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7 6 5 4 3 2 1 0 DATA ELEMENT POSITION

V2

K2 = CONDITION (V2)
N = POPCNT(K2)

V1 (ACCUMULATOR)
K1

UPDATED V1
K1 = KSHLONES(K1, N}
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RECEIVE A MASK GENERATING INSTRUCTION THAT SPECIFIES AT
LEAST A FIRST OPERAND AND A SECOND OPERAND
210

RESPONSIVE TO THE MASK GENERATING INSTRUCTION, PERFORM

THE FOLLOWING OPERATIONS:
520

LEFT-SHIFT BITS OF THE FIRST OPERAND BY A NUMBER OF
TIMES DEFINED IN THE SECOND OPERAND
230

PULL IN A LEAST SIGNIFICANT BIT OF ONE EACH TIME A MOST
SIGNIFICANT BIT OF THE FIRST OPERAND IS SHIFTED OUT TO
THEREBY GENERATE A RESULT
940

FIG. 5
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INSTRUCTION FOR SHIFTING BITS LEFT WITH PULLING ONES INTO LESS
SIGNIFICANT BITS

Technical Field

The present disclosure pertains to the field of processing logic, microprocessors, and
assoclated instruction set architecture that, when executed by the processor or other processing
logic, pertorm logical, mathematical, or other functional operations.

Background Art

An 1nstruction set, or instruction set architecture (ISA), 1s the part of the computer
architecture related to programming, and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, interrupt and exception handling, and
external input and output (I/0). The term instruction generally refers herein to macro-
instructions — that 1s instructions that are provided to the processor (or instruction converter that
translates (e.g., using static binary translation, dynamic binary translation including dynamic
compilation), morphs, emulates, or otherwise converts an instruction to one or more other
instructions to be processed by the processor) for execution — as opposed to micro-instructions or
micro-operations (micro-ops) — that 1s the result of a processor’s decoder decoding macro-
instructions.

The ISA 1s distinguished from the micro-architecture, which 1s the internal design of the
processor implementing the instruction set. Processors with different micro-architectures can
share a common 1nstruction set. For example, Intel® Core™ processors and processors from
Advanced Micro Devices, Inc. of Sunnyvale CA implement nearly 1dentical versions of the x86
instruction set (with some extensions that have been added with newer versions), but have
different internal designs. For example, the same register architecture of the ISA may be
implemented 1n different ways 1n different micro-architectures using well-known techniques,
including dedicated physical registers, one or more dynamically allocated physical registers
using a register renaming mechanism, etc.

Many modern ISAs support vector operations, also referred to as packed data operations or
Single Instruction, Multiple Data (SIMD) operations. Instead of a scalar instruction operating on
only one data element or pair of data elements, a vector instruction (also referred to as packed
data instruction or SIMD instruction) may operate on multiple data elements or multiple pairs of
data elements simultaneously or in parallel. The processor may have parallel execution
hardware responsive to the vector instruction to perform the multiple operations simultaneously
or 1n parallel.

A vector operation operates on multiple data elements packed within one register or
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memory location 1n one operation. These data elements are referred to as vector data element or
packed data elements. Each of the vector data elements may represent a separate individual
piece of data (e.g., a color of a pixel, etc.) that may be operated upon separately or independently
of the others.

Brief Description of the Drawings

Embodiments are 1llustrated by way of example and not limitation in the Figures of the
accompanying drawings:

Figure 1 1s a block diagram of an instruction processing apparatus including vector
registers and mask registers according to one embodiment.

Figures 2A-2C 1illustrate examples of mask generating instructions according to one
embodiment.

Figures 3A and 3B illustrate examples of array data alignments according to one
embodiment.

Figure 3C 1llustrates an example of a masked vector instruction that uses a mask according
to one embodiment.

Figure 4 1llustrates the number of mask bits for a given vector register width and data
element width according to one embodiment.

Figure 5 1s a flow diagram 1llustrating operations to be performed responsive to a mask
generating instruction according to one embodiment.

Figure 6 1s a block diagram illustrating the use of a software instruction converter to
convert binary instructions 1n a source instruction set to binary instructions in a target instruction
set according to one embodiment.

Figure 7A 1s a block diagram of an in-order and out-of-order pipeline according to one
embodiment.

Figure 7B 1s a block diagram of an in-order and out-of-order core according to one
embodiment.

Figures 8A-B are block diagrams of a more specific exemplary in-order core architecture
according to one embodiment.

Figure 9 1s a block diagram of a processor according to one embodiment.

Figure 10 1s a block diagram of a system 1n accordance with one embodiment.

Figure 11 1s a block diagram of a second system 1n accordance with one embodiment.

Figure 12 1s a block diagram of a third system in accordance with an embodiment of the
invention.

Figure 13 1s a block diagram of a system-on-a-chip (SoC) in accordance with one

embodiment.
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Description of the Embodiments

In the following description, numerous specific details are set forth. However, 1t 1s
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known circuits, structures and techniques have not been shown 1n detail 1n
order not to obscure the understanding of this description.

Embodiments described herein provide mask generating instructions operable to cause or
result 1n a processor generating a mask to be used by masked vector instructions. The masked
vector instructions can be applied to a scenario where the trip-count (1.e., the number of
iterations) of a computational loop 1s not divisible by the number of elements that can fit into a
vector register. Thus, the remainder iterations need to be handled separately. To process the
elements 1n the remainder iterations, a mask generating instruction generates an appropriate
predicate mask, which omits or masks off a portion of (e.g., the most significant elements) of a
vector register from computations so that no exceptions would be produced (e.g., exceptions
caused by access behind allocated memory or/and undefined results).

The mask generating instruction can also be used in other scenarios. For example, the
instruction can be used to update a control mask 1n data accumulation for sparse vector
computations. The data accumulation may be performed over multiple iterations. In some of the
iterations, some data elements may exit the computation and some new data elements may join
the computation. The control mask 1s updated to keep track the elements that require further
computation. The control mask can be utilized in mask vector instructions to improve the
efficiency of vector computation.

Similar to vector instructions, a masked vector instruction 1s operable to cause or result in a
processor performing a vector operation on data elements of one or more vector operands. In
addition, each masked vector instruction uses a mask to mask, predicate, or conditionally control
the vector operation. The masks are operable to mask or conditionally control vector processing
at per-data element granularity. For example, the masks may be operable to mask whether or not
a result of a vector operation, performed on individual data elements from a single source vector
operand or individual pairs of corresponding data elements from two source vector operands, 1S
to be stored 1n a destination. The masked vector instructions allow vector processing of each
data element or pair of corresponding data elements to be predicated or conditionally controlled
separately and independently of the data elements. The masked vector instructions, operations,
and masks may offer certain advantages, such as, for example, increased code density and/or
higher instruction throughput.

Figure 1 1s a block diagram of an embodiment of an instruction processing apparatus 115
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having an execution unit 140 that includes circuitry operable to execute instructions, including
the mask generating instructions described herein. In some embodiments, the instruction
processing apparatus 115 may be a processor, a processor core of a multi-core processor, or a
processing element 1n an electronic system.

A decoder 130 receives incoming instructions in the form of higher-level machine
instructions or macroinstructions, and decodes them to generate lower-level micro-operations,
micro-code entry points, microinstructions, or other lower-level instructions or control signals,
which reflect and/or are derived from the original higher-level instruction. The lower-level
instructions or control signals may implement the operation of the higher-level instruction
through lower-level (e.g., circuit-level or hardware-level) operations. The decoder 130 may be
implemented using various different mechanisms. Examples of suitable mechanisms include,
but are not limited to, microcode, look-up tables, hardware implementations, programmable
logic arrays (PLASs), other mechanisms used to implement decoders known 1n the art, etc.

The decoder 130 may receive incoming instructions for a cache 110, a memory 120 or
other sources. The decoded instructions are sent to the execution unit 140. The execution unit
140 may receive from the decoder 130 one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals, which retlect, or are derived from
the recerved instructions. The execution unit 140 receives data input from and generates data
output to a register file 170, the cache 110, and/or the memory 120.

In one embodiment, the register file 170 includes architectural registers, which are also
referred to as registers. Unless otherwise specified or clearly apparent, the phrases architectural
registers, register file, and registers are used herein to refer to registers that are visible to the
software and/or programmer (e.g., software-visible) and/or the registers that are specified by
macroinstructions to identity operands. These registers are contrasted to other non-architectural
registers 1n a given microarchitecture (e.g., temporary registers, reorder buffers, retirement
registers, etc.).

Alternatively, rather than having the decoder 130, 1n one or more other embodiments, the
instruction processing apparatus 115 may instead have an instruction emulator, translator,
morpher, interpreter, or other instruction conversion logic. Various different types of instruction
conversion logic are known in the arts and may be implemented in software, hardware, firmware,
or a combination thereof. The instruction conversion logic may receive one or more of the mask
generating instructions, emulate, translate, morph, interpret, or otherwise convert it into one or
more corresponding derived instructions or control signals. In still other embodiments, the
instruction processing apparatus 115 may have both a decoder and additional instruction

conversion logic. For example, the instruction processing apparatus 115 may have instruction
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conversion logic to convert one or more of the mask generating instructions into one or more
intermediate instructions, and a decoder to decode the one or more intermediate instructions into
one or more lower-level instructions or control signals executable by native hardware of the
instruction processing apparatus. Some or all of the instruction conversion logic may be located
off-die from the rest of the instruction processing apparatus, such as on a separate die or in an
off-die memory.

According to one embodiment, the register file 170 includes a set of vector registers 175
and a set of mask registers 185, both of which can be used to store the operands of the mask
generating instructions. Each vector register 175 can be 512 bits, 256 bits, or 128 bits wide, or a
different vector width may be used. Each mask register 185 contains a number of mask bits,
with each mask bit corresponding to one data element of one of the vector registers 175. As each
mask bit 1s used to mask a data element of a vector register, a mask register of 64 bits can be
used to mask sixty-four 8-bit data elements of a 512-bit register. For a vector register with a
different width (e.g., 256 bits or 128 bits) and data elements of a different size (e.g., 16 bits, 32
bits or 64 bits), a different number of mask bits may be used in connection with a vector
operation.

To avoid obscuring the description, a relatively simple instruction processing apparatus
115 has been shown and described. It 1s to be appreciated that other embodiments may have
more than one execution unit. For example, the apparatus 115 may include multiple different
types of execution units, such as, for example, arithmetic units, arithmetic logic units (ALUSs),
integer units, floating point units, etc. Still other embodiments of instruction processing
apparatus or processors may have multiple cores, logical processors, or execution engines. A
number of embodiments of the instruction processing apparatus 115 will be provided later with
respect to Figures 7-13.

According to embodiments of the invention, the mask generating instruction described
herein generates a mask by shifting the bits 1n a register operand of the instruction. The register
operand may be a mask register or a general purpose register. Figures 2A-2C illustrates
examples of pseudo-code for the mask generating instructions. In these figures, rl, r2 represent
general purpose registers of independent sizes (e.g., r1 can be 32-bit, while 12 1s 64-bit) and k1
represents a mask register. The value KL represents the number of mask bits, which can be
determined from the mnemonic B/W/D/Q appended to the end of the instruction.

Figure 2A 1illustrates an example of a mask generating instruction KSHLONES[B/W/D/Q]
k1, r2. The mnemonics B/W/D/Q means that the instruction KSHLONES has four forms:
KSHLONESB, KSHLONESW, KSHLONESD and KSHLONESQ, which correspond to masks

of 8, 16, 32, 64 bits, respectively. In this example, the k1 mask serves as both a source operand
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and a destination. The other source operand is a general purpose register or a value from
memory.

The KSHLONES instruction shifts bits of the k1 mask to the left by the number of times
defined in the source operand (r2 or memory) and pulls 1n ones to fill the lower-order bit
positions. The terms “‘shift left” or “left-shift” herein mean that the bits are shifted in the
direction from the least significant bit (LSB) to the most significant bit (MSB). That 1s, each
time the k1 mask 1s shifted to the left by one bit position, a bit value of one 1s pulled 1n to fill the
least significant bit position. For example, 1f k1=1:0:0:0:1:1:0:0 and r2=4, then “KSHLONESB
k1, r2” will produce a result k1=1:1:0:0:1:1:1:1, where each 0" and 1" represents a bit value.
It 1s noted that those k1 bits remaining in the resulting (destination) k1 are merely shifted in
position and their values are not altered by the shift. The new bits adding to the LSB positions
are all ones.

Figure 2B illustrates an alternative embodiment of a mask generating instruction
SHLONES[B/W/D/Q] rl, r2, which uses a general purpose register rl as both the source operand
and the destination. This form of the instruction enables 1ts usage as a complementary bit
manipulation instruction. Figure 2C illustrates another alternative embodiment of a mask
generating instruction that modifies state flags (ZF,CF), such that the instruction can be used

directly for control flow. Another embodiment of the mask generating instruction stores shifted

result (1.e., the resulting mask) to a destination register different from the source operands; e.g.,
KSHLONES k1, k2, r2, and SHLONES rl, r2, r3. Additional alternative embodiments of the
instructions may exist that do not necessarily have the same instruction formats as the mask
generating instructions described above. In the following description, the various torms of the
mask generating instructions are referred to as KSHLONES and its variants.

Figure 3A and 3B 1llustrate example scenarios in which KSHLONES and 1ts variants may
be used to improve etficiency of vector computation. In these examples, the remainder array
elements 1n the remainder loop of a vector operation do not fill the entire vector register. In
these elements, 1t 1s assumed that the vector register can store up to 16 array elements: e.g., the
vector register has 512 bits and each array element 1s a 32-bit doubleword. If the total number of
array elements 1s 35 and the beginning of the loop 1s aligned with the vector register (as shown 1n
Figure 3A), there will be three remainder array elements at the end that are not processed 1n the
vectorized loop and need to be handled separately. If the total number of array elements 1s 35
and the beginning of the loop 1s not aligned with the vector register (two array elements in the
first vectorized loop as shown 1n Figure 3B), there will be one remainder array element at the
end that 1s not processed in the vectorized loop and needs to be handled separately. The mask

generating instruction described herein generates a mask that can be used with the remainder

6
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array elements in mask vector operations to improve loop vectorization.

To improve the efficiency of data access, a compiler can generate code to separately
handle the remainder array elements in the last vectorized loop. However, the number of array
elements 1n the last vectorized loop generally cannot be resolved at compile time, as the
addresses of the array elements and/or loop trip-counts are not known at that time. With the
embodiments described herein, at compile time the compiler can generate one or more of the
mask generating instructions in lieu of other code sequences that perform the same tasks. Thus,
a compiler can utilize these mask generating instructions to simplify its task of loop
optimization. In alternative embodiments, the mask generating instructions can be used by a
programmer or other code-generating entity.

The KSHLONES instruction and 1ts variants can be used to handle the scenario where the
total size of the remainder data elements at the very end of a loop 1s smaller than the width of the
vector register. This means that the KSHLONES instruction and 1ts variants can be used when
there are not enough 1terations in a loop (that 1s, not enough data elements in the array) to make
up a full-width vector operation.

In the example of Figure 3C, the last three data elements of the array (i.e., A(32), A(33),
A(34)) do not occupy the full width of a source vector 307. That is, there are not enough
elements left in A to fill the entire vector register. Since the source vector 307 contains A(32),
A(33), A(34) as 1ts lowest-order data elements, only the lowest-order three bits of a mask 308 are
set (e.g., to 1) to indicate that the addition should be performed, and the results of the addition
should be stored, for A(32), A(33), A(34). The higher-order 13 bits of the mask 308 are cleared
(e.g., 0). The mask 308 can be the result generated by a processor executing the KSHLONES
instruction or one of 1ts variants.

In one embodiment, the lack of data elements at the end of an array (for filling an entire
vector register) can be a result of initial misalignment at the base address of the array. For
example, 1n 1mage processing applications, often times the size of the image array 1s an integer
multiple of the vector register width. However, if the beginning of the image array 1s
misaligned, a number of data elements may be left at the end of the loop that cannot fill the
entire vector register.

The use of the mask 308 helps vectorize the execution of a loop 1n which data elements of
an array are operands. In the examples of Figure 3C, the iteration index 1= 32, 33 and 34 can be
vectorized with a masked vector operation 1n which the source vector 307 1s used with the mask
308. In one embodiment, upon detecting a loop, a compiler can generate loop-optimizing code
that includes one or more of the mask generating instructions described herein.

The 1nstruction for the 1llustrated masked vector operation 303 indicates a source vector to
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be added to a scalar value. Other masked vector instructions may indicate two or more source
vectors. The instruction of the masked vector operation 303 also specifies the mask 308. Each
of the masks includes multiple mask elements, predicate elements, conditional control elements,
or flags. As shown 1n the illustration, there may be one such mask element or tflag for each
corresponding source data element 1n the case of the operation involving one source vector
operand. Commonly each element or flag may be a single bit. A single bit may allow specifying
either of two different possibilities (e.g., perform the operation versus do not perform the
operation, store a result of the operation versus do not store a result of the operation, etc.).
Alternatively, 1f selecting between more than two different options 1s desired, then two or more
bits may be used for each flag or element.

According to the illustrated convention, when a given mask bit 1s set to one, a result of the
vector operation 1s performed on a corresponding data element of the source vector and stored 1n
a corresponding data element of the result. Conversely, when the given mask bit 1s cleared to
zero, then the vector operation 1s either omitted (1.e., not pertormed) for the corresponding data
element of the source vector, or the result 1s not allowed to be stored 1n the corresponding data
element of the result. Rather, another value may be stored in the result data element. For
example, the numerical value of the corresponding data element from the source vector 1s stored.
In an alternative embodiment, a zero or another predetermined value may be stored 1n the
corresponding data element of the result. An opposite convention to that illustrated 1s also
possible where bits are cleared (1.e., O) to allow the results to be stored, or set (1.e., 1) to not
allow the results to be stored.

The following example code sequence generates a mask for a remainder loop, with current
iteration count stored 1n rbx and loop limit in rcx. Using the illustrated embodiment of Figure
3C, the current iteration count 1s 31 and the loop limit 1s 34.

SUB rbx, rcx //calculate number of remaining iterations

KXOR k1, k1, k1 //zeroing mask

KSHLONES k1, rbx //generate mask for remainder loop

There are many advantages of using the KSHLONES instruction (including its variants)
for generating a mask for a remainder loop. The KSHLONES instructions operate with a
subtraction result. For another instruction that includes the subtraction as part of its operation,
additional pre-computation overhead would be incurred for performing operand type comparison
prior to the subtraction. Further, the KSHLONES instructions cover scenarios in which iteration
counter and/or loop limit can be negative, which allow more variability for the compiler to
optimize the code. Additionally, the code for generating a mask for a remainder loop 1s split into

three phases (1.e., the three instructions in the above code sequence), which improves execution
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scheduling and provides more variability and tlexibility in the use of the KSHLONES
instructions. The KSHLONES instructions can be used by itself or in combination with other
instructions where subtraction of operands 1s not needed. For example, when the number (N) of
ones 1s known, KSHLONES can be used to generate a mask with ones in the N least significant
bits as follows: N =5; k1=0:0:0:0:0:0:0:0; KSHLONES k1, N results in k1 =0:0:0:1:1:1:1:1.

The KSHLONES i1nstructions can also be used 1n data accumulation for sparse vector
computation, as shown in the example of Figure 4. In this example, a pair of vector registers (V1
and V2) and a pair of mask registers (K1 and K2) are utilized to perform data accumulation.
Both V1 and V2 are sparse vectors in which not all of the data element positions are filled. V1
serves as an accumulator to accumulate vector elements for computation, and V2 provides new
data elements to fill in the unutilized slots in V1. The mask registers K1 and K2 are used to
indicate which positions in the corresponding vector registers contain valid data elements for
computation. In this example the mask bits corresponding to the valid data elements are set to
one for both K1 and K2. It is understood that the bit values of K2 can be reversed for the same
data elements of V2.

In the example of Figure 4, V2 initially contains four elements indicated as BO. The
corresponding mask bits 1n K2 indicate the positions ot these tour elements. By using N =
POPCNT(K?2), the value of N 1s set to the number of K2 bits having the value of one. Thus in
this example, N = 4. The mask bits in K1 contain three ones corresponding to element positions
0 — 2 of the initial V1. The information contained in K1 indicates not only the number of
accumulated elements AQ, but also the right boundary of empty slots inside V1 (in this example
the right boundary 1s at the third element position). K1 can be used as-1s or inverted for further
data accumulation that includes COMPRESS and/or EXPAND instructions.

The four BO’s can be compressed and merged into element positions of 3 — 6 of V1, using
existing vector instructions. The updated V1 becomes denser than the initial V1, and theretore 1s
more amenable to efficient vector computation. The corresponding K1 after the merge can be
computed by K1 = KSHLONES(K1, N), which preserves the initial three bits of one in the
source value of K1 and adds four additional bits of one. Preserving the source value of K1
removes the need for keeping separate counters for tracking the number of elements inside the
accumulator before and after the merge. After the updated V1 1s used in a vector computation,
the operations of Figure 4 can be repeated such that the accumulator can keep accumulating date
elements for vector computation.

The mask generating instructions disclosed herein are general-purpose instructions that
have general uses. For example, these instructions may be used, either alone or in combination

with other instructions, to calculate a mask for a remainder loop of vector operations or for data
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accumulation 1n sparse vector computation. Other uses are also contemplated based on the
present disclosure.

Figure 5 1s a block flow diagram of a method 500 for executing a mask generating
instruction according to one embodiment. The method 500 begins with a processor (more
specifically, e.g., the execution unit 140 of Figure 1) receiving a mask generating instruction that
specities at least a first operand and a second operand (block 510). Examples of the mask
generating instructions include the KSHLONES instruction and 1ts variants as described above.
In one embodiment, the first operand 1s a mask register and the second operand 1s a general
purpose register. In an alternative embodiment, the first operand and the second operand are
both general purpose registers. Response to the mask generating instruction, the processor
performs the following operations (block 520): left-shifting bits of the first operand by a number
of times defined in the second operand (block 530), and pulling in a least significant bit of one
each time a most significant bit of the first operand is shifted out (to the left) to thereby generate
a result to thereby generate a result (block 540). Each bit in the result corresponds to a data
element. The result 1s a mask to be used in a masked vector operation.

In various embodiments, the method 500 may be performed by a general-purpose
processor, a special-purpose processor (e.g., a graphics processor or a digital signal processor),
or another type of digital logic device or instruction processing apparatus. In some
embodiments, the method S00 may be pertormed by the instruction processing apparatus 115 of
Figure 1, or a similar processor, apparatus, or system, such as the embodiments shown 1in Figures
7-13. Moreover, the instruction processing apparatus 115 of Figure 1, as well as the processor,
apparatus, or system shown in Figures 7-13 may perform embodiments of operations and
methods either the same as, similar to, or different than those of the method 500.

In some embodiments, the instruction processing apparatus 115 of Figure 1 may operate in
conjunction with an instruction converter that converts an instruction from a source instruction
set to a target instruction set. For example, the instruction converter may translate (e.g., using
static binary translation, dynamic binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more other instructions to be processed by
the core. The instruction converter may be implemented in software, hardware, firmware, or a
combination thereof. The instruction converter may be on processor, off processor, or part on
and part off processor.

Figure 6 1s a block diagram contrasting the use of a software instruction converter
according to embodiments of the invention. In the illustrated embodiment, the 1nstruction
converter 1s a software instruction converter, although alternatively the instruction converter may

be implemented in software, firmware, hardware, or various combinations thereof. Figure 6
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shows a program 1n a high level language 602 may be compiled using an x86 compiler 604 to
generate x86 binary code 606 that may be natively executed by a processor with at least one x86
instruction set core 616. The processor with at least one x86 1nstruction set core 616 represents
any processor that can perform substantially the same functions as an Intel processor with at least
one x86 1nstruction set core by compatibly executing or otherwise processing (1) a substantial
portion of the instruction set of the Intel x86 instruction set core or (2) object code versions of
applications or other software targeted to run on an Intel processor with at least one x86
instruction set core, in order to achieve substantially the same result as an Intel processor with at
least one x86 1nstruction set core. The x86 compiler 604 represents a compiler that 1s operable to
generate x86 binary code 606 (e.g., object code) that can, with or without additional linkage
processing, be executed on the processor with at least one x86 instruction set core 616.
Similarly, Figure 6 shows the program in the high level language 602 may be compiled using an
alternative instruction set compiler 608 to generate alternative instruction set binary code 610
that may be natively executed by a processor without at least one x86 1nstruction set core 614
(e.g., a processor with cores that execute the MIPS 1nstruction set of MIPS Technologies of
Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). The instruction converter 612 1s used to convert the x86 binary code 606 into code that
may be natively executed by the processor without an x86 instruction set core 614. This
converted code 1s not likely to be the same as the alternative instruction set binary code 610
because an instruction converter capable of this 1s difficult to make; however, the converted code
will accomplish the general operation and be made up of instructions from the alternative
instruction set. Thus, the instruction converter 612 represents software, firmware, hardware, or a
combination thereof that, through emulation, simulation or any other process, allows a processor
or other electronic device that does not have an x86 1nstruction set processor or core to execute
the x86 binary code 606.

Exemplary Core Architectures

In-order and out-of-order core block diagram

Figure 7A 1s a block diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order 1ssue/execution pipeline according to embodiments of
the invention. Figure 7B 1s a block diagram illustrating both an exemplary embodiment of an in-
order architecture core and an exemplary register renaming, out-of-order 1ssue/execution
architecture core to be included 1n a processor according to embodiments of the invention. The
solid lined boxes 1n Figures 7A and 7B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes 1llustrates the register renaming, out-of-order

1ssue/execution pipeline and core. Given that the in-order aspect 1s a subset of the out-of-order
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aspect, the out-of-order aspect will be described.

In Figure 7A, a processor pipeline 700 includes a fetch stage 702, a length decode stage
704, a decode stage 706, an allocation stage 708, a renaming stage 710, a scheduling (also
known as a dispatch or issue) stage 712, a register read/memory read stage 714, an execute stage
716, a write back/memory write stage 718, an exception handling stage 722, and a commit stage
724,

Figure 7B shows processor core 790 including a front end unit 730 coupled to an execution
engine unit 750, and both are coupled to a memory unit 770. The core 790 may be a reduced
instruction set computing (RISC) core, a complex instruction set computing (CISC) core, a very
long 1nstruction word (VLIW) core, or a hybrid or alternative core type. As yet another option,
the core 790 may be a special-purpose core, such as, for example, a network or communication
core, compression engine, coprocessor core, general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

The front end unit 730 includes a branch prediction unit 732 coupled to an instruction
cache unit 734, which 1s coupled to an instruction translation lookaside buffer (TLB) 736, which
1s coupled to an instruction fetch unit 738, which 1s coupled to a decode unit 740. The decode
unit 740 (or decoder) may decode instructions, and generate as an output one or more micro-
operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise retlect, or are derived from, the original
instructions. The decode unit 740 may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),
etc. In one embodiment, the core 790 includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 740 or otherwise within the front
end unit 730). The decode unit 740 1s coupled to a rename/allocator unit 752 in the execution
engine unit 750.

The execution engine unit 750 includes the rename/allocator unit 752 coupled to a
retirement unit 754 and a set of one or more scheduler unit(s) 756. The scheduler unit(s) 756
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 756 1s coupled to the physical register file(s) unit(s) 758.
Each of the physical register file(s) units 758 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., an 1nstruction pointer that is the address of the next instruction to be executed), etc. In one

embodiment, the physical register file(s) unit 758 comprises a vector registers unit, a write mask
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registers unit, and a scalar registers unit. These register units may provide architectural vector
registers, vector mask registers, and general purpose registers. The physical register file(s)
unit(s) 758 1s overlapped by the retirement unit 754 to illustrate various ways in which register
renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s) and a
retirement register file(s); using a future file(s), a history buffer(s), and a retirement register
file(s); using a register maps and a pool of registers; etc.). The retirement unit 754 and the
physical register file(s) unit(s) 758 are coupled to the execution cluster(s) 760. The execution
cluster(s) 760 includes a set of one or more execution units 762 and a set of one or more memory
access units 764. The execution units 762 may perform various operations (e.g., shifts, addition,
subtraction, multiplication) and on various types of data (e.g., scalar floating point, packed
integer, packed floating point, vector integer, vector floating point). While some embodiments
may include a number of execution units dedicated to specific functions or sets of functions,
other embodiments may include only one execution unit or multiple execution units that all
perform all functions. The scheduler unit(s) 756, physical register file(s) unit(s) 758, and
execution cluster(s) 760 are shown as being possibly plural because certain embodiments create
separate pipelines for certain types of data/operations (e.g., a scalar integer pipeline, a scalar
floating point/packed integer/packed floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own scheduler unit, physical register file(s)
unit, and/or execution cluster — and 1n the case of a separate memory access pipeline, certain
embodiments are implemented 1n which only the execution cluster of this pipeline has the
memory access unit(s) 764). It should also be understood that where separate pipelines are used,
one or more of these pipelines may be out-of-order 1ssue/execution and the rest in-order.

The set of memory access units 764 1s coupled to the memory unit 770, which includes a
data TLB unit 772 coupled to a data cache unit 774 coupled to a level 2 (LL2) cache unit 776. In
one exemplary embodiment, the memory access units 764 may include a load unit, a store
address unit, and a store data unit, each of which 1s coupled to the data TLLB unit 772 1n the
memory unit 770. The instruction cache unit 734 1s further coupled to a level 2 (LL2) cache unit
776 1n the memory unit 770. The L2 cache unit 776 1s coupled to one or more other levels of
cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-of-order 1ssue/execution core
architecture may implement the pipeline 700 as follows: 1) the instruction fetch 738 performs
the fetch and length decoding stages 702 and 704; 2) the decode unit 740 pertorms the decode
stage 706; 3) the rename/allocator unit 752 performs the allocation stage 708 and renaming stage
710; 4) the scheduler unit(s) 756 performs the schedule stage 712; 5) the physical register file(s)

unit(s) 758 and the memory unit 770 perform the register read/memory read stage 714; the
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execution cluster 760 pertorm the execute stage 716; 6) the memory unit 770 and the physical
register file(s) unit(s) 758 perform the write back/memory write stage 718; 7) various units may
be involved in the exception handling stage 722; and 8) the retirement unit 754 and the physical
register file(s) unit(s) 758 perform the commit stage 724.

The core 790 may support one or more instructions sets (e.g., the x86 instruction set (with
some extensions that have been added with newer versions); the MIPS 1nstruction set of MIPS
Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional extensions
such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s) described
herein. In one embodiment, the core 790 includes logic to support a packed data instruction set
extension (e.2., SSE, AVX1, AVX2, etc.), thereby allowing the operations used by many
multimedia applications to be performed using packed data.

It should be understood that the core may support multithreading (executing two or more
parallel sets of operations or threads), and may do so in a variety of ways including time sliced
multithreading, simultaneous multithreading (where a single physical core provides a logical
core for each of the threads that physical core 1s simultaneously multithreading), or a
combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such as in the Intel® Hyperthreading technology).

While register renaming 1s described 1n the context of out-of-order execution, it should be
understood that register renaming may be used in an in-order architecture. While the 1llustrated
embodiment of the processor also includes separate instruction and data cache units 734/774 and
a shared L2 cache unit 776, alternative embodiments may have a single internal cache for both
instructions and data, such as, for example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may include a combination of an internal cache
and an external cache that 1s external to the core and/or the processor. Alternatively, all of the
cache may be external to the core and/or the processor.

Specific Exemplary In-Order Core Architecture

Figures 8A-B 1llustrate a block diagram of a more specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., a ring network) with some fixed function logic, memory I/O
intertaces, and other necessary 1I/0 logic, depending on the application.

Figure 8A 1s a block diagram of a single processor core, along with its connection to the
on-die interconnect network 802 and with 1ts local subset of the Level 2 (L2) cache 804,
according to embodiments of the invention. In one embodiment, an instruction decoder 800

supports the x86 1nstruction set with a packed data instruction set extension. An L1 cache 806
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allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 808 and a vector unit 810 use separate register
sets (respectively, scalar registers 812 and vector registers 814) and data transterred between
them 1s written to memory and then read back in from a level 1 (L1) cache 806, alternative
embodiments of the invention may use a different approach (e.g., use a single register set or
include a communication path that allow data to be transterred between the two register files
without being written and read back).

The local subset of the L2 cache 804 1s part of a global .2 cache that 1s divided into
separate local subsets, one per processor core. Each processor core has a direct access path to its
own local subset of the L2 cache 804. Data read by a processor core 1s stored 1n its L2 cache
subset 804 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by a processor core 1s stored in i1ts own L2 cache
subset 804 and 1s flushed from other subsets, if necessary. The ring network ensures coherency
for shared data. The ring network 1s bi-directional to allow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-
path 1s 1012-bits wide per direction.

Figure 8B 1s an expanded view of part of the processor core 1n Figure 8A according to
embodiments of the invention. Figure 8B includes an L1 data cache 806A part of the L1 cache
304, as well as more detail regarding the vector unit 810 and the vector registers 814.
Specifically, the vector unit 810 1s a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 828), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 820,
numeric conversion with numeric convert units 822A-B, and replication with replication unit 824
on the memory input. Write mask registers 826 allow predicating resulting vector writes.

Processor with integrated memory controller and graphics

Figure 9 1s a block diagram of a processor 900 that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 9 illustrate a processor 900 with a
single core 902A, a system agent 910, a set of one or more bus controller units 916, while the
optional addition of the dashed lined boxes illustrates an alternative processor 900 with multiple
cores Y02A-N, a set of one or more integrated memory controller unit(s) 914 in the system agent
unit 910, and special purpose logic 908.

Thus, different implementations of the processor 900 may include: 1) a CPU with the
special purpose logic 908 being integrated graphics and/or scientific (throughput) logic (which

may include one or more cores), and the cores 902A-N being one or more general purpose cores
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(e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of the
two); 2) a coprocessor with the cores 902A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 902A-N being a large number of general purpose in-order cores. Thus, the processor 900
may be a general-purpose processor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor Y00 may be a part of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,
for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of cache within the cores, a set or one
or more shared cache units 906, and external memory (not shown) coupled to the set of
integrated memory controller units 914. The set of shared cache units Y06 may include one or
more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (LL4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based
interconnect unit 912 interconnects the integrated graphics logic 908, the set of shared cache
units 906, and the system agent unit 910/integrated memory controller unit(s) 914, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency 1s maintained between one or more cache units 906 and cores 902-
A-N.

In some embodiments, one or more of the cores 902A-N are capable of multi-threading.
The system agent 910 includes those components coordinating and operating cores 902A-N. The
system agent unit 910 may include tor example a power control unit (PCU) and a display unit.
The PCU may be or include logic and components needed for regulating the power state of the
cores Y02A-N and the integrated graphics logic 908. The display unit 1s for driving one or more
externally connected displays.

The cores 902A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that 1s, two or more of the cores 902A-N may be capable of execution the same
instruction set, while others may be capable of executing only a subset of that instruction set or a
different instruction set.

Exemplary Computer Architectures

Figures 10-13 are block diagrams of exemplary computer architectures. Other system
designs and configurations known 1n the arts for laptops, desktops, handheld PCs, personal

digital assistants, engineering workstations, servers, network devices, network hubs, switches,
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embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, a huge variety of systems or
electronic devices capable of incorporating a processor and/or other execution logic as disclosed
herein are generally suitable.

Referring now to Figure 10, shown is a block diagram of a system 1000 1n accordance with
one embodiment of the present invention. The system 1000 may include one or more processors
1010, 1015, which are coupled to a controller hub 1020. In one embodiment the controller hub
1020 includes a graphics memory controller hub (GMCH) 1090 and an Input/Output Hub (IOH)
1050 (which may be on separate chips); the GMCH 1090 includes memory and graphics
controllers to which are coupled memory 1040 and a coprocessor 1045; the IOH 1050 1s couples
input/output (I/0) devices 1060 to the GMCH 1090. Alternatively, one or both of the memory
and graphics controllers are integrated within the processor (as described herein), the memory
1040 and the coprocessor 1045 are coupled directly to the processor 1010, and the controller hub
1020 1n a single chip with the IOH 1050.

The optional nature of additional processors 1015 1s denoted 1n Figure 10 with broken
lines. Each processor 1010, 1015 may include one or more of the processor cores described
herein and may be some version of the processor 900.

The memory 1040 may be, for example, dynamic random access memory (DRAM), phase
change memory (PCM), or a combination of the two. For at least one embodiment, the
controller hub 1020 communicates with the processor(s) 1010, 10135 via a multi-drop bus, such
as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or
similar connection 1095.

In one embodiment, the coprocessor 1045 1s a special-purpose processor, such as, for
example, a high-throughput MIC processor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 1020 may include an integrated graphics accelerator.

There can be a variety of differences between the physical resources 1010, 1015 in terms
of a spectrum of metrics of merit including architectural, micro-architectural, thermal, power
consumption characteristics, and the like.

In one embodiment, the processor 1010 executes instructions that control data processing
operations of a general type. Embedded within the instructions may be coprocessor instructions.
The processor 1010 recognizes these coprocessor instructions as being of a type that should be
executed by the attached coprocessor 1045. Accordingly, the processor 1010 i1ssues these

coprocessor 1nstructions (or control signals representing coprocessor instructions) on a
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coprocessor bus or other interconnect, to coprocessor 1045. Coprocessor(s) 1045 accept and
execute the recerved coprocessor instructions.

Referring now to Figure 11, shown 1s a block diagram of a first more specific exemplary
system 1100 1n accordance with an embodiment of the present invention. As shown in Figure
11, multiprocessor system 1100 1s a point-to-point interconnect system, and includes a first
processor 1170 and a second processor 1180 coupled via a point-to-point interconnect 1150.
Each of processors 1170 and 1180 may be some version of the processor 900. In one
embodiment of the invention, processors 1170 and 1180 are respectively processors 1010 and
1015, while coprocessor 1138 1s coprocessor 1045. In another embodiment, processors 1170 and
1180 are respectively processor 1010 coprocessor 10435.

Processors 1170 and 1180 are shown including integrated memory controller (IMC) units
1172 and 1182, respectively. Processor 1170 also includes as part of its bus controller units
point-to-point (P-P) interfaces 1176 and 1178; similarly, second processor 1180 includes P-P
interfaces 1186 and 1188. Processors 1170, 1180 may exchange information via a point-to-point
(P-P) intertace 1150 using P-P interface circuits 1178, 1188. As shown in Figure 11, IMCs 1172
and 1182 couple the processors to respective memories, namely a memory 1132 and a memory
1134, which may be portions of main memory locally attached to the respective processors.

Processors 1170, 1180 may each exchange information with a chipset 1190 via individual
P-P interfaces 1152, 1154 using point to point interface circuits 1176, 1194, 1186, 1198. Chipset
1190 may optionally exchange information with the coprocessor 1138 via a high-performance
interface 1139. In one embodiment, the coprocessor 1138 1s a special-purpose processor, such
as, for example, a high-throughput MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embedded processor, or the like.

A shared cache (not shown) may be included 1n either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the shared cache if a processor 1s placed
into a low power mode.

Chipset 1190 may be coupled to a first bus 1116 via an interface 1196. In one
embodiment, first bus 1116 may be a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0 interconnect bus, although the scope of
the present invention 1s not so limited.

As shown in Figure 11, various 1/0 devices 1114 may be coupled to first bus 1116, along
with a bus bridge 1118 which couples first bus 1116 to a second bus 1120. In one embodiment,
one or more additional processor(s) 1115, such as coprocessors, high-throughput MIC

processors, GPGPU’s, accelerators (such as, e.g., graphics accelerators or digital signal
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processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1116. In one embodiment, second bus 1120 may be a low pin count (LPC) bus.
Various devices may be coupled to a second bus 1120 including, for example, a keyboard and/or
mouse 1122, communication devices 1127 and a storage unit 1128 such as a disk drive or other
mass storage device which may include instructions/code and data 1130, in one embodiment.
Further, an audio I/O 1124 may be coupled to the second bus 1120. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 11, a system may
implement a multi-drop bus or other such architecture.

Referring now to Figure 12, shown 1s a block diagram of a second more specific exemplary
system 1200 1n accordance with an embodiment of the present invention. Like elements in
Figures 11 and 12 bear like reference numerals, and certain aspects of Figure 11 have been
omitted from Figure 12 1n order to avoid obscuring other aspects of Figure 12.

Figure 12 illustrates that the processors 1170, 1180 may include integrated memory and
I/O control logic (“"CL”) 1172 and 1182, respectively. Thus, the CL 1172, 1182 include
integrated memory controller units and include 1/0 control logic. Figure 12 illustrates that not
only are the memories 1132, 1134 coupled to the CL 1172, 1182, but also that I/O devices 1214
are also coupled to the control logic 1172, 1182. Legacy I/O devices 12135 are coupled to the
chipset 1190.

Referring now to Figure 13, shown 1s a block diagram of a SoC 1300 1n accordance with
an embodiment of the present invention. Similar elements 1in Figure 9 bear like reference
numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 13,
an interconnect unit(s) 1302 1s coupled to: an application processor 1310 which includes a set of
one or more cores 202A-N and shared cache unit(s) 906; a system agent unit 910; a bus
controller unit(s) 916; an integrated memory controller unit(s) 914; a set or one or more
coprocessors 1320 which may include integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access memory (SRAM) unit 1330; a direct
memory access (DMA) unit 1332; and a display unit 1340 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1320 include a special-purpose processor, such
as, for example, a network or communication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or a combination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile

and non-volatile memory and/or storage elements), at least one input device, and at least one
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output device.

Program code, such as code 1130 illustrated in Figure 11, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, a processing system includes any system that has a processor, such
as, tor example; a digital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

The program code may be implemented 1n a high level procedural or object oriented
programming language to communicate with a processing system. The program code may also
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited 1n scope to any particular programming language. In any case, the
language may be a compiled or interpreted language.

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to pertorm the
techniques described herein. Such representations, known as “IP cores” may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable’s (CD-RWs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access memories (DRAMs), static random
access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

Accordingly, embodiments of the invention also include non-transitory, tangible machine-
readable media containing instructions or containing design data, such as Hardware Description
Language (HDL), which defines structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be referred to as program products.

While certain exemplary embodiments have been described and shown in the
accompanying drawings, it 1s to be understood that such embodiments are merely 1llustrative of

and not restrictive on the broad invention, and that this invention not be limited to the specific
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constructions and arrangements shown and described, since various other modifications may
occur to those ordinarily skilled in the art upon studying this disclosure. In an area of technology
such as this, where growth 1s fast and further advancements are not easily foreseen, the disclosed
embodiments may be readily modifiable in arrangement and detail as facilitated by enabling

technological advancements without departing from the principles of the present disclosure or

the scope of the accompanying claims.
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Claims

What 1s claimed 1s:

1. An apparatus comprising:
a plurality of vector registers, one of which stores data elements of an array; and
execution circuitry coupled to the plurality of vector registers, the execution circuitry
to:
receive a mask generating instruction that specifies at least a first operand and a
second operand, and
responsive to the mask generating instruction, left-shift bits of the first operand
by a number of times defined in the second operand, and pull 1n a least significant bit of one each
time a most significant bit of the first operand 1s shifted out to thereby generate a result
containing a plurality of bits, wherein each bit 1n the result corresponds to one of the data

elements of the array.

2. The apparatus of claim 1, wherein the second operand specifies a number of
remaining iterations 1n a remainder loop of a vector operation.

3. The apparatus of claim 2, wherein the second operand specifies a subtraction result

of a loop limit minus a current iteration count for the vector operation.

4. The apparatus of claim 1, wherein the plurality of vector registers include a first
vector register and a second vector register, and wherein the second operand specifies a number

of data elements 1n the second vector register to be merged into existing data elements 1n the first

vector register for vector computation.

. The apparatus of claim 1, wherein both the first operand and the second operand are

general purpose registers.

0. The apparatus of claim 1, wherein the first operand 1s mask register and the second

operand 1s general purpose register.

7. The apparatus of claim 1, wherein one or more state registers are set based on the
result.
3. A method comprising:
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receiving, by a processor, a mask generating instruction that specifies at least a first
operand and a second operand; and
responsive to the mask generating instruction, performing the following operations:
left-shifting bits of the first operand by a number of times defined in the second
operand, and
pulling in a least significant bit of one each time a most significant bit of the

first operand 1s shifted out to thereby generate a result containing a plurality of bits, each bit in

the result corresponding to a data element of an array.

9. The method of claim 7, wherein the second operand specifies a number of remaining

iterations 1n a remainder loop of a vector operation.

10. The method of claim 9, wherein the second operand specifies a subtraction result of

a loop limit minus a current iteration count for the vector operation.

11. The method of claim 7, wherein the second operand specifies a number of data
elements 1n a second vector register to be merged 1nto existing data elements 1n a first vector

register for vector computation

12. The method of claim 7, wherein both the first operand and the second operand are

general purpose registers.

13. The method of claim 7, wherein the first operand 1s mask register and the second

operand 1s general purpose register.

14, The method of claim 7, further comprising:

modifying one or more state registers based on the result.

13. A system comprising:
random access memory; and
a processor coupled to the random access memory, the processor comprising:
a plurality of vector registers, one of which stores data elements of an array; and
execution circuitry coupled to the plurality of vector registers, the execution
circuitry to:

recelve a mask generating instruction that specifies at least a first operand and a
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second operand, and

responsive to the mask generating instruction, left-shift bits of the first operand
by a number of times defined 1n the second operand, and pull in a least significant bit of one each
time a most significant bit of the first operand 1s shifted out to thereby generate a result
containing a plurality of bits, wherein each bit 1n the result corresponds to one of the data

elements of the array.

16. The system of claim 15, wherein the second operand specifies a number of

remaining iterations in a remainder loop of a vector operation.

17. The system of claim 15, wherein the plurality of vector registers include a first
vector register and a second vector register, and wherein the second operand specifies a number
of data elements 1n the second vector register to be merged 1nto existing data elements 1n the first

vector register for vector computation.

18. The system of claim 15, wherein both the first operand and the second operand are

general purpose registers.

19. The system of claim 15, wherein the first operand 1s mask register and the second

operand 1s general purpose register.

20. The system of claim 15, wherein one or more state registers are set based on the

result.
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