This invention relates to a group of novel chelating agents, novel chelates, biomolecules labeled with said chelates or chelating agents as well as solid supports conjugated with said chelates, chelating agents or labeled biomolecules. Especially the invention relates to novel chelating agents useful in solid phase synthesis of oligonucleotides or oligopeptides and the oligonucleotides and oligopeptides so obtained. The chelates described herein compris - a lanthanide ion, Ln 3+ - chromophoric moiety - a chelating part, and - a reactive group.
LUMINESCENT LANTHANIDE (III) CHELATES, CHELATING AGENTS AND CONJUGATES DERIVED THEREOF

FIELD OF THE INVENTION

This invention relates to a group of novel chelating agents, novel chelates, biomolecules labeled with said chelates or chelating agents as well as solid supports conjugated with said chelates, chelating agents or labeled biomolecules.

BACKGROUND OF THE INVENTION

The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference.

The use of long life-time emitting lanthanide(III) chelate labels or probes together with time-resolved fluorometry in detection provides a method to generate sensitive bioaffinity assays. Indeed, time-resolved fluorescence based on lanthanide(III) chelates has become a successful detection technology, and it has been used in in vitro diagnostics for over two decades. Time-resolved fluorescence quenching assays based on energy transfer from a lanthanide(III) chelate to a nonfluorescent quencher have been applied in various assays of hydrolyzing enzymes as well as for nucleic acid detection. The different photochemical properties of europium, terbium, dysprosium and samarium chelates even enable the development of multiparametric homogenous assays.

Stable luminescent lanthanide(III) chelates consist of a ligand with a reactive group for covalent conjugation to bioactive molecules, an aromatic structure, which absorbs the excitation energy and transfers it to the lanthanide ion and additional chelating groups such as carboxylic or phosphonic acid moieties and amines. Unlike organic chromophores, these molecules do not suffer from Raman scattering or concentration quenching. This allows multilabeling and development of chelates bearing several light absorbing moieties.
A luminescent lanthanide(III) chelate has to fulfill several requirements a) the molecule has to be photochemically stable both in the ground and excited states, b) the molecule has to be kinetically stable, c) the molecule has to be chemically stable, d) the excitation wavelength has to be as high as possible, preferably over 330 nm, e) the molecule must have a high excitation coefficient in the excitation wavelength, f) the energy transfer from the ligand to the central ion has to be efficient, g) the luminescence decay time has to be long, h) the chelate should be readily soluble in water, i) the bioactive molecules have to retain their affinities after the coupling to the lanthanide chelate.

It has been shown that an europium(III) chelate based on 1,4,7-triazacyclononane tethered to three phenylethynylpyridinyl chromophores has good luminescence properties: its luminescence yield (\(\Phi\)) is significantly higher than that of the chelate constructed from a single chromophore [Helv. Chim. Acta, 1996, 79, 789]; also its kinetic and thermodynamic stabilities are high. However, the chelate disclosed is not suitable for biomolecule derivatization because it lacks the reactive group required for conjugation. Furthermore, the ethynyl groups are susceptible to photobleaching, which is a problem especially in applications based on fluorescence microscopy. The alkynyl groups may also react with additives needed in in vitro assays, especially the highly nucleophilic azide ion. Later, the above mentioned
3

problems have been solved by substituting the phenylethynyl groups with furyl and trismethoxyphenyl subunits giving rise to luminescent chelates with europium and samarium as well as with terbium and dysprosium, respectively [US Pat. Appl. 11/004,061; US Pat. Appl. 10/928,143].

The azamacrocycles disclosed still have some drawbacks: the aromatic chromophores decrease their solubility to water. Also, the excitation maxima of the furyl derivatives are only somewhat over 300 nm; a higher excitation wavelength would be desirable while developing simpler and less expensive detection instruments and reduce the significance of the background luminescence signal. Furthermore, shorter wavelengths are absorbed by biological materials such as nucleic acids and aromatic amino acids.

Azamacrocycles tethered to long wavelength sensitizers, such as aromatic heterocycles, have also been proposed [e.g. US 6,344,360, WO2006/039505, WO2007/055700, J. Chem. Soc. Perkin Trans 2, 2002, 348]. However, the emission spectrum of chelates of this type is often divided into several peaks. This, in turn causes problems: a) the quantum yield is relatively low when narrow filters have to be used, such as in multilabel assays, b) the additional emission bands cause background signal in applications based on time-resolved fluorescence energy transfer, c) the intensive long wavelength emission lines limit the use of NIR acceptors.

Although organic chelators and their substituents have a significant effect on the photophysical properties of lanthanide(III) chelates, no general rules for the estimation of these effects are available. It has been proposed in US 4,761,481 that electron releasing substituents in the aromatic moiety of phenyl and naphthyl substituted 2,6-[N,N-di(carboxyalkyl)aminoalkyl]pyridines have advantageous effects on the photophysical properties on their chelates with lanthanide ions. However, no experimental evidence was given. Later it has been shown that this is the case with various terbium(III) and dysprosium(III) chelates [US Pat. Appl. 11/004,061] but the corresponding europium(III) chelates are practically non-
Furthermore, in contrast to that proposed in US 4,761,481 it has been shown that lanthanide chelates with electron releasing amino substituent in the aromatic moieties have low quantum yields [Takalo et al, Helv. Chim. Acta, 1993, 76, 877].

In several applications, covalent conjugation of the chelate to bioactive molecules is required. Most commonly, this is performed in solution by allowing an amino or mercapto group of a bioactive molecule to react with isothiocyanato, maleimido or \(N \)-hydroxysuccinimido derivatives of the label [Fichna, J., Janecka, A., Bioconjugate Chem., 2003, 14, 3]. Since in almost all biomolecule labelings the reaction is performed with an excess of an activated label, laborious purification procedures cannot be avoided. Especially, when the attachment of several label molecules, or site-specific labeling in the presence of several functional groups of similar reactivity is required, the isolation and characterization of the desired biomolecule conjugate is extremely difficult, and often practically impossible.

The biomolecule conjugates used in many applications, such as homogenous quenching assays, have to be extremely pure, since even small amounts of fluorescent impurities considerably increase the luminescence background and reduce the detection sensitivity. Thus, it is highly desirable to perform the conjugation of biomolecules on solid phase, since most of the impurities can be removed by washings while the biomolecule is still anchored to the solid support, and once released into the solution, only one chromatographic purification is required.

Solution phase labeling of large biomolecules, such as proteins, cannot be avoided. In these cases, the labeling reaction has to be as selective, and the purification of the biomolecule conjugates as effective as possible.

OBJECTS AND SUMMARY OF THE INVENTION

In this invention, it was observed that the photophysical properties of lanthanide chelates with furylpyridyl subunits can be tailored with electron donating
substituents in the furyl ring. The aqueous solubility of the chelates, in turn, can be enhanced by carboxylic or sulfonic acid functions in the said furyl ring. The same substitution effects can also be achieved with the corresponding thienyl derivatives.

Accordingly, one aspect of the present invention is to provide chelating agents and lanthanide chelates thereof, useful for labeling biomolecules for use as probes in time-resolved fluorescence spectroscopy, wherein the chromophore comprises at least one furyl or thienyl substituted pyridyl group, where the furyl or thienyl group is substituted with one or more, same or different, electron donating groups and optionally with a carboxylic or sulfonic acid group or an ester, an amide or a salt of said acids.

One aspect of this invention is to provide chelates which give fluorescence with different chelated lanthanide ions.

One aspect is to provide chelates or chelating agents suitable for labeling of biomolecules in solution.

Another object is to provide chelates and chelating agents suitable for labeling oligopeptides, oligonucleotides and other molecules simultaneously with their synthesis on a solid phase.

Thus, according to one aspect, the invention concerns a chelate comprising
- a lanthanide ion, Ln^{3+}
- a chromophoric moiety comprising one or more aromatic units, wherein at least one of the aromatic units is a furyl or thienyl substituted pyridyl group, wherein the furyl or thienyl group is substituted with one or more, same or different, electron donating groups and optionally with a carboxylic or sulfonic acid group or an ester, an amide or a salt of said acids, G, and wherein the chromophoric moieties are
tethered directly to each other to form a terpyridyl group or are tethered to each other via a cyclic or acyclic N-containing hydrocarbon chain,
- a chelating part comprising at least two carboxylic acid or phosphonic acid groups, or esters, amides or salts of said acids, attached to an aromatic unit of the chromophoric moiety, either directly or via a cyclic or acyclic N-containing hydrocarbon chain, and
- a reactive group A, tethered to the chromophoric moiety or to the chelating part either directly or via a linker L, said reactive group A enabling binding to a biomolecule or to a functional group on a solid phase.

According to another aspect this invention concerns a chelating agent comprising
- a chromophoric moiety comprising one or more aromatic units, wherein at least one of the aromatic units is a furyl or thienyl substituted pyridyl, wherein the furyl or thienyl group is substituted with one or more, same or different, electron donating groups and optionally with a carboxylic or sulfonic acid ester or an amide of said acids, G', wherein the chromophoric moieties are tethered directly to each other to form a terpyridyl group or tethered to each other via a cyclic or acyclic N-containing hydrocarbon chain,
- a chelating part comprising at least two carboxylic acid or phosphonic acid groups, or esters or amides of said acids, attached to an aromatic unit of the chromophoric moiety, either directly or via a cyclic or acyclic N-containing hydrocarbon chain, and
- a reactive group A, tethered to the chromophoric moiety or to the chelating part either directly or via a linker L, said reactive group A enabling binding to a biomolecule or to a functional group on a solid phase.

According to another aspect, the invention concerns a biomolecule conjugated with a chelate or a chelating agent according to this invention.

According to another aspect, the invention concerns a solid support conjugated with a chelate, a chelating agent or a biomolecule labeled according to this invention.
According to another aspect, this invention concerns a labeled oligopeptide, or an organic molecule obtained by synthesis on a solid phase, by introduction of an appropriate chelating agent according to this invention into the oligopeptide structure on an oligopeptide synthesizer, followed by deprotection and optionally also the introduction of a metal ion.

According to another aspect, this invention concerns a labeled oligonucleotide, obtained by synthesis on a solid phase, by introduction of an appropriate chelating agent according to this invention into the oligonucleotide structure on an oligonucleotide synthesizer, followed by deprotection and optionally also the introduction of a metal ion.

DETAILED DESCRIPTION OF THE INVENTION

Definitions:

As defined herein, "electron donating group" refers to an alkyl and an alkoxy group. The alkyl group can be linear or branched, like methyl, ethyl, n-propyl, /-propyl, n-butyl, /-butyl and sec-butyl. The alkoxy group can be linear or branched, like methoxy, ethoxy, n-propano, /-propano, n-butoxy, /-butoxy and sec-butoxy. The electron donating group can be tethered also to electron withdrawing groups like hydroxyl, carboxylic and sulfonic acid groups if the electron withdrawing group is separated from the furane or thiophene ring by one or more methylene groups.

Chelates

Chelating agents and metal chelates based thereon where the chromophoric moiety is a bivalent aromatic structure comprising one or more furyl or thienyl substituted pyridyl groups, wherein the furyl or thienyl group has additional substituents are new. The furyl or thienyl substituted pyridyl group is capable of absorbing light or energy and transferring the excitation energy to the chelated lanthanide ion, giving rise to a strong fluorescence. In addition to the furyl or thienyl substituted pyridyl
group or groups, the chromophoric unit may comprise unsubstituted pyridyl groups, pyridyl groups bearing other substituents and/or other aromatic groups.

The furyl or thienyl group can be attached to the pyridine ring via its C2 atom, or via its C3 atom by using e.g. 3-(dihydroxyboryl)furan or 3-(dihydroxyboryl)thiophene derivatives instead of 2-(dihydroxyboryl)furan or 2-(dihydroxyboryl)thiophene derivatives, respectively, as the reagent in the synthesis strategy. In the compounds demonstrated by specific examples herein, the 4-position of the pyridyl group bears the furyl or thienyl substituent. Other positions of the pyridine ring may also be useful for substitution.

According to one embodiment, the chromophoric moiety comprises one, two or three pyridyl groups, wherein at least one of them is furyl or thienyl substituted, where the furyl or thienyl group is substituted with one or more, same or different, electron donating groups. In particular embodiment, the electron donating groups are linear or branched alkyl groups, such as methyl, ethyl, n-propyl, /-propyl, n-butyl, /-butyl and sec-butyl.

The pyridyl groups can be tethered directly to each other to form a terpyridyl group. Alternatively, the pyridyl groups are tethered to each other via N-containing hydrocarbon chains. The said N-containing hydrocarbon chain can be either cyclic or acyclic. In a particular embodiment the N-containing hydrocarbon chain is cyclic. Compounds according to this invention comprising three chromophoric moieties wherein the chromophoric moieties are linked to each other via a cyclic N-containing hydrocarbon chain e.g. compounds based on azacrowns, are suitable in assays based on energy transfer or quenching, because in their emission spectra the peak near 615 nm is dominant.

According to one embodiment the chromophoric moiety comprises one, two or three carboxylic or sulfonic acid groups or esters, amides or salts of said acids, G. The carboxylic or sulfonic acid group enhances the aqueous solubility of said
chelate. It can also be used for covalent or noncovalent coupling of said chelate to bioactive molecules and solid supports.

The chelating agent or chelate must bear a reactive group A in order to enable covalent binding of the chelating agent or chelate to a biomolecule or to a solid support. However, there exist applications where no such covalent binding is necessary. Chelating compounds of this invention can also be used in applications where no reactive groups in the chelate are needed. One example of this kind of technology is demonstrated e.g. in Blomberg, et al., *J. Immunological Methods*, 1996, 193, 199. Another example where no reactive group A is needed is the separation of eosinophilic and basophilic cells [WO2006/072668]. In this application positively and negatively charged chelates bind with negatively and positively charged cell surfaces, respectively.

Yet another example where no linker is needed is the preparation of highly luminescent beads simply by swelling chelates into the polymer [e.g. Soukka et al., *Anal. Chem.*, 2001, 73, 2254].

Although in many applications a reactive group A could, in principle, be attached directly to the chromophoric group or to the chelating part, it is desirable, for steric reasons, to have a linker L between the reactive group A and the chromophoric group or chelating part, respectively. The linker L can also be attached to the carboxylic or sulfonic acid group G via an amide bond. The linker is especially important in case the chelate should be used in solid phase syntheses of oligopeptides and oligonucleotides, but it is desirable also when labeling biomolecules in solution.

According to one embodiment the linker L is formed from one to ten moieties, each moiety being selected from the group consisting of phenylene, alkylene containing 1-12 carbon atoms, ethynydiyl (-C≡C-), ethylenediyl (-C=C-), ether (-O-), thioether (-S-), amide (-CO-NH-, -CO-NR’-, -NH-CO- and -NR’-CO-), carbonyl (-CO-), ester (-COO- and -OOC-), disulfide (-SS-), sulfonamide (-SO$_2$-NH-, -SO$_2$-NR’-),
sulfone (-SO$_2$-), phosphate (-0-PO$_2$-O-), diaza (-N=N-), and tertiary amine, wherein R’ represents an alkyl group containing less than 5 carbon atoms.

According to one embodiment, the reactive group A is selected from the group consisting of isothiocyanate, bromoacetamido, iodoacetamido, maleimido, 4,6-dichloro-1,3,5-triazinyl-2-amino, pyridylthio, thioester, aminooxy, azide, hydrazide, amino, alkyne, a polymerizing group, and a carboxylic acid or acid halide or an active ester thereof.

In case the chelate or chelating agent should be attached to a microparticle or nanoparticle during the manufacturing process of said particles, the reactive group A is a polymerizable group, such as methacroyl group.

The lanthanide chelates to be polymerized to particles have to be soluble in organic solvents. This feature can be enhanced by omitting the carboxylic or sulfonic acid group G from the structures of the chelates according to this invention. Furthermore, this allows the introduction of the third electron donating group to the furyl or thiophene subunits of said chelates.

In the case the chelate or chelating agent is to be attached to solid supports including nanomaterials, biomolecules, and various organic molecules using copper(I) catalyzed Huisgen-Sharpless dipolar [2+3] cycloaddition reaction, the reactive group A has to be either azide or terminal alkyne.

It has been proposed [US 5,985,566] that oligonucleotides, DNA, RNA, oligopeptides, proteins and lipids can be transformed statistically by using label molecules tethered to platinum derivatives. In nucleic acids these molecules react predominantly at N7 of guanine residues. In this case the reactive group A is

\[
\text{HN-} \text{A'} \text{NH}
\]

wherein A’ is cleaving ligand like Cl, (CH$_3$)$_2$SO, H$_2$O, and NO$_3$
The group A-L- can be tethered to the molecule in different ways. It can be tethered to the chelating part, to the N-containing chain joining the aromatic units together, or to an aromatic unit. In the last mentioned case the group A-L- is tethered to a furyl or thienyl substituent either directly of via the carboxylic or sulfonic acid derivative G.

According to one embodiment, the chelated metal ion Ln$^{3+}$ is europium(III), samarium(III), terbium(III) or dysprosium(III). In a particular embodiment the chelated metal ion Ln$^{3+}$ is europium(III) and samarium(III)

Exemplary specific chelates according to this invention are the following structures:
wherein \(R^1 \) and \(R^2 \) are same or different electron donating groups \(L, G, R' \) and \(A \) are defined as above, and \(Z \) in either \(O \) and \(S \), for furyl and thienyl, respectively.

In a particular embodiment the chelate is selected from the following structures
Chelating agents for use in peptide synthesis

According to one embodiment, the chelating agent according to this invention is suitable for use in the synthesis of an oligopeptide. In this application, the reactive group A is connected to the chelating agent via a linker L, and A is a carboxylic acid or its salt, acid halide or an ester or an amino acid residue -CH(NHR₃)R⁴ where R³ is a transient protecting group and R⁴ is a carboxylic acid or its salt, acid halide or an ester. Exemplary chelating agents are the following structures.
wherein R^1, R^2, L, and Z are defined as above, and A is a carboxylic acid or its salt, acid halide or an ester or an amino acid residue $-\text{CH(NHR}_3^3\text{)}R^4$ where R^3 is a transient protecting group and R^4 is a carboxylic acid or its salt, acid halide or an ester are defined as before, A is a carboxylic acid or its salt, acid halide or an ester
or an amino acid residue -CH(NHR₃)R⁴ where R³ is a transient protecting group selected from a group consisting of Fmoc (fluorenylmethoxycarbonyl), Boc (tert-butyloxycarbonyl), or Bsmoc (1,1-dioxobenzo[b]thiophen-2-ylmethyloxycarbonyl), and R⁴ is a carboxylic acid or its salt, acid halide or an ester, R" is an alkyl ester or an allyl ester and R" is an alkyl group and G' is a carboxylic or sulfonic acid ester or amide.

In a particular embodiment, the selected chelating agents are the following structures:

![Chemical Structures]

wherein R¹, R², L, G' and Z are defined as before, A is a carboxylic acid or its salt, acid halide or an ester or an amino acid residue -CH(NHR₃)R⁴ where R³ is a transient protecting group and R⁴ is a carboxylic acid or its salt, acid halide or an ester and where R³ is a transient protecting group selected from a group consisting of Fmoc (fluorenylmethoxycarbonyl), Boc (tert-butyloxycarbonyl), or Bsmoc (1,1-
dioxobenzo[\text{b}]thiophen-2-ylmethyloxycarbonyl), and R" is an alkyl ester or an allyl ester of a carboxylic acid and G' is a carboxylic or sulfonic acid ester or amide.

The chelating agent can be introduced into biomolecules with the aid of a peptide synthesizer. The chelating agent can be coupled to an amino tethered solid support or immobilized amino acid in the presence of an activator. When the condensation step is completed the transient amino protecting group of the labeling reagent is selectively removed while the material is still attached to the solid support (e.g. with piperidine in the case of Fmoc-protecting group). Then, a second coupling of a chelating agent or other reagent (e.g. appropriately protected amino acid, steroid, hapten or organic molecule) is performed as above. When the synthesis of the desired molecule is completed, the material is detached from the solid support and deprotected. Purification can be performed by HPLC techniques. Finally, the purified ligand is converted into the corresponding lanthanide(III) chelate by the addition of a known amount of lanthanide(III) ion.

Chelating agents for use in oligonucleotide synthesis

According to another embodiment, the chelating agent according to this invention is suitable for use in the synthesis of an oligonucleotide. In this case the reactive group A is connected to the chelating agent via a linker L, and A is

\[-Z^2\cdot O\cdot PZ^3\cdot O\cdot R^5\]

wherein one of the oxygen atoms optionally is replaced by sulfur, Z\(^3\) is chloro or NR\(^6\)R\(^7\),R\(^5\) is a protecting group, R\(^6\) and R\(^7\) are alkyl groups comprising 1-8 carbons, and Z\(^2\) is absent or is a radical of a purine base or a pyrimidine base or any other modified base suitable for use in the synthesis of modified oligonucleotides. Said base is connected to the oxygen atom either via i) a hydrocarbon chain, which is substituted with a protected hydroxymethyl group, or via ii) a furan ring or pyrane ring or any modified furan or pyrane ring, suitable for use in the synthesis of modified oligonucleotides.

The chelating agent can be introduced into oligonucleotides with the aid of
an oligonucleotide synthesizer. A useful method is disclosed in US 6,949,639 and EP1308452. The said patent publications disclose a method for direct attachment of a desired number of conjugate groups to the oligonucleotide structure during chain assembly. The key reaction in the synthesis strategy towards nucleosidic and acyclonucleosidic oligonucleotide building blocks is the Mitsunobu alkylation which allows introduction of various chelating agents to the acyclonucleoside or nucleoside, and finally to the oligonucleotide structure. The chelating agents are introduced during the chain assembly. Conversion to the lanthanide chelate takes place after the synthesis during the deprotection steps.

According to one embodiment Z^2 is a radical of any of the bases thymine, uracil, adenosine, guanine or cytosine, and said base is connected to the oxygen atom via i) a hydrocarbon chain, which is substituted with a protected hydroxymethyl group, or via ii) a furan ring having a protected hydroxymethyl group in its 4-position and optionally a hydroxyl, protected hydroxyl or modified hydroxyl group in its 2-position.

According to one embodiment the reactive group $- Z^2-O-P(NR^6R^7)-O-R^5$ is selected from the group consisting of:

where $-$ is the position of the linker L and DMTr is dimethoxytrityl.
According to one embodiment the chelating agent for this use is selected from one of the specific structures disclosed below.
where R'' is an alkyl ester or an allyl ester of a carboxylic acid and R'' is an alkyl group and wherein R^1, R^2, L and G' are as defined before and A is $-Z^2-O-P(NR^6R^7)-O-R^5$ as defined above.

In a particular embodiment the chelating agent is selected from the following specific structures:

![Chemical structures](image)

where R'' is an alkyl ester or an allyl ester or a carboxylic acid and wherein R^1, R^2, L and G' are as defined before and A is $-Z^2-O-P(NR^6R^7)-O-R^5$ as defined above.

For the preparation of oligonucleotide conjugates tethered to a single label molecule Z^2 can be omitted from the structure.
Biomolecules

The biomolecule conjugated with a chelating agent or a chelate according to this invention is an oligopeptide, oligonucleotide, DNA, RNA, modified oligo- or polynucleotide, such as phosphoromonothioate, phosphorodithioate, phosphoroamidate and/or sugar- or base modified oligo- or polynucleotide, protein, oligosaccharide, polysaccharide, phospholipide, PNA, LNA, antibody, steroid, hapten, drug, receptor binding ligand and lectine.

Solid support conjugates

The chelates, chelating agents and biomolecules according to this invention may be conjugated on a solid support. The solid support may be a particle such as a nanoparticle or microparticle, a slide, a plate or a resin suitable for solid phase oligonucleotide or oligopeptide synthesis.

In case the chelate or chelating agent has a polymerizing group as a reactive group, then the chelate or chelating agent may be introduced in the solid support, for example a particle, simultaneously with the preparation of the particles [Org. Biomol. Chem., 2006, 4, 1383]. When copper(I) catalyzed Huisgen-Sharpless reaction is used for derivatization, the chelate is tethered to an azide group and the solid support is derivatized with terminal alkynes or vice versa.

The biomolecule conjugated with the solid support, either covalently or noncovalently is a labeled oligopeptide, obtained by synthesis on a solid phase, by introduction of a chelating agent into the oligopeptide structure on an oligopeptide synthesizer, followed by deprotection and optionally introduction of a metal ion. Alternatively, the biomolecule conjugated with the solid support, either covalently or noncovalently is a labeled oligonucleotide, obtained by synthesis on a solid phase, by introduction of a chelating agent into the oligonucleotide structure on an oligonucleotide synthesizer, followed by deprotection and optionally also introduction of a metal ion. Alternatively, the biomolecule conjugated with solid support, either covalently or noncovalently is DNA, RNA, oligopeptide,
oligonucleotide, polypeptide, polynucleotide or protein labeled with a chelate according to this invention.

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 demonstrates the excitation and emission spectra of the europium chelate of 6,6',6"-[(octahydro-l/f-l,4,7-triazonine-l,4,7-triyl)tris(methylene)]tris[4-(4-carboxy-S^4-dimethylfuran-l-y^pyridine-l-carboxylic acid] (14c).

The invention will be illuminated by the following non-restrictive examples.

EXAMPLES

The invention is further elucidated by the following examples. The structures and synthetic routes employed in the experimental part are depicted in Schemes 1-7. Schemes 1 and 2 illustrate the synthesis of the chromophores 6a-c and 11. The experimental details are given in Examples 1-17. Scheme 2 also illustrates the synthetic route for the preparation of ethyl 6-bromomethyl-4-(4'-methyl-5'-ethoxycarbonylthien-2'-yl)pyridine-2-carboxylate starting from commercially available 3-methylthiophene-2-carboxylic acid. Schemes 3-7 illustrate the synthesis of the chelates 14a-c, 22-24, 29 and 32. Experimental details are given in Examples 18-38, and 40-44.

Experimental procedures

Adsorption column chromatography was performed on columns packed with silica gel 60 (Merck). NMR spectra were recorded either on a Brucker 250 on a Jeol LA-600 spectrometers operating at 250 and 600 MHz for ^1H, respectively. Me_4Si was used as an internal reference. Coupling constants are given in Hz. Electrospray mass spectra were recorded on an Applied Biosystems Mariner ESI-TOF instrument. HPLC purifications were performed using a Shimadzu LC 10 AT instrument equipped with a diode array detector, a fraction collector and a reversed phase...
column (LiChrocart 125-3 Purospher RP-18e 5 µm). Mobile phase: (Buffer A): 0.02 M triethylammonium acetate (pH 7.0); (Buffer B): A in 50 % (v/v) acetonitrile. Gradient: from 0 to 1 min 95% A, from 1 to 31 min from 95% A to 100% B. Flow rate was 0.6 mL min.\(^{-1}\) All dry solvents were from Merck and they were used as received. Fluorescence spectra were recorded on a PerkinElmer LS-55 instrument.

Example 1

Synthesis of diethyl 4-iodopyridine-2,6-dicarboxylate (1)

A mixture of diethyl 4-bromopyridine-2,6-dicarboxylate (8.36 g, 27.7 mmol), 57 % (w/w) aqueous hydriodic acid (31.05 g, 138.4 mmol) and EtOH (67 mL) was stirred at 50 °C for 1 h and neutralized with saturated NaHCO₃ solution. The product was extracted from the aqueous phase with CH₂Cl₂ (2 x 300 mL). The combined organic fractions were dried with Na₂SO₄ and evaporated to dryness. Yield was 5.24 g (54 %). ESI-TOF-MS [M+H]+: calc. for C₁₁H₁₃INO₄ 349.99, found 349.99.

\(^1\)H NMR (600 MHz, CDCl₃): δ 8.63 (s, 2H); 4.50 (q, J = 7.2 Hz, 4H); 1.46 (t, J = 7.2 Hz, 6H).

Example 2

Synthesis of ethyl 6-hydroxymethyl-4-iodopyridine-2-carboxylate (2)

Compound 1 (5.24 g, 15.0 mmol) was dissolved in EtOH (270 ml) at 40 °C. NaBH₄ (0.57 g, 15.0 mmol) was carefully added and the mixture stirred for 40 min. The reaction was stopped by adjusting the pH to 3 with 28 % (w/w) aqueous hydriodic acid. The mixture was neutralized with saturated NaHCO₃ solution and evaporated to dryness. The residue was suspended in water (150 mL) and the product was extracted from the aqueous phase with 10 % EtOH/CH₂Cl₂ solution (3 x 150 ml). The combined organic fractions were dried with Na₂SO₄ and evaporated to dryness. Purification on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 2:5) yielded 2.89 g (63 %) of the title compound.

1H NMR (600 MHz, CDCl$_3$): δ 8.37 (s, 1H); 7.95 (s, 1H); 4.83 (d, $J = 3.0$ Hz, 2H); 4.47 (q, $J = 7.2$ Hz, 2H); 3.29 (s, 1H); 1.44 (t, $J = 7.2$ Hz, 3H).

Example 3

Synthesis of ethyl 6-(tetrahydropyran-2-ylxymethyl)-4-iodopyridine-2-carboxylate (3)

A mixture of 2 (2.89 g, 9.4 mmol), 3,4-dihydro-2H-pyran (1.19 g, 14.1 mmol), pyridine /?-toluenesulfonate (0.236 g, 0.94 mmol) and CH$_2$Cl$_2$ (50 ml) was stirred overnight at r.t. The solvent was evaporated and the product purified on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 2:5), yielding 3.18 g (86 %) of the title compound.

ESI-TOF-MS [M+H]$^+$: calc. for C$_{45}$H$_{49}$INO$_4^+$ 392.04, found 392.04.

1H NMR (600 MHz, CDCl$_3$): δ 8.36 (d, $J = 1.5$ Hz, 1H); 8.08 (d, $J = 1.5$ Hz, 1H); 4.96 (d, $J = 14.3$ Hz, 1H); 4.77 (t, $J = 3.6$ Hz, 1H); 4.70 (d, $J = 14.8$ Hz, 1H); 4.47 (q, $J = 7.2$ Hz, 2H); 3.91-3.84 (m, 1H); 3.59-3.54 (m, 1H); 1.94-1.86 (m, 1H); 1.84-1.78 (m, 1H); 1.77-1.71 (m, 1H); 1.66-1.54 (m, 3H); 1.43 (t, $J = 7.2$ Hz, 3H).

Example 4

Synthesis of ethyl 6-(tetrahydropyran-2-ylxymethyl)-4-(4'-methoxycarbonyl-5'-methylfuran-2'-yl)pyridine-2-carboxylate (4a)

A mixture of 3 (220 mg, 0.56 mmol), methyl 2-methyl-3-furancarboxylate (315 mg, 2.25 mmol), KOAc (110 mg, 1.12 mmol), tetrabutyl ammonium iodide (208 mg, 0.56 mmol), Pd(OAc)$_2$ (6.3 mg, 0.028 mmol), tri-2-furylphosphine (13.0 mg, 0.056 mmol) and dry DMF (3.8 ml) was deaerated with argon and stirred for 24 h at 120 °C. After filtration and evaporation the product was purified on silica gel (5 % EtOH/CH$_2$Cl$_2$ + 1 % triethylamine), yielding 150 mg (66 %) of the title compound.

ESI-TOF-MS [M+H]$^+$: calc. for C$_{21}$H$_{26}$NO$_7^+$ 404.17, found 404.17.
Example 5

Synthesis of ethyl 6-(tetrahydropyran-2-yloxymethyl)-4-(4'-methoxycarbonyl-furan-2'-yl)pyridine-2-carboxylate (4b)

The title compound was synthesized as described for compound 4a in Example 4 but using methyl 3-furancarboxylate.

Example 6

Synthesis of ethyl 6-(tetrahydropyran-2-yloxymethyl)-4-(3',5'-dimethyl-4'-ethoxycarbonylfuran-2'-yl)pyridine-2-carboxylate (4c)

A mixture of 3 (3.7 g, 9.5 mmol), ethyl acetoacetate (1.2 mL, 9.5 mmol) and methylprop-2-ynylcarbonate (1.1 g, 9.5 mmol), synthesized as disclosed in J. Org. Chem., 2005, 70, 6980, was dissolved in dry DMF (97 mL) and deaerated with argon. Pd(PPh₃)₄ (0.56 g, 0.48 mmol) and K₂CO₃ (2.6 g, 19 mmol) were added and the mixture was stirred overnight in the dark at 85 °C. The mixture was filtered and the residue was evaporated to dryness. The residue was dissolved in CH₂Cl₂ and the solution was washed with saturated NaHCO₃. Purification on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 5:1) yielded 1.1 g (27 %) of the title compound.

ESI-TOF-MS [M+H]+: calc. for C₂₃H₃₀NO₇⁺ 432.20, found 432.22.

¹H NMR (600 MHz, CDCl₃): δ 8.23 (d, J = 1.2 Hz, IH); 7.89 (s, IH); 5.03 (d, J = 14.1 Hz, IH); 4.82 (m, IH); 4.79 (m, IH); 4.51 (q, J = 7.1 Hz, 2H); 4.35 (q, J = 7.1 Hz, 2H); 3.94-3.88 (m, IH); 3.58-3.55 (m, IH); 2.66 (s, 3H); 2.53 (s, 3H); 1.94-1.51 (m, 6H); 1.45 (t, J = 7.0 Hz, 3H); 1.40 (t, J = 7.2 Hz, 3H).

Example 7

Synthesis of ethyl 6-hydroxymethyl-4-(4'-methoxycarbonyl-5'-methylfuran-2'-yl)pyridine-2-carboxylate (5a)
A mixture of 4a (300 mg, 0.74 mmol), p-toluenesulfonic acid monohydrate (141 mg, 0.74 mmol) and EtOH (30 mL) was stirred for 4 h at r.t. The solvent was evaporated and the product purified on silica gel (5 % EtOHZCH₂Cl₂ + 1 % triethylamine), yielding 148 mg (63 %) of the title compound.

ESI-TOF-MS [M+H]+: calc. for C₁₀H₁₇NO₆⁺ 320.11, found 320.13.

Example 8

Synthesis of ethyl 6-hydroxymethyl-4-(4'-methoxycarbonylfuran-2'-yl)pyridine-2-carboxylate (5b)

4b was transformed into the title compound using the method disclosed in Example 7.

Example 9

Synthesis of ethyl 4-(3',5'-dimethyl-4'-ethoxycarbonylfuran-2'-yl)-6-(hydroxymethyl)pyridine-2-carboxylate (5c)

Compound 4c (1.1 g, 2.57 mmol) was dissolved in ethanol (84 mL) and p-toluenesulfonic acid monohydrate (0.49 g, 2.57 mmol) was added. The mixture was stirred overnight at r.t. Purification on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate/triethylamine 10:1:1 → 5:2:1 → 3:5:1) yielded 0.69 g (77 %) of the title compound. ESI-TOF-MS [M+H]+: calc. for C₁₈H₂₂NO₆⁺ 348.14, found 348.15.

¹H NMR (600 MHz, CDCl₃): δ 8.23 (s, 1H); 7.69 (s, 1H); 4.89 (s, 2H); 4.49 (q, J = 7.2 Hz, 2H); 4.35 (q, J = 7.2 Hz, 2H); 2.65 (s, 3H); 2.53 (s, 3H); 1.46 (t, J = 7.2 Hz, 3H); 1.39 (t, J = 7.2 Hz, 3H).

Example 10

Synthesis of ethyl 6-(bromomethyl)-4-(4'-methoxycarbonyl-5'-methylfuran-2'-yl)pyridine-2-carboxylate (6a)
A mixture of phosphorous tribromide (125 mg, 0.46 mmol) and dry DMF was stirred at 0 °C until a white precipitate was formed. A solution of 5a (148 mg, 0.46 mmol) in a mixture of DMF (6 mL) and CH₂Cl₂ (0.2 mL) was added. The mixture was stirred for 1 h at r.t. and neutralized with saturated NaHCO₃ solution. The solvent was evaporated and the product purified on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 2:5), yielding 113 mg (64%) of the title compound. ESI-TOF-MS [M+H]⁺: calc. 382.02, found 382.02.

Example 11

Synthesis of ethyl 6-(bromomethyl)-4-(4’-methoxycarbonylfuran-2’-yl)pyridine-2-carboxylate (6b)

5b was transformed into the title compound using the method disclosed in Example 10.

Example 12

Synthesis of ethyl 6-(bromomethyl)-4-(3’,5’-dimethyl-4’-ethoxycarbonylfuran-2’-yl)pyridine-2-carboxylate (6c)

5c was transformed into the title compound using the method disclosed in Example 10. Purified on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 5:1) yielded 0.28 g (36%) of the title compound. ESI-TOF-MS [M+H]⁺: calc. for C₁₈H₂₁IBrNO₂⁺ 410.06, found 410.06.

¹H NMR (600.13 MHz, CDCl₃): δ 8.24 (d, J = 1.2 Hz, IH); 7.85 (d, J = 1.2 Hz, IH); 4.68 (s, 2H); 4.52 (q, J = 7.1 Hz, 2H); 4.35 (q, J = 7.1 Hz, 2H); 2.66 (s, 3H); 2.54 (s, 3H); 1.46 (t, J = 7.0 Hz, 3H); 1.40 (t, J = 7.0 Hz, 3H).

Example 13

Synthesis of ethyl 6-(3,5-butyldiphenylsilyloxy)methyl)-4-bromopyridine-2-carboxylate (7)
Predried ethyl 6-hydroxymethyl-4-bromopyridine-2-carboxylate (1.4 g, 5.4 mmol) and imidazole (1.1 g, 6.5 mmol) were dissolved in dry DMF (1.7 mL). TBDPS-chloride (1.78 g, 6.5 mmol) was added portionwise, and the reaction was allowed to proceed for 3 h at r.t. The reaction mixture was diluted with Et₂O (50 mL) and washed with water and sat. NaHCO₃. The organic phase was dried over Na₂SO₄ and evaporated to dryness. Purification on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 5:2) yielded 2.5 g (92%) of the title compound.

ESI-TOF-MS [M+H]⁺: calc. for C₂₅H₂₉BrNO₃Si⁺ 520.09, found 520.06.

¹H NMR (600 MHz, CDCl₃): δ 8.14 (d, J < 1 Hz, 1H); 8.04 (d, J < 1 Hz, 1H); 7.66 (d, J = 9.4 Hz, 4H); 7.43 (m, 2H); 7.38 (t, J = 9.4 Hz, 4H); 4.93 (s, 2H); 4.44 (q, J = 7.1 Hz, 2H); 1.39 (t, J = 7.1 Hz, 2H); 1.15 (s, 9H).

Example 14

Synthesis of ethyl 6-(tert-butyldiphenylsilyloxyethyl)-4-(5′-carboxythien-2′-yl)pyridine-2-carboxylate (8)

Compound 7 (0.97 g, 1.94 mmol), 5-(dihydroxyboryl)-2-thiophenecarboxylic acid (0.4 g, 2.33 mmol), Cs₂CO₃ (0.82 g, 2.52 mmol) and (PPh₃)₄Pd (45 mg, 3.88 µmol) were dissolved in dry DMF (7 mL) and deaerated with argon. The reaction was heated to 95 °C and allowed to proceed overnight. The reaction mixture was allowed to cool to r.t. and all solid materials were removed by filtration. Volatiles were removed in vacuo and the crude product was purified on silica gel (10 % MeOH/CH₂Cl₂ + 0.1% HOAc), yielding 0.25 g (20%) of the title compound.

ESI-TOF-MS [M+H]⁺: calc. for C₃₀H₃₂NO₅SSi⁺ 546.18, found 546.61.

Example 15

Synthesis of ethyl 6-(tert-butyldimethylsilyloxyethyl)-4-(5′-ethoxycarbonylthien-2′-yl)pyridine-2-carboxylate (9)
Compound 8 (200 mg, 0.37 mmol) was dissolved in dichloromethane (200 µL). DCC (83 mg, 0.44 mmol; predissolved in 0.5 mL of THF) and a catalytic amount of DMAP were added, and the mixture was stirred for 5 min at r.t. followed by addition of dry EtOH (64 µL, 0.55 mmol). The reaction was allowed to proceed for 3 h at r.t., after which the DCU formed was filtered off and the filtrate was evaporated to dryness. Purification on silica gel (petroleum ether, bp 40-60 °C/ethyl acetate 5:3) yielded 73 mg (35 %) of the title compound.

ESI-TOF-MS [M+H]+: calc. for C$_{32}$H$_{36}$NO$_5$Si 574.21, found 574.35.

Example 16

Synthesis of ethyl 6-hydroxymethyl-4-(5'-ethoxycarbonylthien-2'-yl)pyridine-2-carboxylate (10)

Compound 9 (70 mg, 0.12 mmol) was dissolved in dry THF (2 mL). TBAF (64 mg, 0.24 mmol) was added and the mixture was stirred for 5 h at r.t. The mixture was evaporated to dryness and purified on silica gel (5 % MeOH/CH$_2$Cl$_2$), yielding 25 mg (61 %) of the title compound.

ESI-TOF-MS [M+H]+: calc. for C$_{16}$H$_{18}$NO$_5$S 336.09, found 336.12.

Example 17

Synthesis of ethyl 6-bromomethyl-4-(5'-ethoxycarbonylthien-2'-yl)pyridine-2-carboxylate (11)

Compound 10 was transformed into the title compound using the method disclosed in Example 10. Purification on silica gel (5 % MeOH/CH$_2$Cl$_2$) yielded 20 mg (67 %) of the title compound.

ESI-TOF-MS [M+H]+: calc. for C$_{16}$H$_{17}$BrNO$_4$S 398.01, found 398.03;.
Example 18

Synthesis of 1,4,7-tris{[6'-ethoxycarbonyl-4'-(4''-methoxycarbonyl-5''-methylmran-2''-yl)pyridine-2'-yl]methyl}-1,4,7-triazacyclononane (12a)

A mixture of 6a (30 mg, 0.078 mmol), 1,4,7-triazacyclononane (3.4 mg, 0.026 mmol), K₂CO₃ (18.1 mg, 0.13 mmol), MeCN (1.2 mL) and CH₂Cl₂ (0.2 mL) was stirred overnight at r.t. The solvents were evaporated and the product purified by preparative TLC (10 % EtOH/CH₂Cl₂ + 1 % TEA), yielding 24 mg (89 %) of the title compound.

Example 19

Synthesis of 1,4,7-tris{[6'-ethoxycarbonyl-4'-(4''-methoxycarbonyl-furan-2''-yl)pyridine-2'-yl]methyl}-1,4,7-triazacyclononane (12b)

6b was transformed into the title compound using the method disclosed in Example 18.

Example 20

Synthesis of 1,4,7-tris{[6'-ethoxycarbonyl-4'-(3''',5''''-dimethyl-4'''-ethoxycarbonylfuran-2'''-yl)pyridine-2'-yl]methyl}-1,4,7-triazacyclononane (12c).

6c was transformed into the title compound using the method disclosed in Example 18. The product was purified by preparative TLC (petroleum ether, bp 40-60 °C/ethyl acetate/triethylamine 3:5:1), yielding 30 mg (47 %) of the title compound.

ESI-TOF-MS [M+H]⁺: calc. for C₅₅H₆₇N₆O₁₅⁺ 1075.47, found 1075.50.

¹H NMR (600 MHz, CDCl₃): δ 8.21 (s, 3H); 7.99 (s, 3H); 4.33 (q, J = 7.1 Hz, 6H); 4.03-3.97 (m, 6H); 4.00 (s, 9H); 3.02 (bs, 8H); 2.94 (bs, 4H); 2.57 (s, 3H); 2.55 (s, 6H); 2.48 (s, 3H); 2.46 (s, 6H); 1.38 (t, J = 7.0 Hz, 9H).
Example 21

Synthesis of 6,6',6"-[(octahydro-l H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]tris[4-(4-carboxy-5-methylfuran-2-yl)]pyridine-2-carboxylic acid (13a)

12a was dissolved in 0.5 M KOH/MeOH (1.6 mL) and 0.2 mL water was added. The mixture was stirred overnight at r.t. and evaporated to dryness.

Example 22

Synthesis of 6,6',6"-[(octahydro-l H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]tris[4-(4-carboxy-furan-2-yl)pyridine-2-carboxylic acid] (13b)

12b was transformed into the title compound using the method disclosed in Example 21.

Example 23

Synthesis of 6,6',6"-[(octahydro-l H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]tris[4-(4-carboxy-3,5-dimethylfuran-2-yl)pyridine-2-carboxylic acid] (13c)

12c was transformed into the title compound using the method disclosed in Example 21.

Example 24

Synthesis of 6,6',6"-[(octahydro-l H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]tris[4-(4-carboxy-5-methylfuran-2-yl)pyridine-2-carboxylic acid] europium(III) (14a)
13a (23 µmol) was dissolved in water (2 mL) and the pH was adjusted to 9 with 6 M HCl-solution. 0.2 M europium(III) citrate (0.12 mL) was added and the mixture was stirred at r.t. for 72 h. The product was precipitated by adjusting the pH to 4 with 1 M HCl-solution.

ESI-TOF-MS [M-H]⁻: calc. for C_{45}H_{38}EuN_{6}O_{15}⁻ 1055.16, found 1055.12.

Example 25

Synthesis of 6,6',6''-[(octahydro-1H,4,7-triazonine-1,4,7-triyl)tris(methylene)]tris[4-(4-carboxyfuran-2-yl)pyridine-2-carboxylic acid] europium(III) (14b)

13b was transformed into the title compound using the method disclosed in Example 24.

Example 26

Synthesis of 6,6',6''-[(octahydro-1H,4,7-triazonine-1,4,7-triyl)tris(methylene)]-tris[4-(4-carboxy-3,5-dimethylfuran-2-yl)pyridine-2-carboxylic acid] europium(III) (14c)

13c was transformed into the title compound using the method disclosed in Example 24. ESI-TOF-MS [M+Na]⁺: calc. for C_{48}H_{45}EuN_{6}NaO_{15}⁺ 1121.20, found 1121.20.

Example 27

Synthesis of methyl 2-(methoxycarbonyl)-8-(trityloxy)octanoate (15)

Sodium methoxide (1.42 g, 26.2 mmol) was dissolved in dry MeOH (90 mL). Dimethyl malonate (3.0 mL, 26.2 mmol) was added and the mixture was stirred at r.t. for one hour. (6-Bromohexyloxy)triphenylmethane (3.7 g, 8.7 mmol) was added and the mixture was refluxed overnight. The mixture was cooled to r.t. and 50 mL
10% citric acid was added. The mixture was then stirred at r.t. for 5 min. The product was extracted with \(\text{CH}_2\text{Cl}_2 \) (3 x 100 mL) and evaporated to dryness. The residue was dissolved in \(\text{CH}_2\text{Cl}_2 \) and dried with \(\text{Na}_2\text{SO}_4 \). Purification on silica gel (petroleum ether, bp 40-60 °C / ethyl acetate 10:1) yielded 2.3 g (56 %) of the title compound. ESI-TOF-MS \([\text{M+Na}]^+\) : calc. for \(\text{C}_{30}\text{H}_{34}\text{NaO}_5^+ \) 497.23, found 497.17.

\[^1\text{H}\text{ NMR (250 MHz, CDCl}_3\):} \delta 7.46-7.42 (m, 6H), 7.33-7.19 (m, 9H), 3.73 (s, 6H), 3.34 (t, \(\text{J} = 7.6 \text{ Hz, 1H} \)), 3.03 (t, \(\text{J} = 6.6 \text{ Hz, 2H} \)), 1.88 (q, \(\text{J} = 7.2, 2\text{H} \)), 1.60 (quintet, 2H), 1.41-1.25 (m, 6H).

Example 28

Synthesis of methyl 8-hydroxy-2-(methoxycarbonyl)octanoate (16)

Iodine (1.0 g, 7.9 mmol) was dissolved in MeOH (100 mL). Compound 15 (4.5 g, 9.5 mmol) was added, and the mixture was stirred at 50 °C for one hour. The reaction mixture was evaporated to dryness. The residue was dissolved in \(\text{CH}_2\text{Cl}_2 \) and washed with 10% \(\text{Na}_2\text{SO}_3 \) (40 mL). The organic phase was dried with \(\text{Na}_2\text{SO}_4 \) and evaporated to dryness. Purification on silica gel (petroleum ether, bp 40-60 °C / ethyl acetate 10:1 \(\rightarrow \) 5:3) yielded 1.96 g (89 %) of the title compound. ESI-TOF-MS \([\text{M+H}]^+\) : calc. for \(\text{C}_{29}\text{H}_{25}\text{O}_4^+ \) 233.14, found 233.16.

Example 29

Synthesis of methyl 2-(methoxycarbonyl)-8-(4-nitrophenoxy)octanoate (17)

Compound 16 (1.92 g, 8.3 mmol), 4-nitrophenol (1.39 g, 10.0 mmol) and triphenylphosphine (2.62 g, 10.0 mmol) were dissolved in dry THF (100 mL) and deaerated with argon. Diisopropyl azodicarboxylate (2.0 mL, 10.0 mmol) was added in ten portions under argon and the mixture was stirred for 3 days at r.t. The mixture was evaporated to dryness and purified on silica gel (\(\text{CH}_2\text{Cl}_2 \)), yielding 2.6 g (89 %) of the title compound.
Example 30

Synthesis of 2-[6-(4-aminophenoxy)hexyl]propane-1,3-diol (18)

Compound 17 (1.19 g, 3.4 mmol) was dissolved in dry THF (50 mL). LiBH₄ (0.44 g, 20.2 mmol) was added and the mixture was refluxed overnight. The mixture was allowed to cool to r.t. and MeOH (10 mL) was added. The reaction mixture was stirred for 30 min at r.t. The mixture was evaporated to dryness. Saturated aqueous NaHCO₃ was added and the mixture was refluxed for one hour. The mixture was allowed to cool to r.t. and then filtered. The precipitate was washed with water and purified on silica gel (10% MeOH/CH₂Cl₂), yielding 0.60 g (67%) of the title compound.

¹H NMR (600 MHz, CDCl₃): δ 8.20 (d, 2H); 6.94 (d, 2H); 4.04 (t, J = 6.4 Hz, 2H); 3.74 (s, 6H); 3.37 (t, J = 7.6 Hz, 2H), 1.92 (q, J = 7.6 Hz, 2H); 1.81 (quintet, J = 7.0 Hz, 2H); 1.48 (quintet, 2H); 1.43-1.33 (m, 4H).

Example 31

Synthesis of 2-[6-(4-tert-butoxycarbonylamino)phenoxy]hexyl]propane-1,3-diol (19)

Compound 18 (0.55 g, 2.1 mmol) was dissolved in dry DMF. Triethylamine (0.36 mL, 2.5 mmol) and Boc anhydride (0.53 mL, 2.3 mmol) were added and the mixture was stirred at 50 °C for one hour. The mixture was evaporated to dryness. The residue was dissolved in 30% MeOH in CH₂Cl₂ (50 mL) and washed with saturated aqueous NaHCO₃. The organic phase was separated and the water phase was extracted with CH₂Cl₂ (2 x 50 mL). The organic phase was dried with Na₂SO₄.
Purification on silica gel (30 % MeOH/CH\textsubscript{2}Cl\textsubscript{2}) yielded 0.23 g (30 %) of the title compound. 1H NMR (600 MHz, CDCl\textsubscript{3}): \(\delta\) 7.24 (d, 2H); 6.82 (d, 2H); 3.91 (t, \(J = 6.4\) Hz, 2H); 3.81 (d, 2H); 3.65 (t, 2H); 1.78-1.72 (m, 3H); 1.51 (s, 9H); 1.45 (quintet, 2H); 1.35 (quintet, 4H); 1.25-1.24 (m, 2H).

Example 32

Synthesis of 1,4,7-tris(2-nitrobenzenesulfonyl)-9-{6-[4-(ter-butoxycarbonylamino)phenoxy]hexyl} -1,4,7-triazacyclodecane (20)

Compound 19 (0.21 mg, 0.57 mmol) was dissolved in dry THF (8 mL). Triphenylphosphine and per(nosylated) diethylenetriamine (0.38 g, 0.57 mol) were added and the mixture was deaerated with argon. Diisopropyl azodicarboxylate (0.34 mL, 1.71 mmol) was added in ten portions under argon. The mixture was stirred overnight at r.t. The mixture was evaporated to dryness. The residue was dissolved in CH\textsubscript{2}Cl\textsubscript{2} and it was washed with saturated aqueous NaHCO\textsubscript{3}. The organic phase was dried with Na\textsubscript{2}SO\textsubscript{4} and purified on silica gel (CH\textsubscript{2}Cl\textsubscript{2}), yielding 0.35 g (63 %) of the title compound.

ESI-TOF-MS [M+H]: calc. for C\textsubscript{42}H\textsubscript{52}N\textsubscript{7}O\textsubscript{15}S\textsubscript{3}+ 990.27, found 990.27.

Example 33

Synthesis of 1,4,7-tris[{6'-{(ethoxycarbonyl)-4'-{(4"-ethoxycarbonyl-3",5"-dimethylfuran-2"-yl)pyridine-2'-yl]methyl}}-9-{6-[4-(ter \(t\)-butoxycarbonylamino)phenoxy]hexyl} -1,4,7-triazacyclodecane (21)

Compound 20 (0.12 g, 0.12 mmol) was dissolved in dry DMF. Cs\textsubscript{2}CO\textsubscript{3} (0.27 g, 0.84 mmol) was added and the mixture was deaerated with argon. 3-(3-mercaptophenyl)propanamidomethylpolystyrene (0.24 g, resin capacity 1.54 mmol/g) was added and the mixture was stirred for 3.5 h at r.t. An additional 0.24 g of 3-(3-mercaptophenyl)propanamidomethylpolystyrene was added and the mixture was stirred overnight at r.t. The mixture was filtrated and the residue was evaporated to dryness. 3-(3-mercaptophenyl)propanamidomethylpolystyrene (0.24
(0.14 g, 0.43 mmol) were added to dry DMF (2 mL). The mixture was deaerated with argon. The nosylprotected compound was dissolved in dry DMF (2 mL) and the solution was added to the mixture of 3-(3-mercaptophenyl)propanamidomethylpolystyrene. The mixture was stirred at r.t. for 3 days. The mixture was filtrated and the filtrate was evaporated to dryness. The residue was dissolved in dry DMF (4 mL). Cs$_2$CO$_3$ (0.16 g, 0.49 mmol) and 6c (R$_4$= Et) (0.15 g, 0.36 mmol) was added and the mixture was stirred overnight at r.t. The reaction mixture was evaporated to dryness. The residue was dissolved in CH$_2$Cl$_2$ and washed with water. The organic layer was dried with Na$_2$SO$_4$. The product was purified by preparative TLC (10 % EtOH/CH$_2$Cl$_2$), yielding 39 mg (23 %) of the title compound.

ESI-TOF-MS [M+H]$^+$: calc. for C$_{78}$H$_{100}$N$_7$O$_{18}$ 1422.71, found 1422.73.

Example 34

Synthesis of 6,6',6"-\{9-[6-(4-aminophenoxy)hexyl]decahydro-1,4,7-triazecine-1,4,7-triyl\}tris(methylene)\}tris[4-(4-carboxy-3,5-dimethylfuran-2-yl)pyridine-2-carboxylic acid] europium(III) (22a)

Compound 21 (7 mg, 4.9 µmol) was dissolved in ethylacetate (700 µL) and 37% HCl (300 µL) was added. The mixture was stirred at r.t. for 2 hours. The mixture was evaporated to dryness. The residue was dissolved in 0.5 M KOH/MeOH (1 mL). 10 M KOH in water (100 µL) was added and the solution was stirred at r.t. for 3 days. Methanol was removed from the reaction mixture in vacuo and the pH was adjusted to 8 with 1 M HCl. 0.2 M europium(III) citrate (30 µL) was added and the mixture was stirred overnight at r.t. The product was purified by HPLC.

ESI-TOF-MS [M-2H]$^{2-}$: calc. for C$_6$H$_{62}$EuN$_{7}$O$_{18}^{2-}$ 650.67, found 650.71.

Example 35

Synthesis of 6,6',6"-\{9-[6-[4-(4,6-dichloro-l,3,5-triazinylamino)phenoxy]hexyl\} decahydro- 1,4,7-triazecine- 1,4,7-
triyl)tris(methylene)tris[4-(4-carboxy-3,5-dimethylfuran-2-yl)pyridine-2-carboxylic acid] europium(III) (22b)

Compound 22a (2.5 mg, 1.7 µmol) was dissolved in 1 mL of 0.1 M CH₃COONa (pH 6.5). Cyanuric chloride (0.4 mg, 2.1 µmol) was dissolved in acetone (1 mL) and 0.3 mL water was added. The solutions were combined, the pH was adjusted to 6.5 with 0.1 M NaOH-solution and the mixture was stirred at r.t. for 2 hours. The product was precipitated by adjusting the pH to 4 with 1 M HCl. The precipitate was washed twice with acetone and dried in a vacuum desiccator.

Example 36

Synthesis of 2-{4,7-bis{[4-(4-carboxy-3,5-dimethylfuran-2-yl)]-6-carboxypyridin-2-ylmethyl}-1,4,7-triazacyclononan-1-ylmethyl}-4-[4-(4-aminobutyl)aminocarbonyl-3,5-dimethylfuran-2-yl]pyridine-2-carboxylic acid europium(III) 23

A mixture of compound 14c (5 µmol), 1,4-diaminobutane (0.45 mg, 5 µmol), EDAC (1.1 mg, 5.5 µmol) and N-hydroxysuccinimide (0.5 mg) in 1.2 mL of DMF/water (4:1) was stirred overnight at r.t. The product was purified by HPLC. ESI-TOF-MS [M+2H]²⁺: calc. 585.16, found 585.17.

Example 37

Synthesis of 2-{4,7-bis{[4-(4-carboxy-3,5-dimethylfuran-2-yl)]-6-carboxypyridin-2-ylmethyl}-1,4,7-triazacyclononan-1-ylmethyl}-4-[4-{4-(4,6-dichloro-1,3,5-triazinyl)aminobutyl]aminocarbonyl-3,5-dimethylfuran-2-yl]pyridine-2-carboxylic acid europium(III) 24

Compound 23 (4.5 mg, 3.9 µmol) was dissolved in ImL of 0.1M CH₃COONa (pH 6.5). Cyanuric chloride (0.8 mg, 4.2 µmol) was dissolved in acetone (1 mL) and 0.3
niL water was added. The solutions were combined, the pH was adjusted to 6.5 with 0.1 M NaOH-solution and the mixture was stirred for 20 min at r.t. The product was precipitated by adjusting the pH to 3 with 1 M HCl. The precipitate was washed twice with 2 mL of acetone and dried in a vacuum desiccator.

ESI-TOF-MS [M-H]: calc. for $\text{C}_{20}\text{H}_{15}\text{EuN}_3\text{O}_1\text{S}$ 643.99, found 643.40.

Example 38

Labeling of PT66 antiphosphotyrosine with the chelate 24.

To an aqueous solution of compound 24 (100 mM, in aq. NaHCO$_3$, pH 8.3) the antibody (0.8 mg) was added, and the pH was adjusted to 9.3 with NaHCO$_3$. The reaction was allowed to proceed overnight in the dark at 4 °C. The labeled antibody was initially purified on a Centricon30 funnel (4500 rpm for 30 min using 50 mM TSA as the eluent (4 x 1 mL)) followed by column chromatography on Sephadex G50 DNA grade (50 cm x 1 cm) using 50 mM TSA as the eluent. Fractions containing the desired product (as judged by fluorescence spectrometry) were pooled and filtered through a 0.2 µm filter.

Example 39

The kinase assay

The positive control (2 nM Eu-labeled PT66 and 10 mM phosphorylated peptide; Biotinyl-ε-aminocaproyl-Glu-Pro-Gln-Tyr(PO$_3$H$_2$)-Glu-Glu-Ile-Pro-Ile-Tyr-Leu-OH; Bachem) and the negative control (2 nM Eu-labeled PT66 + 20 nM SA-Alexa647; 4.3 Alexa/SA) were incubated for 30 min at r.t. The measurement was performed on a Victor 3 multilabel counter (PerkinElmer LAS) using a 50 µs delay/100 µs TR window at 665 nm and 615 nm for the energy transfer signal and the europium signal, respectively.
Energy transfer signal at 665 nm

<table>
<thead>
<tr>
<th>chelate/ligG</th>
<th>Avg Pos</th>
<th>Avg Neg</th>
<th>S/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>20108</td>
<td>700</td>
<td>28.7</td>
</tr>
<tr>
<td>2.0</td>
<td>27951</td>
<td>974</td>
<td>28.7</td>
</tr>
<tr>
<td>2.6</td>
<td>35871</td>
<td>1115</td>
<td>32.2</td>
</tr>
<tr>
<td>3.2</td>
<td>33960</td>
<td>1200</td>
<td>28.3</td>
</tr>
</tbody>
</table>

Eu signal at 615 nm

<table>
<thead>
<tr>
<th>chelate/ligG</th>
<th>Avg Pos</th>
<th>Avg Neg</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>154487</td>
<td>208766</td>
<td>0.26</td>
</tr>
<tr>
<td>2.0</td>
<td>237086</td>
<td>311151</td>
<td>0.24</td>
</tr>
<tr>
<td>2.6</td>
<td>273813</td>
<td>362397</td>
<td>0.24</td>
</tr>
<tr>
<td>3.2</td>
<td>291881</td>
<td>385378</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Example 40

The synthesis of ethyl 3,4-dimethylthiophene-2-carboxylate, 26.

The title compound was prepared using the methods disclosed in US 6,559,993 and US 2004/0147765. Accordingly, the thioether 25 (10.8, 52.4 mmol) and 2,3-butanedione (2.25 g, 26.2 mmol) were dissolved in dry THF (20 mL) under argon. A solution of NaOEt in ethanol (20 %, m/v; 1.5 eq) was added dropwise, and the mixture was heated at 65 °C for 2.5 h and cooled to rt. After aqueous work up the product was dried over Na₂SO₄ and purified on silica gel to give of 2.5 g of 5-(ethoxycarbonyl)-3,4-dimethylthiophene-2-carboxylic acid, which was dissolved in chinoline. Coppper (0.30 g) was added, and the mixture was aerated for 30 min at rt followed by heating overnight at 140 °C. After aqueous work up the product was dried and purified on silica gel. Compound 26: ¹H NMR (CDCl₃); δ 7.08 (IH, s); 4.33 (2H, q, J 7.2); 2.47 (3H, s); 2.18 (3H, s); 1.38 (3H, t, J 7.2). ESI-TOF-MS [M+H]⁺: calc. for C₉H₁₃O₂S⁺ 185.06, found 185.07
Example 41

The synthesis of 1,4,7-tris{[6'-methoxycarbonyl-4'-(4''-ethoxycarbonyl-3'',5''-
5 dimethylthiophen-2''-yl)pyridine-2'-yl]methyl}-1,4,7-triazacyclononane (28).

A mixture of compound 27 (0.1 mmol), compound 26 (3.0 mmol), palladium acetate (0.15 mmol), trifurylphosphine (0.30 mmol), potassium acetate (0.6 mmol), tetabutylammonium iodide (0.3 mmol) and DMF (5mL) was deaerated with argon and stirred overnight in dark at 100 °C. The reaction mixture was filtered, evaporated to dryness and the product was purified on a preparative TLC plate coated with silica gel. ESI-TOF-MS [M+H]^+: calc. for C_{56}H_{64}N_{6}O_{12}S_{3}, 1207.49 found 1207.50.

Example 42

Synthesis of 6,6',6''-[(octahydro-1 H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]-
tris[4-(4-carboxy-3,5-dimethylthiophen-2-yl)pyridine-2-carboxylic acid] europium(III) (29)

Compound 28 was transformed into the title compound using the method disclosed in Example 24. ESI-TOF-MS [M-2H]^− calc. for C_{48}H_{43}EuN_{6}O_{12}S_{3}^−, 572.07, found 572.02.

Example 43

Synthesis of 2,2',2''-[6-(trifluoroacetamidoaminohexyl]bis(methylene)bis 4-
[(4''-ethoxycarbonyl-3 ''-5''-dimethylfuran-2 ''-yl)pyridine-6,2-
diyl]bis(methyleneacetonitrilo)}tetrakis(acetic acid) teta(ethyl ester) 31.

Reaction between compound 30, and ethyl 2,4-dimethylfuran-3-carboxylate using the method described in Example 41 yielded the title compound.
Example 44

Synthesis of 2,2',2'',2'''-[6-aminohexylimino]bis(methylene)bis[4-(4''-carboxy-3'',5''-dimethylfuran-2''-yl)]pyridine-6,2-diyl-)]bis(methylenenitrilo)}tetrakis(acetic acid) europium(III), 32.

Compound 31 was transformed into the title compound using the method disclosed in Example 21. ESI-TOF-MS [M-H] calc. for C_{42}H_{48}EuN_{6}O_{14} 1013.24, found 1013.25.

Synthesis of 2,2',2'',2''''-{[6-(4,6-dichloro-1,3,5-triazinyl)aminohexylimino]bis(methylene)bis[4-(4''''-carboxy-3'',5''''-dimethylfuran-2''''-yl)]pyridine-6,2-diyl-)]bis(methylenenitrilo)}tetrakis(acetic acid) europium(III), 33.

Compound 32 was converted to the title compound using the method described in Example 37. ESI-TOF-MS [M-H] calc. for C_{45}H_{47}Cl_{2}EuN_{9}O_{14} 1160.18, found 1160.25.
SCHEME 1

- **Reactions**:
 - Benzene derivatives are brominated, then iodinated and reduced with NaBH₄.
 - **3,4-dihydro-2H-pyran** pyridine p-toluenesulfonate is formed in CH₂Cl₂.
 - Alcohols and diethyl malonate react with alkynes.
 - **Tetracyclic derivatives** are synthesized using TsOH in EtOH and **PBr₅** with DMF.

Compounds:
- **1**: Iodinated benzene derivative.
- **2**: Reduced benzene derivative.
- **3**: 3,4-dihydro-2H-pyran pyridine p-toluenesulfonate.
- **4a,b,c**: Tetracyclic derivatives.
- **5a-c**: Compounds with hydroxyl groups.
- **6a-c**: Compounds with bromine groups.

Substituents:
- a: R₁ = R₂ = CH₃, R₃ = CH₂H
- b: R₁ = R₂ = H, R₃ = CH₃
- c: R₁ = R₂ = CH₃, R₃ = Et
- R₄ = CH₃ or Et
SCHEME 2
SCHEME 3
SCHEME 4

\[
\begin{align*}
\text{TrO(CH}_2\text{)}_6 \text{COOMe} & \xrightarrow{\text{I}_2, \text{MeOH}} \text{HO(CH}_2\text{)}_6 \text{COOMe} \\
\text{O}_2\text{N-} \text{O(CH}_2\text{)}_6 \text{COOMe} & \xrightarrow{\text{LiBH}_4} \text{H}_2\text{N-} \text{O(CH}_2\text{)}_6 \text{OH} \\
\text{Boc}_2\text{O} & \xrightarrow{\text{Ph}_3\text{P, DIAD}} \text{BocHN-} \text{O(CH}_2\text{)}_6 \text{OH} \\
\text{BocHN-} \text{O(CH}_2\text{)}_6 \text{N-Ns} \text{NS-Ns} & \xrightarrow{\text{C}_6\text{H}_5\text{CO}_3, \text{DMF}} \text{1. 3-(3-mercaptophenyl)-propanamidomethyl-polystyrene} \\
& \text{2. } 6c, \text{C}_6\text{H}_5\text{CO}_3, \text{DMF}
\end{align*}
\]
SCHEME 4 cont.
SCHEME 5

14c → EDAC, NHS

butane-1,4-diamine

cyanuric chloride

23 → 24
SCHEME 6
SCHEME 7

R = COOEt

cyanuric chloride

SCHEME 7
Photophysical properties of certain chelates according to this invention are shown in Table 1. The photophysical properties of the chelates were determined by measuring the excitation and emission spectra and fluorescence lifetime in TS buffer (50 mM tris, 150 mM NaCl, pH 7.75) with LS-55 luminescence spectrometer (PerkinElmer Instruments, Connecticut, USA). Measurements were done with appropriate concentrations depending on expected fluorescence intensity.

Table 1. Photophysical properties of the chelates synthesized

<table>
<thead>
<tr>
<th>Compound</th>
<th>Excitation maxima / nm</th>
<th>Emission wavelength / nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>328</td>
<td>618</td>
</tr>
<tr>
<td>14b</td>
<td>330</td>
<td>617</td>
</tr>
<tr>
<td>14a</td>
<td>338</td>
<td>618</td>
</tr>
<tr>
<td>14c</td>
<td>347</td>
<td>618</td>
</tr>
<tr>
<td>b)</td>
<td>316</td>
<td>616</td>
</tr>
<tr>
<td>c)</td>
<td>317</td>
<td>616</td>
</tr>
<tr>
<td>29</td>
<td>339</td>
<td>616</td>
</tr>
<tr>
<td>d)</td>
<td>312</td>
<td>616</td>
</tr>
<tr>
<td>32</td>
<td>330</td>
<td>615</td>
</tr>
</tbody>
</table>

a) 6,6',6"-[(octahydro-1 H-1,4,7-triazonine-1,4,7-triyl)tris(methylene)]-tm[(furan-2-yl)pyridine-2-carboxylic acid] europium(III), synthesized as disclosed in WO2005/021538.

b) 2,2',2"-{(4-(thien-2'-yl)pyridine-2,6-diyl)bis(methylene)}tetraakis(acetic acid) europium(III), synthesized as disclosed in Latva et al. J. Luminescence, 1997, 55, 149.

c) 2,2',2"-{(4-(fur-2'-yl)pyridine-2,6-diyl)bis(methylene)}tetrakis(acetic acid) europium(III), synthesized as disclosed in WO2005/021538.

d) 2,2',2"-[(6-aminohexylimino)bis(methylene)bis[4-(2-furyl)pyridine-6,2-diyl]bis(methylene)]tetraakis(acetic acid) europium(III), synthesized as disclosed in WO2005/021538.

It will be appreciated that the methods of the present invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. Although the examples are mainly given for the furyl derivatives, the same synthetic procedures are applicable to the corresponding thienyl derivatives as well. Although only the synthesis of europium(III) chelates is presented here, it is clear that an artisan can prepare the corresponding samarium(III), terbium(III) and dysprosium(III) chelates using the methods disclosed here by substituting the europium(III) salt by the desired lanthanide(III) salt. It will be apparent for an
expert skilled in the field that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.
CLAIMS

1. A chelate comprising
- a lanthanide ion, \(\text{Ln}^{3+} \),
- a chromophoric moiety,
- a chelating part comprising at least two carboxylic acid or phosphonic acid groups, or esters, amides or salts of said acids, attached to an aromatic unit of the chromophoric moiety, either directly or via a cyclic or acyclic N-containing hydrocarbon chain,
- a reactive group \(\text{A} \), tethered to the chromophoric moiety or to the chelating part either directly or via a linker \(\text{L} \), said reactive group \(\text{A} \) enabling binding to a biomolecule or to a functional group on a solid phase or is not present, wherein
 i) the reactive group \(\text{A} \) is selected from the group consisting isothiocyanate, bromoacetamido, iodoacetamido, maleimido, 4,6-dichloro-1,3,5-triazin-2-ylamino, pyridyldithio, thioester, aminooxy, azide, hydrazide, amino, alkyne, a polymerizable group, and a carboxylic acid or acid halide or an active ester thereof or

\[
\begin{align*}
\text{HN} & \quad \text{A}^{'} \quad \text{Pl} \quad \text{NH} \\
\text{A}^{'} & \quad \text{is cleaving ligand like Cl, (CHs)_2SO, H_2O, and NO3} \quad \text{wherein - is the position of linker L,} \\
\text{A}^{'} & \quad \text{is formed from one to ten moieties, each moiety being selected from the group consisting of phenylene, alkylene containing 1-12 carbon atoms, ethynydiyl (-C≡C-), ethylenediyl (-C=C-), ether (-O-), thioether (-S-), amide (-CO-NH-, -CO-NR’, -NH-CO- and -NR’-CO-), carbonyl (-CO-), ester (-COO- and -OOC-), disulfide (-SS-), sulfonamide (-SO_2-NH-, -SO_2-NR’), sulfone (-SO_2’), phosphate (-O-PO_2’-O-), diaza (-N=N-), and tertiary amine, wherein R’ represents an alkyl group containing less than 5 carbon atoms,} \\
\text{iii) the chromophoric moiety comprises one or more aromatic units, wherein at least one of the aromatic units is a furyl or thienyl substituted pyridyl group, wherein the furyl or thienyl group is substituted with one or more, same or different, electron donating groups, and optionally with a carboxylic or sulfonic acid group or an ester, an amide or a salt of said acids, G, and wherein the chromophoric moieties}
\end{align*}
\]
are tethered directly to each other to form a terpyridyl group or are tethered to each other via a cyclic or acyclic N-containing hydrocarbon chain.

2. The chelate according to claim 1 selected from the group consisting of
wherein \(R_1 \) and \(R_2 \) are electron donating groups, \(L, G, R' \) and \(A \) are defined as in claim 1, and \(Z \) in either \(O \) or \(S \) for furyl and thienyl, respectively.

3. The chelate according to claim 1, which is selected from the group consisting of

![Diagram]

wherein \(R_1 \) and \(R_2 \) are electron donating groups, \(L, G, R' \) and \(A \) are defined as in claim 1, and \(Z \) in either \(O \) or \(S \) for furyl and thienyl, respectively.

4. The chelate according to claims 1-3 wherein the lanthanide ion \(Ln^{3+} \) is europium, samarium, terbium or dysprosium.

5. The chelate according to claim 4 wherein the lanthanide ion \(Ln^{3+} \) is europium, or samarium.

6. The chelate according to claims 1-5 wherein the electron donating groups are selected from methyl, ethyl, n-propyl, \(i \)-propyl, n-butyl, \(i \)-butyl, sec-butyl, methoxy, ethoxy, n-propoxy, \(i \)-propoxy, n-butoxy, \(i \)-butoxy and sec-butoxy.

7. A chelating agent comprising
 - a chromophoric moiety,
 - a chelating part comprising at least two carboxylic acid or phosphonic acid esters or amides of said acids, attached to an aromatic unit of the chromophoric moiety, either directly or via a cyclic or acyclic N-containing hydrocarbon chain,
- a reactive group A, tethered to the chromophoric moiety or to the chelating part either directly or via a linker L, said reactive group A enabling binding to a biomolecule or to a functional group on a solid phase, wherein
 i) the reactive group A is a carboxylic acid or its salt, acid halide or an ester or an amino acid residue -CH(NHR)^3^R^4^ where R^3^ is a transient protecting group and R^4^ is a carboxylic acid or its salt, acid halide or an ester,
 ii) the linker L is formed from one to ten moieties, each moiety being selected from the group consisting of phenylene, alkylene containing 1-12 carbon atoms, ethynydiyl (-C≡C-), ethylenediyl (-C=C-), ether (-O-), thioether (-S-), amide (-CO-NH-), -CO-NR'-, -NH-CO- and -NR'-CO-, carbonyl (-CO-), ester (-COO- and -OOC-), disulfide (-SS-), sulfonamide (-SO_2^-NH-, -SO_2^-NR'-), sulfone (-SO_2^-), phosphate (-OPO_2^-), diaza (-N=N-), and tertiary amine, wherein R' represents an alkyl group containing less than 5 carbon atoms,
 iii) the chromophoric moiety comprises one or more aromatic units, wherein at least one of the aromatic units is a furyl or thienyl substituted pyridyl group, wherein the furyl or thienyl group is substituted with one or more, same or different, electron donating groups, and optionally with a carboxylic or sulfonic acid ester or an amide of said acids, G', and wherein the chromophoric moieties are tethered directly to each other to form a terpyridyl group or tethered to each other via a cyclic or acyclic N-containing hydrocarbon chain.

8. A chelating agent according to claim 7 wherein the electron donating groups R^1^ and R^2^ are selected from methyl, ethyl, n-propyl, /-propyl, n-butyl, /-butyl, sec-butyl, methoxy, ethoxy, n-propoxy, /-propoxy, n-butoxy, /-butoxy and sec-butoxy.

9. The chelating agent according to claim 7 selected from the group consisting of
wherein R^1 and R^2 are electron donating groups, L and G' are as defined in claim 7 and the protecting group R^3 is selected from a group consisting of Fmoc, Boc, or Bsmoc, and R'' is an alkyl ester or an allyl ester and R''' is an alkyl group, and wherein Z is O or S.

10. The chelating agent according to claim 7 selected from the group consisting of
wherein R^1 and R^2 are electron donating groups, L and G' are as defined in claim 7 and the protecting group R^3 is selected from a group consisting of Fmoc, Boc, or Bsmoc, and R^* is an alkyl ester or an allyl ester, and wherein Z is O or S.

11. A chelating agent comprising
- a chromophoric moiety,
- a chelating part comprising at least two carboxylic acid or phosphonic acid esters or amides of said acids, attached to an aromatic unit of the chromophoric moiety, either directly or via a cyclic or acyclic N-containing hydrocarbon chain,
- a reactive group A, tethered to the chromophoric moiety or to the chelating part either directly or via a linker L, said reactive group A enabling binding to a biomolecule or to a functional group on a solid phase, wherein

i) the reactive group A is
where one or two of the oxygen atoms optionally is replaced by sulfur,

\[Z^3 \text{ is chloro or } NR^6 R^7 \]

\[Z^2 \text{ is absent or is a radical of a purine base or a pyrimidine base or any other modified base suitable for use in the synthesis of modified oligonucleotides, said base being connected to the oxygen atom via either} \]

\[\text{a) a hydrocarbon chain, which is substituted with a protected hydroxymethyl group, or} \]

\[\text{b) a furan ring or pyrane ring or any modified furan or pyrane ring, suitable for use in the synthesis of modified oligonucleotides,} \]

\[\text{ii) the linker } L \text{ is formed from one to ten moieties, each moiety being selected from the group consisting of phenylene, alkylene containing 1-12 carbon atoms, ethylynediyl (-C=C-), ethylenediyl (-C=C-), ether (-O-), thioether (-S-), amide (-CO-NH-, -CO-NR', -NH-CO- and -NR'-CO-), carbonyl (-CO-), ester (-COO- and -OOC-), disulfide (-SS-), sulfonamide (-SO_2-NH-, -SO_2-NR'), sulfone (-SO_2-), phosphate (-0-PO_2-O-), diaza (-N=N-), and tertiary amine, wherein } R' \text{ represents an alkyl group containing less than 5 carbon atoms.} \]

\[\text{iii) the chromophoric moiety comprises one or more aromatic units, wherein at least one of the aromatic units is a furyl or thienyl substituted pyridyl group, wherein the furyl or thienyl group is substituted with one or more, same or different, electron donating groups, and optionally with a carboxylic or sulfonic acid ester or an amide of said acid, } G', \text{ and wherein the chromophoric moieties are tethered directly to each other to form a terpyridyl group or tethered to each other via a cyclic or acyclic N-containing hydrocarbon chain.} \]

12. A chelating agent according to claim 11 wherein the electron donating groups are selected from methyl, ethyl, n-propyl, /-propyl, n-butyl, /-butyl, sec-butyl,
methoxy, ethoxy, n-propoxy, /-propoxy, n-butoxy, /-butoxy and sec-butoxy.
13. The chelating agent according to claim 11 or 12 wherein \(Z^2 \) is a radical of any of the bases thymine, uracil, adenosine, guanine or cytosine, and said base is connected to the oxygen atom via
 i) a hydrocarbon chain, which is substituted with a protected hydroxymethyl group, or via
 ii) a furan ring having a protected hydroxymethyl group in its 4-position and optionally a hydroxyl, protected hydroxyl or modified hydroxyl group in its 2-position.

14. The chelating agent according to claim 12, wherein \(-Z^2-O-P(NR^6R^7)-O-R^5\) is selected from the group consisting of

\[
\text{Diagram with structures showing various linkers and protecting groups.}
\]

where \(-\) is the position of linker \(L\) and DMTr is dimethoxytrityl.

15. The chelating agent according to claim 11, selected from the group consisting of
where R' is an alkyl ester or an allyl ester of a carboxylic acid and R'' is an alkyl group and wherein R¹ and R² are electron donating groups, L and G' are as defined in claim 11 and A is \(-Z^2-O-P(NR^6R^7)-O-R^5\) as defined in claim 14 and Z is 0 or S.

16. The chelating agent according to claim 11 selected from the group consisting of
where R" is an alkyl ester or an allyl ester of a carboxylic acid group and R¹ and R² are electron donating groups, L and G' are as defined in claim 11 and A is - Z²-O-P(NR⁶R⁷)-O-R⁵ as defined in claim 14 and Z is O or S.

17. A biomolecule conjugated with a chelate according to any of the claims 1-5.
18. A biomolecule conjugated with a chelate according to any of the claims 1-5, wherein the biomolecule is selected from the group consisting of an oligopeptide, oligonucleotide, DNA, RNA, modified oligo- or polynucleotide, protein, oligosaccaride, polysaccaride, phospholipide, PNA, LNA, antibody, steroid, hapten, drug, receptor binding ligand and lectine.
19. The biomolecule according to claim 18 wherein the modified oligo- or polynucleotide is a phosphoromonothioate, phosphorodithioate, phosphoroamidate and/or sugar- or base modified oligo- or polynucleotide.
20. A solid support conjugated with a chelate according to any of the claims 1-5.
21. A solid support according to claim 20 wherein the chelate is immobilized to the said solid support either covalently or noncovalently.

22. A solid support conjugated with a chelate according to claim 21, wherein said solid support is selected from the group consisting of a nanoparticle, a microparticle, a slide, a plate or a resin suitable for solid phase oligonucleotide or oligopeptide synthesis.

22. A labeled biomolecule obtained by synthesis on a solid phase, by introduction of a chelating agent according to any of the claims 7-10 or into the oligopeptide structure on an oligopeptide synthesizer, followed by deprotection and optionally also introduction of a metal ion.

23. A labeled oligonucleotide, obtained by synthesis on a solid phase, by introduction of a chelating agent according to any of the claims 11-18 into the oligonucleotide structure on an oligonucleotide synthesizer, followed by deprotection and optionally also introduction of a metal ion.

24. A solid support conjugated with a labeled oligopeptide according to claim 22 or a labeled oligonucleotide according to claim 23, wherein said oligopeptide or oligonucleotide is covalently or noncovalently immobilized on said solid support.

25. A solid support conjugated with DNA, RNA, oligopeptide, oligonucleotide, polypeptide, polynucleotide or protein labeled with a chelate according to this invention.
FIGURE 1
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2005/021538 A (WALLAC OY [FI]; HOVINEN JARI [FI]; MUKKALA VELI-MATTI [FI]; HAKALA HAR) 10 March 2005 (2005-03-10) cited in the application the whole document</td>
<td>1-25</td>
</tr>
</tbody>
</table>

B. DOCUMENTS CONSIDERED TO BE RELEVANT

X See patent family annex

Date of the actual completion of the international search | Date of mailing of the international search report
7 January 2009 | 29/01/2009

Date of filing of the international application | 29/01/2009
Name and mailing address of the ISA/ | Authorized officer
European Patent Office, P B 5816 Patentlaan 2 NL - 2280 HV RIVM | Fritz Martin
Tel (+31-70) 340-2040 | Fax (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/FI2008/050494

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2005021538 A</td>
<td>10-03-2005</td>
<td>CA 2536783 A1</td>
<td>10-03-2005</td>
</tr>
</tbody>
</table>