0	0	1
17	0	0	0	0	1
18	0	0	0	0	1
19	0	0	0	0	1

24. A channel quality information (CQI) coding method comprising
(a) encoding 5 information bits into (16, 5) TFCI codes using (16, 5) TFCI basis sequences

(b) repeating the MSB of information bits 4 times in order to maximize
5 system throughput.

25. A channel quality information coding method substantially as herein described with reference to figures 7a to 9b of the accompanying drawings.

26. Apparatus adapted to carry out the steps of the method of any of claims 1 to 25.

Application No: GB 0303462.6
Claims searched: 1-26

Examiner: Matthew Nelson
Date of search: 19 May 2003

Patents Act 1977 : Search Report under Section 17

Documents considered to be relevant:

Category	Relevant to claims	Identity of document and passage or figure of particular relevance
A, P		EP 1289167 A1 (SAMSUNG) See paragraphs [0026]-[0031] & [0093]-[0102].
A, P		EP 1248485 A1 (SAMSUNG) See paragraphs [0047]-[0051].
A, P		Third Generation Partnership Project (3GPP) ETSI Technical Specification 25.222, version 5.3.0, Release 5, dated December 2002. Pages 40-43 and 63-64, in particular section 4.7.2.2 "Field Coding of CQI".
A, P		Third Generation Partnership Project (3GPP) Technical Specification 25.212, version 5.0.0, Release 5, dated March 2002. Pages 65-67, in particular section 4.7.1.2 "Channel coding for HS-DPCCH channel quality information".
A		Third Generation Partnership Project (3GPP) Technical Specification 25.212, version 2.3.0, dated October 1999. Pages 36-38, in particular sections 4.3.3 "Coding of Transport-format-combination indicator (TFCI)" and 4.3.4 "Operation of Transport-format-combination indicator (TFCI) in Split Mode".

Categories:

X	Document indicating lack of novelty or inventive step	A	Document indicating technological background and/or state of the art.
Y	Document indicating lack of inventive step if combined with one or more other documents of same category.	P	Document published on or after the declared priority date but before the filing date of this invention.
&	Member of the same patent family	E	Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC^V:

H4P

Worldwide search of patent documents classified in the following areas of the IPC⁷:

H03M; H04L; H04Q

The following online and other databases have been used in the preparation of this search report:

WPI, EPODOC, JAPIO, TXTE, INSPEC, INTERNET