wo 2021/014326 A2 |0 0000 KA1 0V

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
28 January 2021 (28.01.2021)

(10) International Publication Number

WO 2021/014326 A2

WIPO I PCT

(51) International Patent Classification:
Ho04L 9/32 (2006.01)

(21) International Application Number:
PCT/IB2020/056776

(22) International Filing Date:
17 July 2020 (17.07.2020)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC,LK, LR, LS, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

(25) Filing Language: English NZ. OM, PA, PE, PG, PH, PL. PT, QA. RO, RS, RU, RW,
(26) Publication Language: English SA, SC, 8D, SE, 8G, 8K, SL, ST, SV, §Y, TH, TJ, TM, TN,
o TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
(30) Priority Data:
62/876,560 19 July 2019 (19.07.2019) US (84) Designated States (unless otherwise indicated, for every
16/931,741 17 July 2020 (17.07.2020) Us kind of regional protection available). ARIPO (BW, GH,
) ' GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
(71) Applicant: JFROG LTD. [IL/IL]; 3 Hamachshev Street, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG. KZ, RU. TJ.
4250465 Netanya (IL). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventor: LANDMAN, Yoav; 3 Hamachshev Street, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
4250465 Netanya (IL). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
(54) Title: SOFTWARE RELEASE VERIFICATION
300\\
ENTITY DEVICE 310 SERVER 340 NODE DEVICE 360
PROCESSOR(S) 362
MEMORY 314 MEMORY 344
| SOFTWARE 316 |)
SOFTWARE (e.9. ARTIFACT(S)) 348 SOFTWARE
| PRIVATE KEY(S) 318 (e";':?"eﬂiﬁo) RELEASE 20 MEMCRY 364
| PUBLIC KEY(S) 319 DIGITAL SIGNATURE PUBLIC KEY(S)
INFORMATION 332 SIET 319
DIGITAL
DEVELOPMENT STAGES 320 SIGNATURE FIRST DIGITAL i
INFOF;gIzATION — FLAG 366
FRsTSTAGE 322 | | SO STAGE ‘ SECOND DIGTTAL |
— _|_> SIGNATURE 328 TRANSACTION
/ NODE / DIRECTORY
FIRST DIGITAL SECOND DIGITAL INFORMATION 370
SIGNATURE 326 SIGNATURE 328 333 SOFTWARE
PUBLIC KEY(S) 319 352

FIG. 3

(57) Abstract: The present disclosure provides a method, system, and device for verifying a software release. To illustrate, as software
(e.g., one or more files or artifacts) completes one or more stages of a development process, one or more digital signatures are generated.
The one or more digital signatures are generated using private keys that correspond to the stage of the development process that is
completed. The one or more digital signatures, and one or more public keys corresponding to the private keys, are sent to a node device.
Upon receipt of the one or more digital signatures and the public keys (e.g., as part of a software release), the node device verifies the

digital signatures before processing the software.

[Continued on next page]

WO 20217014326 A2 | {11000 000 00RO OO 0O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2021/014326 PCT/IB2020/056776

SOFTWARE RELEASE VERIFICATION
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of U.S. Application No. 16/931,741
filed July 17, 2020, entitled “SOFTWARE RELEASE VERIFICATION” (Attorney Docket
No. JFRG.P0007US) and U.S. Provisional Application No. 62/876,560 filed July 19, 2019, and
entitted “SOFTWARE RELEASE VERIFICATION” (Attorney Docket No.
JFRG.PO0O07US P1); and is related to U.S. Patent Application No. 16/399,905 (Atty. Dkt. No.
JFRG.P0O001US) entitled “DATA BUNDLE GENERATION AND DEPLOYMENT,” filed
April 30, 2019, U.S. Patent Application No. 16/399,938 (Atty. Dkt. No. JFRG.POO03US.A)
entitled “DATA FILE PARTITION AND REPLICATION” filed April 30, 2019, and to U.S.
Patent Application No. 16/399,953 (Atty. Dkt. No. JFRG.POO0O3US.B) entitled “DATA FILE
PARTITION AND REPLICATION” filed April 30, 2019, the contents of which are

incorporated by reference herein in their entirety.
TECHNICAL FIELD

[0002] The present application is generally related to the technical field of software
deployment, and more particularly, but not by way of limitation, to techniques for verification

of a software development process.
BACKGROUND

[0003] Computer systems and software have become an integral part of modern society
and affect a variety of aspects of daily life. Software can be developed as a monolith, such as
one piece of software, or as a service-oriented architecture where each piece of software
provides a specific service and multiple pieces of software operate together. Software can be
updated to add or remove functionality, to correct bugs (e.g., critical/functional issues), and/or
to address security issues. To update a piece of software, a new version is developed and
deployed to a device, such as a software consumable device that stores and executes the new

version of the software.

[0004] As part of generating a software release, software (e.g., one or more files) may
undergo one or more development stages of a development process. Some of these

development stages include generating software builds and performing different types of tests

WO 2021/014326 PCT/IB2020/056776

on the builds. However, once the software release is finalized and deployed, there is no way
to verify that the software release successfully completed each of the one or more development
stages. For example, a malicious programmer may alter code after completion of one or more
development stages. Executing unverified software can lead to problems, such as

vulnerabilities in a computer system that executes the software.
BRIEF SUMMARY

[0005] Embodiments of the present disclosure provide systems, methods, and
computer-readable storage media that provide for verifying completion of one or more stages
of a development process for a software release. For example, a server (e.g., deployment
system/application) may receive, from an entity device, an indication of one or more files for
distribution as a software release and may receive one or more digital signatures from the entity
device. [Each digital signature of the one or more digital signatures corresponds to a
development stage (of one or more development stages) of a software development process.
To illustrate, upon completion of a particular development stage for one or more files (e.g.,
artifacts), a digital signature is generated by the entity device using a private key that
corresponds to the particular development stage. In some implementations, the private key
may be a one-time use private key. The particular digital signature and a public key that
corresponds to the private key are provided from the entity device to the server. Other digital
signatures are similarly generated and shared by other development stages (or by the same
development stages for different files). The server may generate software release information
that includes the indication of the one or more files and the one or more digital signatures, and
the server may transmit the software release information to a node device as part of a
deployment process. Additionally, the public keys may be provided to the node device (e.g.,
from the entity device or from the server). The node device may use the digital signatures and
the public keys to confirm that the corresponding software release (e.g., the one or more files)
has successfully completed the one or more development stages. Thus, improved security of
software releases may be provided through the sharing of multiple digital signatures and public

keys, which may reduce or eliminate execution of unverified software at the node device.

[0006] In some implementations, digital signature metadata (e.g., metadata
corresponding to the particular digital signature) may be provided and/or generated along with
the particular digital signature. The metadata corresponding to the particular digital signature

may include data indicative of an author of the particular digital signature, a development stage

WO 2021/014326 PCT/IB2020/056776

corresponding to the particular digital signature, a time corresponding to generation of the
particular digital signature, a build job number corresponding to the particular digital signature,
a checksum corresponding to the particular digital signature, or any combination thereof. In
such implementations, the server may generate software release information that includes the
digital signature metadata. The digital signature metadata may enable a node device to quickly
identify which public key corresponds to a particular digital signature during a verification

process.

[0007] According to one embodiment, a method for sharing digital signature
information of a software release is described. The method includes receiving file information
corresponding to one or more files of a software release from an entity device. The method
includes receiving multiple digital signatures from the entity device. Each digital signature
corresponds to a development stage of multiple development stages of the software release.
The method includes receiving node information corresponding to one or more node devices
from the entity device. The method also includes generating software release information
including the multiple digital signatures and an indication of the one or more files. The method
further includes initiating transmission of the software release information to the one or more

node devices.

[0008] According to yet another embodiment, a system for sharing digital signature
information of a software release is described. The system includes at least one memory storing
instructions and one or more processors coupled to the at least one memory. The one or more
processors are configured to execute the instructions to cause the one or more processors to
receive, from an entity device, file information corresponding to the one or more files of a
software release. The one or more processors are configured to execute the instructions to
cause the one or more processors to receive multiple digital signatures from the entity device.
Each digital signature corresponds to a development stage of multiple development stages of
the software release. The one or more processors are configured to execute the instructions to
cause the one or more processors to receive node information corresponding to one or more
node devices to receive the software release. The one or more processors are also configured
to execute the instructions to cause the one or more processors to generate software release
information including the multiple digital signatures and an indication of the one or more files.

The one or more processors are further configured to execute the instructions to cause the one

WO 2021/014326 PCT/IB2020/056776

or more processors to initiate transmission of the software release information to the one or

more node devices.

[0009] According to another embodiment, a computer program product is described
that includes a computer-readable storage device, such as a non-transitory computer-readable
storage medium, that includes instructions that, when executed by one or more processors,
cause the one or more processors to perform operations for sharing digital information of a
software release. The operations include executing a first routine to receive file information
corresponding to one or more files of a software release from an entity device. The operations
further include executing a second routine to receive multiple digital signatures from the entity
device. Each digital signature corresponds to a development stage of multiple development
stages of the software release. The operations also include executing a third routine to receive
node information corresponding to one or more node devices from the entity device, executing
a fourth routine to generate software release information including the multiple digital
signatures and an indication of the one or more files, and executing a fifth routine to initiate

transmission of the software release information to the one or more node devices.

[0010] According to another embodiment, a method for verification of a deployed
software release is described. The method includes receiving software release information
including an indication of one or more files and multiple digital signatures corresponding to
different development stages of multiple development stages of a software release. The method
includes receiving one or more public keys associated with one or more private keys used to
generate the multiple digital signatures. The method includes identifying the one or more files
based on the indication. The method includes verifying the multiple digital signatures based
on the one or more public keys. The method further includes processing the one or more files

based on verification of the multiple digital signatures.

[0011] According to yet another embodiment, a system for receiving a software release
is described. The system includes at least one memory storing instructions and one or more
processors coupled to the at least one memory. The one or more processors are configured to
execute the instructions to cause the one or more processors to receive software information
including an indication of one or more files and multiple digital signatures corresponding to
different development stages of multiple development stages of a software release. The one or
more processors are further configured to execute the instructions to cause the one or more

processors to receive one or more public keys associated with the one or more private keys

WO 2021/014326 PCT/IB2020/056776

used to generate the multiple digital signatures. The one or more processors are also configured
to execute the instructions to cause the one or more processors to identify the one or more files
based on the indication. The one or more processors are also configured to execute the
instructions to cause the one or more processors to verify the multiple digital signatures based
on the one or more public keys. The one or more processors are further configured to execute
the instructions to cause the one or more processors to process the one or more files based on

verification of the multiple digital signatures.

[0012] According to another embodiment, a computer program product is described
that includes a computer-readable storage device, such as a non-transitory computer-readable
storage medium, that includes instructions that, when executed by one or more processors,
cause the one or more processors to perform operations for verification of a deployed software
release. The operations include executing a first routine to receive software release information
including an indication of one or more files and multiple digital signatures corresponding to
different development stages of multiple development stages of a software release. The
operations include executing a second routine to receive one or more public keys associated
with one or more private keys used to generate the multiple digital signatures. The operations
further include executing a third routine to identify the one or more files based on the
indication, and executing a fourth routine to verify the multiple digital signatures based on the
one or more public keys. The operations also include executing a fifth routine to process the

one or more files based on verification of the multiple digital signatures.

[0013] The foregoing has outlined rather broadly the features and technical advantages
of the present disclosure in order that the detailed description of the invention that follows may
be better understood. Additional features and advantages will be described hereinafter which
form the subject of the claims of the present disclosure. It should be appreciated by those
skilled in the art that the conception and specific implementations disclosed may be readily
utilized as a basis for modifying or designing other structures for carrying out the same
purposes of the present disclosure. It should also be realized by those skilled in the art that
such equivalent constructions do not depart from the scope of the present disclosure as set forth
in the appended claims. The novel features which are believed to be characteristic of the
embodiments, both as to its organization and method of operation, together with further objects
and advantages will be better understood from the following description when considered in

connection with the accompanying figures. It s to be expressly understood, however, that each

WO 2021/014326 PCT/IB2020/056776

of the figures is provided for the purpose of illustration and description only and is not intended

as a definition of the limits of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS

[0014] For a more complete understanding of the present disclosure, reference is now
made to the following descriptions taken in conjunction with the accompanying figures, in

which:

[0015] FIGURE 1 is a block diagram of an example of a system that includes a server

for sharing digital signature information of a software release;

[0016] FIGURE 2 is a block diagram of another example of a system for sharing digital

signature information of a software release;

[0017] FIGURE 3 is a block diagram of another example of a system for sharing digital

signature information a software release;

[0018] FIGURE 4 is a block diagram of an example of multiple development stages of

a software release that generate digital signatures;

[0019] FIGURE 5 illustrate an example of a development ledger that stores digital

signatures and digital signature metadata;

[0020] FIGURES 6A-6B are examples of software releases including digital
signatures;
[0021] FIGURE 7 is a flow diagram of an example of a method for sharing digital

signature information of a software release;

[0022] FIGURE 8 is a flow diagram of an example of a method for verification of a

deployed software release; and

[0023] FIGURE 9 is a flow diagram of an example of a method for generating digital

signature information of a software release.

WO 2021/014326 PCT/IB2020/056776

DETAILED DESCRIPTION OF THE INVENTION

[0024] Inventive concepts utilize a system to share digital signature information and to
verify completion of a development process by a software release. To illustrate, a software
release (e.g., one or more files or artifacts) may undergo a development process at an entity
device. Upon completion of at least one development stage, a digital signature may be
generated to indicate completion of the development stage. For example, a first digital
signature may be generated based on the one or more files successfully completing a unit test,
a second digital signature may be generated based on the one or more files successfully
completing an integration test, a third digital signature may be generated on the one or more
files successfully completing assembly, etc. Each digital signature may be generated based on
a private key corresponding to the completed development stage (or a private key
corresponding to a user who signs off on completion of the development stage). In some
implementations, the private keys are one time use private keys. Each private key has a
corresponding public key. Additionally, or alternative, digital signature metadata

corresponding to the digital signatures, the private key, and/or the public key may be generated.

[0025] The digital signatures, digital signature metadata, and/or the public keys may be
transmitted from the entity device to a server. The digital signature metadata may include
information such as an author corresponding to the digital signature, a development stage
corresponding to the digital signature, a time corresponding to the digital signature, a date
corresponding to the digital signature, a build job number corresponding to the digital
signature, a checksum corresponding to the digital signature, etc. The digital signatures (and
digital signature metadata and public keys) may be sent in addition to sending of the one or
more files (e.g., the software release) or file information indicating the one or more files to the
server. The server may maintain a digital signature ledger that stores the digital signatures and

the corresponding digital signature metadata.

[0026] Based on receiving the file information and the digital signatures, the server
generates software release information. The software release information (e.g., release bundle
information) includes the digital signatures, the digital signature metadata, and an indication of
the one or more files. The server transmits the software release information to one or more
node devices to enable the one or more node devices to verify that the software release (e.g.,
the one or more files) has successfully completed the multiple development stages of the

development process. For example, the software release may be deployed, as described in U.S.

WO 2021/014326 PCT/IB2020/056776

Patent Application No. 16/399,905. In some implementations, only a portion of the files may
be deployed to the one or more node devices. For example, files that are already stored at the
one or more node devices may not be replicated and transmitted, in accordance with replication
described in U.S. Patent Application No. 16/399,938 or U.S. Patent Application No.
16/399,953. In some implementations, the server also transmits the public keys to the one or
more node devices. Alternatively, the entity device may transmit the public keys to the one or
more node devices. Using the digital signatures and the public keys, the one or more node
devices are able to verify whether the software release has successfully completed the multiple

development stages.

[0027] To illustrate, a node device receives the software release information and the
public keys. The node device may identify one or more files based on an indication of the one
or more files in the software release information. Some or all of the one or more files may be
stored at the node device. Additionally, some or all of the one or more files may be received
from the server. The node device may verify that the one or more files have completed the
multiple development stages based on the multiple digital signatures and the public keys. For
example, the node device may use the public keys to decrypt the digital signature and verify
that the digital signature is correct. Verifying each digital signature verifies that the one or

more files successfully completed the corresponding development stage.

[0028] Based on verifying that the one or more files have completed the multiple
development stages, the node device may process the one or more files. For example, the node
device may transfer the one or more files from a transaction directory to another memory
location for execution and setting a flag to indicate that the one or more files have completed
the multiple development stages. If the node device is unable to verify that the one or more
files have completed the multiple development stages, the node device may send a notification
to the entity device and/or delete (or otherwise discard) the one or more files from the
transaction directory. Thus, the node device may advantageously verify whether a software
release has completed the multiple development stages of the development process before
processing the software, thereby preventing the node device from processing unverified
software, which may open the node device to vulnerabilities. Stated another way, the node
device is able to verify that the same software that passed a development stage is the software
that is received, and that the software has not been altered since the software passed the

development stage.

WO 2021/014326 PCT/IB2020/056776

[0029] Certain units described in this specification have been labeled as modules in
order to more particularly emphasize their implementation independence. A module is “‘[a]
self-contained hardware or software component that interacts with a larger system.” Alan
Freedman, “The Computer Glossary” 268 (8th ed. 1998). A module may include a machine-
or machines-executable instructions. For example, a module may be implemented as a
hardware circuit including custom VLSI circuits or gate arrays, off-the-shelf semiconductors
such as logic chips, transistors, or other discrete components. A module may also be
implemented in programmable hardware devices such as field programmable gate arrays,

programmable array logic, programmable logic devices or the like.

[0030] Modules may also include software-defined units or instructions, that when
executed by a processing machine or device, transform data stored on a data storage device
from a first state to a second state. An identified module of executable code may, for instance,
include one or more physical or logical blocks of computer instructions that may be organized
as an object, procedure, or function. Nevertheless, the executables of an identified module
need not be physically located together, but may include disparate instructions stored in
different locations that, when joined logically together, include the module, and when executed
by the processor, achieve the stated data transformation. A module of executable code may be
a single instruction, or many instructions, and may even be distributed over several different
code segments, among different programs, and/or across several memory devices. Similarly,
operational data may be identified and illustrated herein within modules, and may be embodied
in any suitable form and organized within any suitable type of data structure. The operational
data may be collected as a single data set, or may be distributed over different locations

including over different storage devices.

[0031] In the following description, numerous specific details are provided, such as
examples of programming, software modules, user selections, network transactions, database
queries, database structures, hardware modules, hardware circuits, hardware chips, etc., to
provide a thorough understanding of the present embodiments. One skilled in the relevant art
will recognize, however, that the invention may be practiced without one or more of the specific
details, or with other methods, components, materials, and so forth. In other instances, well-
known structures, materials, or operations are not shown or described in detail to avoid

obscuring aspects of the disclosure.

WO 2021/014326 PCT/IB2020/056776

[0032] As used herein, various terminology is for the purpose of describing particular
implementations only and is not intended to be limiting of implementations. For example, as
used herein, an ordinal term (e.g., “first,” “second,” “third,” etc.) used to modify an element,
such as a structure, a component, an operation, etc., does not by itself indicate any priority or
order of the element with respect to another element, but rather merely distinguishes the
element from another element having a same name (but for use of the ordinal term). The term
“coupled” is defined as connected, although not necessarily directly, and not necessarily
mechanically; two items that are “coupled” may be unitary with each other. The terms “a” and
“an” are defined as one or more unless this disclosure explicitly requires otherwise. The term
“substantially” is defined as largely but not necessarily wholly what is specified (and includes
what is specified; e.g., substantially 90 degrees includes 90 degrees and substantially parallel
includes parallel), as understood by a person of ordinary skill in the art. In any disclosed
embodiment, the term “substantially” may be substituted with “within [a percentage] of” what
is specified, where the percentage includes .1, 1, or 5 percent; and the term “approximately”
may be substituted with “within 10 percent of” what is specified. The phrase “and/or” means
and or or. To illustrate, A, B, and/or C includes: A alone, B alone, C alone, a combination of
A and B, a combination of A and C, a combination of B and C, or a combination of A, B, and
C. In other words, “and/or” operates as an inclusive or. Similarly, the phrase “A, B, C, or a
combination thereof” or “A, B, C, or any combination thereof” includes A alone, B alone, C
alone, a combination of A and B, a combination of A and C, a combination of B and C, or a

combination of A, B, and C.

[0033] The terms “comprise” (and any form of comprise, such as “comprises” and
“comprising”), “have” (and any form of have, such as “has” and “having”), and “include”
(and any form of include, such as “includes” and “including”). As a result, an apparatus that
“comprises,” “has,” or “includes” one or more elements possesses those one or more elements,
but is not limited to possessing only those one or more elements. Likewise, a method that
“comprises,” “has,” or “includes” one or more steps possesses those one or more steps, but is

not limited to possessing only those one or more steps.

[0034] Any embodiment of any of the systems, methods, and article of manufacture
can consist of or consist essentially of — rather than comprise/have/include — any of the
described steps, elements, and/or features. Thus, in any of the claims, the term “consisting of”

or “consisting essentially of” can be substituted for any of the open-ended linking verbs recited

10

WO 2021/014326 PCT/IB2020/056776

above, in order to change the scope of a given claim from what it would otherwise be using the
open-ended linking verb. Additionally, the term “wherein” may be used interchangeably with

“where.”

[0035] Further, a device or system that is configured in a certain way is configured in
at least that way, but it can also be configured in other ways than those specifically described.
The feature or features of one embodiment may be applied to other embodiments, even though
not described or illustrated, unless expressly prohibited by this disclosure or the nature of the

embodiments.

[0036] Referring to FIGURE 1, a block diagram of a system that includes a server for
sharing digital signature information of a software release is shown and designated 100.
System 100 includes a server 110 (e.g., a first repository server), a network 120, data sources
130, an entity server 140, an entity 150, a node device 160, a server 168 (e.g., a second

repository server), and user equipment 170.

[0037] Server 110 may include one or more servers that, according to one
implementation, are configured to perform several of the functions and/or operations described
herein. One or more of the servers including server 110 may include memory, storage
hardware, software residing thereon, and one or more processors configured to perform
functions associated with system 100, as described further herein at least with reference to
FIGURES 2 and 3. One of skill in the art will readily recognize that different server and
computer architectures can be utilized to implement server 110, and that server 110 is not
limited to a particular architecture so long as the hardware implementing server 110 supports
the functions of the repository system disclosed herein. As shown in FIGURE 1, user
equipment can be used to enable an owner and/or administrator of repository server 110 to
access and modify aspects (e.g., instructions, applications, data) of repository server 110. For
example, components including user equipment 170, such as one or more processors 172, can
be used to interface with and/or implement the server 110. Accordingly, user equipment 170
(e.g., a user station) may serve as a repository portal by which a user may access a repository
system, such as a universal artifact repository, disclosed herein. For example, an artifact
repository system may include server 110 (e.g., a first server) and server 168 (e.g., a second
server). The portal can function to allow multiple users, inside and outside system 100 (e.g.,
at multiple instances of user equipment 170), to interface with one another. Additionally, it is

noted that the one or more components described with reference to user equipment 170 may

11

WO 2021/014326 PCT/IB2020/056776

also be included in one or more of repository server 110, entity server 140, entity 150, node

device 160, and/or server 168.

[0038] As shown, server 110 includes one or more artifacts 114 and software release
115. Artifacts may include one or more binaries (e.g., a computer file that is not a text file).
The artifacts may correspond to one or more package types. For example, a first artifact may
correspond to a first package type, such as Maven, and a second artifact may correspond to a
second package type, such as Bower. Software release 115 may include software 116 (e.g.,
one or more of artifacts 114) and software release information that includes digital signature
information 118. Digital signature information 118 may include one or more digital signatures
and metadata corresponding to at least one of the one or more digital signatures. In some
implementations, digital signature information 118 may include multiple digital signatures and
metadata corresponding to at least one of the multiple digital signatures. Each digital signature
may correspond to a development stage of multiple development stages of a development
process of software 116. For example, as described further herein, software 116 may be
generated by entity 150 and/or entity server 140 by undergoing multiple development stages.
The multiple digital signatures may indicate successful completion of a corresponding
development stage, and may be used by node device 160 to verify completion of the multiple

development stages, as further described herein.

[0039] Network 120, such as a communication network, may facilitate communication
of data between server 110 and other components, servers/processors, and/or devices. For
example, network 120 may also facilitate communication of data between server 110 and one
or more data sources 130, entity server 140, a node device 160, server 168, or any combination
therefore. Network 120 may include a wired network, a wireless network, or a combination
thereof. For example, network 120 may include any type of communications network, such as
a direct PC-to-PC connection, a local area network (LAN), a wide area network (WAN), a
modem-to-modem connection, the Internet, intranet, extranet, cable transmission system,
cellular communication network, any combination of the above, or any other communications
network now known or later developed within which permits two or more electronic devices

to communicate.

[0040] Data sources 130 include the sources from which server 110 collects

information. For example, data sources may include one or more reciprocities of artifacts, such

12

WO 2021/014326 PCT/IB2020/056776

as open source artifacts, vulnerability data, and/or license data, as illustrative, non-limiting

examples.

[0041] Entity server 140 may include one or more servers which entity 150 uses to
support its operations. In some implementations, entity server 140 may support a development
process 142 that includes multiple development stages for generating software for a software
release. In such implementations, entity 150 includes or is configured to generate (or initiate
generation of) software 116 (e.g., one or more files). Software 116 includes one or more files
(e.g., artifacts) to be included in a software release. For example, software 116 may correspond
to abuild job. In some implementations, after performance of development process 142, entity
150 provides software 116, or software information indicating the files included in software
116, to server 110. In other implementations, entity 150 provides a query and/or one or more
parameters for a query which is performed by server 110 to generate the software information
at server 110. To illustrate, entity 150 initiate a query by server 110 to identify one or more
files corresponding to a particular build job identifier. The software information may be used

to generate a software release, as further described herein.

[0042] Entity 150 may include any individual, organization, company, corporation,
department (e.g., government), or group of individuals. For example, one entity may be a
corporation with retail locations spread across multiple geographic regions (e.g., counties,
states, or countries). As another example, another entity may be a corporation with cruise
ships. As another example, another entity may be a group of one or more individuals. In a
particular implementation, entity 150 includes a business and at least one user who can access
server 110. For example, the user may access server 110 via an application, such as an
application hosted by server 110. To illustrate, the user may have an account (e.g., on behalf
of entity 150) and may log in to server 110 via the application. Although system 100 shows
one entity 150, in other implementations, system 100 includes multiple entities. In a particular
implementation, the multiple entities may include a first entity and a second entity, as described
further herein at least with reference to FIGURE 2. In such implementations, the first entity
and the second entity may be the same entity (e.g., part of the same company) or may be

different entities.

[0043] Node device 160 includes software 116 and software release information that
includes digital signature information 118 (including one or more digital signatures). To

illustrate, software (e.g., packages) hosted at node device 160 may be part of a software release

13

WO 2021/014326 PCT/IB2020/056776

which is a secure and immutable collection of software packages that make up a software
release. Node device 160 also includes digital signature information 118, for use in verifying
that software 116 has completed the multiple development stages of development process 142,

as further described herein with reference to FIGURES 2 and 3.

[0044] In some implementations, node device 160 may include or correspond to entity
150. Although system 100 is shown as having one node device 160, in other implementations,
the system 100 may include multiple node devices (e.g., 160). Node device 160 may include
a data center, a point-of-sale, a mobile device, or an Internet of things (IoT) device. In some
implementations, node device 160 includes a communications device, a fixed location data
unit, a mobile location data unit, a mobile phone, a cellular phone, a satellite phone, a computer,
a tablet, a portable computer, a display device, a media player, or a desktop computer.
Alternatively, or additionally, node device 160 may include a set top box, an entertainment
unit, a navigation device, a personal digital assistant (PDA), a monitor, a computer monitor, a
television, a tuner, a radio, a satellite radio, a music player, a digital music player, a portable
music player, a video player, a digital video player, a digital video disc (DVD) player, a
portable digital video player, a satellite, a vehicle or a device integrated within a vehicle, any
other device that includes a processor or that stores or retrieves data or computer instructions,
or a combination thereof. In other illustrative, non-limiting examples, the system, the device,
or the apparatus may include remote units, such as hand-held personal communication systems
(PCS) units, portable data units such as global positioning system (GPS) enabled devices, meter
reading equipment, or any other device that includes a processor or that stores or retrieves data

or computer instructions, or any combination thereof.

[0045] Server 168 may be a repository server and may include or correspond to server
110. In some implementations, server 110 and server 168 may be included in a universal
artifact management system. Server 110 and server 168 may execute different environments
while sharing artifacts 114. In some implementations, server 168 receives software release 115
(e.g., software 116 and software release information including digital signature information

118) and supplies software release 115 to node device 160.

[0046] With respect to user equipment 170, user equipment may include one or more
processors 172, memory 174, a communication adapter 176, an input/output adapter 178, a
display adapter 180, a user interface adapter 182, and a bus 184. As shown, each of one or

more processors 172, such as a central processing unit (CPU), memory 174, communication

14

WO 2021/014326 PCT/IB2020/056776

adapter 176, input/output adapter 178, display adapter 180, and user interface adapter 182 are
coupled to/via bus 184. As noted above, one or more components of user equipment 170 may
also be included in one or more other devices, such as server 110, to enable and/or support

operations and functionality at the other device.

[0047] One or more processors 172 may include a CPU or microprocessor, a graphics
processing unit (“GPU”), and/or microcontroller that has been programmed to perform the
functions of user equipment 170. Implementations described herein are not restricted by the
architecture of the one or more processors 172 so long as the one or more processors 172,
whether directly or indirectly, support the operations described herein. The one or more
processors 172 may be one component or multiple components that may execute the various

described logical instructions.

[0048] Memory 174 includes read only memory (ROM) 186 and random access
memory (RAM) 188. ROM 186 may store configuration information for booting user
equipment 170. ROM 186 can include programmable read-only memory (PROM), erasable
programmable read-only memory (EPROM), electrically erasable programmable read-only
memory (EEPROM), optical storage, or the like. User equipment 170 may utilize RAM 188
to store the various data structures used by a software application. RAM 188 can include
synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous dynamic RAM
(SDRAM), or the like. ROM 186 and RAM 188 hold user and system data, and both ROM
186 and RAM 188 may be randomly accessed. In some implementations, memory 174 may
store the instructions that, when executed by one or more processor 172, cause the one or more
processors 172 to perform operations according to aspects of the present disclosure, as

described herein.

[0049] Communications adapter 176 can be adapted to couple user equipment 170 to a
network, which can be one or more of a LAN, WAN, and/or the Internet. Therefore, in some
embodiments, server 110 may be accessed via an online portal. The I/O adapter 178 may
couple user equipment 170 to one or more storage devices 190, such as one or more of a hard
drive, a solid state storage device, a flash drive, a compact disc (CD) drive, a floppy disk drive,
a tape drive, and/or the like. Also, data storage devices 190 can be a separate server coupled
to user equipment 170 through a network connection to I/O adapter 178. Display adapter 180
can be driven by one or more processors 172 to control presentation via display device 192. In

some implementations, display adapter 180 may display a graphical user interface (GUI)

15

WO 2021/014326 PCT/IB2020/056776

associated with a software or web-based application on display device 192, such as a monitor
or touch screen. User interface adapter 182 couples user interface device 194, such as a
keyboard, a pointing device, and/or a touch screen to the user equipment 170. The I/O adapter
178 and/or the user interface adapter 182 may, in certain embodiments, enable a user to interact

with user equipment 170. Any of devices 172-184 may be physical and/or logical.

[0050] The concepts described herein are not limited to the architecture of user
equipment 170. Rather, user equipment 170 is provided as an example of one type of
computing device that can be adapted to perform the functions of server 110 and/or a user
interface device. For example, any suitable processor-based device can be utilized including,
without limitation, personal data assistants (PDAs), tablet computers, smartphones, computer
game consoles, multi-processor servers, and the like. Moreover, the systems and methods of
the present disclosure can be implemented on application specific integrated circuits (ASIC),
very large scale integrated (VLSI) circuits, or other circuitry. In fact, persons of ordinary skill
in the art may utilize any number of suitable structures capable of executing logical operations
according to the described embodiments. Additionally, it should be appreciated that user
equipment 170, or certain components thereof, may reside at, or be installed in, different

locations within system 100.

[0051] In some implementations, server 110 (and/or server 168) can include a server
and/or cloud-based computing platform configured to perform operations and/or execute the
steps described herein. Accordingly, server 110 (and/or server 168) may include a particular
purpose computing system designed, configured, or adapted to perform and/or initiate
operations, functions, processes, and/or methods described herein and can be communicatively
coupled with a number of end user devices (e.g., user equipment 170), which can be, e.g., a
computer, tablet, Smartphone, or other similar end user computing device. Users can interact
with server 110 (and/or server 168) using a device via one or more networks, such as network
120, which itself can include one or more of a local intranet, a LAN (Local Area Network), a
WAN (Wide Area Network), a virtual private network (VPN), and the like. As will be apparent
to those of skill in the art, communicative coupling between different devices of system 100
can be provided by, e.g., one or more of wireless connections, a synchronous optical network
(SONET) connection, a digital Tl, TN, El or E3 line, Digital Data Service (DDS) connection,

DSL (Digital Subscriber Line) connection, an Ethernet connection, and the like.

16

WO 2021/014326 PCT/IB2020/056776

[0052] Referring to FIGURE 2, a block diagram of a system for sharing digital
signature information of a software release according to an embodiment is shown as a system
200. System 200 may include or correspond to at least a portion of system 100. System 200
includes server 110, networks 120a, 120b, entities 150a, 150b, node devices 160a, 160b, 160c,
160d, and server 168. As shown in FIGURE 2, system 200 is spread across multiple regions,
such as a first region 202 and a second region 204. For example, each region may correspond
to a different city, county, state, country, continent, or other physical or logical distinction. To
illustrate, first region 202 may include or correspond to North America (e.g., the United States)

and second region 204 may include or correspond to Asia (e.g., Japan).

[0053] As shown, server 110 is included in first region 202 and server 168 is included
in second region 204. Server 168 may be a repository server and may include or correspond
to server 110. In some implementations, server 110 and server 168 may be included in a
universal artifact management system. Networks 120a, 120b may include or correspond to
network 120. Each of the entities 150a, 150b may include or correspond to entity 150. In some
implementations, a first entity 150a and a second entity 150b may be part of the same group,
company, etc., or may be part of different groups, companies, etc. Each of node devices 160a,
160b, 160c, 160d may include or correspond to node device 160. In some implementations,
each of node devices 160a, 160b, 160c, 160d corresponds to the same entity. In other
implementations, at least one node device of node devices 160a, 160b, 160¢, 160d corresponds

to another entity.

[0054] Server 110 may include a memory 210 (e.g., one or more memory devices), one
or more processors 250, and a network interface 270. Network interface 270 may be configured
to be communicatively coupled, via one or more networks (e.g., 120a, 120b) to one or more
external devices, such as one or more of entities (e.g., 150a, 150b), one or more node devices
(e.g., 160a, 160b, 160c, 160d), one or more servers (e.g., 168), one or more data sources (e.g.,
130), or any combination thereof. For example, network interface 270 may include a

transmitter, a receiver, or a combination thereof (e.g., a transceiver).

[0055] Memory 210 may include ROM devices, RAM devices, one or more HDDs,
flash memory devices, SSDs, other devices configured to store data in a persistent or non-
persistent state, or a combination of different memory devices. Memory 210 includes (e.g., is
configured to store) instructions 212, thresholds 216, artifacts 218 (e.g., binaries), meta data

220, a transaction log 224, and entity data 230. For example, memory 210 may store

17

WO 2021/014326 PCT/IB2020/056776

instructions 212, that when executed by the one or more processors 250, cause the processor(s)
250 to perform functions, methods, processes, operations as described further herein. In some
implementations, instructions 212 may include or be arranged as an application 214 (e.g., a
software program) associated with a universal artifact repository. For example, application
214 may provide a portal via which one or more entities and/or users interact with and access
server 110. Application 284 at entity 150a and application 294 at node device 160a are
configured to enable entity 150a and node device 160a to communicate with and/or access
server 110. In some implementations, each of application 284 and application 294 enable
functionality as described with respect to server 110. In other implementations, application
284 and application 294 may enable and/or support less than all of the functionality as
described with reference to server 110. To illustrate, application 294 may not provide

functionality as described with reference to analyzer 258.

[0056] In some implementations, memory 210 includes multiple memories accessible
by processor 250. In some such implementations, one or more of the memories may be external
to server 110. To illustrate, at least one memory may include or correspond to a database
accessible to server 110, such as a database that stores one or more thresholds 216, artifacts
218, meta data 220, software release 115, entity data 230, or any combination thereof. In some
implementations, memory 210 may include or be coupled to cloud storage such that one or
more thresholds 216, one or more of artifacts 218, meta data 220, software release 115, and/or

entity data 230 is stored at a cloud storage location and accessible by server 110.

[0057] Threshold(s) 216 may include or correspond to one or more thresholds, such as
a time period threshold, a size threshold, etc. Artifacts 218 may include or correspond to
artifacts 114. Meta data 220 may include meta data for artifacts 114, meta data for application
214, meta data for one or more files (e.g., 116), or any combination thereof. Meta data for an
artifact (e.g., 114) may include a file name, a file size, a checksum of the file, and/or one or
more properties that annotate the artifact, such as when the artifact was created by a build, a
build job name, an identifier of who initiated the build, a time the build was initiated, a build
agent, a CI server, a build job number, and/or a quality assurance test passed indicator, as

illustrative, non-limiting examples.

[0058] Software release 115 includes software 116 and software release information.
Software release information includes information corresponding to software 116, such as one

or more checksums, metadata, or a combination thereof, as further described in U.S. Patent

18

WO 2021/014326 PCT/IB2020/056776

Application No. 16/399,905. The software release information may also include digital
signature information 118. Software 116 may include one or more files (e.g., one or more of
artifacts 218), and may correspond to a build job. Software 116 may be designated for
distribution to entity devices as part of software release 115. Digital signature information 118
includes one or more digital signatures and metadata associated with at least one of the one or
more digital signatures, such as an author of the signature, a time of the signature, a date of the

signature, a development stage associated with the signature, etc.

[0059] Entity data 230 may include data associated with one or more entities. For
example, entity data 230 may include or correspond to one or more of entity 150a, 150b. Entity
data 230 may include one or more credentials 232, package type information 234, and a node
device log 236. Credential 232 include login information to enable one or more users and/or
one or more entities to access server 110. Additionally, or alternatively, credential 232 may
include security or authentication information, such as a private key, a public key, and/or a
token of a user and/or entity. Package type information 234 may identify one or more package
types used by the corresponding entity. As illustrative, non-limiting examples, the one or more
package types may include Bower, Chef, CocoaPods, Conan, Conda, CRAN, Debian, Docker,
Git LFS, Go, Helm, Maven, npm, NuGet, Opkg, P2, PHP Composer, Puppet, PyPI, RPM,
RubyGems, SBT, Vagrant, and VCS. Node device log 236 includes node device information
of one or more node devices corresponding to an entity of entity data 230. To illustrate, node
device log 236 may include topology information (e.g., location information) of one or more
node devices, one or more node device identifiers, owner/manager information, file and/or
software information (e.g., name, version number, size, etc.) installed at one or more node
devices, or any combination thereof, as illustrative, non-limiting examples. In some
implementations, node device log 236 may indicate a list of target nodes at which one or more

security objects are to be synchronized.

[0060] Processor 250 may include may be a CPU (e.g, processor 172) or
microprocessor, a graphics processing unit (“GPU”), a field-programmable gate array (FPGA)
device, an application-specific integrated circuits (ASIC), another hardware device, a firmware
device, a microcontroller, or any combination thereof that has been programmed to perform
the functions. As shown in FIGURE 2, in an implementation, server 110 (e.g., processor 250)
may include a manager 252, a deployer 253, a replicator 254, a tracker 256, an analyzer 258,

and an indexer 260. In some implementations, processor 250 may include one or more

19

WO 2021/014326 PCT/IB2020/056776

modules. For example, each of manager 252, deployer 253, replicator 254, tracker 256,
analyzer 258, and indexer 260 may include or correspond to one or more modules. In an
implementation, server 110 (e.g., processor 250 or modules 252, 253, 254, 256, 258, 260) may
be configured to execute one or more routines that perform various operations as described
further herein. A module is ‘‘[a] self-contained hardware or software component that interacts
with a larger system.” Alan Freedman, “The Computer Glossary” 268 (8th ed. 1998). A
module may include a machine- or machines-executable instructions. A module may also be
implemented in programmable hardware devices such as field programmable gate arrays,
programmable array logic, programmable logic devices or the like. Modules may also include
software-defined units or instructions, that when executed by a processing machine or device,
transform data stored on a data storage device from a first state to a second state. Modules may

be separate or two or more may be combined.

[0061] In some implementations, one or more of modules (e.g., 252, 253, 254, 256,
258, 260) may locally reside in memory 210 or in a separate location. Further, as will be
understood by those of skill in the art, a “module” can include an application-specific integrated
circuit (“ASIC”), an electronic circuit, a processor (shared, dedicated, or group) that executes
one or more of software or firmware, a combinational logic circuit, and/or other suitable

components that provide the described functionality.

[0062] Referring to processor 250, manager 252 may be configured to enable a user
(e.g., 150a) to manage one or more other components/modules (e.g., 253, 254, 256, 258, 260)
of processor 250. Additionally, or alternatively, manager 252 may enable storage of and/or
access to one or artifacts 218. In some implementations, manager 252 may enable
administration of multiple instances of a user account, such as a first instance at server 110 and
a second instance at server 168. Accordingly, manager 252 may be configured to operate as
an administrative tool that enables an entity (e.g., 150a) to monitor and control a first instance
of a user account (corresponding to first region 202) and a second instance of the user account
(corresponding to second region 204). For example, the entity (e.g., 150a) may be able to see
which services (e.g., 253, 254, 256, 258, 260) are operating in different regions,
add/modify/remove individual users in different regions, set different permissions for
individual users in different regions, provide and store one or more public keys, etc. In some
implementations, manager 252 includes a manager module that includes one or more routines,

executable by one or more processors (e.g., the processor 172 of FIGURE 1) or processor 250

20

WO 2021/014326 PCT/IB2020/056776

to enable a user (e.g., 150a) to manage one or more other components/modules (e.g., 253, 254,

256, 258, 260) of processor 250, as described herein.

[0063] Deployer 253 may be configured to perform a software release distribution. For
example, deployer 253 provides a secure and structured platform to distribute release binaries
as a single coherent release bundle to multiple remote locations and update them as new release
versions are produced. A release bundle may include one or more files and/or release bundle
information which includes or indicates a list of the one or more files (e.g., artifacts) to be
included in the release bundle and meta data (e.g., properties) associated with the release
bundle. For example, software release 115 may include software 116 (e.g., one or more files)
and software release information which includes metadata corresponding to software 116. The
release bundle information may include, for each file of the bundle release, a checksum (of the
file), meta data (corresponding to the file), or both. In some implementations, the release
bundle also includes additional meta data (e.g., file name, file size, path to the file, etc.)
corresponding to the release bundle, such as a release bundle name, a version number, a source
identifier, description information, release data, and/or a size. The software release information
may also include digital signature information 118 which includes digital signatures and, in
some implementations, digital signature metadata that corresponds to at least one of the digital
signatures. Additionally, or alternatively, the software release information may include a
signature (or other cryptography technique) to render the release bundle information
immutable. In some implementations, the signature corresponding to the release bundle is
different from the digital signatures (e.g., generated by development stages of the development
process). In other implementations, one of the digital signatures may be used to render the

release bundle information immutable.

[0064] Deployer 253 may enable generation of a release bundle, auditing and
traceability by tracking all changes associated with a release bundle distribution of the release
bundle including permission levels release content, scheduling of a release bundle for
distribution, tracking of a release bundle, stopping distribution of a release bundle, and/or
selection of target destinations. Additionally, or alternatively, a software release may be
provisioned amongst one or more nodes devices (e.g., 160a, 160b, 160c, 160d). In some
implementations, as part of the release flow, release bundles are verified by the source and/or
destination to ensure that they are signed correctly and safe to use. In some implementations,

deployer 253 includes a deployer module that includes one or more routines, executable by one

21

WO 2021/014326 PCT/IB2020/056776

or more processors (e.g., the processor 172 of FIGURE 1) or processor 250 to perform a

software release distribution.

[0065] Replicator 254 may be configured to coordinate and provide one or more
artifacts (e.g., one or more files) and/or meta data between two or more devices. For example,
replicator 254 may coordinate transfer of one or more artifacts (e.g., one or more files) and/or
meta data between server 110 and server 168, between server 110 and one or more of node
devices 160a, 160b, 160c, 160d, or both. In some implementations, replicator 254 is configured
to be used in conjunction with deployer 253 to distribute a software release, provide efficient
network utilization by optimizing replication, and reduce network load and/or release bundle
synchronization time from source device (e.g., server 110) to target instance (e.g., server 168)
or node device (e.g., 160a, 160b, 160c, 160d). Additionally, or alternatively, replicator 254
may be configured to identify a difference between at least one file stored at a first device (e.g.,
server 110) and one or more files stored at a second device (e.g., server 168 or a node device),
and initiate transfer of at least one or more portions of a file to the second device. In some
implementations, replicator 254 includes a replicator module that includes one or more
routines, executable by one or more processors (e.g., the processor 172 of FIGURE 1) or
processor 250 to coordinate and provide one or more artifacts (e.g., one or more files) and/or

meta data between two or more devices.

[0066] Tracker 256 may be configured to track one or more artifacts, meta data, one or
more release bundles, or any combination thereof deployed or attempted to be deployed to a
node device, such as one or more of node devices 160a, 160b, 160c, 160d, a server (e.g., server
110, 168), or both. In some implementations, tracker 256 includes a tracker module that
includes one or more routines, executable by one or more processors (e.g., the processor 172
of FIGURE 1) or processor 250 to track one or more artifacts, meta data, one or more release
bundles, or any combination thereof deployed or attempted to be deployed to a node device,

such as one or more of node devices 160a, 160b, 160c, 160d, and/or one or more servers.

[0067] Analyzer 258 may be configured to analyze one or more artifacts (e.g., 218)
and/or meta data (e.g., 222) to identify a vulnerability corresponding to the one or more
artifacts, determine license compliance of the one or more artifacts, and/or determine an impact
of an issue with a deployed file (e.g., artifact). In some implementations, analyzer 258 is
configured to analyze data stored at memory 210, identify issues related to deployed software,

perform recursive scanning, and perform an impact analysis. In some implementations,

22

WO 2021/014326 PCT/IB2020/056776

analyzer 258 includes an analyzer module that includes one or more routines, executable by
one or more processors (e.g., the processor 172 of FIGURE 1) or processor 250 to analyze one
or more artifacts (e.g., 218) and/or meta data (e.g., 222) to identify a wvulnerability
corresponding to the one or more artifacts, determine license compliance of the one or more

artifacts, and/or determine an impact of an issue with a deployed file (e.g., artifact).

[0068] Indexer 260 may be configured to provide an indexing capability, including
maintaining interdependencies and information, for one or more package types. Additionally,
or alternatively, indexer 260 is configured to generate meta data (e.g., 220), such as meta data
defined by a universal artifact repository manager and utilized by one or more of manager 252,
deployer 253, replicator 254, tracker 256, and analyzer 258. In some implementations, indexer
260 includes an indexer module that includes one or more routines, executable by one or more
processors (e.g., the processor 172 of FIGURE 1) or processor 250 to provide an indexing

capability, including maintaining interdependencies and information, for one or more package

types.

[0069] Referring to FIGURE 3, a block diagram of a system for sharing digital
signature information of a software release is shown and designated 300. System 300 may
include or correspond to at least a portion of system 100 and/or system 200. System 300
includes an entity device 310, a server 340, and a node device 360. Entity device 310, server
340, and node device 360 may be coupled via one or more networks, such as network 120.
Entity device 310 may include or correspond to entity server 140, entity 150, 150a, 150b, or
any combination thereof. Server 340 may include or correspond to server 110, server 168, or
a combination thereof. Node device 360 may include or correspond to node device 160, 160a,

160b, 160c, 160d.

[0070] Entity device 310 includes one or more processors 312 and a memory 314.
Memory 314 includes software 316 (e.g., one or more files), one or more private keys 318, and
one or more public keys 319. Public keys 319 correspond to private keys 318. For example, a
digital signature that is encrypted using a particular private key can be decrypted through use
of a corresponding particular public key. Additionally, memory 314 may include instructions
(not shown) that are executable by processor 312 to cause processor 312 to perform one or
more operations. In some implementations, the instructions may include or be arranged as an
application, such as application 284 (e.g., a software program), associated with server 340.

Entity device 310 also includes multiple development stages 320. The development stages are

23

WO 2021/014326 PCT/IB2020/056776

of a development process for software, and include development stages such as building, unit
tests, integration tests, and assembly, as non-limiting examples. In a particular implementation,
development stages 320 include a first development stage 322 and a second development stage
324. In other implementations, more than two development stages may be included in
development stages 320. Although system 300 is described as included one entity device 310,
in other implementations, system 300 may include multiple entity devices (e.g., 310) coupled

to server 340.

[0071] Server 340 includes one or more processors 342 and a memory 344. Memory
344 may include or correspond to memory 210. Memory 344 includes a one or more files 348
(e.g., artifacts). The one more files 348 may include or correspond to artifacts 114 and/or
artifacts 218. Additionally, memory 344 may include instructions (not shown) that are
executable by processor 342 to cause processor 342 to perform one or more operations. In
some implementations, the instructions may include or be arranged as an application, such as

application 214 (e.g., a software program).

[0072] Although system 300 is described as including one server 340, in other
implementations, system 300 may include multiple servers (e.g., 340) coupled to entity device
310 and/or node device 360. Additionally, or alternatively, it is noted that server 340 (e.g.,
processor 342) may include one or more additional components or modules, such as manager
252, deployer 253, replicator 254, tracker 256, analyzer 258, and/or indexer 260, as illustrative,

non-limiting examples.

[0073] Node device 360 includes one or more processors 362, a memory 364 (e.g., one
or more memories), and a transaction directory 370. Transaction directory 370 may include or
correspond to a storage device configured to receive and store one or more files. In some
implementations, transaction directory 370 is distinct from memory 364. In other

implementations, transaction directory includes a logical or virtual portion of memory 364.

[0074] Memory 364 may include instructions (not shown) that are executable by
processor 362 to cause processor 362 to perform one or more operations. In some
implementations, the instructions may include or be arranged as an application, such as
application 294 (e.g., a software program). Additionally, or alternatively, memory 364 may

include one or more files (e.g., software), such as software corresponding to a release bundle.

24

WO 2021/014326 PCT/IB2020/056776

[0075] Processor 362 includes a verifier 363. Verifier 363 is configured to verify
whether software (e.g., one or more files) has successfully completed one or more of the
multiple development stages of development stages 320. For example, verifier 363 may verify
that one or more files have successfully completed an initial development stage, an
intermediate development stage, a final development stage, or multiple development stages. In
some implementations, verifier 363 includes a verifier module that includes one or more
routines, executable by one or more processors (e.g., the processor 172 of FIGURE 1) or
processor 362 to verify whether software has successfully completed the multiple development

stages of development stages 320.

[0076] Although system 300 is described as including one node device 360, in other
implementations, system 300 may include multiple node devices (e.g., 360) coupled to server
340. Additionally, or alternatively, it is noted that node device 360 (e.g., processor 362) may
include one or more additional components or modules, such as manager 252 and/or replicator

254, as illustrative, non-limiting examples.

[0077] During operation of system 300, entity device 310 performs development stages
320 on software 316 (e.g., one or more files). Upon successful completion of a development
stage, a corresponding digital signature is generated and encrypted using a private key. For
example, upon successful completion of first development stage 322, first digital signature 326
is generated. As another example, upon successful completion of second development stage
324, second digital signature 328 is generated. In a particular implementation, first
development stage 322 corresponds to a unit test, and second development stage 324
corresponds to an integration test. In other implementations, first development stage 322 and
second development stage 324 correspond to other development stages. As another example,
a digital signature may be generated when an initial development stage is completed, a digital
signature may be generated when an intermediate development stage is completed, and a digital
signature may be generated when a final development stage is completed. In some
implementations, at least one development stage can have two or more digital signatures (e.g.,
there may be different digital signatures for when different sets of files complete the same
development stage). In some implementations, each digital signature may correspond to a
software build job. For example, each digital signature represents successful completion by a
software build job of a corresponding development stage. In some implementations, additional

digital signature may be generated. For example, first digital signature 326 and second digital

25

WO 2021/014326 PCT/IB2020/056776

signature 328 may correspond to a first artifact, a third digital signature may be generated when
a second artifact completes first development stage 322, a fourth digital signature may be
generated when the second artifact completes second development stage 324, and a fifth digital
signature may be generated when the first artifact and the second artifact complete a third
development stage of development stages 320. The third development stage may correspond

to an assembly stage, as further described with reference to FIGURE 4.

[0078] First digital signature 326 is generated using a first private key, and second
digital signature 328 is generated using a second private key. The first and second private keys
are stored at memory 314 as private keys 318. In some implementations, the first private key
is a one-time use private key that corresponds to the first development stage 322, and the second
private key is a one-time use private key that corresponds to the second development stage 324.
Additionally, the first private key and the second private key correspond to a first public key
and a second public key, respectively. The first and second public keys are stored at memory
324 as public keys 319. Although two private keys and two public keys are described, in other
implementations, more than two private keys and more than two public keys may be used, such

as based on the number of development stages in development stages 320.

[0079] Entity device 310 generates software information 330 and transmits the
software information 330 to server 340. Software information 330 may include an indication
of one or more files included in software 316. As an example, software information 330 may
include a list of the files that are included in software 316. Additionally, or alternatively, the
indication of the one or more files may include a checksum for each of the one or more files, a
checksum for the entirety of the one or more files, or a combination thereof. In some
implementations, entity device also transmits software 316 to server 340. Server 340 receives
software information 330 from entity device 310 and identifies files 348 (e.g., artifacts) that
correspond to software 316. Alternatively, server 340 receives software 316 from entity device

and stores software 316 at memory 344 as files 348.

[0080] Entity device 310 also generates digital signature information 332 and transmits
digital signature information 332 to server 340. Digital signature information 332 includes a
plurality of digital signatures that correspond to development stages of development stages
320. In the example illustrated in FIGURE 3, digital signature information 332 includes first
digital signature 326 (corresponding to first development stage 322) and second digital

signature 328 (corresponding to second development stage 324). Digital signature information

26

WO 2021/014326 PCT/IB2020/056776

332 may also include digital signature metadata that corresponds to the digital signatures. For
example, digital signature information 332 may include, for each digital signature, an author
of the digital signature, a development stage corresponding to the digital signature, a time
corresponding to generation of the particular digital signature, a build job number
corresponding to the particular digital signature, or any combination thereof. Server 340
receives digital signature information 332 and stores digital signature information 332 at
memory 344. In some implementations, server 340 may maintain information indicating the
digital signatures. In such implementations, server 340 may maintain a ledger that includes the
multiple digital signatures and digital signature metadata corresponding to the multiple digital

signatures.

[0081] In some implementations, entity device 310 also generates and/or provides node
information 333. Node information 333 includes an indication of one or more node devices,
such as node device 360, that software 316 is to be released to. In some implementations, node
information 333 may indicate one or more distribution paths that are to be used to distribute
software 316 to the one or more node devices. Server 340 receives node information 333 from
entity device 310 and uses node information 333 to determine which node devices to send a

software release to.

[0082] In some implementations, entity device 310 transmits one or more public keys
319to server 340. For example, entity device 310 may transmit a first public key corresponding
to first digital signature 326 (e.g., corresponding to the first private key used to generate first
digital signature 326) and a second public key corresponding to second digital signature 328
(e.g., corresponding to the second private key used to generate second digital signature 328) to
server 340. In such implementations, server 340 receives public keys 319 and stores public
keys 319 at memory 344 for later transmission to node device 360. In an alternate

implementation, entity device 310 transmits public keys 319 directly to node device 360.

[0083] After receiving software information 330, digital signature information 332, and
optionally node information 333, server 340 generates software release information that
includes the digital signatures and the files 348. For example, server 340 may generate
software release 350. Software release 350 includes software 352 (e.g., corresponding to files
348 and software 316) and software release information that includes digital signature
information 332 (that includes multiple digital signatures, such as first digital signature 326

and second digital signature 328). Server 340 transmits software release 350 (including the

27

WO 2021/014326 PCT/IB2020/056776

software release information) to node device 360 based on node device 360 being indicated in
node information 333. Server 340 also transmits software release 350 to other node devices
indicated by node information 333. In some implementations, server 340 also transmits one or
more public keys 319 to node device 360, and node device 360 store the one or more public

keys 319 at memory 364.

[0084] After receiving software release 350 from server 340 (e.g., an artifact repository
server) and one or more public keys 319 (either from server 340 or from entity device 310),
node device 360 identifies the one or more files indicated in the software release information.
In some implementations, node device 360 already stores at least one of the one or more files,
and the one or more files are transferred to transaction directory 370 as software 352. In other
implementations, software 352 is received from server 340 and stored in transaction directory

370.

[0085] After identifying (and/or receiving) software 352, node device 360 performs
one or more verification operations on software 352. For example, verifier 363 verifies whether
software 352 has completed development stages 320 based on the multiple digital signatures
and public keys 319. To illustrate, verifier 363 may decrypt a particular digital signature using
the corresponding public key to determine whether the particular digital signature is valid. If
the particular digital signature is valid, verifier 363 determines that software 352 successfully

completed the corresponding development stage of development stages 320.

[0086] In some implementations, verifier 363 may identify the public key that
corresponds to the particular signature based on digital signature information 332. For
example, digital signature information 332 may indicate that a first digital signature
corresponds to a first author, and verifier 363 may identify a public key that corresponds to the
first author for use in decrypting the first digital signature. In some implementations, multiple
public keys may correspond to the same author, and verifier 363 may try each of the multiple

public keys to decrypt the first digital signature.

[0087] Node device 360 processes software 352 based on verifying that software 352
(e.g., the one or more files) has completed the development stages 320. For example, if verifier
363 verifies that software 352 has completed development stages 320, node device 360 may
load software 352 to memory 364 (or another memory other than transaction directory 370).

Additionally, node device 360 may set verification flag 366 to indicate that software 352 has

28

WO 2021/014326 PCT/IB2020/056776

successfully completed development stages 320. Processing software 352 may also include
executing software 352 at node device 360. Node device 360 may also transmit a notification
to server 340, the notification indicating that software 352 is accepted. Alternatively, if verifier
363 fails to verify that software 352 has completed development stages 320, node device 360
may discard (e.g., delete) software 352 from transaction directory 370 and transmit a
notification to server 340, the notification indicating that software 352 is rejected.
Additionally, node device 360 may clear verification flag 366. In some implementations, the
notification may identify which digital signature is not verified, which development stage
corresponds to the unverified digital signature, an author that corresponds to the unverified
digital signature, or a combination thereof. The notification may be sent from the server 340

to the entity device 310.

[0088] Although described as node device 360 performing the verification operations,
in some implementations, server 340 may include a verifier (e.g., 363) and server 340 may
perform one or more verification operations on behalf of node device 360. For example, server
340 may use the public keys to decrypt one or more digital signatures included in digital
signature information 332 to verify the one or more digital signatures. Server 340 may then
deploy the verified files to node device 360. In some implementations, if a file is not verified,
the file is not transmitted to node device 360, server 340 notifies entity device 310, or a
combination thereof. Additionally, or alternatively, server 340 may verify some of the files
and transmit the digital signatures and public keys for the files that server 340 does not attempt

to verify to node device 360.

[0089] Although described as transmitting multiple digital signatures, in some
implementations, a single digital signature may be generated and transmitted from entity device
310. For example, first digital signature 326 may correspond to an initial development stage
or an intermediate development stage, and first digital signature 326 may be included in digital
signature information 332. Alternatively, second digital signature 328 may correspond to an
intermediate development stage or a final development stage, and second digital signature 328
may be included in digital signature information 332. Digital signature information 332 may
be used by node device 360 (or server 340) along with public keys 319 to verify whether
software 352 has successfully completed a corresponding development stage of development

stages 320.

29

WO 2021/014326 PCT/IB2020/056776

[0090] According to yet another embodiment, a system for sharing digital signature
information of a software release is described. The system includes at least one memory (e.g.,
344) storing instructions and one or more processors (e.g., 342) coupled to the at least one
memory. The one or more processors are configured to execute the instructions to cause the
one or more processors to receive, from an entity device (e.g., 310), file information (e.g., 330)
corresponding to one or more files of a software release. The one or more processors are further
configured to execute the instructions to cause the one or more processors to receive multiple
digital signatures (e.g., 332) from the entity device. Each digital signature corresponds to a
development stage of multiple development stages (e.g., 320) of the software release. The one
or more processors can further be configured to execute the instructions to cause the one or
more processors to receive node information (e.g., 333) corresponding to one or more node
devices (e.g., 360) to receive the software release. The one or more processors can be
configured to execute the instructions to cause the one or more processors to generate software
release information (e.g., 350) including the multiple digital signatures and an indication of the
one or more files. The one or more processors can be further configured to execute the
instructions to cause the one or more processors to initiate transmission of the software release

information to the one or more node devices.

[0091] In some implementations, the multiple digital signatures are generated using
one or more private keys, and the one or more processors are further configured to receive one
or more public keys (e.g., 319) that correspond to the one or more private keys and to initiate
transmission of the one or more public keys to the one or more node devices. Additionally, or
alternatively, each digital signature of the multiple digital signatures corresponds to a software
build job. Additionally, or alternatively, the one or more processors are further configured to
maintain a ledger of digital signatures, the ledger including the multiple digital signatures and

digital signature metadata (e.g., 332) corresponding to the multiple digital signatures.

[0092] According to another embodiment, a computer program product is described
that includes a computer-readable storage device, such as a non-transitory computer-readable
storage medium, that includes instructions that, when executed by one or more processors (e.g.,
342), cause the one or more processors to perform operations for sharing digital information of
a software release. The operations include executing a first routine to receive file information
(e.g., 330) corresponding to one or more files of a software release from an entity device (e.g.,

310). The operations further include executing a second routine to receive multiple digital

30

WO 2021/014326 PCT/IB2020/056776

signatures (e.g., 332) from the entity device. Each digital signature corresponds to a
developmental stage of multiple development stages (e.g., 320) of the software release. The
operations also include executing a third routine to receive node information (e.g., 333)
corresponding to one or more node devices (e.g., 360) from the entity device, executing a fourth
routine to generate software release information (e.g., 350) including the multiple digital
signatures and an indication of the one or more files, and executing a fifth routine to initiate

transmission of the software release information to the one or more node devices.

[0093] According to yet another embodiment, a system for receiving a software release
is described. The system includes at least one memory (e.g., 364) storing instructions and one
or more processors (e.g., 362) coupled to the at least one memory. The one or more processors
are configured to execute the instructions to cause the one or more processors to receive
software information (e.g., 350) including an indication of one or more files and multiple digital
signatures (e.g., 332) corresponding to different development stages of multiple development
stages (e.g., 320) of a software release. The one or more processors are further configured to
execute the instructions to cause the one or more processors to receive one or more public keys
(e.g., 319) associated with the one or more private keys used to generate the multiple digital
signatures. The one or more processors are also configured to execute the instructions to cause
the one or more processors to identify the one or more files (e.g., 352) based on the indication.
The one or more processors are also configured to execute the instructions to cause the one or
more processors to verify the multiple digital signatures based on the one or more public keys.
The one or more processors are further configured to execute the instructions to cause the one
or more processors to process the one or more files based on verification of the multiple digital

signatures.

[0094] In a particular implementation, the one or more processors are further
configured to identify a first public key of the one or more public keys that corresponds to a
first digital signature of the multiple digital signatures based on an author of the first digital
signature and an author associated with the first public key. Additionally, or alternatively,
verifying that the one or more files have completed the multiple stages of development includes
decrypting the multiple digital signatures using the one or more public keys. Additionally, or
alternatively, the software release information is received from an artifact repository server
(e.g., 340). Alternatively, the software release information is received from an entity device

(e.g., 310).

31

WO 2021/014326 PCT/IB2020/056776

[0095] According to another embodiment, a computer program product is described
that includes a computer-readable storage device, such as a non-transitory computer-readable
storage medium, that includes instructions that, when executed by one or more processors (e.g.,
362), cause the one or more processors to perform operations for verification of a deployed
software release. The operations include executing a first routine to receive software release
information (e.g., 350) including an indication of one or more files and multiple digital
signatures (e.g., 332) corresponding to different development stages of multiple development
stages (e.g., 320) of a software release. The operations include executing a second routine to
receive one or more public keys (e.g., 319) associated with one or more private keys used to
generate the multiple digital signatures. The operations further include executing a third
routine to identify the one or more files (e.g., 352) based on the indication, and executing a
fourth routine to verify the multiple digital signatures based on the one or more public keys.
The operations also include executing a fifth routine to process the one or more files based on

verification of the multiple digital signatures.

[0096] Thus, system 300 describes generation and/or use of digital signatures to verify
whether software 352 has completed at least one of development stages 320. For example,
digital signature information 332 (including one or more digital signatures) may be included in
software release 350 that is transmitted to node device 360. Digital signature information 332
and public keys 319 may advantageously be used by node device 360 (or server 340) to verify
whether software 352 has successfully completed one or more of development stages 320.
Thus, node device 360 may refrain from processing software that has not completed one or
more of development stages 320, which may prevent node device 360 from being exposed to
vulnerabilities corresponding to software that is not fully developed and tested (e.g., has not
successfully completed the development stages 320). This may also prevent insertion of

unauthorized code into software 352 after completion of a development stage.

[0097] Referring to FIGURE 4, a block diagram of an example of multiple
development stages of a software release are shown and designated 400. Multiple development

stages 400 may include or correspond to development stages 320.

[0098] In the example of FIGURE 4, multiple development stages 400 include code
generation 410, first build 412, second build 414, unity test 416, unity test 418, integration test
420, integration test 422, assembly 424, additional testing 426, distribution 428, deployment

430, and runtime 432. In other implementations, fewer development stages or more

32

WO 2021/014326 PCT/IB2020/056776

development stages may be included. In the example of FIGURE 4, code generation 410, first
build 412, second build 414, unity test 416, unity test 418, integration test 420, integration test
422, assembly 424, additional testing 426, and distribution 428 are performed at entity 402,
deployment 430 is performed at server 404, and runtime 432 is performed at node 406. Entity
402 may include or correspond to entity server 140, entity 150, 150a, 150b, entity device 310,
or any combination thereof. Server 404 may include or correspond to server 110, server 168,
server 340, or any combination thereof. Node 406 may include or correspond to node device

160, 160a, 160b, 160c, 160d, node device 360, or any combination thereof.

[0099] To start the development process, code may be generated at code generation
410. For example, code for one or more files (e.g., artifacts) may be generated or developed.
The code may be combined into a first build job at first build 412. The first build job may
undergo unity testing at unity test 416. Upon successful completion of unity test 416, a first
digital signature 442 is generated. First digital signature 442 may be generated using first
private key 440. In a particular implementation, first private key 440 corresponds to unity test
416 or to a particular user who certifies completion of unity test 416. In some implementations,
first private key 440 may be a one-time use private key. First digital signature 442 may be
provided to server 404 for storage and eventual transmission to node 406, similar to as
described with reference to FIGURE 3. Additionally, a first public key that corresponds to first
private key 440 may be provided to server 404 for storage and eventual transmission to node

406, similar to as described with reference to FIGURE 3.

[0100] After completion of unity test 416, and generation of first digital signature 442,
the first build job may undergo integration test 420. Another digital signature may be generated
upon completion of integration test 420, similar to first digital signature 442. After completion
of integration test 420, the first build job may undergo additional tests or other development

stages.

[0101] In addition to generating the first build job, the code may be combined into a
second build job at second build 414. Although two builds are shown in FIGURE 4, in other
implementations, the code may undergo a single build or more than two builds. Also, although
described as different build jobs, the first build job and the second build job may be different
portions of the same build job. The second build job may undergo unity testing at unity test
418. Upon successful completion of unity test 418, a second digital signature 446 is generated.

Second digital signature 446 may be generated using second private key 444. In a particular

33

WO 2021/014326 PCT/IB2020/056776

implementation, second private key 444 corresponds to unity test 418 or to a particular user
who certifies completion of unity test 418. In some implementations, second private key 444
may be a one-time use private key. Second digital signature 446 may be provided to server
404 for storage and eventual transmission to node 406. Additionally, a second public key that
corresponds to second private key 444 may be provided to server 404 for storage and eventual

transmission to node 406.

[0102] After completion of unity test 418, and generation of second digital signature
446, second build job may undergo integration test 422. Another digital signature may be
generated upon completion of integration test 422, similar to second digital signature 446.
After completion of integration test 422, the second build job may undergo additional tests or

other development stages.

[0103] The first build job and the second build job (e.g., the first portion and the second
portion) may be combined at assembly 424. Upon successful completion of assembly 424, an
Nth digital signature 450 is generated, where N is a positive integer. Nth digital signature 450
may be generated using Nth private key 448. In a particular implementation, Nth private key
448 corresponds to assembly 424 or to a particular user who certifies completion of assembly
424. In some implementations, Nth private key 448 is a one-time use private key. Nth digital
signature 450 may be provided to server 404 for storage and eventual transmission to node 406.
Additionally, an Nth public key that corresponds to Nth private key 448 may be provided to

server 404 for storage and eventual transmission to node 406.

[0104] After completion of assembly 424, the build may undergo additional testing
426. Another digital signature may be generated upon completion of additional testing 426,
similar to Nth digital signature 450. After completion of the additional testing 426, the build
job may undergo one or more other testing stages or development stages prior to distribution

428.

[0105] At distribution 428, the software corresponding to the build job (e.g., the one or
more files of the software release) is provided to server 404 for deployment. Server 404 may
deploy the software release at 430, including transmitting the software release (and digital
signatures) to one or more node devices, including node 406. At runtime 432, the software
release undergoes verification 434. For example, a verifier (e.g., 363) may verify that the

software release has successfully completed one or more of development stages 410-428 based

34

WO 2021/014326 PCT/IB2020/056776

on the digital signatures (e.g., first digital signature 442, second digital signature 446, and Nth
digital signature 450) and the public keys, as described with reference to FIGURE 3. For
example, node 406 may decrypt the digital signatures using the public keys to verify the digital

signatures before processing the software release.

[0106] Thus, FIGURE 4 illustrates an example of generation of digital signature during
development stages of a software release. The digital signature information, and corresponding
public keys, can be used by a node device to enable the node device to verify completion of
the development stages for a software release, which may prevent the node device from being

exposed to vulnerabilities of software that is not fully developed or tested.

[0107] Referring to FIGURE 5, an example of a development ledger 500 is shown.
Development ledger S00 may be maintained by a server, such as server 110, server 168, server
340, server 404, or any combination thereof. The development ledger 500 is based on digital
signatures and digital signature metadata, such as the digital signatures and digital signature

metadata included in digital signature information 332.

[0108] Development ledger 500 includes one or more entries indicating digital
signatures and digital signature metadata. For example, development ledger S00 may include
a first entry 502, a second entry 504, a third entry 506, and a fourth entry 508. Although
FIGURE 5 illustrates four entries, in other implementations, development ledger 500 includes
fewer than four or more than four entries, based on the number of digital signatures received

from an entity device.

[0109] Each entry includes a digital signature and corresponding metadata. For
example, first entry 502 includes a first digital signature 510 (“$#&%”) and digital signature
metadata 512. Digital signature metadata 512 includes information corresponding to first
digital signature 510. For example, digital signature metadata 512 includes a time value 514
(e.g., a time that first digital signature 510 was generated), an author 516 (e.g., an author of
first digital signature 510), a development stage 518 (e.g., a development stage corresponding
to first digital signature 510), a build number 520 (e.g., a build number of the files that
successfully completed development stage 518), and a checksum 522 (e.g., a checksum
corresponding to first digital signature 510). Similarly, second entry 504, third entry 506, and

fourth entry 508 each include a digital signature, a time, an author, a development stage, a build

35

WO 2021/014326 PCT/IB2020/056776

number, and a checksum. In other implementations, the digital signature metadata may include

other or different information.

[0110] Thus, FIGURE 5 illustrates an example of a development ledger 500. The
development ledger 500 is used to store digital signatures and digital signature metadata for
transmission to node devices to enable the node devices to verify that a software release has

successfully completed multiple development stages of a development process.

[0111] Referring to FIGURES 6A-6B, examples of software releases are shown.
FIGURE 6A illustrates a first example of a software release 600. FIGURE 6B illustrates a

second example of a software release 620

[0112] Referring to FIGURE 6A, software release 600 includes one or more files 602.
The one or more files 602 may include files A, B, C, D, and E. Software release 600 also
includes release bundle information 604. Release bundle information 604 may include one or
more checksums for files in software release 600. For example, release bundle information
604 may include a checksum for file A, a checksum for file B, a checksum for file C, a
checksum for file D, and a checksum for file E, and a total checksum (e.g., a checksum for the
entirety of files A-E). Software release 600 may also include file-specific metadata 606, such

as file names, sizes, file paths, dates of storage, times of storage, or other information.

[0113] Software release 600 also includes digital signature metadata 608. Digital
signature metadata 608 may include or correspond to digital signature information 332. In the
example of FIGURE 6, digital signature metadata 608 includes digital signatures and metadata
associated with the digital signatures (not shown, such as digital signature metadata 512). For
example, the digital signatures may include a set of digital signatures corresponding to a unity
test (e.g., digital signature 1 corresponding to file A, and digital signature X corresponding to
file B), digital signatures corresponding to an integration test (e.g., digital signature 2
corresponding to file A, and digital signature Y corresponding to file B), other digital signatures
corresponding to other development stages, and digital signatures corresponding to an
assembly stage (e.g., digital signature Z corresponding to file C (which is an assembled
combination of files A and B). By storing the digital signatures in this fashion, the digital
signatures may be searched by development stage (e.g., unity test, integration test, assembly,

etc.) or by file that corresponds to the digital signature.

36

WO 2021/014326 PCT/IB2020/056776

[0114] Referring to FIGURE 6B, software release 620 includes software 622 and
digital signature information 630. Software 622 includes software information 624, one or
more files 626, and metadata 628. Software information 624 may include a list of files,
checksums corresponding to the files, or other indications of files included in software 622.
One or more files 626 includes one or more files of the software release (e.g., the software
build). Metadata 628 includes information corresponding to the one or more files, to the
software 622 as a whole, or both, such as file names, files sizes, times, dates, authors, software

release names, versions, file paths, etc.

[0115] Digital signature information 630 includes digital signatures 632 and digital
signature metadata 634. Digital signatures 632 include one or more digital signatures
indicating successful completion of a corresponding development stage for one or more files
626. Digital signature metadata includes metadata associated with the digital signatures, such
as authors, times, dates, development stages, build job numbers, checksums, other information,
or any combination thereof. Digital signature metadata 634 may be used to identify which
public key stored at a node device is to be used to decrypt a particular digital signature as part
of verifying whether one or more files 626 have successfully completed multiple development

stages of a development process.

[0116] FIGURES 7-9 are flow diagrams of methods of sharing digital signature
information and verifying a deployed software release. Each of the methods of FIGURES 7-9
may be stored in a computer-readable storage medium as instructions that, when executed by
one or more processors, cause the one or more processors to perform the operations of the
method (e.g., 700, 800, 900). In some such implementations, method(s) also includes
generating one or more graphical user interfaces (GUIs) via which the first inquiry set is
uploaded, the result of the modeling is displayed, the input to initiate mapping the response is

received, or a combination thereof.

[0117] Referring to FIGURE 7, a flow diagram of a method for sharing digital signature
information according to an embodiment is shown as a method 700. In a particular
implementation, method 700 may be performed by server 110, 168 (e.g., one or more

processors 250, manager 252, and/or deployer 253), server 340, and/or server 404.

[0118] At 702, method 700 includes receiving file information corresponding to one or

more files of a software release from an entity device. For example, server 340 may receive

37

WO 2021/014326 PCT/IB2020/056776

software information 330 from entity device 310. Software information 330 may include

information corresponding to software 316.

[0119] At 704, method 700 includes receiving multiple digital signatures from the
entity device. Each digital signature related to a corresponding development stage of multiple
development stages of the software release. For example, server 340 may receive digital
signature information 332 from entity device 310. Digital signature information 332 may

include multiple digital signatures that correspond to development stages 320.

[0120] At 706, method 700 includes receiving node information corresponding to one
or more node devices from the entity device. For example, server 340 may receive node

information 333 from entity device 310.

[0121] At 708, method 700 includes generating software release information including
the multiple digital signatures and an indication of the one or more files. For example, server
340 may generate software release 350 that includes software release information. In some
implementations, the indication of the one or more files included in the software release
information includes a checksum for at least one of the one or more files, a checksum for the
entirety of the one or more files, or a combination thereof. At 710, method 700 includes
initiating transmission of the software release information to each of the one or more node

devices.

[0122] In a particular implementation, receiving the multiple digital signatures includes
receiving a first digital signature corresponding to a first artifact and corresponding to a first
development stage of the multiple development stages, and receiving a second digital signature
corresponding to the first artifact and corresponding to a second development stage of the
multiple development stages. For example, server 340 may receive first digital signature 326
that corresponds to first development stage 322 (and a first artifact) and second digital signature
328 that corresponds to second development stage 324 (and the first artifact). In some such
implementations, receiving the multiple digital signatures further includes receiving a third
digital signature corresponding to a second artifact and corresponding to the first development
stage of the multiple development stages, receiving a fourth digital signature corresponding to
the second artifact and corresponding to the second development stage of the multiple

development stages, and receiving a fifth digital signature corresponding to the first artifact

38

WO 2021/014326 PCT/IB2020/056776

and the second artifact, and corresponding to a third development stage of the multiple

development stages.

[0123] In a particular implementation, method 700 further includes receiving, for each
digital signature of the multiple digital signatures, corresponding digital signature metadata.
For example, digital signature information 332 may include digital signatures and metadata
corresponding to each of the digital signatures. In some such implementations, for a particular
digital signature of the multiple digital signatures, the corresponding digital signature metadata
indicates an author of the particular digital signature, a development stage corresponding to the
particular digital signature, a time corresponding to generation of the particular digital
signature, a build job number corresponding to the particular digital signature, a checksum

corresponding to the particular digital signature, or any combination thereof.

[0124] In a particular implementation, a first digital signature of the multiple digital
signatures 1s generated using a first private key. For example, first digital signature 326 may
be generated by a first private key (e.g., 440). In some such implementations, method 700
further includes receiving a first public key corresponding to the first private key. For example,
server 340 may receive public keys 319 from entity device 310. Public keys 319 may include
a first public key that corresponds to the first private key.. In some such implementations,
method 700 further includes initiating transmission of the first public key to the one or more
node devices. For example, server 340 may initiate transmission of public keys 319 to node
device 360. In some such implementations, a second digital signature of the multiple digital
signatures is generated using a second private key, and method 700 further includes receiving
a second public key corresponding to the second private key. For example, public keys 319
may also include a second public key that corresponds to a second private key (e.g., 444) that
is used to generate second digital signature 328. In some such implementations, the first private
key includes a first one-time use private key corresponding to a first development stage of the
multiple development stages, and the second private key includes a second one-time use private

key corresponding to a second development stage of the multiple development stages.

[0125] In some implementations, each of the multiple digital signatures corresponds to
a different development stage of the multiple development stages. In other implementations,
two or more of the multiple digital signatures correspond to the same development sate of the
multiple development stages. In some such implementations, all of the multiple digital

signatures correspond to a single development stage of the multiple development stages. In

39

WO 2021/014326 PCT/IB2020/056776

other implementations, a method for sharing digital signature information may include
receiving at least one digital signature (e.g., one or more digital signatures) from the entity
device, where each digital signature of the at least one digital signature is related to a
corresponding development state of multiple development stages of a software release. In such
implementations, software release information may be generated including the at least one

digital signature and an indication of one or more files of the software release.

[0126] Thus, method 700 describes a method for sharing digital signatures and digital
signature metadata between a server and a node device. Providing the digital signature data
and digital signature metadata to the node device enables the node device to verify whether a
software release has successfully completed multiple development stages of a development
process, which may prevent the node device from processing software that is not fully

developed or tested.

[0127] Referring FIGURE 8, a flow diagram of a method for verification of a deployed
software release according to an embodiment is shown as a method 800. In a particular
implementation, method 800 may be performed by node device 160, 160a, 160b, 160c, 160d,
node device 360, and/or node 406.

[0128] At 802, method 800 includes receiving software release information including
an indication of one or more files and multiple digital signatures corresponding to different
development stages of multiple development stages of a software release. For example, node
device 360 may include software release 350 that includes an indication of one or more files

and digital signature information 332 that includes multiple digital signatures..

[0129] At 804, method 800 includes receiving one or more public keys associated with
one or more private keys used to generate the multiple digital signatures. For example, node
device 360 may receive public keys 319 from server 340. Public keys 319 may include public

keys that correspond to private keys used to generate the digital signatures.

[0130] At 806, method 800 includes identifying the one of more files based on the
indication. For example, software 352 (e.g., one or more files) may be received from server

340 or may be identified as residing in a memory of node device 360.

[0131] At 808, method 800 includes verifying the multiple digital signatures based on

the one or more public keys. For example, node device 360 may use public keys 319 to verify

40

WO 2021/014326 PCT/IB2020/056776

the digital signatures included in digital signature information 332. At 810, method 800
includes processing the one or more files based on verification of the multiple digital

signatures.

[0132] In a particular implementation, the software release information further includes
digital signature metadata associated with the multiple digital signatures. For example, digital
signature information 332 includes metadata corresponding to each of the included digital
signatures. In some such implementations, for a particular digital signature of the multiple
digital signatures, the digital signature metadata indicates an author of the particular digital
signature, a development stage corresponding to the particular digital signature, a time
corresponding to generation of the particular digital signature, a build job number
corresponding to the particular digital signature, a checksum corresponding to the particular
digital signature, or any combination thereof. In some such implementations, method 800
further includes identifying, based on the digital signature metadata, a first public key of the
one or more public keys that corresponds to a first digital signature of the multiple digital
signatures. For example, node device 360 identifies a first public key of public keys 319 based
on a similarity between the first public key and a first digital signature (as indicated by the
corresponding digital signature metadata). In some such implementations, the first public key
corresponds to a first author, and the digital signature metadata indicates that the first digital

signature corresponds to the first author.

[0133] In a particular implementation, receiving the multiple digital signatures includes
receiving a first digital signature of the multiple digital signatures and receiving a second digital
signature of the multiple digital signatures. The first digital signature corresponds to a first
development stage of the multiple development stages and the second digital signature
corresponds to a second development stage of the multiple development stages. For example,
digital signature information 332 includes first digital signature 326 (corresponding to first
development stage 322) and second digital signature 328 (corresponding to second

development stage 324).

[0134] In a particular implementation, processing the one or more files includes loading
the one or more files to a memory responsive to verifying that the one or more files have
completed the multiple development stages and setting a flag corresponding to the one or more
files to indicate that the one or more files have completed the multiple development stages. For

example, software 352 may be loaded from transaction directory 370 into memory 364 and

41

WO 2021/014326 PCT/IB2020/056776

verification flag 366 may be set. In some such implementations, processing the one or more
files further includes executing the one or more files and initiating transmission of a notification

indicating that the one or more files are accepted.

[0135] In a particular implementation, processing the one or more files includes
discarding the one or more files responsive to a failure to verify that the one or more files have
completed the multiple development stages. For example, software 352 may be discarded (e.g.,
deleted) from transaction directory 370. In some such implementations, method 800 further

include initiating transmission of a notification indicating that the one or more files are rejected.

[0136] Thus, method 800 describes a method for using digital signature data and digital
signature metadata at a node device to verify whether a software release has successfully
completed multiple development stages of a development process, which may prevent the node
device from processing software that is not fully developed or tested, thereby preventing the
node device from being exposed to vulnerabilities corresponding to the not fully developed

software.

[0137] Referring FIGURE 9, a flow diagram of a method for generating digital
signature information of a software release according to an embodiment is shown as a method
900. In a particular implementation, method 900 may be performed by entity server 140, entity
150, 150a, 150b, entity device 310, and/or entity 402.

[0138] At 902, method 900 includes performing a first development stage of multiple
development stages of a software release including one or more files. For example, first

development stage 322 of development stages 320 may be performed on software 316.

[0139] At 904, method 900 includes, responsive to performing the first development
stage, generating a first digital signature using a first private key. For example, first digital

signature 326 may be generated using a first private key (e.g., 440).

[0140] At 906, method 900 includes performing a second development stage of the
multiple development stages of the software release on the one or more files. For example,
second development stage 324 of development stages 320 may be performed on software 316.
In some implementations, the second development stage may be a final development stage of

multiple development stages.

42

WO 2021/014326 PCT/IB2020/056776

[0141] At 908, method 900 includes, responsive to performing the second development
stage, generating a second digital signature using a second private key. For example, second

digital signature 328 may be generated using a second private key (e.g., 444).

[0142] At 910, method 900 includes generating digital signature metadata associated
with the first digital signature and the second digital signature. For example, entity device 310
may generate digital signature information 332 that includes the digital signatures and metadata

corresponding to the digital signatures.

[0143] At 912, method 900 further includes initiating transmission, to a server or a node
device, of file information corresponding to the one or more files, the first digital signature, the
second digital signature, and the digital signature metadata. For example, digital signature
information 332 (including the first digital signature and the second digital signature) is

transmitted from entity device 310 to server 340 or node device 360.

[0144] In other implementations, only the first digital signature is transmitted, and a
second digital signature is not generated or is not transmitted. The first digital signature may
correspond to an initial development stage, an intermediate development stage, or a final
development stage. At a later time, a second digital signature may optionally be generated and

transmitted from entity device 310 to server 340 or to node 360.

[0145] Thus, method 900 describes a method for generating digital signatures and
digital signature metadata. The digital signature data and digital signature metadata enables a
node device to verify whether a software release has successfully completed multiple
development stages of a development process, which may prevent the node device from

processing software that is not fully developed or tested.

[0146] In some implementations, methods 700, 800, and/or 900 can be combined such
that one or more operations described with reference to one of the methods of FIGURES 7-9
may be combined with one or more operations of another of FIGURES 7-9. For example, one
or more operations of method 700 may be combined with one or more operations of method
800. As another example, one or more operations of method 800 may be combined with one

or more operations of method 900.

[0147] In some aspects, techniques for supporting sharing of digital signature

information of a software release may include additional aspects, such as any single aspect or

43

WO 2021/014326 PCT/IB2020/056776

any combination of aspects described below or in connection with one or more other processes
or devices described elsewhere herein. In some aspects, supporting sharing of digital signature
information of a software release may include a system configured to receive file information
corresponding to one or more files of a software release from an entity device, and receive
multiple digital signatures from the entity device. Each digital signature is related to a
corresponding development stage of multiple development stages of the software release. The
system is also configured receive node information corresponding to one or more node devices
from the entity device, and generate software release information including the multiple digital
signatures and an indication of the one or more files. The system is further configured to initiate
transmission of the software release information to the one or more node devices. In some
implementations, the system includes one or more devices, one or more processors, one or
more package modules, or a combination thereof. For example, one or more operations
described with reference to the system may be performed by the one or more devices, the one
or more processors, the one or more package modules, or the combination thereof. In some
implementations, the system may include at least one processor, and a memory coupled to the
processor. The processor may be configured to perform operations described herein with
respect to the system. In some other implementations, the system may include a non-transitory
computer-readable medium having program code recorded thereon and the program code may
be executable by a computer for causing the computer to perform operations described herein
with reference to the system. In some implementations, the system may include one or more
means configured to perform operations described herein. In some implementations, a method
of a repository supporting multiple package types may include one or more operations

described herein with reference to the system.

[0148] In a first aspect, to receive the multiple digital signatures the system is further
configured to receive a first digital signature corresponding to a first artifact and corresponding

to a first development stage of the multiple development stages.

[0149] In a second aspect, in combination with the first aspect, to receive the multiple
digital signatures, the system is further configured to receive a second digital signature
corresponding to the first artifact and corresponding to a second development stage of the

multiple development stages.

[0150] In a third aspect, in combination with the second aspect, to receive the multiple

digital signatures, the system is further configured to receive a third digital signature

44

WO 2021/014326 PCT/IB2020/056776

corresponding to a second artifact and corresponding to the first development stage of the

multiple development stages.

[0151] In a fourth aspect, in combination with the third aspect, to receive the multiple
digital signatures, the system is further configured to receive a fourth digital signature
corresponding to the second artifact and corresponding to the second development stage of the

multiple development stages.

[0152] In a fifth aspect, in combination with the fourth aspect, to receive the multiple
digital signatures, the system is further configured to receive a fifth digital signature
corresponding to the first artifact and the second artifact, and corresponding to a third

development stage of the multiple development stages.

[0153] In a sixth aspect, alone or in combination with one or more of the first through
fifth aspects, the system is further configured to receive, for each digital signature of the

multiple digital signatures, corresponding digital signature metadata.

[0154] In a seventh aspect, in combination with the sixth aspect, for a particular digital
signature of the multiple digital signatures, the corresponding digital signature metadata
indicates an author of the particular digital signature, a development stage corresponding to the
particular digital signature, a time corresponding to generation of the particular digital
signature, a build job number corresponding to the particular digital signature, a checksum

corresponding to the particular digital signature, or any combination thereof.

[0155] In an eighth aspect, alone or in combination with one or more of the first through
seventh aspects, a first digital signature of the multiple digital signatures is generated using a

first private key.

[0156] In a ninth aspect, in combination with the eighth aspect, the system is further

configured to receive a first public key corresponding to the first private key.

[0157] In a tenth aspect, in combination with the ninth aspect, the system is further

configured to initiate transmission of the first public key to the one or more node devices.

[0158] In an eleventh aspect, in combination with the tenth aspect, a second digital

signature of the multiple digital signatures is generated using a second private key.

45

WO 2021/014326 PCT/IB2020/056776

[0159] In a twelfth aspect, in combination with the eleventh aspect, the system is further

configured to receive a second public key corresponding to the second private key.

[0160] In a thirteenth aspect, in combination with the twelfth aspect, the first private
key includes a first one-time use private key corresponding to a first development stage of the

multiple development stages.

[0161] In a fourteenth aspect, in combination with the thirteenth aspect, the second
private key includes a second one-time use private key corresponding to a second development

stage of the multiple development stages.

[0162] In a fifteenth aspect, alone or in combination with one or more of the first
through fourteenth aspects, the indication of the one or more files included in the software
release information includes a checksum for at least one of the one or more files, a checksum

for the entirety of the one or more files, or a combination thereof.

[0163] In a sixteenth aspect, in combination with the fifteenth aspect, the multiple

digital signatures are generated using one or more private keys.

[0164] In a seventeenth aspect, in combination with the sixteenth aspect, the system is
further configured to receive one or more public keys that correspond to the one or more private

keys.

[0165] In an eighteenth aspect, in combination with the seventeenth aspect, the system
is further configured to initiate transmission of the one or more public keys to the one or more

node devices.

[0166] In a nineteenth aspect, alone or in combination with one or more of the first
through eighteenth aspects, each digital signature of the multiple digital signatures corresponds

to a software build job.

[0167] In a twentieth aspect, in combination with the nineteenth aspect, the system is

further configured to maintain a ledger of digital signatures.

[0168] In a twenty-first aspect, in combination with the twentieth aspect, the ledger
includes the multiple digital signatures and digital signature metadata corresponding to the

multiple digital signatures.

46

WO 2021/014326 PCT/IB2020/056776

[0169] In some aspects, techniques for supporting verification of a deployed software
release may include additional aspects, such as any single aspect or any combination of aspects
described below or in connection with one or more other processes or devices described
elsewhere herein. In some aspects, supporting verification of a deployed software release may
include a system configured to receive software release information including an indication of
one or more files and multiple digital signatures corresponding to different development stages
of multiple development stages of a software release. The system is also configured to receive
one or more public keys associated with one or more private keys used to generate the multiple
digital signatures, and identify the one or more files based on the indication. The system is
further configured to verify the multiple digital signatures based on the one or more public
keys, and process the one or more files based on verification of the multiple digital signatures.
In some implementations, the system includes one or more devices, one or more processors,
one or more package modules, or a combination thereof. For example, one or more operations
described with reference to the system may be performed by the one or more devices, the one
or more processors, the one or more package modules, or the combination thereof. In some
implementations, the system may include at least one processor, and a memory coupled to the
processor. The processor may be configured to perform operations described herein with
respect to the system. In some other implementations, the system may include a non-transitory
computer-readable medium having program code recorded thereon and the program code may
be executable by a computer for causing the computer to perform operations described herein
with reference to the system. In some implementations, the system may include one or more
means configured to perform operations described herein. In some implementations, a method
of a repository supporting multiple package types may include one or more operations

described herein with reference to the system.

[0170] In a twenty-second aspect, the software release information further includes

digital signature metadata associated with the multiple digital signatures.

[0171] In a twenty-third aspect, in combination with the twenty-second aspect, for a
particular digital signature of the multiple digital signatures, the digital signature metadata
indicates an author of the particular digital signature, a development stage corresponding to the
particular digital signature, a time corresponding to generation of the particular digital
signature, a build job number corresponding to the particular digital signature, a checksum

corresponding to the particular digital signature, or any combination thereof.

47

WO 2021/014326 PCT/IB2020/056776

[0172] In a twenty-fourth aspect, in combination with the twenty-third aspect, the
system is further configured to identify, based on the digital signature metadata, a first public
key of the one or more public keys that corresponds to a first digital signature of the multiple

digital signatures.

[0173] In a twenty-fifth aspect, in combination with the twenty-fourth aspect, the first

public key corresponds to a first author.

[0174] In a twenty-sixth aspect, in combination with the twenty-fifth aspect, the digital

signature metadata indicates that the first digital signature corresponds to the first author.

[0175] In a twenty-seventh aspect, in combination with one or more of the twenty-
second through twenty-sixth aspects, to receive the multiple digital signatures, the system is
further configured to receive a first digital signature of the multiple digital signatures. The first

digital signature corresponds to a first development stage of the multiple development stages.

[0176] In a twenty-eighth aspect, in combination with the twenty-seventh aspect, to
receive the multiple digital signatures, the system is further configured to receive a second
digital signature of the multiple digital signatures. The second digital signature corresponds to

a second development stage of the multiple development stages.

[0177] In a twenty-ninth aspect, alone or in combination with one or more of the
twenty-second through twenty-eighth aspects, to process the one or more files, the system is
further configured to load the one or more files to a memory responsive to verifying that the

one or more files have completed the multiple development stages.

[0178] In a thirtieth aspect, in combination with the twenty-ninth aspect, to process the
one or more files, the system is further configured to set a flag corresponding to the one or
more files to indicate that the one or more files have completed the multiple development

stages.

[0179] In a thirty-first aspect, in combination with the thirtieth aspect, to process the

one or more files, the system is further configured to execute the one or more files.

[0180] In a thirty-second aspect, in combination with the thirty-first aspect, to process
the one or more files, the system is further configured to initiate transmission of a notification

indicating that the one or more files are accepted.

48

WO 2021/014326 PCT/IB2020/056776

[0181] In a thirty-third aspect, alone or in combination with one or more of the twenty-
second through thirty-second aspects, to process the one or more files, the system is further
configured to discard the one or more files responsive to a failure to verify that the one or more

files have completed the multiple development stages.

[0182] In a thirty-fourth aspect, in combination with the thirty-fourth aspect, the system
is further configured to initiate transmission of a notification that indicates the one or more files

are rejected.

[0183] In a thirty-fifth aspect, alone or in combination with one or more of the twenty-
second through thirty-third aspects, the system is further configured to identify a first public
key of the one or more public keys that corresponds to a first digital signature of the multiple
digital signatures based on an author of the first digital signature and an author associated with

the first public key.

[0184] In a thirty-sixth aspect, alone or in combination with one or more of the twenty-
second through thirty-fifth aspects, to verify that the one or more files have completed the
multiple development stages, the system is further configured to decrypt the multiple digital

signatures using the one or more public keys.

[0185] In a thirty-seventh aspect, alone or in combination with one or more of the
twenty-second through thirty-sixth aspects, the software release information is received from

an artifact repository server.

[0186] In a thirty-eighth aspect, alone or in combination with one or more of the
twenty-second through thirty-sixth aspects, the software release information is received from

an entity device.

[0187] Although one or more of the disclosed figures may illustrate systems,
apparatuses, methods, or a combination thereof, according to the teachings of the disclosure,
the disclosure is not limited to these illustrated systems, apparatuses, methods, or a combination
thereof. One or more functions or components of any of the disclosed figures as illustrated or
described herein may be combined with one or more other portions of another function or
component of the disclosed figures. Accordingly, no single implementation described herein
should be construed as limiting and implementations of the disclosure may be suitably

combined without departing from the teachings of the disclosure.

49

WO 2021/014326 PCT/IB2020/056776

[0188] The steps of a method or algorithm described in connection with the
implementations disclosed herein may be included directly in hardware, in a software module
executed by a processor, or in a combination of the two. A software module may reside in
random access memory (RAM), flash memory, read-only memory (ROM), programmable
read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically
erasable programmable read-only memory (EEPROM), registers, hard disk, a removable disk,
a compact disc read-only memory (CD-ROM), or any other form of non-transient (e.g., non-
transitory) storage medium known in the art. An exemplary storage medium is coupled to the
processor such that the processor can read information from, and write information to, the
storage medium. In the alternative, the storage medium may be integral to the processor. The
processor and the storage medium may reside in an application-specific integrated circuit
(ASIC). The ASIC may reside in a computing device or a user terminal. In the alternative, the
processor and the storage medium may reside as discrete components in a computing device or

user terminal.

[0189] Although the present disclosure and its advantages have been described in
detail, it should be understood that various changes, substitutions and alterations can be made
herein without departing from the spirit and scope of the invention as defined by the appended
claims. Moreover, the scope of the present application is not intended to be limited to the
particular embodiments of the process, machine, manufacture, composition of matter, means,
methods and steps described in the specification. As one of ordinary skill in the art will readily
appreciate from the disclosure of the present invention, processes, machines, manufacture,
compositions of matter, means, methods, or steps, presently existing or later to be developed
that perform substantially the same function or achieve substantially the same result as the
corresponding embodiments described herein may be utilized according to the present
invention. Accordingly, the appended claims are intended to include within their scope such

processes, machines, manufacture, compositions of matter, means, methods, or steps.

50

WO 2021/014326 PCT/IB2020/056776

CLAIMS

1. A method for sharing digital signature information of a software release, the
method comprising:

receiving, by one or more processors, file information corresponding to one or more
files of a software release from an entity device;

receiving, by the one or more processors, multiple digital signatures from the entity
device, each digital signature related to a corresponding development stage of
multiple development stages of the software release;

receiving, by the one or more processors, node information corresponding to one or
more node devices from the entity device;

generating, by the one or more processors, software release information comprising the
multiple digital signatures and an indication of the one or more files; and

initiating, by the one or more processors, transmission of the software release

information to the one or more node devices.

2. The method of claim 1, where receiving the multiple digital signatures
comprises:
receiving a first digital signature corresponding to a first artifact and corresponding to
a first development stage of the multiple development stages; and
receiving a second digital signature corresponding to the first artifact and corresponding

to a second development stage of the multiple development stages.

3. The method of claim 2, where receiving the multiple digital signatures further
comprises:

receiving a third digital signature corresponding to a second artifact and corresponding
to the first development stage of the multiple development stages;

receiving a fourth digital signature corresponding to the second artifact and
corresponding to the second development stage of the multiple development
stages; and

receiving a fifth digital signature corresponding to the first artifact and the second
artifact, and corresponding to a third development stage of the multiple

development stages.

51

WO 2021/014326 PCT/IB2020/056776

4. The method of claim 1, further comprising receiving, by the one or more
processors, for each digital signature of the multiple digital signatures, corresponding digital

signature metadata.

5. The method of claim 4, where, for a particular digital signature of the multiple
digital signatures, the corresponding digital signature metadata indicates an author of the
particular digital signature, a development stage corresponding to the particular digital
signature, a time corresponding to generation of the particular digital signature, a build job
number corresponding to the particular digital signature, a checksum corresponding to the

particular digital signature, or any combination thereof.

6. The method of claim 1, where a first digital signature of the multiple digital

signatures is generated using a first private key.

7. The method of claim 6, further comprising receiving, by the one or more

processors, a first public key corresponding to the first private key.

8. The method of claim 7, further comprising initiating transmission of the first

public key to the one or more node devices.

0. The method of claim 8, where a second digital signature of the multiple digital
signatures is generated using a second private key, and further comprising receiving, by the

one or more processors, a second public key corresponding to the second private key.

10. The method of claim 9, where:

the first private key comprises a first one-time use private key corresponding to a first
development stage of the multiple development stages; and

the second private key comprises a second one-time use private key corresponding to a

second development stage of the multiple development stages.

11. The method of claim 1, where the indication of the one or more files included
in the software release information comprises a checksum for at least one of the one or more

files, a checksum for the entirety of the one or more files, or a combination thereof.

52

WO 2021/014326 PCT/IB2020/056776

12. A system for sharing digital signature information of a software release, the
system comprising:
at least one memory storing instructions; and
one or more processors coupled to the at least one memory, the one or more processors
configured to execute the instructions to cause the one or more processors to:
receive, from an entity device, file information corresponding to one or more
files of a software release;
receive multiple digital signatures from the entity device, each digital signature
corresponding to a different development stage of multiple development
stages of the software release;
receive node information corresponding to one or more node devices to receive
the software release;
generate software release information comprising the digital signatures and an
indication of the one or more files; and
initiate transmission of the software release information to the one or more node

devices.

13. The system of claim 12, where:
the multiple digital signatures are generated using one or more private keys;
the one or more processors are further configured to:
receive one or more public keys that correspond to the one or more private keys;
and
initiate transmission of the one or more public keys to the one or more node

devices.

14. The system of claim 12, where each digital signature of the multiple digital

signatures corresponds to a software build job.

15. The system of claim 12, where the one or more processors are further configured
to maintain a ledger of digital signatures, the ledger including the multiple digital signatures

and digital signature metadata corresponding to the multiple digital signatures.

53

WO 2021/014326 PCT/IB2020/056776

16. A method for verification of a deployed software release, the method
comprising:

receiving, by one or more processors, software release information comprising an
indication of one or more files and multiple digital signatures corresponding to
different development stages of multiple development stages of a software
release;

receiving, by the one or more processors, one or more public keys associated with one
or more private keys used to generate the multiple digital signatures;

identifying, by the one or more processors, the one or more files based on the indication;

verifying, by the one or more processors, the multiple digital signatures based on the
one or more public keys; and

processing, by the one or more processors, the one or more files based on verification

of the multiple digital signatures.

17. The method of claim 16, where the software release information further includes

digital signature metadata associated with the multiple digital signatures.

18. The method of claim 17, where, for a particular digital signature of the multiple
digital signatures, the digital signature metadata indicates an author of the particular digital
signature, a development stage corresponding to the particular digital signature, a time
corresponding to generation of the particular digital signature, a build job number
corresponding to the particular digital signature, a checksum corresponding to the particular

digital signature, or any combination thereof.

19. The method of claim 17, further comprising identifying, based on the digital
signature metadata, a first public key of the one or more public keys that corresponds to a first

digital signature of the multiple digital signatures.

20. The method of claim 19, where:
the first public key corresponds to a first author; and
the digital signature metadata indicates that the first digital signature corresponds to the

first author.

54

WO 2021/014326 PCT/IB2020/056776

21. The method of claim 16, wherein receiving the multiple digital signatures
comprises:
receiving a first digital signature of the multiple digital signatures, the first digital
signature corresponding to a first development stage of the multiple
development stages; and
receiving a second digital signature of the multiple digital signatures, the second digital
signature corresponding to a second development stage of the multiple

development stages.

22. The method of claim 16, where processing the one or more files comprises:

loading, by the one or more processors, the one or more files to a memory responsive
to verifying that the one or more files have completed the multiple development
stages; and

setting, by the one or more processors, a flag corresponding to the one or more files to
indicate that the one or more files have completed the multiple development

stages.

23. The method of claim 22, where processing the one or more files further
comprises:

executing, by the one or more processors, the one or more files; and

initiating, by the one or more processors, transmission of a notification indicating that

the one or more files are accepted.

24, The method of claim 16, where processing the one or more files comprises
discarding, by the one or more processors, the one or more files responsive to a failure to verify

that the one or more files have completed the multiple development stages.

25. The method of claim 24, further comprising initiating, by the one or more

processors, transmission of a notification indicating that the one or more files are rejected.

55

WO 2021/014326 PCT/IB2020/056776

26. A system for verification of a deployed software release, the system comprising:
at least one memory storing instructions; and
one or more processors coupled to the at least one memory, the one or more processors
configured to execute the instructions to cause the one or more processors to:
receive software release information comprising an indication of one or more
files and multiple digital signatures corresponding to different
development stages of multiple development stages of a software
release;
receive one or more public keys associated with one or more private keys used
to generate the multiple digital signatures;
identify the one or more files based on the indication;
verify the multiple digital signatures based on the one or more public keys; and
process the one or more files based on verification of the multiple digital

signatures.

27. The system of claim 26, where the one or more processors are further configured
to identify a first public key of the one or more public keys that corresponds to a first digital
signature of the multiple digital signatures based on an author of the first digital signature and

an author associated with the first public key.

28. The system of claim 26, where verifying that the one or more files have
completed the multiple development stages comprises decrypting the multiple digital

signatures using the one or more public keys.

29. The system of claim 26, where the software release information is received from

an artifact repository server.

30. The system of claim 26, where the software release information is received from

an entity device.

56

PCT/IB2020/056776

WO 2021/014326

1/9

76T 301A3 Bry3ldvay ||
30V4Y3LNI H3sN 30V4Y3LNI 43sN 38T WvY
61 08T
30IA3Q AV1dSIC Y3Ldvay Av1dsia
38T oY
06T 39YHOLS V.Lvd 87T Y3Lldvav o/ _
VZT AOWAW
C /T ovdoan 7|
_ NOILYWHOANI \ —
| 97T y3aLdvay —
“ L w%zzo_m WVLI9Ia _ NOLLYINNARGS 2T (S)d40SS3004d
NOILYWHOAN| ! I “ - 18l
\ JHALYNDIS TYLIBIG \ | SVILIOS OZT (3n) LN3WAIND3 438N
gL /S | = Ot |
| ST 383134 3HYMLIOS |
3HYMLA0S 89T Y3IAHIS AHOLISOd3H
!
09T 32I1A3Q 3AON
JHYMLAOS vt
ININdO13AIA
g1 S
(43sn “6-a) (28
ST ALILN3 Y3AY3S ALILNT

(8)304NOS YLVA

(o8

£ OId

NOILYINHOANI
JHNLYNDOIS TVLIDIa

g1

I
I
I
I
I
_ \ 3JHVYMLA0S \
|
|
|

911
3SY3713Y 3HYMLI0S

(S)Lov4ILHY

1 93AH3S AHOLISOd3Y

001

PCT/IB2020/056776

WO 2021/014326

¢ Old

I
I
I
I
(1esn “69) —_ _ _
TOST Anug 891 Janieg I 0/¢ adepsju| 3oMaN
. I
I 98¢ B0 901A8Q BPON
I
— —
| 09¢ 1axapu] €2 uonewioju| adA| abeyoey
90¢l “
YIomiaN |
_ 503 10zAELy TE3 (s)renuspein
I
I 0¢C ejeq A3
— | | —eoe e | | =
PogTt — | 5= r Im
90IAQ 3PON 5007 _ 95¢ 1908l L 'l 37T uonewwoy ST e | |
o 80IA8(8pON | 'l aineubis enbig
N 702 uoiBay ssaoy | | _
|m———————] —————— | GIT ases|ay 8iemlog I
_ 75z Joleoldey - s === -
4ost 20¢ uoibay ss800 V72
| 3018 SPON ¢0¢ uoibay \ 02¢ ere@ elop
_ .
_ __ _ __
€6¢ Jafojdag IC sioejiuy 912 (s)pioysaiy L
BQ¢l
ylomiaN
12 (s)uoneoyddy
Z6¢ Jabeurly
21¢ suononisu|
05z J0ss$3001d 0Te Mowsaly
¥6¢ (s)uoneodd 782 (s)uoneodd
V62 (s)uoneoijddy 782 (s)uoneoljddy 07T Jonsg

L (1asn “B-8) //

0O 991A8(9PON BOST Auiug 00c¢

PCT/IB2020/056776

WO 2021/014326

3/9

[
JHVYML40S

0/
AHOL103dId
NOILOVSNVHL

99¢ oV
NOILLYOI4Id3A

€ "Old

BI¢ (S)A3xY Oand

BIc
(S)ATY OINgnd

2 04N
JHNLVYNOIS
1vLioid

¥9€ AHOW3IN

2
J4VYML40S

82€ IUNLYNDIS
VLI9Id ANOO3S

92€ IUNLYNDIS
VLI9Id LSHIS

2€€ NOILVINHOANI
JHNLYNDIS TVLIDId

0S¢ 3Sv3 13y
JdVYM1408

9€ H3I4143A

29¢ (S)H0SS300Hd

09¢€ 301A3Q 3AON

<

8¥E ((S)LoV4ILYY “B'8)
(8)3114

PPE AHOW3IN

278 (8)H0SS3D0Hd

0v€ 43A43S

£ee
NOILYINHOANI

3d0N

JHNLYNDIS
vLoid

(ojui ayy “68)
08€ O4NI

JdVYM1408

82€ IUNLYNDIS 92€ FHNLYNDIS

VLIOId ANOO3S VL©Id 1SHIH
1743 ===

35V1S ANOJIS ¢ct 3DV1S 1S4I4
0¢€ SI9VLS ININOT13A3A

1 (S)ATX O1NaNnd

1T (S)ATX ALVAIHd

91€ 3HVYMLAOS

¥1€ AHOWAW

21t (8)H0SS3004d
0T 30IA3A ALILNT

™

00¢

PCT/IB2020/056776

WO 2021/014326

vey
NOILVOI4Id3A

¢E ANILNNY

4/9

90% 3AON

_T_______

_
_
_
_
_
_
_ (57 147
__ AO1d3d _ NOILNgIHL1SId
_ _
_ _
_ _
_ _
_ _
_ _ ®
_ _ ®
_ _
_ _ hd
_ _
“ “ O¢r 1S3l
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
| |
| VOV H3AHIS | ¢0v ALILN3

v "OId

iz47

A18NFSSY

8¥¥ A3
A1VAldd
HIN

g 3unuNars | | 27009k
WLIDIAANO3S | | anonas
_
72 153l 8% Lsal 515 NG
NOLLYHD3LNI [* ALINN NOD3S
°
rauniers | | 77 A °
Wil isyd [¥ T °
|
0%F Lsal 9% 1S3l 7% ang
NOILYHD3LNI [ALINN 15414

05y
JHNLYNDIS
TVLIDId HLN

0I¥ 3000

0[0)4

WO 2021/014326 PCT/IB2020/056776

5/9
DEVELOPMENT LEDGER 500
METADATA 512
A
502 D \
$#&% 10:36:24 | PROCESS AB | STAGE1 | BUILD #1 | CHECKSUM
L510 L514 L516 L518 L520 L522
504 D \
$58&# 11:15:52 | PROCESS AC | STAGE1 | BUILD #2 | CHECKSUM
506 D"\
&#$% 16:09:35 | PROCESS DE | STAGE2 | BUILD #1 | CHECKSUM
L
L
L
508 D \

#8%& 56:47:13 | PROCESS XY | STAGE 16 | BUILD #3 | CHECKSUM

FIG. 5

WO 2021/014326 PCT/1B2020/056776
6/9

SOFTWARE RELEASE 600

ONE OR MORE FILES A-E 602

RELEASE BUNDLE INFORMATION 604
CHECKSUM FOR FILE A
CHECKSUM FOR FILE B
CHECKSUMFORFILE C
CHECKSUM FOR FILE D
CHECKSUMFOR FILE E
TOTAL CHECKSUM

FILE-SPECIFIC METADATA 606

DIGITAL SIGNATURE METADATA 608

UNITY TEST SIGS: INTEGRATION TEST SIGS: eee ASSEMBLY SIGS:

SIG1-FILEA SIG2-FILEA SIG Z-FILE C (A+B)
L []

® []
SIGX-FILEB SIGY-FILEB

FIG. 6A

SOFTWARE RELEASE 620
SOFTWARE 622 DIGITAL SIGNATURE INFORMATION 630
SOFTWARE INFO 624 DIGITAL SIGNATURES 632
ONE OR MORE FILES 626 DIGITAL SIGNATURE METADATA 634

METADATA 628

FIG. 6B

WO 2021/014326 PCT/IB2020/056776
779

700

W

Vs 702

Receive file information corresponding to one or more files of a software release from
an entity device

l Ve 704

Receive multiple digital signatures from the entity device, each digital signature
related to a corresponding development stage of multiple development stages of the
software release

l r 706
Receive node information corresponding to one or more node devices from the entity
device
l e 708

Generate software release information comprising the multiple digital signatures and
an indication of the one or more files

l f710

Initiate transmission of the software release information to the one or more node
devices

FIG. 7

WO 2021/014326 PCT/IB2020/056776

89
800

AN

Vs 802

Receive software release information comprising an indication of one or more files
and multiple digital signatures corresponding to different development stages of
multiple development stages of a software release

l -804

Receive one or more public keys associated with one or more private keys used to
generate the multiple digital signatures

l e 806

Identify the one or more files based on the indication

l r 808

Verify the multiple digital signatures based on the one or more public keys

l f810

Process the one or more files based on verification of the multiple digital signatures

FIG. 8

WO 2021/014326 PCT/IB2020/056776

900 99

N

r 902

Perform a first development stage of multiple development stages of a software
release including one or more files

l 904

Responsive to performing the first development stage, generate a first digital
signature using a first private key

l Vs 906

Perform a second development stage of the multiple development stages of the
software release on the one or more files

l Ve 908

Responsive to performing the second development stage, generate a second digital
signature using a second private key

l f910

Generate digital signature metadata associated with the first digital signature and the
second digital signature

l /912

Initiate transmission, to a server or a node device, of file information corresponding to
the one or more files, the first digital signature, the second digital signature, and the
digital signature metadata

FIG. 9

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings

