DEVICE FOR RINISING OUT AND SPIN DRYING A WIPING BODY

Inventors: Hendrik Rust, Remshalden-Hebsack (DE); Yunus Demirtas, Kornwestheim (DE); Ronald Schwarz, Winnenden (DE)

Correspondence Address:
Lipsitz & McAllister, LLC
755 MAIN STREET
MONROE, CT 06468 (US)

Assignee: Alfred Kaercher GmbH & Co. KG, Winnenden (DE)

Appl. No.: 11/224,741
Filed: Sep. 9, 2005

Related U.S. Application Data
Continuation of application No. PCT/EP04/02320, filed on Mar. 6, 2004.

Foreign Application Priority Data
Mar. 12, 2003 (DE)....................... 103 11 812
Publication Classification
Int. Cl. A47L 13/58 (2006.01)

The invention relates to a device for rinsing out and spin drying a wiping body, which is mounted on a wiping head of a surface cleaning device, comprising a container which has a rinsing region and a spin dryer region, a wiping head mount being mounted rotatably in the spin dryer region, into which wiping head mount the wiping head can be inserted together with the wiping body and which wiping head mount can be driven rotationally by means of a drive device in order to remove moisture from the wiping body, the rinsing region accommodating a cleaning fluid, and it being possible for the wiping head together with the wiping body to be inserted into the rinsing region. In order to further develop the device in such a manner that it has a particularly compact configuration, it is proposed according to the invention that the container is configured in the manner of a bucket which surrounds the rinsing region and the spin dryer region, that the container forms below the spin dryer region a dividing wall which covers a drive compartment accommodating the drive device, and that the rinsing region extends laterally next to the spin dryer region and the drive compartment, the rinsing region forming an insertion section level with the spin dryer region and a liquid-accommodating region level with the drive compartment.
DEVICE FOR RINSING OUT AND SPIN DRYING A WIPING BODY

[0001] This application is a continuation of international application number PCT/EP2004/002320 filed on Mar. 6, 2004.

[0002] The present disclosure relates to the subject matter disclosed in international application number PCT/EP2004/002320 of Mar. 6, 2004 and German application number 103 11 812.8 of Mar. 12, 2005, which are incorporated herein by reference in their entirety and for all purposes.

BACKGROUND OF THE INVENTION

[0003] The invention relates to a device for rinsing out and spin drying a wiping body, which is mounted on a wiping head of a surface cleaning device, comprising a container which has a rinsing region and a spin dryer region, a wiping head mount being mounted rotatably in the spin dryer region, into which wiping head mount the wiping head can be inserted together with the wiping body and which wiping head mount can be driven rotationally about an axis of rotation by means of a drive device in order to remove moisture from the wiping body, and the rinsing region accommodating a cleaning liquid, and it being possible for the wiping head together with the wiping body to be inserted into the rinsing region.

[0004] In order to clean a dirty surface, in particular a floor surface, use is frequently made of a wiping body, for example a wiping mop, a wiping pad or a wiping cloth mounted on a wiping head forming a wiping surface. To clean the surface, the wiping head is moved together with the wiping body along the surface to be cleaned, so that dirt can be picked up. The wiping body, which is mounted on the wiping head, can then be rinsed and wrung out.

[0005] To wring it out, it is proposed, in WO 92/14394 A, to place the wiping head onto a wiping head mount that is subsequently caused to rotate, so that liquid is spun out of the wiping body because of the centrifugal forces in effect. A procedure of this type has the advantage that the user does not have to come into contact with the cleaning liquid. In the device described in WO 92/14394 A, the wiping head mount is disposed in a first container which can be positioned above a collecting container in which the liquid emerging from the wiping body can be collected. In addition, use is made of a further container in which the wiping head, which is mounted on the wiping body, can be rinsed out.

[0006] U.S. Pat. No. 4,506,403 describes a device of the type mentioned at the beginning, in which a two-part container is used, a first container part surrounding a rinsing region, which accommodates a cleaning liquid for rinsing out the wiping body, and a second container part being able to be placed onto the first container part and surrounding the spin dryer region into which the wiping head together with the wiping body mounted thereon can be inserted.

[0007] It is an object of the present invention to further develop a device of the type mentioned at the beginning in such a manner that it has a more compact form.

SUMMARY OF THE INVENTION

[0008] This object is achieved according to the invention in the case of a device of the generic type by the fact that the container is configured in the manner of a bucket which surrounds the rinsing region and the spin dryer region, that the container forms below the spin dryer region a dividing wall which covers a drive compartment accommodating the drive device, and that the rinsing region extends laterally next to the spin dryer region and the drive compartment, the rinsing region forming an insertion section level with the spin dryer region and a liquid-accommodating region level with the drive compartment.

[0009] The configuration of the container that is used according to the invention in the manner of a bucket permits simple handling of the device, with the latter being distinguished by a compact form. The rinsing region here has a relatively large volume, since it extends both along the spin dryer region and along the drive compartment and can therefore accommodate a considerable quantity of cleaning liquid, so that the wiping body can be thoroughly rinsed out in the rinsing region.

[0010] In an embodiment which can be produced particularly cost-effectively, the container has a basic body which is of unitary configuration, surrounds the spin dryer region and the rinsing region and has a recessed formation which can be covered by a covering, the covering and the recessed formation surrounding the drive compartment. The basic body can be formed, for example, as a molded plastic part and can therefore be produced cost-effectively. In a configuration of this type, the device according to the invention can also be assembled very cost-effectively, since the covering permits easy access to the drive compartment, so that the drive device can be secured therein in a simple manner in the region of the recessed formation on the basic body. The covering can then be placed on, so that the drive compartment is completely encased by the region of the recessed formation of the basic body and the covering.

[0011] It is particularly advantageous if the covering can be connected releasably to the basic body, since the drive compartment is thereby accessible at all times - for example for repair purposes. The covering can preferably be connected releasably to the basic body by means of a screw connection.

[0012] It is advantageous if the covering forms a base plate of the container.

[0013] A particularly compact configuration of the device can be obtained by the liquid-accommodating region extending further down than the spin dryer region. As a result, the rinsing region can be provided with a large volume which can be filled with cleaning liquid. This makes it possible additionally to improve the cleaning of the rinsing body within the rinsing region.

[0014] It is provided, in the case of one preferred embodiment, that the container has laterally next to the drive compartment a bottom wall which is oriented obliquely with respect to the axis of rotation of the wiping head mount and covers a free space disposed below the bottom wall. Operating elements of the device according to the invention can be positioned within the free space.

[0015] In order to obtain a particularly thorough cleaning of the wiping body within the rinsing region, it is provided, in the case of one advantageous embodiment, that the obliquely oriented bottom wall bounds the liquid-accommodating region and forms a rinsing plate against which the
wiping body, which is mounted on the wiping head, can be placed in a planar manner and along which the wiping body can be moved. The rinsing plate is therefore disposed within the liquid-accommodating region, and the wiping body, which is mounted on the wiping head, can be moved along the rinsing plate while bearing in a planar manner against it. The rinsing plate therefore forms a type of washboard and permits a particularly thorough cleaning of the wiping body. The rinsing plate is oriented obliquely with respect to the axis of rotation of the wiping head mount and therefore obliquely with respect to the vertical in the position of use of the device according to the invention. This permits particularly simple handling of the device according to the invention when rinsing out the wiping body, since the latter can be moved along the obliquely oriented rinsing plate from top to bottom, for example.

A particularly effective cleaning of the wiping body can be obtained by the rinsing plate carrying friction elements on its upper side. These friction elements can be configured, for example, in the form of projections, grooves or furrows. Provision may also be made for the rinsing plate to have a configuration in the form of a grid and therefore to form a friction grid onto which the wiping body mounted on the wiping body can be placed and along which it can be moved.

The wiping head mount may be caused manually to rotate. For this purpose, the drive unit can have mechanical drive elements with a hand crank or a foot pedal actuable by the user. In addition, mechanical deflecting elements can be used in order to convert a translational movement of the foot pedal into a rotational movement of the wiping head mount.

As an alternative, the drive device may have an electric motor. It is advantageous in this case if the drive device is associated with a control element which can be actuated by the user. In order to obtain a particularly compact configuration and the capability of handling the device in as simple a manner as possible, it has proven advantageous here if the control element is disposed in the region of the free space under the obliquely oriented bottom wall or in the drive compartment under the spin dryer region.

It is advantageous if the control element comprises a foot switch. All that is then required in order to spin dry the wiping body mounted on the wiping head is for the user to insert the wiping head together with the wiping body into the wiping head mount and subsequently to actuate the foot switch, so that the drive device is set into operation and the wiping head mount together with the wiping head and the wiping body mounted thereon is therefore caused to rotate.

In one preferred embodiment, the wiping head mount can be placed onto a drive shaft. This permits a particularly simple assembly of the wiping head mount. The wiping head mount can preferably be connected positively to the drive shaft. It is advantageous if the wiping head mount is mounted in an exchangeable manner in the spin dryer region of the container.

The drive shaft may be disposed within the spin dryer region and may be coupled via coupling elements, for example via a magnetic coupling, to the drive unit disposed within the drive compartment.

As an alternative, it may be provided that the drive shaft reaches through the dividing wall of the container, the dividing wall covering the drive compartment. It is preferably coupled within the drive compartment to a drive motor via mechanical coupling elements, for example via a belt drive.

As already mentioned, the rinsing region of the container accommodates a cleaning liquid. If, after the device has been used, the said cleaning liquid is to be removed from the container, it is advantageous if the container can be tilted in a simple manner. For this purpose, in one preferred embodiment of the device according to the invention, provision is made for the container to have at least one handle which can be molded onto or into a container wall.

The at least one handle may be configured, for example, as a recessed grip which is molded into a container wall.

It has proven advantageous if the at least one handle is disposed on the exterior of the container adjacent to the spin dryer region.

There are preferably at least two handles which are molded onto the container wall or into it on side regions of the container that face away from each other.

In order to obtain as effective cleaning of the wiping body as possible with little expenditure of energy, it is proven advantageous if the wiping body is mounted on the wiping head so as to form a wiping surface, and if the wiping head mount has a receptacle into which the wiping head can be inserted with the surface normal of the wiping surface oriented obliquely or perpendicularly with respect to the axis of rotation of the wiping head mount. In the case of a configuration of this type, the wiping body is oriented during the spin drying in such a manner that the surface normal of the wiping surface does not take up a position parallel to the axis of rotation of the wiping head mount, but rather the surface normal is at an angle with respect to the axis of rotation. It has been demonstrated that such an orientation of the wiping surface enables droplets of liquid to be particularly effectively spun out. This makes it possible for the device to be particularly highly efficient, enabling moisture to be effectively removed from the wiping body within a short spin drying time even at relatively low rotational speeds and accordingly with a relatively low consumption of power.

It has proven particularly advantageous if the receptacle receives the wiping head with the surface normal of the wiping surface oriented perpendicularly with respect to the axis of rotation. This permits a particularly compact configuration of the device. In addition, in a construction of this type, moisture can advantageously be removed from plate-like wiping bodies which form a wiping surface both on their upper side and on their lower side and consequently can be used on both sides. Wiping bodies of this type are usually mounted on a wiping head to which a shank or hand-grip is laterally hinged. The wiping head with the wiping body mounted thereon can be pivoted relative to the shank or hand-grip in such a manner that either the upper side or the lower side of the wiping body faces the surface to be cleaned. This pivotal mounting of the wiping head on the shank or hand-grip simplifies the insertion of the wiping head with the wiping body mounted on it into the receptacle of the wiping head mount in such a manner that
the surface normal of the wiping surface is oriented perpendicularly with respect to the axis of rotation of the wiping head mount.

[0029] The receptacle of the wiping head mount is preferably bounded by two side walls which are disposed at a distance from each other, receive the wiping head with the wiping body between them and in each case have at least one passage opening through which liquid which has been spun out can escape from the receptacle.

[0030] It is advantageous if the side walls of the receptacle are configured in the form of a mesh or grid. The receptacle is therefore formed in the manner of a cage into which the wiping head with the wiping body held on it can be inserted in a simple manner vertically from above in the position of use of the device.

[0031] The wiping head mount is preferably associated with a lid which is disposed level with an upper edge of the container and covers the spin dryer region with the exception of the receptacle of the wiping head mount. This not only reduces the risk that a user will inadvertently reach into the container during the rotation of the wiping head mount, but can also prevent liquid which has been spun out from escaping from the container.

[0032] It has proven advantageous if the lid is connected integrally to the side walls of the receptacle of the wiping head mount. The lid is thereby caused to rotate together with the side walls of the receptacle during the spin drying of the wiping body.

[0033] A particularly simple assembly of the device according to the invention can be obtained by the wiping head mount being of unitary configuration. It can therefore be provided, for example, that the wiping head mount forms a molded plastics part which can be inserted removable into the spin dryer region of the container.

[0034] As already explained, it is advantageous if the drive device can be set into operation by means of a foot switch. It has proven particularly advantageous here if the foot switch is electrically connected to a timing element with the aid of which the spin drying time of the wiping body can be detected. This provides the possibility, after a specific spin drying time has expired, of activating an indicating element, for example a light emitting diode, so that it is indicated to the user that a specific spin drying time has elapsed and therefore that a specific degree of drying has been achieved. It is of particular advantage if the timing element is associated with a plurality of indicating elements, for example a plurality of light emitting diodes and/or an acoustic indicating element, for example a buzzer, so that the reaching of different degrees of drying can be indicated.

[0035] It may be provided that the drive device can be switched on automatically by means of the timing element after a specific spin drying time has elapsed.

[0036] It is advantageous if a desired spin drying time can be set by the user by means of a setting element which, in a preferred embodiment, is disposed in a lateral wall region of the container.

[0037] The at least one indicating element and/or the setting element are preferably disposed next to the foot switch.

[0038] The description below of a preferred embodiment of the invention is used to provide a more detailed explanation in conjunction with the drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] FIG. 1 shows a diagrammatic illustration of a floor wiping device with a wiping body mounted on a wiping head;

[0040] FIG. 2 shows a diagrammatic illustration of a device according to the invention for rinsing out and spin drying the wiping body, which is mounted on the wiping head of the floor wiping device, obliquely from above;

[0041] FIG. 3 shows a sectional view on the line 3-3 in FIG. 4;

[0042] FIG. 4 shows a simplified plan view of the device shown in FIG. 2;

[0043] FIG. 5 shows a sectional view on the line 5-5 in FIG. 3, and

[0044] FIG. 6 shows a diagrammatic illustration of the device according to the invention obliquely from below.

DETAILED DESCRIPTION OF THE DRAWINGS

[0045] FIG. 1 illustrates, in a diagrammatic illustration, a surface cleaning device in the form of a floor wiping device 10, which is known per se, with a shank 11 which is connected via a pivot 12 (illustrated in simplified form) to a wiping head 13 on the lower side of which, which faces away from the shank 11, a wiping body 14 of sheet-like configuration is fixed. The latter may be, for example, a wiping cloth which can be separated from the wiping head 13. The lower side of the wiping body 14, which faces away from the wiping head 13, forms a wiping surface 15 which, in order to pick up dirt, can be moved along a floor surface which is to be cleaned and the orientation of which is predetermined by a surface normal 16 oriented perpendicularly with respect to the wiping surface 15.

[0046] Floor surfaces can be cleaned in a customary manner by means of the floor wiping device 10. For this purpose, the wiping body 14 is moistened and is subsequently moved along the floor surface to be cleaned, so that, for example, dirt can be picked up from the floor surface. The wiping body 14 is then rinsed out and wrung out, so that it only has a small degree of moisture left.

[0047] In order to rinse out and remove moisture from the wiping body 14, the invention uses the device which is illustrated in FIGS. 2 to 6 and is covered by the reference numeral 20 to rinse out and spin dry liquid from the wiping body 14. The device comprises a container in the form of a bucket 22 which has a flat transverse wall 23 which is connected integrally to longitudinal walls 24 and 25, which are oriented at a right angle to the transverse wall 23 and are disposed parallel to each other. The said longitudinal walls are connected integrally to each other on their side facing away from the transverse wall 23 via a curved wall 26, which is of semi-cylindrical configuration. On the upper side, the said walls 23 to 26 define an upper edge 27 of the bucket 22, the upper edge encircling in one plane.

[0048] A partition 29 which is curved in the shape of an arc of a circle is inserted into the bucket 22 and uses
retaining elements in the form of lateral airfoils 30, 31 to engage approximately centrally over the upper edge 27 in the region of the longitudinal walls 24 and 25. The partition 29 divides the interior of the bucket 22 into a spin dryer region 33 and a rinsing region 34.

[0049] A carrying strap 36 on which a carrying handle 37 is centrally mounted is hinged, in each case centrally, to the upper edge 27 in the region of the transverse wall 23 and the curved wall 26. The carrying strap 36 spans the rinsing region 34 and the spin dryer region 33 in the longitudinal direction of the bucket 22 and can be pivoted between a position resting on the upper edge 27 and a pivoted-out position (illustrated by a dashed line in FIG. 5).

[0050] At a clear distance from the partition 29, the transverse wall 23 and the longitudinal walls 24 and 25 are connected integrally to one another via a bottom wall 39 of the bucket 22, which bottom wall is inclined obliquely with respect to the vertical in the direction of the spin dryer region 34. The bottom wall 39 forms a rinsing or friction plate which will be discussed in more detail below. In this case, the transverse wall 23 protrudes downwards beyond the bottom wall 39 in the same manner as the two longitudinal walls 24 and 25. In this protruding region, they define a free space 40 which is freely accessible from below. Below the bottom wall 39, the transverse wall 23 has a rectangular recessed formation 42 which enters the free space 40 and in which a control element in the form of a foot switch 43 that is actuable by the user is disposed.

[0051] A stepped wall 45 which is oriented substantially parallel to the transverse wall 23 is molded on that end of the bottom wall 39 which faces away from the transverse wall 23, the stepped wall extending approximately over half of the height of the bucket 22 and being integrally adjacent by a dividing wall 46 which is oriented substantially horizontally and via which the stepped wall 45 is connected to the curved wall 26. Two recessed grips 48, 49 which are accessible to the user are molded into the dividing wall 46 adjacent to the longitudinal walls 24 and 25.

[0052] The transverse wall 23 in combination with the two longitudinal walls 24, 25 and the curved wall 26 and also the bottom wall 39, the stepped wall 45 and the dividing wall 46 forms a basic body 50 which is of unitary configuration, is configured as a molded plastics part and, by means of the dividing wall 46 and the stepped wall 45, forms a recessed formation which is covered by a covering 52, which is of unitary configuration, can be connected releasably to the basic body 50 by means of connecting screws 53 and has a base plate 54 of substantially triangular configuration and a side wall 55 protruding upward vertically from the base plate 54 in the region of the curved wall 26. The side wall 55 here opens up lateral access in each case to the recessed grips 48 and 49 to a user.

[0053] A drive compartment 57 of the bucket 22 is defined below the rinsing region 34 by the covering 52 and the stepped wall 45 and the dividing wall 46.

[0054] On its upper side 59 facing the container interior, the bottom wall 39 carries a multiplicity of projections 60 which are of V-shaped configuration and are connected integrally to the bottom wall 39.

[0055] The rinsing region 34 forms an insertion section 62 level with the partition 29, and a liquid-accommodating region 63 which accommodates a cleaning liquid 64 is configured below the insertion section 62, in the region between the obliquely oriented bottom wall 39 and the vertically oriented stepped wall 45. This is clear in particular in FIG. 3.

[0056] The drive compartment 57 accommodates an electric motor 66 which is coupled via a pinion and a toothed belt 67 to a pulley 66 mounted in a rotationally fixed manner on the drive shaft 79. The said drive shaft is mounted via ball bearings on a bearing holder 78 fixed in the drive compartment 57 and reaches with its upper end region 73, which faces away from the pulley 68, through the dividing wall 46 and therefore enters the rinsing region 33 of the bucket 22.

[0057] The drive compartment 57 accommodates a rechargeable battery 72 in addition to the power supply for the electric motor 66.

[0058] The electric motor 66 is connected electrically via electric connecting lines (not illustrated in the drawing) which are known per se to a control unit, which is known to the expert and is therefore not illustrated in the drawing so as to obtain better clarity and is disposed within the drive compartment 57 or alternatively within the free space 40 and, for its part, is connected to the foot switch 43, and also to two optical indicating elements in the form of two light emitting diodes 75, 76, disposed on the transverse wall 23 next to the foot switch 43, and to an acoustic indicating element in the form of a buzzer 77 disposed on the transverse wall 23 below the light emitting diodes 75, 76. In addition, the control unit is electrically connected to an electric setting element, which is mounted on the transverse wall 23 above the light emitting diode 56 and is in the form of a selector switch 78.

[0059] The spin dryer region 23 exchangeably accommodates a wiping head mount 80, which is of integral configuration in the form of a molded plastics part and has two side walls 83, 84 which are oriented parallel to each other and define a receptacle 82 between them and are configured in the manner of a cage with a multiplicity of passage openings 85. The side walls 83, 84 are connected integrally to each other via a substantially U-shaped supporting clip 86 which has a horizontally oriented cross-piece 87, which is reinforced in its central region, and is seated on the upper end region 73 of the drive shaft 70 via a positive connection.

[0060] The wiping head mount 80 also comprises a lid 91 comprising two lid halves 89 and 90. The two lid halves 89 and 90 are connected here integrally to a respective side wall 83 and 84 of the wiping head mount 80. The spin dryer region 33 of the bucket 22, with the exception of the receptacle 82 of the wiping head mount 80, is completely covered by means of the lid 91.

[0061] By means of the electric motor 66 via the drive shaft 70, the wiping head mount 80 can be caused to rotate about the longitudinal axis of the drive shaft 70, i.e. the longitudinal axis of the drive shaft 70 defines an axis of rotation 93 of the wiping head mount 80, which axis of rotation is oriented vertically in the position of use of the device 20.

[0062] For rinsing out purposes, the wiping head 13 with the wiping body 14 mounted thereon can be inserted through the insertion section 62 and dipped into the cleaning liquid 64 of the liquid-accommodating region 63. For this purpose,
the wiping head 13 is pivoted with the aid of the pivot 12, starting from the operating position illustrated in FIG. 1, about a pivot axis oriented transversely with respect to the longitudinal axis of the shank 11 to an extent such that the surface normal 16 of the wiping surface 15 is oriented substantially perpendicularly with respect to the axis of rotation 93 of the wiping head mount 80. In this pivoted position, the wiping head 13 can be inserted via the insertion section 62 into the rinsing region 34 until the front end edge of the wiping head 13, which end edge faces away from the shank 11, strikes against the upper side 59 of the bottom wall 39. The wiping body 14 mounted on the wiping head 13 can subsequently be placed, by renewed pivoting of the wiping head 13, in a planar manner onto the upper side 59 of the bottom wall 39 and can then be moved along the upper side 59 in the direction of the stepped wall 45. A reliable cleaning of the wiping body 14 surrounded by the cleaning liquid 64 is obtained here by means of the projections 60 protruding from the upper side 59. The bottom wall 39 with projections 60 molded onto it therefore forms a rinsing or friction plate which can be used to thoroughly rinse out the wiping body 14.

0063] After cleaning has taken place, the wiping head 13 with the wiping body 14 mounted on it can be removed again via the insertion section 62 from the rinsing region 34 and can then be inserted into the receptacle 82 of the wiping head mount 80. The user can then set the electric motor 66 into operation by actuation of the foot switch 43, so that the entire wiping head mount 80 together with the wiping body 14 is caused to rotate via the drive shaft 70. The rotational movement causes the liquid held by the wiping body 14 to experience a centrifugal force, so that liquid is spun out of the wiping body 14 in the radial direction and strikes against the interior of the curved wall 26 and against that side of the partition 29 which faces the spin dryer region 23. The liquid which has been spun out subsequently flows downward along the said walls and collects again in the liquid-accommodating region 63.

0064] By means of the light emitting diodes 75 and 76 and the buzzer 77, the user obtains feedback about the arising degree of drying of the wiping body 14 inserted into the receptacle 82. For this purpose, the control unit includes a timing element, which is known per se and is therefore not illustrated in the drawing, which measures the spin drying time, which is determined by the actuation of the foot switch 43, of the wiping head mount 80. The duration of the spin drying process, which takes place at a fixedly predetermined speed of rotation, corresponds in each case to a certain degree of drying of the wiping body. When a first degree of drying is reached, firstly of all the light emitting diode 75 illuminates, and, as the rotational movement continues, the light emitting diode 76 illuminates when an advanced degree of drying is reached, and the buzzer 77 sounds. The respectively desired degree of drying can be set in an infinitely variable manner by the user by means of the selector switch 78. The user can subsequently release the foot switch 43 again, so that the rotational movement of the wiping head mount 80 is ended and the wiping head 13 together with the wiping body 14 can consequently be removed from the wiping head mount 80. To pick up dirt, the wiping head together with the wiping body 14 can then be moved along the floor surface to be cleaned, in order then to be cleaned again in the rinsing region 34 of the device 20.

0065] From the above it is clear that the device 20 has a compact form, with the rinsing region 34 extending further down the spin dryer region 33 and the drive compartment 75 being disposed below the spin dryer region 33. The bottom wall 39 forms a rinsing or friction plate for the thorough cleaning of the wiping body 14, which can be placed in a planar manner onto the rinsing plate and can be moved along the latter, with the cleaning action being reinforced by the protruding projections 60. The use of the indicating elements in the form of the light emitting diodes 75 and 76 and the buzzer 77 considerably simplifies the handling of the device 20 according to the invention, since the user obtains feedback about the arising degree of drying, which he can predetermine by means of the selector switch 76. In addition, the energy consumption of the device 20 can be significantly reduced as a result, since the spin drying process can be ended immediately after a specific degree of drying is reached.

1. Device for rinsing out and spin drying a wiping body, which is mounted on a wiping head of a surface cleaning device, comprising a container which has a rinsing region and a spin dryer region, a wiping head mount being mounted rotatably in the spin dryer region, into which wiping head mount the wiping head can be inserted together with the wiping body and which wiping head mount can be driven rotationally about an axis of rotation by means of a drive device in order to remove moisture from the wiping body, and the rinsing region accommodating a cleaning liquid, and it being possible for the wiping head together with the wiping body to be inserted into the rinsing region, wherein the container is configured in the manner of a bucket which surrounds the rinsing region and the spin dryer region and wherein the container forms below the spin dryer region a dividing wall which covers a drive compartment accommodating the drive device, and wherein the rinsing region extends laterally next to the spin dryer region and the drive compartment, the rinsing region forming an insertion section level with the spin dryer region and a liquid-accommodating region level with the drive compartment.

2. Device according to claim 1, wherein the container has a basic body which is of unitary configuration, surrounds the spin dryer region and the rinsing region and has a recessed formation which can be covered by a covering, the covering and the recessed formation surrounding the drive compartment.

3. Device according to claim 2, wherein the covering can be connected releasably to the basic body.

4. Device according to claim 1, wherein the liquid-accommodating region extends further down than the spin dryer region.

5. Device according to claim 1, wherein the container has laterally next to the drive compartment a bottom wall which is oriented obliquely with respect to the axis of rotation of the wiping head mount and covers a free space disposed below the bottom wall.

6. Device according to claim 5, wherein the bottom wall bounds the liquid-accommodating region and forms a rinsing plate against which the wiping body can be placed in a planar manner and along which the wiping body can be moved.
7. Device according to claim 6, wherein the rinsing plate carries friction elements on its upper side.
8. Device according to claim 6, wherein the drive device is associated with a control element which can be actuated by the user and is disposed in the region of the free space or in the drive compartment.
9. Device according to claim 8, wherein the control element has a foot switch.
10. Device according to claim 1, wherein the wiping head mount can be placed onto a drive shaft.
11. Device according to claim 10, wherein drive shaft reaches through the dividing wall of the container.
12. Device according to claim 1, wherein the container has at least one handle which is molded onto or into a container wall.
13. Device according to claim 12, wherein the at least one handle is configured as a recessed grip which is molded into a container wall.
14. Device according to claim 12, wherein the at least one handle is disposed on the exterior of the container adjacent to the spin dryer region.
15. Device according to claim 1, wherein the wiping body is mounted on the wiping head so as to form a wiping surface, and wherein the wiping head mount has a receptacle into which the wiping head can be inserted with the surface normal of the wiping surface oriented obliquely or perpendicularly with respect to the axis of rotation of the wiping head mount.
16. Device according to claim 15, wherein the receptacle receives the wiping head with the surface normal of the wiping surface oriented perpendicularly with respect to the axis of rotation of the wiping head mount.
17. Device according to claim 15, wherein the receptacle is bounded by two side walls which are disposed at a distance from each other, receive the wiping head between them and in each case have at least one passage opening.
18. Device according to claim 17, wherein the side walls are configured in the form of a mesh or grid.
19. Device according to claim 15, wherein the wiping head mount is associated with a lid which is disposed level with an upper edge of the container and covers the spin dryer region with the exception of the receptacle of the wiping head mount.
20. Device according to claim 19, wherein the lid is connected integrally to the side walls of the receptacle.
21. Device according to claim 1, wherein the wiping head mount is of unitary configuration.

* * * * *