WO 03/019365 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

6 March 2003 (06.03.2003)

(10) International Publication Number

WO 03/019365 A2

PCT

(51) International Patent Classification”:
(21) International Application Number:

(22) International Filing Date: 22 August 2002 (22.08.2002)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

09/939,315

(71) Applicant:

(Us).

(72) Inventor: SOKOLOY, Stepan; 34832 Dorado Common,

Fremont, CA 94555 (US).

(74) Agent:

GO6F 9/44 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

PCT/US02/27030

24 August 2001 (24.08.2001)

SUN MICROSYSTEMS, INC. [US/US];
4120 Network Circle, SCA12-203, Santa Clara, CA 95054

OLYNICK, Mary, R.; BEYER WEAVER &
THOMAS, LLP, P.O. Box 778, Berkeley, CA 94704 (US).

English

English

Us

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: JAVA BYTECODE INSTRUCTION FOR RETRIEVING STRING REPRESENTATIONS OF JAVA OBJECTS

302

A

304

Push a reference to Java object on the
java execution stack

execute an inventive Java Bytecode
instruction designated to retrieve a
string representation of the Java object

X

Determine the string representation of

~ the Java object using the reference on

306

308

the execution stack

[—

Pop the reference from the execution
stack

Push a reference to the string

310™™ representation of the Java object on the

execution stack

End

-

300

(57) Abstract: Improved techniques for representing Java objects as
strings are disclosed. An inventive Java Bytecode instruction suitable
for execution by a Java virtual machine is disclosed. The inventive
Java Bytecode instruction can be executed by a Java virtual machine
to represent Java objects as strings. Moreover, Java objects can be
represented as strings without invoking the Java "to string" method
which is conventionally used. This means that the costly overhead as-
sociated with repeatedly invoking Java method "to string" is avoided.
In other words, operations that are conventionally performed each
time the Java "to string” method is invoked need not be performed.
As aresult, the performance of virtual machines, especially those op-
erating with limited resources (e.g., embedded systems) can be im-
proved.

w0 03/019365 A2 NI 00 0 0

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 03/019365 PCT/US02/27030

PATENT APPLICATION

JAVA BYTECODE INSTRUCTION FOR RETRIEVING STRING
REPRESENTATIONS OF JAVA OBJECTS

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to Java programming
environments, and more particularly, to techniques suitable for retrieving string
representations of Java objects.

[0002] One of the goals of high level languages is to provide a portable
programming environment such that the computer programs may easily be ported
to another computer platform. High level languages such as “C” provide a level of
abstraction from the undg:rlying computer architecture and their success is well
evidenced from the fact that most computer applications are now written in a high
level language.

[0003] Portability has been taken to new heights with the advent of the World
Wide Web (“the Web”) which is an interface protocol for the Internet which allows
communication between diverse computer platforms through a graphical interface.
Computers communicating over the Web are able to download and execute small
applications called applets. Given that applets may be executed on a diverse
assortment of computer platforms, the applets are typically executed by a Java
virtual machine.

[0004] Recently, the Java programming environment has become quite
popular. The Java programming language is a language that is designed to be
portable enough to be executed on a wide range of computers ranging from small
devices (e.g., pagers, cell phones and smart cards) up to supercomputers. Computer
programs written in the Java programming language (and other languages) may be
compiled into Java Bytecode instructions that are suitable for execution by a Java
virtual machine implementation. The Java virtual machine is commonly
implemented in software by means of an interpreter for the Java virtual machine

instruction set but, in general, may be software, hardware, or both. A particular

10

15

20

25

30

WO 03/019365 PCT/US02/27030

2

Java virtual machine implementation and corresponding support libraries together
constitute a Java runtime environment.

[0005] Computer programs in the Java programming language are arranged in
one or more classes or interfaces (referred to herein jointly as classes or class files).
Such programs are generally platform, i.e., hardware and operating system,
independent. As such, these computer programs may be executed without
modification on any computer that is able to run an implementation of the Java
runtime environment.

[0006] Object-oriented classes written in the Java programming language are
compiled to a particular binary format called the “class file format.” The class file
includes various components associated with a single class. These components can
be, for example, methods and/or interfaces associated with the class. In addition,
the class file format can include a significant amount of ancillary information that is
associated with the class. The class file format (as well as the general operation of

the Java virtual machine) is described in some detail in The Java Virtual Machine

Specification, Second Edition, by Tim Lindholm and Frank Yellin, which is hereby

incorporated herein by reference.

[0007] Fig. 1A shows a progression of a simple piece of a Java source code
101 through execution by an interpreter, the Java virtual machine. The Java source
code 101 includes the classic Hello World program written in Java. The source
code is then input into a Bytecode compiler 103 that compiles the source code into
Bytecodes. The Bytecodes are virtual machine instructions as they will be executed
by a software emulated computer. Typically, virtual machine instructions are
generic (i.e., not designed for any specific microprocessor or computer architecture)
but this is not required. The Bytecode compiler outputs a Java class file 105 that
includes the Bytecodes for the Java program. The Java class file is input into a Java
virtual machine 107. The Java virtual machine is an interpreter that decodes and
executes the Bytecodes in the Java class file. The Java virtual machine is an
interpreter, but is commonly referred to as a virtual machine as it emulates a
microprocessor or computer architecture in software (e.g., the microprocessor or
computer architecture may not exist in hardware).

[0008] Fig. 1B illustrates a simplified class file 100. As shown in Fig. 1B, the
class file 100 includes a constant pool 102 portion, interfaces portion 104, fields

portion 106, methods portion 108, and attributes portion 110. The methods portion

10

15

20

WO 03/019365 PCT/US02/27030

3

108 can include or have references to several Java methods associated with the Java
class which is represented in the class file 100.
[0009] As is known in the art, often there is a need to represent a Java object
as a string of characters. For example, in order to print an integer object, (or an
integer field of an object) there is a need to represent the integer as a string of
characters. Conventionally, a Java method, “Java.lang.object.to_string()” is
invoked by the virtual machine to represent objects (or fields associated with
objects) as a string of characters. One problem with this approach is that there is an
overhead associated with the invocation of a Java method. In other words,
invocation of a Java method requires several operations to be performed. These
operations include: locating the appropriate method to be invoked, creating a frame
to be placed on the execution stack and restoring the previous frame on the stack.
[0010] Moreover, the cost associated with representing Java objects as strings
is quite high because, during execution of a typical Java program, the to_string Java
method has to be invoked time and time again. In other words, the operations
needed to invoke a method have to be performed several times during the execution
of a Java program. This, of course, can result in a grossly inefficient use of system
resources. In some circumstances, particularly in systems with limited computing
power and/or memory, this inefficient use of resources is a serious disadvantage.
[0011] In view of the foregoing, improved techniques for retrieving string

representations of Java objects are needed.

10

15

20

25

30

WO 03/019365 PCT/US02/27030

4

SUMMARY OF THE INVENTION

[0012] Broadly speaking, the invention relates to improved techniques for
representing Java objects as strings. In accordance with one aspect of the
invention, an inventive Java Bytecode instruction suitable for execution by a Java
virtual machine is disclosed. As such, the inventive Java Bytecode instruction can
be executed by a Java virtual machine to represent Java objects as strings.
Moreover, the Java objects can be represented as strings without invoking the Java
“to_string” method which is conventionally used. This means that the costly
overhead associated with repeatedly invoking Java method “to_string” is avoided.
In other words, operations that are conventionally performed each time the Java
“to_string” method is invoked need not be performed. As a result, the performance
of virtual machines, especially those operating with limited resources (e.g.,
embedded systems) can be improved. ‘

[0013] The invention can be implemented in numerous ways, including as a
method, an apparatus, a computer readable medium, and a database system.
Several embodiments of the invention are discussed below.

[0014] As a Java Bytecode instruction suitable for execution by a Java virtual
machine in the Java computing environment, one embodiment of the invention
operates to retrieve a string representation associated with the Java object, thereby
allowing the string representation to be determined without invoking a Java method.
[0015] As a Java virtual machine operating in a Java computing environment,
one embodiment of the invention includes a Java virtual machine capable of
determining a string representation associated with a Java object. The virtual
machine determines the string representation of the Java object without invoking a
Java “to_string” method.

[0016] As a method for retrieving a string representation for a Java object,
one embodiment of the invention includes the acts of: receives an inventive Java
Bytecode instruction in a stream of Java Bytecodes suitable for execution by a
virtual machine operating in the Java computing environment. The Java Bytecode
instruction operates to determine the string representation associated with the Java
object; thereby allowing the string representation to be determined without invoking

a Java method.

10

15

20

25

WO 03/019365 PCT/US02/27030

5

[0017] As a computer readable media including computer program code for
retrieving a string representation for a Java object, one embodiment of the invention
includes computer program code for receiving an inventive Java Bytecode
instruction in a stream of Java Bytecodes suitable for execution by a virtual
machine operating in the Java computing environment. The inventive Java
Bytecode instruction operates to determine the string representation associated with
the Java object, thereby allowing the string representation to be determined without

invoking a Java method.

[0018] These and other aspects and advantages of the present invention will
become more apparent when the detailed description below is read in conjunction

with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] The present invention will be readily understood by the following
detailed description in conjunction with the accompanying drawings, wherein like

reference numerals designate like structural elements, and in which:

Fig. 1A shows a progression of a simple piece of a Java source code through

execution by an interpreter, the Java virtual machine.
Fig. 1B illustrates a simplified class file.

Figs. 2A-2B illustrate a Java computing environment in accordance with

one embodiment of the invention.

Fig. 3 illustrates a method for representing Java objects as string in

accordance with one embodiment of the invention.

10

15

20

25

30

WO 03/019365 PCT/US02/27030

DETAILED DESCRIPTION OF THE INVENTION

[0020] The present invention pertains to improved techniques for representing
Java objects as strings. In accordance with one aspect of the invention, an inventive
Java Bytecode instruction suitable for execution by a Java virtual machine is
disclosed. As such, the inventive Java Bytecode instruction can be executed by a
Java virtual machine to represent Java objects as strings. Moreover, the Java
objects can be represented as strings without invoking the Java “to_string” method
which is conventionally used. This means that the costly overhead associated with
repeatedly invoking Java method “to_string” is avoided. In other words, operations
that are conventionally performed each time the Java “to_string” method is invoked
need not be performed. As a result, the performance of virtual machines, especially

those operating with limited resources (e.g., embedded systems) can be improved.

[0021] Embodiments of the invention are discussed below with reference to
Figs. 2A-3. However, those skilled in the art will readily appreciate that the
detailed description given herein with respect to these figures is for explanatory

purposes only as the invention extends beyond these limited embodiments.

- [0022] Figs. 2A-B illustrate a Java computing environment 200 including a

virtual machine 202 in accordance with one embodiment of the invention. The
virtual machine 202 can read a stream of Java Bytecodes 204 as input. The stream
of Java Bytecodes 204 includes a Java “Aload” Bytecode instruction 206 and an
inventive Java “to_string” Bytecode 208. The “Aload” Bytecode instruction 206
can be implemented as a Java Bytecode instruction which operates to push a

reference A to a Java object 210 on an execution stack 212.

[0023] The inventive Java “to_string” Bytecode instruction 208 is a Java
Bytecode instruction that has been specifically designated for representing Java
objects as strings. As will be appreciated, the inventive Java “to_string” Bytecode
instruction can be implemented as a new instruction that is added to the
conventional Java Bytecode instruction set. This is possible because the
conventional Java Bytecode instruction set does not typically use all the 256

possible values that can be coded by one byte (8 bits). As such, the inventive Java

10

15

20

25

30

WO 03/019365 PCT/US02/27030

7

“to_string” Bytecode instruction set can be assigned a unique unassigned value

which can be represented by 8 bits. .

[0024] Referring now to Fig. 2B, the virtual machine 202 operates to receive
the inventive Java Bytecode instruction 208. When the inventive Java “to_string”
Bytecode instruction 208 is executed, the string representation of the Java object
referenced by reference A (shown in Fig. 2A) is determined. Accordingly, the
inventive Java Bytecode instruction “to_string” 208 can be used to represent Java
objects as strings. Moreover, Java objects can be represented as strings without
invoking a Java method. This means that costly overhead associated with invoking
Java methods can be avoided. As a result, the performance of virtual machines,

especially those operating with limited resources, can be improved.

[0025] Fig. 3 illustrates a method 300 for representing Java objects as string
in accordance with one embodiment of the invention. The method 300 can be
implemented by a virtual machine operating in a Java computing environment.
Initially, at operation 302, a reference to a Java object is pushed on the execution
stack. Next, at operation 304, an inventive Java Bytecode operation is executed.
The inventive Java Bytecode operation is designated to represent the object as a
string. Accordingly, at operation 306, the string representation of the Java object is
determined using the reference to the Java object. Thereafter, at operation 308, the
reference is popped from the stack. Finally, at operation 310, the string
representation of the Java object is pushed on the top of the execution stack.

[0026] The many features and advantages of the present invention are
apparent from the written description, and thus, it is intended by the appended
claims to cover all such features and advantages of the invention. Further, since
numerous modifications and changes will readily occur to those skilled in the art, it
is not desired to limit the invention to the exact construction and operation as
illustrated and described. Hence, all suitable modifications and equivalents may be

resorted to as falling within the scope of the invention.

10

15

20

25

30

WO 03/019365

PCT/US02/27030

CLAIMS

1. InaJava computing environment, a Java Bytecode instruction suitable for
execution by an inventive Java virtual machine in said Java computing
environment, wherein said inventive Java Bytecode instruction operates to retrieve
a string representation associated with said Java object, thereby allowing said string
representation to be determined without invoking a Java method.
2. A Java Bytecode instruction as recited in claim 1, wherein said Java Bytecode
instruction further operates to:

pop a reference to said Java Bytecode instruction from the top of an
execution stack;

determine a string representation of a field associated with said Java object;
and

push a reference to said string representation of said field on top of said
execution stack.
3. A Java Bytecode instruction as recited in claim 1, wherein said Java Bytecode
instruction is executed in an embedded system.
4. A Java virtual machine operating in a Java computing environment, said Java
virtual machine capable of determining a string representation associated with a
Java object, wherein said virtual machine determines said string representation of
said Java object without invoking a Java “to_string” method.
5. Java virtual machine as recited in claim 4, wherein said Java virtual machine
executes an inventive Java Bytecode instruction, said inventive Java Bytecode
instruction operating to determine said string representation associated with said
Java object; thereby allowing said string representation to be determined without
invoking a Java method.
6. A Java virtual machine as recited in claim 5, wherein said virtual machine
operates to:

pop a reference to said Java Bytecode instruction from the top of an
execution stack;

determine a string representation of a field associated with said Java object;

and

10

15

20

25

30

WO 03/019365 PCT/US02/27030

9

push a reference to said string representation of said field on top of said
execution stack.
7. A Java virtual machine as recited in claim 5, wherein said Java virtual machine
operates in an embedded system.
8. Ina Java computing environment, a method of retrieving a string representation
for a Java object, said method comprising:

receiving an inventive Java Bytecode instruction in a stream of Java
Bytecodes suitable for execution by a virtual machine operating in said Java
computing environment, and

wherein said inventive Java Bytecode instruction operates to determine said
string representation associated with said Java object; thereby allowing said string
representation to be determined without invoking a Java method.
9. A method as recited in claim 8, wherein said method further comprises:

popping a reference to a Java object from an execution stack

determining a string representation of a field associated with said Java
object; and

pushing a reference to said string representation of said field on top of said
execution stack.
10. A method as recited in claim 7, wherein said method further comprises:
pushing a reference to said Java object on said execution stack.
11. A method as recited in claim 8, wherein said pushing of a reference to said
Java object is performed by execution of a Java Aload execution.
12. A method as recited in claim 11, wherein said method is performed by a
virtual machine.
13. A method as recited in claim 12, wherein said virtual machine is operating in
an embedded system.
14. A computer readable media including computer program code for retrieving a
string representation for a Java object, said computer readable media comprising:

computer program code for receiving an inventive Java Bytecode instruction
in a stream of Java Bytecodes suitable for execution by a virtual machine operating
in said Java computing environment, and

wherein said inventive Java Bytecode instruction operates to determine said
string representation associated with said Java object; thereby allowing said string

representation to be determined without invoking a Java method.

10

15

20

WO 03/019365

PCT/US02/27030
10

15. A computer readable media as recited in claim 14, wherein said computer
readable media further comprises:

computer program code for popping a reference to a Java object from an
execution stack;

computer program code for determining a string representation of a field
associated with said Java object; and

computer program code for pushing a reference to said sfring representation
of said field on top of said execution stack.
16. A computer readable media as recited in claim 15, wherein said computer
readable media further comprises:

computer program code for pushing a reference to said Java object on said
execution stack.
17. A computer readable media as recited in claim 15, wherein said computer
program code for pushing said reference is performed by executing a Java Aload
instruction.
18. A computer readable media as recited in claim 17, wherein said computer
readable media is read by a Java virtual machine.
19. A computer readable media as recited in claim 18, wherein said virtual

machine is operating in an embedded system.

WO 03/019365 PCT/US02/27030
1/5

101
Java Source Code
Public class HelloWorld {
Public static void main (string args[]) { 103
System.out.printin("Hello World!")
}
} Bytecode
compiler
105
Java Class File
107
CA FE BA BE 00 03 00 2D 00 20 08 00
1D 07 00 OE 07 00 16 00 07 00 1E 07 \ Java Virtual
(Interpreter)

Fig. 1A

WO 03/019365

Constant Pool

10

—

Interfaces

10

=

|

Fields

106

—

Methods

108

—

Aftributes
11

(-

Fig. 1B

PCT/US02/27030

100

f‘

WO 03/019365
3/5

PCT/US02/27030

200
r"

204
Aload | Inventive Instruction
206 "to_string" 208
212
Java Virtual
Machine
‘ Reference A
202
210 2
Filed 1
Filed |
Filed 3

Fig. 2A

-<—Top

WO 03/019365
4/5

PCT/US02/27030

200
r‘

204
Aload | Inventive Instruction
206 "to_string" 208
212
Java Virtual
Machine > — . l < Top
eference | |-
202]
210 2
Filed 1
Filed | Array of characters
214
Filed 3

Fig. 2B

WO 03/019365 PCT/US02/27030
5/5

300

(Stat) f-

Y

Push a reference to Java object on the

. on stack .
302 java execution stack

h 4

execute an inventive Java Bytecode
~. instruction designated to retrieve a
stfing representation of the Java object

304

y

Determine the string representation of
~ the Java object using the reference on

306 the execution stack
~ Pop the reference from the execution
308 stack

Y

Push a reference to the string
310~ representation of the Java object on the
execution stack

End

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

