

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
30 October 2008 (30.10.2008)

PCT

(10) International Publication Number
WO 2008/129347 A1(51) International Patent Classification:
B65G 47/86 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/IB2007/002298

(22) International Filing Date: 20 April 2007 (20.04.2007)

(25) Filing Language: English

(26) Publication Language: English

(71) Applicant: SIDEL PARTICIPATIONS [FR/FR]; Avenue de la Patrouille de France, F-76930 Octeville sur Mer (FR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventor; and

(75) Inventor/Applicant (for US only): MARTINELLI, Marco [IT/IT]; c/o Sidel Participations, Avenue de la Patrouille de France, F-76930 Octeville sur Mer (FR).

(74) Agent: LOUISET, Raphaël; Dejade & Biset, 35 rue de Châteaudun, F-75009 Paris (FR).

Published:

— with international search report

(54) Title: STARWHEEL CONVEYING DEVICE INCLUDING A WHEEL VERTICAL ADJUSTMENT DEVICE

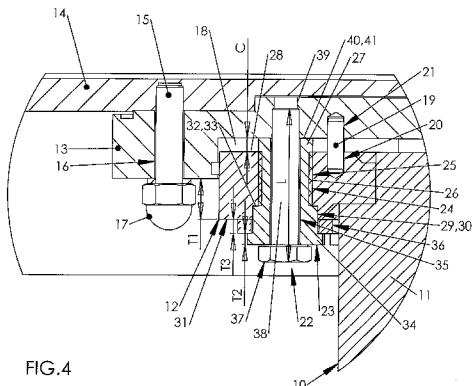


FIG.4

(57) **Abstract:** An article conveying device (1) comprising: a star wheel (1) (2) having a plurality of gripping devices (3) mounted on the circumference thereof, a rotary drive shaft (2) (8), a hub (3) (10) coupling the wheel (2) to the drive shaft (8), said conveying device (1) being characterized in that it comprises adjustable fastening devices (4) (22) for coupling the star wheel (2) to the hub (10), each fastening device (22) comprising: a drift bolt (5) (23) including: - a body (6) (24) having a threaded portion (25) screwed into a hole (26) provided in the hub (10), said body (24) protruding from an upper face (7) (28) of the hub (10), - a head (8) (34) protruding from a lower face (9) (31) of the hub (10), - a central bore (10) (30), a washer (11) (36) interposed between the head (34) of the drift bolt (23) and the lower face (31) of the hub (10), said washer (36) having a predetermined thickness (T3), whereby the starwheel (2) rests on an upper face (12) (40) of the drift bolt (23) with a predetermined clearance (C) with respect of the hub (10), a bolt (13) (37) mounted in the bore (30), said bolt (37) having a threaded portion (14) (38) protruding from the drift bolt (23) and screwed into a hole (39) provided in the wheel (2), thereby fastening the wheel (2) to the hub (10).

WO 2008/129347 A1

Starwheel conveying device including a wheel vertical adjustment device

FIELD OF THE INVENTION

5 The invention relates to the article conveying industry, and more specifically to the container manufacturing/filling industry.

BACKGROUND OF THE INVENTION

10 In the container manufacturing/filling industry, containers are often transferred at high speed rates from a first station, where a first operation (such as molding) is performed, to a second station, where a second operation (such as filling) is performed.

15 A container handling machine is generally provided with a plurality of adjacent conveying devices including at least one rotary starwheel conveying device provided with a plurality of container gripping elements for loading/unloading containers, see e.g. U.S. Pat. No. 5,683,732 (Valles) and U.S. Pat. No. 6,520,349 (Humele).

20 Considering the high speed rates (up to several tens of thousands of containers per hour), it is critical that the adjacent conveying devices be properly and precisely positioned with respect to each other. Otherwise, containers may be improperly loaded on the conveying devices, resulting in container-jamming and machine stop. Vertical positioning is one of the most critical issue.

25 In existing handling machine, conveying devices are generally adjusted in vertical position by moving the entire device with respect of a machine foundation. Considering the weight of one single conveying device (up to a ton), such a solution is time and effort consuming. Moreover, adjustment is not precise enough for the required purpose. In an alternate 30 solution, vertical positioning may be achieved through peelable shims which can be added – or removed – between the wheel and a supporting hub. Such a solution unquestionably allows for precise vertical adjustment. However, since the wheel needs to be removed from its hub, it is also time and effort consuming.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide an article conveying device, the vertical position of which can be easily adjusted.

5 It is another object of the invention to provide an article conveying device, the vertical position of which can be rapidly adjusted.

It is another object of the invention to provide an article conveying device, the vertical position of which can be precisely adjusted.

The proposed article conveying device comprises:

10 – a star wheel having a plurality of gripping devices mounted on the circumference thereof,

– a rotary drive shaft,

– a hub coupling the wheel to the drive shaft,

– adjustable fastening devices for coupling the star wheel to the hub,

15 each fastening device comprising:

– a drift bolt including:

– a body having a threaded portion screwed into a hole provided in the hub, said body protruding from an upper face of the hub,

20 – a head protruding from a lower face of the hub,

– a central bore,

– a washer interposed between the head of the drift bolt and the lower face of the hub, said washer having a predetermined thickness, whereby the starwheel rests on an upper face of the

25 drift bolt with a predetermined clearance with respect of the hub,

– a bolt mounted in the bore, said bolt having a threaded portion protruding from the drift bolt and screwed into a hole provided in the wheel, thereby fastening the wheel to the hub.

The above and other objects and advantages of the invention will 30 become apparent from the detailed description of preferred embodiments, considered in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

35 FIG. 1 is a top perspective view of a starwheel conveying device

according to the invention.

FIG. 2 is a bottom perspective view of a starwheel conveying device according to the invention.

FIG. 3 is an elevation cut view of the starwheel conveying device of **5 FIG.1**.

FIG. 4 is an enlarged cut view of the starwheel conveying device of **FIG.3**, showing detail IV.

FIG. 5 is a bottom cut view of the starwheel conveying device of **FIG.3**, taken along line V-V.

10

DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to the figures, there is shown an article conveying device 1 for transferring containers, such as bottles for liquid beverages, 15 from a loading point P1 to an unloading point P2. The conveying device 1 may be part of a container handling machine including other operational devices such as a molding unit, a filling unit and a capping unit. The conveying device 1 may be interposed between two successive operational devices in order to ensure transfer of the containers from one operational 20 unit to the other.

The conveying device 1 comprises a star wheel 2 provided on its circumference with a plurality of gripping devices 3 each including a pair of fingers 4 pivotally mounted along the circular edge of the wheel 2. For the sake of clarity, only some of the gripping devices 3 are represented on **25 FIG.1** and **FIG.2**. Each gripping device 3 includes a cam follower 5 fixed to one finger 4 and adapted, when reaching the loading point P1 or the unloading point P2, to run on a cam path 6 provided between the radial ends of supporting arms 7, thereby opening the fingers 4 and allowing one container to be held by the gripping device 3.

30 The conveying device 1 also comprises a vertical central rotary drive shaft 8, which is pivotally mounted in a coaxial cylinder 9 fixed to a machine frame, and a hub 10 coupling the wheel 2 to the drive shaft 8. The drive shaft 8 therefore forms the central rotation axis of the star wheel 2.

The hub 10 has a cylindrical body 11 which is rigidly fixed to the drive

shaft 8 e.g. by means of a welding, and a circular peripheral flange 12 having a thickness T1 and radially protruding from or rigidly fixed to the body 11 at an upper end thereof.

As depicted on **FIG.3** and **FIG.4**, the wheel 2 has a central lower plate 5 13 fixed to the hub 10, and an upper plate 14 fixed to the lower plate 13 by means of a plurality of studs 15 screwed to the upper plate 14 and fitted into arc of circle shaped elongated openings 16 provided in the periphery of the lower plate 13. To each stud 15 a nut 17 is screwed to fasten the upper plate 14 to the lower plate 13 in a predetermined angular position 10 with respect of the central rotation axis of the star wheel 2. Angular adjustment serves to precisely synchronize the opening and closing of the gripping devices 3 at the loading and unloading points **P1, P2**.

As depicted on **FIG.4**, the lower plate 13 is provided with a central circular recess 18 where the peripheral flange 12 of the hub 10 is received. Diameters of the recess 18 and the peripheral flange 12 are substantially equal (with a clearance), in order for the hub 10 and wheel 2 to remain coaxial.

As depicted on **FIG.4**, the conveying device 1 is provided with at least one dowel 19 fitted into two facing holes 20, 21 provided respectively in 20 the hub 10 and the lower plate 13 of the wheel 2 for preventing angular displacement of the wheel 2 with respect of the hub 10.

The conveying device 1 further comprises adjustable fastening devices 20 for coupling the star wheel 2 to the hub 10 with vertical adjustment. Each fastening device comprises 20 a drift bolt 21 having an 25 overall length L and including a body 24 having an upper threaded portion 25 screwed into a threaded hole 26 provided in the flange 12 of the hub 10. As depicted on **FIG.4**, when completely screwed to the flange 12, the body 24 protrudes at 27 from an upper face 28 of the hub 10. The body 24 has a non-threaded lower portion 29 greater in diameter than the 30 threaded portion 25 and received in a corresponding bore 30 formed in the flange 12 near a lower face 31 thereof. At the junction with the threaded portion 25, the non-threaded lower portion 29 forms a shoulder 32 which may, when the drift bolt 21 is completely screwed to the flange 12, come to abutment against a stop surface 33 formed at the junction

between the threaded hole **26** and the bore **30**. Non-threaded portion **29** of the body **24** protrudes from the lower face **31** of the flange **12**, even when the drift bolt **21** is completely screwed thereto.

The drift bolt **21** further includes a nut-shaped head **34** having a thickness **T2** and protruding radially from the non-threaded portion **29** of body **24** at a lower end thereof. Head **34** protrudes from the lower face **31** of the flange **12**. The drift bolt **21** is provided with a central through bore **35**.

Each fastening device **20** also comprises a washer **36** of predetermined thickness **T3**, interposed between the head **34** of the drift bolt **21** and the lower face **31** of the flange **12**.

Each fastening device **20** further comprises a bolt **37** mounted in the through bore **35**. The bolt **37** has a threaded portion **38** which protrudes from the drift bolt **21** at an upper end thereof and is screwed into a hole **39** provided in the lower plate **13** of the wheel **2**.

When assembled, the star wheel **2** rests, via its lower plate **13**, on an upper end face **40** of the drift bolt **21** with a predetermined clearance **C** between a lower face **41** of the lower plate **13** forming the bottom of the recess **18**, and the upper face **28** of the flange **12**. As washer **41** is tightened between the head **34** of the drift bolt **21** and the lower face **31** of the flange **12**, clearance **C** calculates as follows:

$$C = L - T1 - T2 - T3 \quad (1)$$

As length **L** and thicknesses **T1**, **T2** are fixed, the value of clearance **C** depends on the value of thickness **T3**. In other words, vertical position of the star wheel **2** depends upon the choice of the washer **36**.

On the other hand, clearance **C** calculates as the difference between height **H1** of the wheel **2** (to be set), measured to the lower face **41** of the lower plate **13**, and height **H2** (fixed) of the hub **10**, measured to the upper face **28** thereof:

$$C = H1 - H2 \quad (2)$$

The wheel **2** and hub **10** are assembled as follows.

First of all, the vertical height **H1** of the wheel **2** is precisely determined in function of the height of the loading and unloading points **P1** and **P2**.

5 Clearance **C** is then calculated according to equation (2).

Thickness **T3** of the washer **36** is then calculated through equation (1) as follows:

$$T3 = L - T1 - T2 - C$$

10

A washer **36** having a thickness equal to **T3** is then be picked up among an assortment of washers and joined to the drift bolt **21** to be mounted on the hub **10**.

15 "Equal to" does not necessary means strictly identical. Of course, a certain clearance around thickness **T3** may be tolerated, e.g. 1/10 mm, depending on the precision with which the wheel **2** is to be positioned vertically on the hub **10**.

Each washer **36** is mounted on the non-threaded portion **29** of a drift bolt **21**.

20 The drift bolts **21** are screwed into the flange **12** from its lower face **31** until the washers **36** are tightened between the heads **34** of the drift bolts **21** and the lower face **31** of the flange **12**. In order to facilitate the screwing of each drift bolt **21**, the head **34** is nut-shaped to permit wrench driving.

25 At this point, the protruding portions **27** of the drift bolts **21** have a length equal to the clearance **C**. The wheel **2** is then mounted onto the hub **10** with the flange **12** positioned in the recess **18** and the dowel **19** fitted into the two facing holes **20, 21**, until the wheel **2** rests on the upper end faces **40** of the drift bolts **23**.

30 The bolts **37** are then inserted in the bores **30** of the drift bolts **23** and screwed to the lower plate **13**, thereby fastening the wheel **2** to the hub **10**.

Modifying vertical position of the star wheel **2** is conducted as follows.

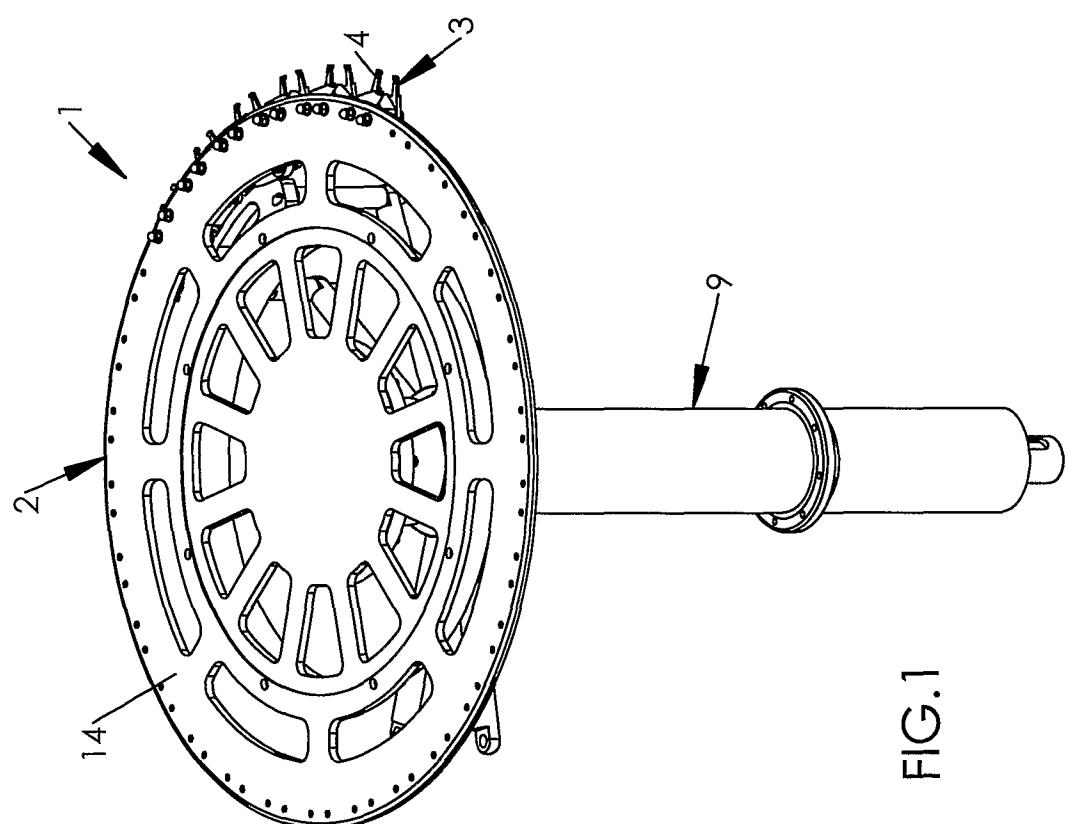
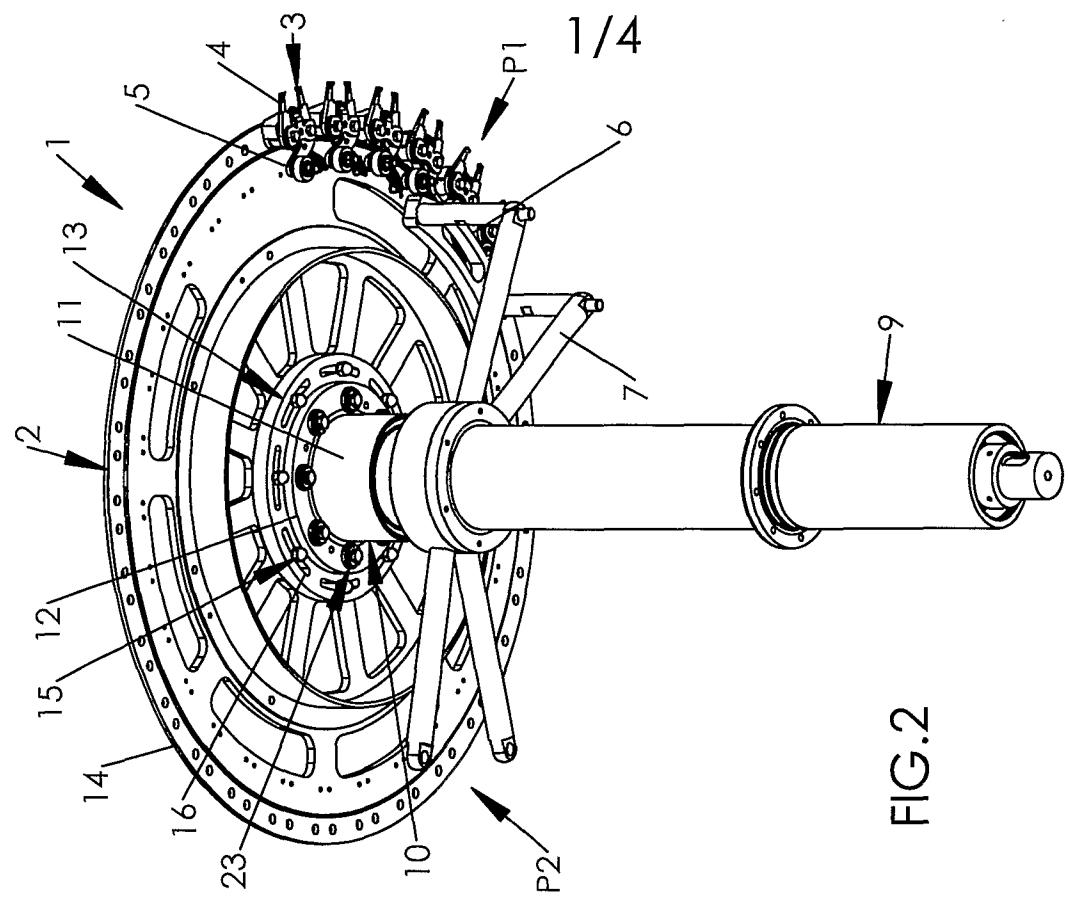
Clearance **C** and thickness **T3** of the washers **36** are re-calculated as

stated hereabove.

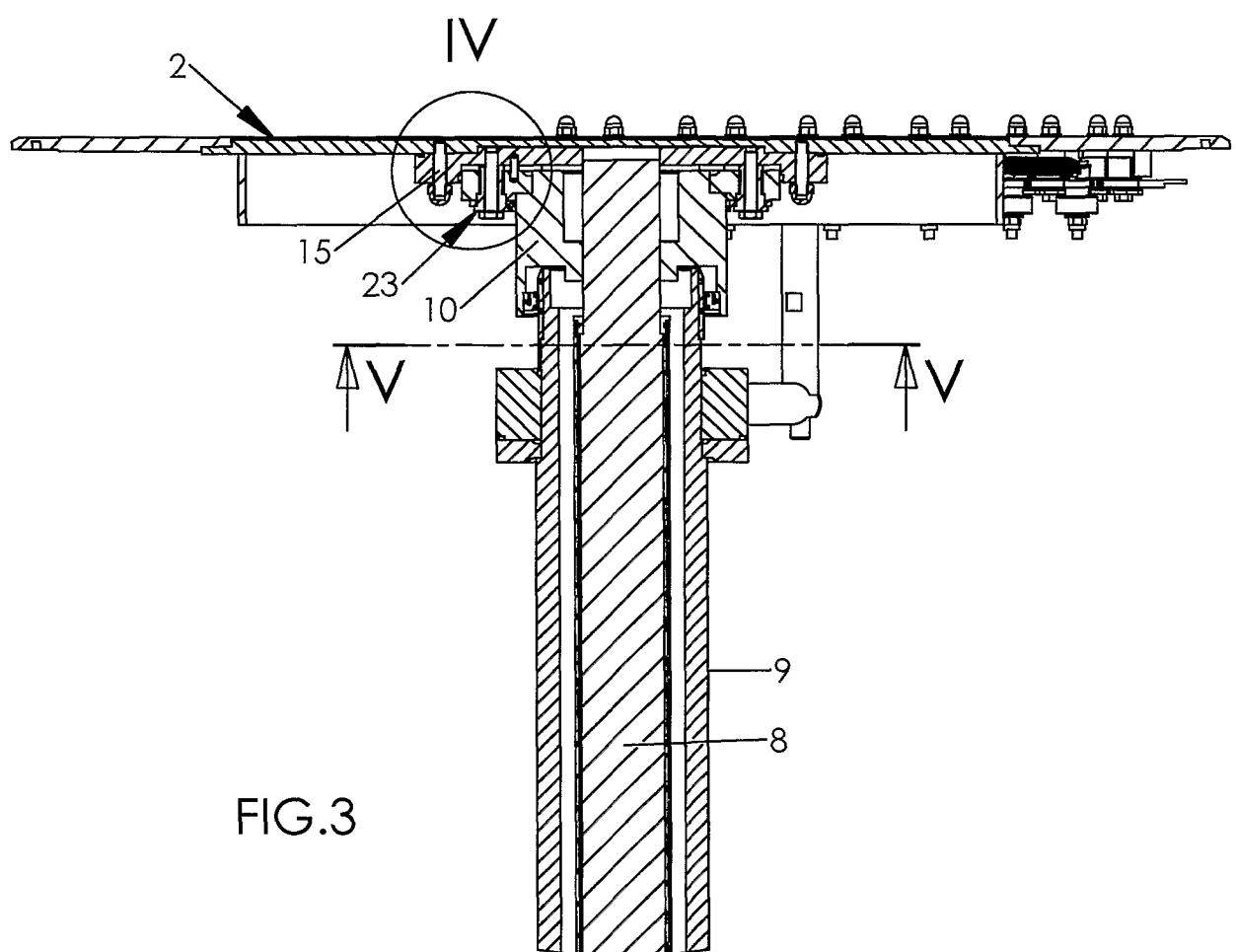
The bolts 37 are unscrewed from the wheel 2 and removed from the drift bolts 23. Without removing the star wheel 2, the drift bolts 23 are unscrewed from the flange 12 of the hub 10 and removed therefrom. The 5 former washers 36 are replaced by the new ones picked up from the assortment and the drift-bolts 23 are screwed back into the hub 10. As soon as they reach the end of the threaded holes 26, the upper end faces 40 of the drift bolts 23 push the lower face 41 of the lower plate 13 and therefore elevate the star wheel 2 until the washers 36 are tightened 10 between the heads 34 and the lower face 31 of the flange 12. The bolts 37 are then inserted back in the drift bolts 23 and screwed again to the lower plate 13.

Adjusting the vertical position of the wheel 2 with respect of the hub 10 is therefore quick, easy and simple. It is not necessary to remove the 15 wheel 2. In addition, provided that proper washers 36 are affordable (they should be manufactured in consequence), vertical positioning of the wheel 2 is also precise.

Furthermore, it is possible to mount washers 36 of different thicknesses on the same hub 10 in order to slightly shift the wheel 2 with 20 respect of the rotation axis, for example to compensate a lack of verticality thereof or to compensate a lack of horizontal alignment of the loading and unloading points P1, P2.



CLAIMS

1. An article conveying device (1) comprising:
 - a star wheel (2) having a plurality of gripping devices (3) mounted on the circumference thereof,
 - a rotary drive shaft (8),
 - a hub (10) coupling the wheel (2) to the drive shaft (8),
said conveying device (1) being characterized in that it comprises adjustable fastening devices (22) for coupling the star wheel (2) to the hub (10), each fastening device (22) comprising:
 - a drift bolt (23) including:
 - a body (24) having a threaded portion (25) screwed into a hole (26) provided in the hub (10), said body (24) protruding from an upper face (28) of the hub (10),
 - a head (34) protruding from a lower face (31) of the hub (10),
 - a central bore (30),
 - a washer (36) interposed between the head (34) of the drift bolt (23) and the lower face (31) of the hub (10), said washer (36) having a predetermined thickness (T3), whereby the starwheel (2) rests on an upper face (40) of the drift bolt (23) with a predetermined clearance (C) with respect of the hub (10),
 - a bolt (37) mounted in the bore (30), said bolt (37) having a threaded portion (38) protruding from the drift bolt (23) and screwed into a hole (39) provided in the wheel (2), thereby fastening the wheel (2) to the hub (10).


2. The article conveying device of claim 1, wherein the head (34) of the drift bolt (23) is nut shaped for wrench driving.
3. The article conveying device of claim 1 or 2, further comprising a dowel (19) fitted into two facing holes (20, 21) provided respectively in the hub (10) and the wheel (2) for preventing angular displacement of the wheel (2) with respect of the hub (10).
4. The article conveying device of any of claims 1-3, wherein the star wheel (2) has a lower plate (13) fixed to the hub (10) and an upper plate (12) fixed to the lower plate (13).

5. The article conveying device of claim 4, further comprising:

- a plurality of studs (15) screwed to the upper plate (14) and fitted into arc of circle shaped elongated openings (16) provided in the lower plate (13),
- 5 – a plurality of nuts (17) screwed to each stud (15), thereby fastening the upper plate (14) to the lower plate (13) in a predetermined angular position.

2/4

3/4

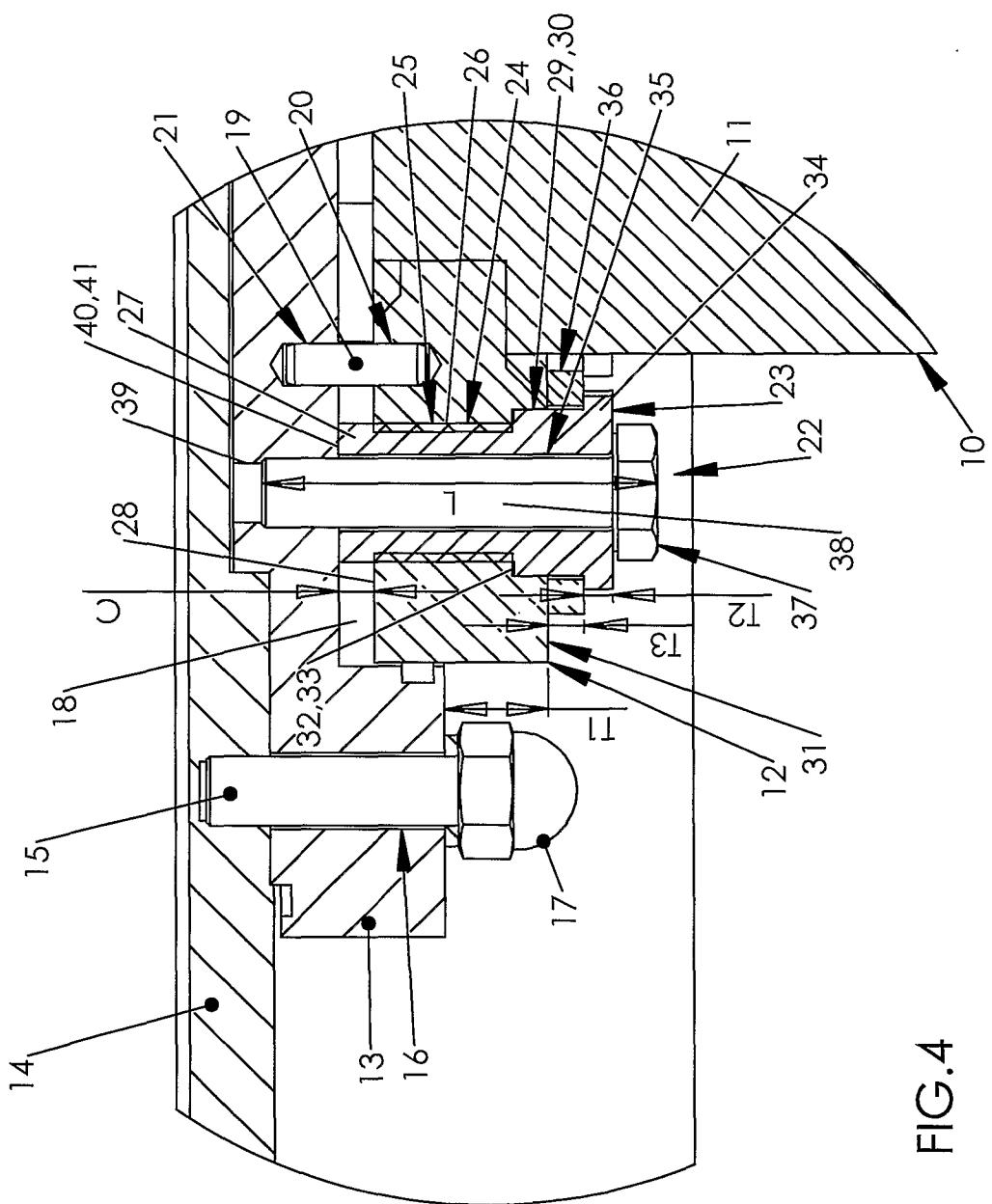


FIG. 4

4/4

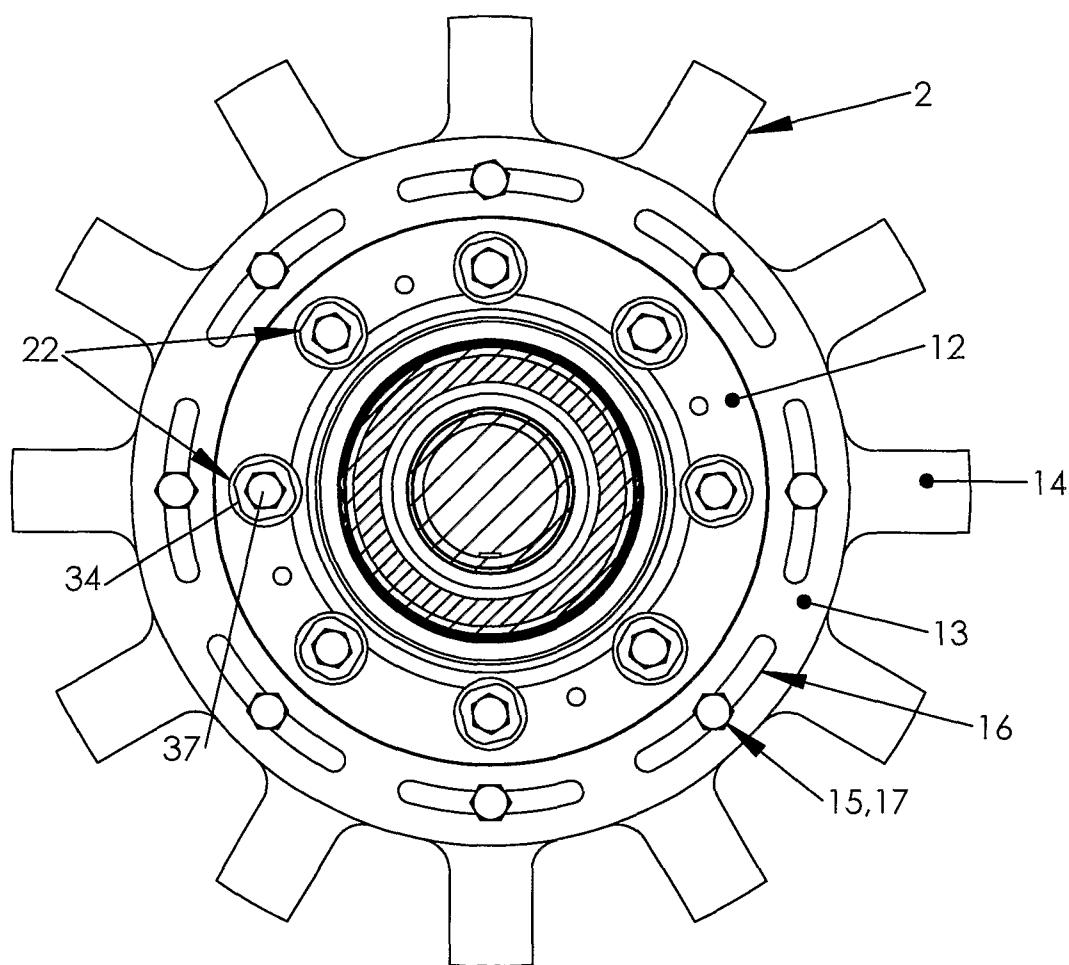


FIG.5

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2007/002298

A. CLASSIFICATION OF SUBJECT MATTER
INV. B65G47/86

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B65G B29C B67C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 3 975 260 A (PEYTON JOHN J ET AL) 17 August 1976 (1976-08-17) column 6, lines 30-54; figures 1,9-11 -----	1-5
A	US 5 784 857 A (FORD COLIN P [US] ET AL) 28 July 1998 (1998-07-28) abstract; figures 2,4 -----	1-5
A	GB 2 149 740 A (MG 2 SPA) 19 June 1985 (1985-06-19) page 1, lines 70-105; figure 3 -----	1-5
A	US 5 590 753 A (BERTSCHI PETER [CH] ET AL) 7 January 1997 (1997-01-07) column 2, lines 51-61; figure 3 ----- -/-	1-5

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

11 January 2008

Date of mailing of the international search report

30/01/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Garlati, Timea

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2007/002298

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 2004/238330 A1 (SHENDGE DEVENDRA WIN [US]) 2 December 2004 (2004-12-02) paragraph [0052]; figures 8-17 -----	1-5
A	GB 528 265 A (BALL BROTHERS CO) 25 October 1940 (1940-10-25) page 2, lines 25-44; figure 3 -----	1-5

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2007/002298

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 3975260	A	17-08-1976	NONE			
US 5784857	A	28-07-1998	NONE			
GB 2149740	A	19-06-1985	BR CH DE FR IT JP JP JP	8404888 A 661706 A5 3435766 A1 2552742 A1 1168689 B 2003129 C 7012857 B 60106715 A		13-08-1985 14-08-1987 25-04-1985 05-04-1985 20-05-1987 20-12-1995 15-02-1995 12-06-1985
US 5590753	A	07-01-1997	AT BR CA CN DE DK EP FI JP NO PL	157623 T 9404008 A 2130764 A1 1108207 A 59403952 D1 647578 T3 0647578 A1 944504 A 7187380 A 943770 A 305313 A1		15-09-1997 13-06-1995 08-04-1995 13-09-1995 09-10-1997 27-04-1998 12-04-1995 08-04-1995 25-07-1995 10-04-1995 18-04-1995
US 2004238330	A1	02-12-2004	NONE			
GB 528265	A	25-10-1940	NONE			