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(57) Abstract: Methods and apparatus for piecewise linear neuron modeling and implementing one or more artificial neurons in an
artificial nervous system based on one or more linearized neuron models. One example method (for implementing a combination of a
plurality of neuron models in a system of neural processing units) generally includes loading parameters for a first neuron model se -
lected from the plurality of neuron models into a first neural processing unit, determining a first state of the first neural processing
unit based at least in part on the parameters for the first neuron model, and determining a second state of the first neural processing
unit based at least in part on the parameters for the first neuron model and on the first state. This method may also include updating
the plurality of neuron models (e.g., by adding, deleting, or adjusting parameters for the first neuron model or another neuron
model).
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PIECEWISE LINEAR NEURON MODELING

CLAIM OF PRIORITY UNDER 35 U.S.C. § 119

[0001] This application claims benefit of U.S. Provisional Patent Application Serial
No. 61/728,360, filed November 20, 2012 and entitled “Piecewise Linear Neuron
Modeling,” U.S. Provisional Patent Application Serial No. 61/734,716, filed
December 7, 2012 and entitled “Piecewise Linear Neuron Modeling,” U.S. Provisional
Patent Application Serial No. 61/740,633, filed December 21, 2012 and entitled
“Piecewise Linear Neuron Modeling,” and U.S. Provisional Patent Application Serial
No. 61/756,889, filed January 25, 2013 and entitled “Piecewise Linear Neuron

Modeling,” all of which are herein incorporated by reference in their entireties.

BACKGROUND
Field

[0002] Certain aspects of the present disclosure generally relate to artificial nervous
systems and, more particularly, to approximating at least a portion of a nonlinear
function of a neuron model as a piecewise linear function and to using the resulting

linearized neuron model in one or more artificial neurons.

Background

[0003] An artificial neural network, which may comprise an interconnected group
of artificial neurons (i.e., neuron models), is a computational device or represents a
method to be performed by a computational device. Artificial neural networks may
have corresponding structure and/or function in biological neural networks. However,
artificial neural networks may provide innovative and useful computational techniques
for certain applications in which traditional computational techniques are cumbersome,
impractical, or inadequate. Because artificial neural networks can infer a function from
observations, such networks are particularly useful in applications where the complexity
of the task or data makes the design of the function by conventional techniques

burdensome.

[0004] One type of artificial neural network is the spiking neural network, which
incorporates the concept of time into its operating model, as well as neuronal and

synaptic state, thereby providing a rich set of behaviors from which computational
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function can emerge in the neural network. Spiking neural networks are based on the
concept that neurons fire or “spike” at a particular time or times based on the state of the
neuron, and that the time is important to neuron function. When a neuron fires, it
generates a spike that travels to other neurons, which, in turn, may adjust their states
based on the time this spike is received. In other words, information may be encoded in

the relative or absolute timing of spikes in the neural network.
SUMMARY

[0005] Certain aspects of the present disclosure generally relate to approximating at
least a portion of a nonlinear function of a neuron model as a piecewise linear function.
Methods and apparatus for implementing the resulting linearized neuron model in one
or more artificial neurons, for example, are also provided. Certain aspects of the present
disclosure generally relate to a common and flexible architecture for the implementation
of the dynamics of neuron models. The design goals include low complexity, accurate
modeling of the dynamics, and the ability to implement any neuron model (of one, two,
or more dimensions). The piecewise linear approximations provide a simple way to
change neuron models within such an architecture, simply by substituting different

parameters associated with various neuron models.

[0006] Certain aspects of the present disclosure provide a method for operating an
artificial neuron. The method generally includes determining that a first state of the
artificial neuron is within a first region; determining a second state of the artificial
neuron based at least in part on a first set of linear equations, wherein the first set of
linear equations is based at least in part on a first set of parameters corresponding to the
first region; determining that the second state of the artificial neuron is within a second
region; and determining a third state of the artificial neuron based at least in part on a
second set of linear equations, wherein the second set of linear equations is based at

least in part on a second set of parameters corresponding to the second region.

[0007] Certain aspects of the present disclosure provide an apparatus for operating
an artificial neuron. The apparatus generally includes a processing system and a
memory coupled to the processing system. The processing system is generally
configured to determine that a first state of the artificial neuron is within a first region;

to determine a second state of the artificial neuron based at least in part on a first set of
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linear equations, wherein the first set of linear equations is based at least in part on a
first set of parameters corresponding to the first region; to determine that the second
state of the artificial neuron is within a second region; and to determine a third state of
the artificial neuron based at least in part on a second set of linear equations, wherein
the second set of linear equations is based at least in part on a second set of parameters

corresponding to the second region.

[0008] Certain aspects of the present disclosure provide an apparatus for operating
an artificial neuron. The apparatus generally includes means for determining that a first
state of the artificial neuron is within a first region; means for determining a second
state of the artificial neuron based at least in part on a first set of linear equations,
wherein the first set of linear equations is based at least in part on a first set of
parameters corresponding to the first region; means for determining that the second state
of the artificial neuron is within a second region; and means for determining a third state
of the artificial neuron based at least in part on a second set of linear equations, wherein
the second set of linear equations is based at least in part on a second set of parameters

corresponding to the second region.

[0009] Certain aspects of the present disclosure provide a computer program
product for operating an artificial neuron. The computer program product generally
includes a computer-readable medium (e.g., a storage device) having instructions
executable to determine that a first state of the artificial neuron is within a first region;
to determine a second state of the artificial neuron based at least in part on a first set of
linear equations, wherein the first set of linear equations is based at least in part on a
first set of parameters corresponding to the first region; to determine that the second
state of the artificial neuron is within a second region; and to determine a third state of
the artificial neuron based at least in part on a second set of linear equations, wherein
the second set of linear equations is based at least in part on a second set of parameters

corresponding to the second region.

[0010] Certain aspects of the present disclosure provide a method for implementing
a combination of a plurality of neuron models in a system of neural processing units.
The method generally includes loading parameters for a first neuron model selected
from the plurality of neuron models into a first neural processing unit, determining a

first state of the first neural processing unit based at least in part on the parameters for
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the first neuron model, and determining a second state of the first neural processing unit

based at least in part on the parameters for the first neuron model and on the first state.

[0011] Certain aspects of the present disclosure provide an apparatus for
implementing a combination of a plurality of neuron models in a system of neural
processing units. The apparatus generally includes a processing system and a memory
coupled to the processing system. The processing system is typically configured to load
parameters for a first neuron model selected from the plurality of neuron models into a
first neural processing unit, to determine a first state of the first neural processing unit
based at least in part on the parameters for the first neuron model, and to determine a
second state of the first neural processing unit based at least in part on the parameters

for the first neuron model and on the first state.

[0012] Certain aspects of the present disclosure provide an apparatus for
implementing a combination of a plurality of neuron models in a system of neural
processing units. The apparatus generally includes means for loading parameters for a
first neuron model selected from the plurality of neuron models into a first neural
processing unit, means for determining a first state of the first neural processing unit
based at least in part on the parameters for the first neuron model, and means for
determining a second state of the first neural processing unit based at least in part on the

parameters for the first neuron model and on the first state.

[0013] Certain aspects of the present disclosure provide a computer program
product for implementing a combination of a plurality of neuron models in a system of
neural processing units. The computer program product generally includes a (non-
transitory) computer-readable medium having instructions executable to load
parameters for a first neuron model selected from the plurality of neuron models into a
first neural processing unit, to determine a first state of the first neural processing unit
based at least in part on the parameters for the first neuron model, and to determine a
second state of the first neural processing unit based at least in part on the parameters

for the first neuron model and on the first state.

[0014] Certain aspects of the present disclosure provide a method for operating an
artificial neuron. The method generally includes determining that a first state of the

artificial neuron is within a first region; determining a second state of the artificial
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neuron based at least in part on a first set of linear equations, wherein the first set of
linear equations is based at least in part on a first set of parameters corresponding to the
first region; determining that the second state of the artificial neuron is within a second
region, wherein at least one of the first region or the second region is defined by two or
more dimensions; and determining a third state of the artificial neuron based at least in
part on a second set of linear equations, wherein the second set of linear equations is

based at least in part on a second set of parameters corresponding to the second region.

[0015] Certain aspects of the present disclosure provide an apparatus for operating
an artificial neuron. The apparatus generally includes a processing system and a
memory coupled to the processing system. The processing system is generally
configured to determine that a first state of the artificial neuron is within a first region;
to determine a second state of the artificial neuron based at least in part on a first set of
linear equations, wherein the first set of linear equations is based at least in part on a
first set of parameters corresponding to the first region; to determine that the second
state of the artificial neuron is within a second region, wherein at least one of the first
region or the second region is defined by two or more dimensions; and to determine a
third state of the artificial neuron based at least in part on a second set of linear
equations, wherein the second set of linear equations is based at least in part on a second

set of parameters corresponding to the second region.

[0016] Certain aspects of the present disclosure provide an apparatus for operating
an artificial neuron. The apparatus generally includes means for determining that a first
state of the artificial neuron is within a first region; means for determining a second
state of the artificial neuron based at least in part on a first set of linear equations,
wherein the first set of linear equations is based at least in part on a first set of
parameters corresponding to the first region; means for determining that the second state
of the artificial neuron is within a second region, wherein at least one of the first region
or the second region is defined by two or more dimensions; and means for determining
a third state of the artificial neuron based at least in part on a second set of linear
equations, wherein the second set of linear equations is based at least in part on a second

set of parameters corresponding to the second region.

[0017] Certain aspects of the present disclosure provide a computer program

product for operating an artificial neuron. The computer program product generally
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includes a computer-readable medium (e.g., a storage device or other non-transitory
medium) having instructions executable to determine that a first state of the artificial
neuron is within a first region; to determine a second state of the artificial neuron based
at least in part on a first set of linear equations, wherein the first set of linear equations
is based at least in part on a first set of parameters corresponding to the first region; to
determine that the second state of the artificial neuron is within a second region,
wherein at least one of the first region or the second region is defined by two or more
dimensions; and to determine a third state of the artificial neuron based at least in part
on a second set of linear equations, wherein the second set of linear equations is based

at least in part on a second set of parameters corresponding to the second region.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] So that the manner in which the above-recited features of the present
disclosure can be understood in detail, a more particular description, briefly summarized
above, may be had by reference to aspects, some of which are illustrated in the
appended drawings. It is to be noted, however, that the appended drawings illustrate
only certain typical aspects of this disclosure and are therefore not to be considered

limiting of its scope, for the description may admit to other equally effective aspects.

[0019] FIG. 1 illustrates an example network of neurons in accordance with certain

aspects of the present disclosure.

[0020] FIG. 2 illustrates an example processing unit (neuron) of a computational
network (neural system or neural network), in accordance with certain aspects of the

present disclosure.

[0021] FIG. 3 illustrates an example spike-timing dependent plasticity (STDP)

curve in accordance with certain aspects of the present disclosure.

[0022] FIG. 4 is an example graph of state for an artificial neuron, illustrating a
positive regime and a negative regime for defining behavior of the neuron, in

accordance with certain aspects of the present disclosure.

[0023] FIGs. 5A and 5B illustrate example graphs of membrane voltage v and
recovery current u, respectively, versus time for comparing the nonlinear time-varying

simple model to an example linearization based on a Taylor expansion method, in
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accordance with certain aspects of the present disclosure.

[0024] FIGs. 6A and 6B illustrate example graphs of membrane voltage v and
recovery current u, respectively, versus time for the subthreshold dynamics of the

Hunzinger Cold model, in accordance with certain aspects of the present disclosure.

[0025] FIG. 7 illustrates a summary of various approaches to piecewise linear

neuron modeling, in accordance with certain aspects of the present disclosure.

[0026] FIG. 8 illustrates an example of piecewise linear neuron modeling with
partitioning in terms of a single dimension, in accordance with certain aspects of the

present disclosure.

[0027] FIG. 9 illustrates an example of generalized linear neuron modeling with
three rectangular regions defined by two dimensions, in accordance with certain aspects

of the present disclosure.

[0028] FIG. 10 illustrates an example of generalized linear neuron modeling with
four regions defined by two dimensions, which may be used to exhibit decaying,
sustained, and growing subthreshold oscillation behavior, in accordance with certain

aspects of the present disclosure.

[0029] FIG. 11 illustrates an example of generalized linear neuron modeling with
five regions having varying shapes, in accordance with certain aspects of the present

disclosure.

[0030] FIGs. 12A-C illustrate example plots of decaying, sustained, and growing
subthreshold oscillations, respectively, in accordance with certain aspects of the present

disclosure.

[0031] FIG. 13 illustrates an example of generalized linear neuron modeling with
six regions defined by two dimensions, which may be used for multi-stage decay, multi-
stage sustained, and/or multi-stage growth regions to support gradual decaying, multiple
sustained oscillations, and/or gradual growing of subthreshold oscillations, in

accordance with certain aspects of the present disclosure.

[0032] FIG. 14 is a flow diagram of example operations for operating an artificial
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neuron, in accordance with certain aspects of the present disclosure.

[0033] FIG. 14A illustrates example means capable of performing the operations
shown in FIG. 14.

[0034] FIGs. 15A-D illustrate implementation of a common and flexible neural
architecture for a single neural processing unit, where parameters for neuron models can
be selected, loaded, accessed, added, deleted, and/or updated, in accordance with certain

aspects of the present disclosure.

[0035] FIG. 16 is a flow diagram of example operations for implementing a
combination of a plurality of neuron models in a system of neural processing units, in

accordance with certain aspects of the present disclosure.

[0036] FIG. 16A illustrates example means capable of performing the operations
shown in FIG. 16.

[0037] FIG. 17 illustrates an example implementation for determining states of an
artificial neuron using a general-purpose processor, in accordance with certain aspects

of the present disclosure.

[0038] FIG. 18 illustrates an example implementation for determining states of an
artificial neuron where a memory may be interfaced with individual distributed

processing units, in accordance with certain aspects of the present disclosure.

[0039] FIG. 19 illustrates an example implementation for determining states of an
artificial neuron based on distributed memories and distributed processing units, in

accordance with certain aspects of the present disclosure.

[0040] FIG. 20 illustrates an example implementation of a neural network in

accordance with certain aspects of the present disclosure.

[0041] FIG. 21 is a block diagram of an example implementation of piecewise
linear neuron modeling in which parameters used to update states of an artificial neuron
are fetched from memory according to the quantization of the current state, in

accordance with certain aspects of the present disclosure.

DETAILED DESCRIPTION
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[0042] Various aspects of the disclosure are described more fully hereinafter with
reference to the accompanying drawings. This disclosure may, however, be embodied
in many different forms and should not be construed as limited to any specific structure
or function presented throughout this disclosure. Rather, these aspects are provided so
that this disclosure will be thorough and complete, and will fully convey the scope of
the disclosure to those skilled in the art. Based on the teachings herein one skilled in the
art should appreciate that the scope of the disclosure is intended to cover any aspect of
the disclosure disclosed herein, whether implemented independently of or combined
with any other aspect of the disclosure. For example, an apparatus may be implemented
or a method may be practiced using any number of the aspects set forth herein. In
addition, the scope of the disclosure is intended to cover such an apparatus or method
which is practiced using other structure, functionality, or structure and functionality in
addition to or other than the various aspects of the disclosure set forth herein. It should
be understood that any aspect of the disclosure disclosed herein may be embodied by

one or more elements of a claim.

[0043] The word “exemplary” is used herein to mean “serving as an example,
instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily

to be construed as preferred or advantageous over other aspects.

[0044] Although particular aspects are described herein, many variations and
permutations of these aspects fall within the scope of the disclosure. Although some
benefits and advantages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits, uses or objectives. Rather,
aspects of the disclosure are intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of which are illustrated by way of
example in the figures and in the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of the disclosure rather than
limiting, the scope of the disclosure being defined by the appended claims and
equivalents thereof.

AN EXAMPLE NEURAL SYSTEM

[0045] FIG. 1 illustrates an example neural system 100 with multiple levels of
neurons in accordance with certain aspects of the present disclosure. The neural system

100 may comprise a level of neurons 102 connected to another level of neurons 106
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though a network of synaptic connections 104 (i.e., feed-forward connections). For
simplicity, only two levels of neurons are illustrated in FIG. 1, although fewer or more
levels of neurons may exist in a typical neural system. It should be noted that some of
the neurons may connect to other neurons of the same layer through lateral connections.
Furthermore, some of the neurons may connect back to a neuron of a previous layer

through feedback connections.

[0046] As illustrated in FIG. 1, each neuron in the level 102 may receive an input
signal 108 that may be generated by a plurality of neurons of a previous level (not
shown in FIG. 1). The signal 108 may represent an input (e.g., an input current) to the
level 102 neuron. Such inputs may be accumulated on the neuron membrane to charge
a membrane potential. When the membrane potential reaches its threshold value, the
neuron may fire and generate an output spike to be transferred to the next level of
neurons (e.g., the level 106). Such behavior can be emulated or simulated in hardware

and/or software, including analog and digital implementations.

[0047] In biological neurons, the output spike generated when a neuron fires is
referred to as an action potential. This electrical signal is a relatively rapid, transient,
all-or nothing nerve impulse, having an amplitude of roughly 100 mV and a duration of
about 1 ms. In a particular aspect of a neural system having a series of connected
neurons (e.g., the transfer of spikes from one level of neurons to another in FIG. 1),
every action potential has basically the same amplitude and duration, and thus, the
information in the signal is represented only by the frequency and number of spikes (or
the time of spikes), not by the amplitude. The information carried by an action potential
is determined by the spike, the neuron that spiked, and the time of the spike relative to

one or more other spikes.

[0048] The transfer of spikes from one level of neurons to another may be achieved
through the network of synaptic connections (or simply “synapses”) 104, as illustrated
in FIG. 1. The synapses 104 may receive output signals (i.c., spikes) from the level 102
neurons (pre-synaptic neurons relative to the synapses 104). For certain aspects, these

signals may be scaled according to adjustable synaptic weights Wl(i’iﬂ),..., Wg’iﬂ)

(where P is a total number of synaptic connections between the neurons of levels 102

and 106). For other aspects, the synapses 104 may not apply any synaptic weights.
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Further, the (scaled) signals may be combined as an input signal of each neuron in the
level 106 (post-synaptic neurons relative to the synapses 104). Every neuron in the
level 106 may generate output spikes 110 based on the corresponding combined input
signal. The output spikes 110 may be then transferred to another level of neurons using

another network of synaptic connections (not shown in FIG. 1).

[0049] Biological synapses may be classified as either electrical or chemical. While
electrical synapses are used primarily to send excitatory signals, chemical synapses can
mediate either excitatory or inhibitory (hyperpolarizing) actions in postsynaptic neurons
and can also serve to amplify neuronal signals. Excitatory signals typically depolarize
the membrane potential (i.c., increase the membrane potential with respect to the resting
potential). If enough excitatory signals are received within a certain period to
depolarize the membrane potential above a threshold, an action potential occurs in the
postsynaptic neuron. In contrast, inhibitory signals generally hyperpolarize (i.e., lower)
the membrane potential. Inhibitory signals, if strong enough, can counteract the sum of
excitatory signals and prevent the membrane potential from reaching threshold. In
addition to counteracting synaptic excitation, synaptic inhibition can exert powerful
control over spontancously active neurons. A spontancously active neuron refers to a
neuron that spikes without further input, for example, due to its dynamics or feedback.
By suppressing the spontancous generation of action potentials in these neurons,
synaptic inhibition can shape the pattern of firing in a neuron, which is generally
referred to as sculpturing. The various synapses 104 may act as any combination of

excitatory or inhibitory synapses, depending on the behavior desired.

[0050] The neural system 100 may be emulated by a general purpose processor, a
digital signal processor (DSP), an application specific integrated circuit (ASIC), a field
programmable gate array (FPGA) or other programmable logic device (PLD), discrete
gate or transistor logic, discrete hardware components, a software module executed by a
processor, or any combination thereof. The neural system 100 may be utilized in a large
range of applications, such as image and pattern recognition, machine learning, motor
control, and the like. Each neuron (or neuron model) in the neural system 100 may be
implemented as a neuron circuit. The neuron membrane charged to the threshold value
initiating the output spike may be implemented, for example, as a capacitor that

integrates an electrical current flowing through it.
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[0051] In an aspect, the capacitor may be eliminated as the electrical current
integrating device of the neuron circuit, and a smaller memristor element may be used
in its place. This approach may be applied in neuron circuits, as well as in various other
applications where bulky capacitors are utilized as electrical current integrators. In
addition, each of the synapses 104 may be implemented based on a memristor element,
wherein synaptic weight changes may relate to changes of the memristor resistance.
With nanometer feature-sized memristors, the area of neuron circuit and synapses may
be substantially reduced, which may make implementation of a very large-scale neural

system hardware implementation practical.

[0052] Functionality of a neural processor that emulates the neural system 100 may
depend on weights of synaptic connections, which may control strengths of connections
between neurons. The synaptic weights may be stored in a non-volatile memory in
order to preserve functionality of the processor after being powered down. In an aspect,
the synaptic weight memory may be implemented on a separate external chip from the
main neural processor chip. The synaptic weight memory may be packaged separately
from the neural processor chip as a replaceable memory card. This may provide diverse
functionalities to the neural processor, wherein a particular functionality may be based

on synaptic weights stored in a memory card currently attached to the neural processor.

[0053] FIG. 2 illustrates an example 200 of a processing unit (e.g., an artificial
neuron 202) of a computational network (e.g., a neural system or a neural network) in
accordance with certain aspects of the present disclosure. For example, the neuron 202
may correspond to any of the neurons of levels 102 and 106 from FIG. 1. The neuron
202 may receive multiple input signals 204,-204y (x;-x, ), which may be signals
external to the neural system, or signals generated by other neurons of the same neural
system, or both. The input signal may be a current or a voltage, real-valued or complex-
valued. The input signal may comprise a numerical value with a fixed-point or a
floating-point representation. These input signals may be delivered to the neuron 202
through synaptic connections that scale the signals according to adjustable synaptic

weights 206,-206y (w, - w,, ), where N may be a total number of input connections of the

neuron 202.

[0054] The neuron 202 may combine the scaled input signals and use the combined
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scaled inputs to generate an output signal 208 (i.c., a signal y). The output signal 208
may be a current, or a voltage, real-valued or complex-valued. The output signal may
comprise a numerical value with a fixed-point or a floating-point representation. The
output signal 208 may be then transferred as an input signal to other neurons of the
same neural system, or as an input signal to the same neuron 202, or as an output of the

neural system.

[0055] The processing unit (neuron) 202 may be emulated by an electrical circuit,
and its input and output connections may be emulated by wires with synaptic circuits.
The processing unit 202, its input and output connections may also be emulated by a
software code. The processing unit 202 may also be emulated by an electric circuit,
whereas its input and output connections may be emulated by a software code. In an
aspect, the processing unit 202 in the computational network may comprise an analog
electrical circuit. In another aspect, the processing unit 202 may comprise a digital
electrical circuit. In yet another aspect, the processing unit 202 may comprise a mixed-
signal electrical circuit with both analog and digital components. The computational
network may comprise processing units in any of the aforementioned forms. The
computational network (neural system or neural network) using such processing units
may be utilized in a large range of applications, such as image and pattern recognition,

machine learning, motor control, and the like.

[0056] During the course of training a neural network, synaptic weights (e.g., the

(i,i+1) (i,i+1)

weights wy ,...» wp” /from FIG. 1 and/or the weights 206,-206x from FIG. 2) may

be initialized with random values and increased or decreased according to a learning
rule. Some examples of the learning rule are the spike-timing-dependent plasticity
(STDP) learning rule, the Hebb rule, the Oja rule, the Bienenstock-Copper-Munro
(BCM) rule, etc. Very often, the weights may settle to one of two values (i.e., a
bimodal distribution of weights). This effect can be utilized to reduce the number of
bits per synaptic weight, increase the speed of reading and writing from/to a memory

storing the synaptic weights, and to reduce power consumption of the synaptic memory.

Synapse Type

[0057] In hardware and software models of neural networks, processing of synapse

related functions can be based on synaptic type. Synapse types may comprise non-
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plastic synapses (no changes of weight and delay), plastic synapses (weight may
change), structural delay plastic synapses (weight and delay may change), fully plastic
synapses (weight, delay and connectivity may change), and variations thereupon (e.g.,
delay may change, but no change in weight or connectivity). The advantage of this is
that processing can be subdivided. For example, non-plastic synapses may not require
plasticity functions to be executed (or waiting for such functions to complete).
Similarly, delay and weight plasticity may be subdivided into operations that may
operate in together or separately, in sequence or in parallel. Different types of synapses
may have different lookup tables or formulas and parameters for each of the different
plasticity types that apply. Thus, the methods would access the relevant tables for the
synapse’s type.

[0058] There are further implications of the fact that spike-timing dependent
structural plasticity may be executed independently of synaptic plasticity. Structural
plasticity may be executed even if there is no change to weight magnitude (e.g., if the
weight has reached a minimum or maximum value, or it is not changed due to some
other reason) since structural plasticity (i.c., an amount of delay change) may be a direct
function of pre-post spike time difference. Alternatively, it may be set as a function of
the weight change amount or based on conditions relating to bounds of the weights or
weight changes. For example, a synaptic delay may change only when a weight change
occurs or if weights reach zero, but not if the weights are maxed out. However, it can
be advantageous to have independent functions so that these processes can be

parallelized reducing the number and overlap of memory accesses.

DETERMINATION OF SYNAPTIC PLASTICITY

[0059] Neuroplasticity (or simply “plasticity”) is the capacity of neurons and neural
networks in the brain to change their synaptic connections and behavior in response to
new information, sensory stimulation, development, damage, or dysfunction. Plasticity
is important to learning and memory in biology, as well as to computational
neuroscience and neural networks. Various forms of plasticity have been studied, such
as synaptic plasticity (e.g., according to the Hebbian theory), spike-timing-dependent
plasticity (STDP), non-synaptic plasticity, activity-dependent plasticity, structural

plasticity, and homeostatic plasticity.
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[0060] STDP is a learning process that adjusts the strength of synaptic connections
between neurons, such as those in the brain. The connection strengths are adjusted
based on the relative timing of a particular neuron’s output and received input spikes
(i.e., action potentials). Under the STDP process, long-term potentiation (LTP) may
occur if an input spike to a certain neuron tends, on average, to occur immediately
before that neuron's output spike. Then, that particular input is made somewhat
stronger. In contrast, long-term depression (LTD) may occur if an input spike tends, on
average, to occur immediately after an output spike. Then, that particular input is made
somewhat weaker, hence the name "spike-timing-dependent plasticity.” Consequently,
inputs that might be the cause of the post-synaptic neuron's excitation are made even
more likely to contribute in the future, whereas inputs that are not the cause of the post-
synaptic spike are made less likely to contribute in the future. The process continues
until a subset of the initial set of connections remains, while the influence of all others is

reduced to zero or near zero.

[0061] Since a neuron generally produces an output spike when many of its inputs
occur within a brief period (i.e., being sufficiently cumulative to cause the output,), the
subset of inputs that typically remains includes those that tended to be correlated in
time. In addition, since the inputs that occur before the output spike are strengthened,
the inputs that provide the earliest sufficiently cumulative indication of correlation will

eventually become the final input to the neuron.

[0062] The STDP learning rule may effectively adapt a synaptic weight of a synapse
connecting a pre-synaptic neuron to a post-synaptic neuron as a function of time

of the pre-synaptic neuron and spike time 7, of the

re post

difference between spike time ¢,

post-synaptic neuron (i.€., =1, —1,,

). A typical formulation of the STDP is to
increase the synaptic weight (i.e., potentiate the synapse) if the time difference is
positive (the pre-synaptic neuron fires before the post-synaptic neuron), and decrease
the synaptic weight (i.e., depress the synapse) if the time difference is negative (the

post-synaptic neuron fires before the pre-synaptic neuron).

[0063] In the STDP process, a change of the synaptic weight over time may be

typically achieved using an exponential decay, as given by,
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Aw(t) =

—t/k
ae " +ut>0
{ , (1)

ae'* <0

where k,and k_ are time constants for positive and negative time difference,
respectively, a, and a are corresponding scaling magnitudes, and g is an offset that

may be applied to the positive time difference and/or the negative time difference.

[0064] FIG. 3 illustrates an example graph diagram 300 of a synaptic weight change
as a function of relative timing of pre-synaptic and post-synaptic spikes in accordance
with STDP. If a pre-synaptic neuron fires before a post-synaptic neuron, then a
corresponding synaptic weight may be increased, as illustrated in a portion 302 of the
graph 300. This weight increase can be referred to as an LTP of the synapse. It can be
observed from the graph portion 302 that the amount of LTP may decrease roughly
exponentially as a function of the difference between pre-synaptic and post-synaptic
spike times. The reverse order of firing may reduce the synaptic weight, as illustrated in

a portion 304 of the graph 300, causing an LTD of the synapse.

[0065] As illustrated in the graph 300 in FIG. 3, a negative offset ¢ may be applied
to the LTP (causal) portion 302 of the STDP graph. A point of cross-over 306 of the x-

axis (y=0) may be configured to coincide with the maximum time lag for considering
correlation for causal inputs from layer i-1. In the case of a frame-based input (i.c., an
input is in the form of a frame of a particular duration comprising spikes or pulses), the

offset value x can be computed to reflect the frame boundary. A first input spike

(pulse) in the frame may be considered to decay over time either as modeled by a post-
synaptic potential directly or in terms of the effect on neural state. If a second input
spike (pulse) in the frame is considered correlated or relevant of a particular time frame,
then the relevant times before and after the frame may be separated at that time frame
boundary and treated differently in plasticity terms by offsetting one or more parts of
the STDP curve such that the value in the relevant times may be different (e.g., negative
for greater than one frame and positive for less than one frame). For example, the

negative offset 1 may be set to offset LTP such that the curve actually goes below zero

at a pre-post time greater than the frame time and it is thus part of LTD instead of LTP.
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NEURON MODELS AND OPERATION

[0066] There are some general principles for designing a useful spiking neuron
model. A good neuron model may have rich potential behavior in terms of two
computational regimes: coincidence detection and functional computation. Moreover,
a good neuron model should have two elements to allow temporal coding: arrival time
of inputs affects output time and coincidence detection can have a narrow time window.
Finally, to be computationally attractive, a good neuron model may have a closed-form
solution in continuous time and have stable behavior including near attractors and
saddle points. In other words, a useful neuron model is one that is practical and that can
be used to model rich, realistic and biologically-consistent behaviors, as well as be used

to both engineer and reverse engineer neural circuits.

[0067] A neuron model may depend on events, such as an input arrival, output spike
or other event whether internal or external. To achieve a rich behavioral repertoire, a
state machine that can exhibit complex behaviors may be desired. If the occurrence of
an event itself, separate from the input contribution (if any) can influence the state
machine and constrain dynamics subsequent to the event, then the future state of the
system is not only a function of a state and input, but rather a function of a state, event,

and input.

[0068] In an aspect, a neuron » may be modeled as a spiking leaky-integrate-and-

fire neuron with a membrane voltage v, (t) governed by the following dynamics,

dv, (1)
dt

=av,(t)+BY W,V (t -At,,, ) )

where a and B are parameters, w, , is a synaptic weight for the synapse connecting a

pre-synaptic neuron m to a post-synaptic neuron #, and y, (t) is the spiking output of
the neuron m that may be delayed by dendritic or axonal delay according to Az, , until

arrival at the neuron #’s soma.

[0069] It should be noted that there is a delay from the time when sufficient input to
a post-synaptic neuron is established until the time when the post-synaptic neuron

actually fires. In a dynamic spiking neuron model, such as Izhikevich’s simple model, a
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time delay may be incurred if there is a difference between a depolarization threshold

v, and a peak spike voltagev For example, in the simple model, neuron soma

peak *

dynamics can be governed by the pair of differential equations for voltage and recovery,

i.e.,
%z(k(v—vt)(v—v,)—u+l)/C, (3)
du
— = alblv-v,)-u). ©

where v is a membrane potential, #is a membrane recovery variable, k is a parameter
that describes time scale of the membrane potential v, a is a parameter that describes
time scale of the recovery variable u, b is a parameter that describes sensitivity of the
recovery variable u to the subthreshold fluctuations of the membrane potential v, v,1s a
membrane resting potential, / is a synaptic current, and C is a membrane’s capacitance.

In accordance with this model, the neuron is defined to spike whenv >v .

Hunzinger Cold Model

[0070] The Hunzinger Cold neuron model is a minimal dual-regime spiking linear
dynamical model that can reproduce a rich variety of neural behaviors. The model’s
one- or two-dimensional linear dynamics can have two regimes, wherein the time
constant (and coupling) can depend on the regime. In the subthreshold regime, the time
constant, negative by convention, represents leaky channel dynamics generally acting to
return a cell to rest in biologically-consistent linear fashion. The time constant in the
supra-threshold regime, positive by convention, reflects anti-leaky channel dynamics

generally driving a cell to spike while incurring latency in spike-generation.

[0071] As illustrated in FIG. 4, the dynamics of the model may be divided into two
(or more) regimes. These regimes may be called the negative regime 402 (also
interchangeably referred to as the leaky-integrate-and-fire (LIF) regime, not to be
confused with the LIF neuron model) and the positive regime 404 (also interchangeably
referred to as the anti-leaky-integrate-and-fire (ALIF) regime, not to be confused with
the ALIF neuron model). In the negative regime 402, the state tends toward rest (v_) at
the time of a future event. In this negative regime, the model generally exhibits

temporal input detection properties and other subthreshold behavior. In the positive
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regime 404, the state tends toward a spiking event (v,). In this positive regime, the

model exhibits computational properties, such as incurring a latency to spike depending
on subsequent input events. Formulation of dynamics in terms of events and separation

of the dynamics into these two regimes are fundamental characteristics of the model.

[0072] Linear dual-regime bi-dimensional dynamics (for states vand u) may be

defined by convention as,

dv
rPZZVqup (%)
du
—T,—=u+r 6
“ (6)

where g, and r are the linear transformation variables for coupling.

[0073] The symbol p is used herein to denote the dynamics regime with the
convention to replace the symbol p with the sign “-” or “+” for the negative and

positive regimes, respectively, when discussing or expressing a relation for a specific

regime.

[0074] The model state is defined by a membrane potential (voltage) v and recovery
current u. In basic form, the regime is essentially determined by the model state.
There are subtle, but important aspects of the precise and general definition, but for the

moment, consider the model to be in the positive regime 404 if the voltage v is above a

threshold (v, ) and otherwise in the negative regime 402.

[0075] The regime-dependent time constants include z_ which is the negative
regime time constant, and 7, which is the positive regime time constant. The recovery
current time constantz is typically independent of regime. For convenience, the
negative regime time constant 7 _1is typically specified as a negative quantity to reflect

decay so that the same expression for voltage evolution may be used as for the positive

regime in which the exponent and z, will generally be positive, as will be 7.

[0076] The dynamics of the two state elements may be coupled at events by

transformations offsetting the states from their null-clines, where the transformation
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variables are
qp :_Tplgu _vp (7)
r=0 (v + g) (8)

where 6, ¢, f and v, v, are parameters. The two values for v ,are the base for

reference voltages for the two regimes. The parameter v_ is the base voltage for the
negative regime, and the membrane potential will generally decay toward v_ in the
negative regime. The parameter v, is the base voltage for the positive regime, and the

membrane potential will generally tend away from v, in the positive regime.

[0077] The null-clines for v and uare given by the negative of the transformation

variables g ,and r, respectively. The parameter o is a scale factor controlling the slope

of the unull-cline. The parameter ¢is typically set equal to —v . The parameter S is

a resistance value controlling the slope of the v null-clines in both regimes. The z,

time-constant parameters control not only the exponential decays, but also the null-cline

slopes in each regime separately.

[0078] The model is defined to spike when the voltage v reaches a value vq.

Subsequently, the state is typically reset at a reset event (which technically may be one

and the same as the spike event):

V=" %)
u=u+Au (10)
where V_and Au are parameters. The reset voltage v_is typically set tov_.

[0079] By a principle of momentary coupling, a closed form solution is possible not
only for state (and with a single exponential term), but also for the time required to

reach a particular state. The close form state solutions are

At

v(t+At)=(v(t)+qp)eT’J -q, (11)
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u(t+At)=(u(t)+r)e_Z —-r (12)

[0080] Therefore, the model state may be updated only upon events such as upon an
input (pre-synaptic spike) or output (post-synaptic spike). Operations may also be

performed at any particular time (whether or not there is input or output).

[0081] Moreover, by the momentary coupling principle, the time of a post-synaptic
spike may be anticipated so the time to reach a particular state may be determined in
advance without iterative techniques or Numerical Methods (e.g., the Euler numerical

method). Given a prior voltage state v, the time delay until voltage state v, is reached
is given by
Vf + qﬂ

VO +qp

At =7, log (13)

[0082] If a spike is defined as occurring at the time the voltage state v reaches v,

then the closed-form solution for the amount of time, or relative delay, until a spike
occurs as measured from the time that the voltage is at a given state v is
Ve + .
T, logS—q+ if v>v,

Aty = vEdg, (14)

o0 otherwise

where V. is typically set to parameter v, , although other variations may be possible.

[0083] The above definitions of the model dynamics depend on whether the model

is in the positive or negative regime. As mentioned, the coupling and the regime p may

be computed upon events. For purposes of state propagation, the regime and coupling
(transformation) variables may be defined based on the state at the time of the last
(prior) event. For purposes of subsequently anticipating spike output time, the regime
and coupling variable may be defined based on the state at the time of the next (current)

cvent.

[0084] There are several possible implementations of the Cold model, and executing

the simulation, emulation or model in time. This includes, for example, event-update,
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step-event update, and step-update modes. An event update is an update where states
are updated based on events or “event update” (at particular moments). A step update is
an update when the model is updated at intervals (e.g., 1ms). This does not necessarily
require iterative methods or Numerical methods. An event-based implementation is
also possible at a limited time resolution in a step-based simulator by only updating the

model if an event occurs at or between steps or by “step-event” update.

NEURAL CODING

[0085] A useful neural network model, such as one composed of the artificial
neurons 102, 106 of FIG. 1, may encode information via any of various suitable neural
coding schemes, such as coincidence coding, temporal coding or rate coding. In
coincidence coding, information is encoded in the coincidence (or temporal proximity)
of action potentials (spiking activity) of a neuron population. In temporal coding, a
neuron encodes information through the precise timing of action potentials (i.c., spikes)
whether in absolute time or relative time. Information may thus be encoded in the
relative timing of spikes among a population of neurons. In contrast, rate coding

involves coding the neural information in the firing rate or population firing rate.

[0086] If a neuron model can perform temporal coding, then it can also perform rate
coding (since rate is just a function of timing or inter-spike intervals). To provide for
temporal coding, a good neuron model should have two elements: (1) arrival time of
inputs affects output time; and (2) coincidence detection can have a narrow time
window. Connection delays provide one means to expand coincidence detection to
temporal pattern decoding because by appropriately delaying elements of a temporal

pattern, the elements may be brought into timing coincidence.

Arrival Time

[0087] In a good neuron model, the time of arrival of an input should have an effect
on the time of output. A synaptic input—whether a Dirac delta function or a shaped
post-synaptic potential (PSP), whether excitatory (EPSP) or inhibitory (IPSP)—has a
time of arrival (e.g., the time of the delta function or the start or peak of a step or other
input function), which may be referred to as the input time. A neuron output (i.c., a
spike) has a time of occurrence (wherever it is measured, ¢.g., at the soma, at a point

along the axon, or at an end of the axon), which may be referred to as the output time.
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That output time may be the time of the peak of the spike, the start of the spike, or any
other time in relation to the output waveform. The overarching principle is that the

output time depends on the input time.

[0088] One might at first glance think that all neuron models conform to this
principle, but this is generally not true. For example, rate-based models do not have this
feature. Many spiking models also do not generally conform. A leaky-integrate-and-
fire (LIF) model does not fire any faster if there are extra inputs (beyond threshold).
Moreover, models that might conform if modeled at very high timing resolution often

will not conform when timing resolution is limited, such as to 1 ms steps.
Inputs

[0089] An input to a neuron model may include Dirac delta functions, such as inputs
as currents, or conductance-based inputs. In the latter case, the contribution to a neuron

state may be continuous or state-dependent.

EXAMPLE PIECEWISE LINEAR NEURON MODELING

[0090] Mathematical models for the dynamics of a neuron have been sought and
studied for decades. A wvariety of neuron models have been proposed, varying in
complexity and the accuracy with which the models match their biological counterparts.
Fundamentally, all neuron models attempt to capture the nonlinear behavior of a cell
membrane voltage due to the interactions of a large variety of ion channels and have a
common starting point, namely the mathematical description provided by the

breakthrough work of Hodgkin-Huxley in the 1950s.

[0091] Over the years, neuroscientists have converged, in large part, towards two-
dimensional neuron models, which appear to provide a good tradeoff between the
ability of duplicating the measured behavior of the biological cells they seek to model
and the ease and speed with which they can be analyzed and simulated. The most
common two-dimensional models, all formulated via a pair of differential equations, are

described below.

[0092] However, conventional neuron model implementations lack flexibility.
Typically, implementation of a neuron model for an artificial neuron, for example, is

predicated on selecting a particular neuron model beforechand. The downside to this
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approach is the difficulty of implementing a completely different or even a slightly

modified neuron model.

[0093] Certain aspects of the present disclosure take advantage of the fact that the
differential equations for various dynamical neuron models may be considered as
equivalent, but for the nonlinear function F(v) trying to capture the nonlinear behavior
of the cell membrane voltage, as described above. With this realization, one approach
includes linearizing, at finite quantization intervals, the nonlinear functions in the
differential equations used to model the dynamics of the neurons to provide a piecewise
linear approximation. Advantages of such an approach include the ability to derive
solutions to the dynamics in either continuous time or discrete time with relative ease
and a general mathematical framework whereby any neuron model can be analyzed and
simulated. These solutions provide parameters corresponding to each quantization
interval for a given neuron model, such that implementation of a different neuron model
for certain aspects of the present disclosure may involve a simple substitution of the

parameters.

[0094] Certain aspects of the present disclosure apply this piecewise linearization
approach to a functional that includes the synaptic current. This more generalized
approach leads to a system matrix which is a function, among other variables, of the
time-varying synaptic conductance. The present disclosure first investigates some
approximate solutions to the resulting piecewise linear time-varying system. Next, the
present disclosure investigates a piecewise linear time-invariant (LTI) system obtained
from the previous time-varying system by approximating the time-varying conductance
by a constant over a given time interval. This more precise approach, with a functional
that includes the synaptic current, leads to system matrices with a large dynamic range
to be covered by the quantization process and therefore to relatively large memory
demands to store various pre-calculated matrices. The benefit of this approach is a
more accurate approximation of the true dynamics of the original nonlinear time-
varying system. An approach to alleviate the memory demands by computing the
relevant matrices, rather than storing them, over a portion of the dynamic range is also

presented.

[0095] Certain aspects of the present disclosure provide a means to realize a

common architecture that supports any one-dimensional, two-dimensional, or higher
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dimensioned neuron models. With this flexible architecture, any of various suitable
neuron models may be executed and substituted as desired. For example, the neuron
model may include at least one of an Izhikevich simple model, an exponential-integrate-
and-fire (EIF) model, a FitzHugh-Nagumo model, a quartic model, or a Hunzinger Cold
model as described above and in U.S. Patent Application Serial No. 13/483,811 [Atty.
Dkt. No. 122024], entitled “Dynamical Event Neuron and Synapse Models for Learning
Spiking Neural Networks” and filed May 30, 2012, herein incorporated by reference.
Such neuron models may be implemented using the piecewise linear approximation
described herein.

Introduction

[0096] One place to begin is with the description of the differential equations
modeling neuron dynamics. Although the description focuses on two-dimensional
neuron models, the approach can be extended to higher dimensional models or applied

to one-dimensional models, as well.

C%VZF(V)—qul (15)
d
“u=alp-(v—v,)-u) (16)

dt

[0097] The above equations qualitatively describe the dynamics of an artificial
neuron (for notational simplicity, the time dependency in the variables is omitted).
These equations are the result of simplifications of the Hodgkin-Huxley four
dimensional model to two dimensions, represented by the variables v and u. The
variable v captures the behavior of the neuron membrane voltage and sodium activation,
while u represents an “accommodation” or “recovery” variable attempting to capture the
slower behavior of the potassium activation and sodium inactivation, thus reducing the
four variables of the Hodgkin-Huxley model to two. The variable 7 in Eq. (15)
represents the input current. A more generic two-dimensional model may be of the
form

C%V:F(V,M)-‘rl

%u = G(v,u)
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where both differential equations may contain nonlinear terms. Here, the focus is on
models such as those described by Egs. (15) and (16), but the same methodology

developed throughout can be applied to the above description, as well.

[0098] Fundamentally, the most popular neuron models that have been suggested in
the literature differ by the choice of the function F(v) in Eq. (15). Some examples
include a quadratic function, as suggested by Izhikevich (also referred as the simple

model):
F(v):k(v—vr)(v—vl) (17)

a linear-plus-exponential function, per Brette and Gerstner:

v

F(V)sz-A-eA +gL'(EL_V) (18)

a linear-plus-cubic function representing the FitzHugh-Nagumo model:
F(v)=v—=v (19)

a linear-plus-quartic term, referred to as the quartic model, per Touboul and Gerstner
F(v):2a-v+v4 (20)
and finally what may be referred to as “intrinsic conductance” models, defined as
F(v)=G(v)-v+ plv) @1

where G(v) is a piecewise constant function (in units of conductance) and p(v) is also a
piecewise constant function (in units of current). The simplest form of an intrinsic
conductance model is obtained when G(v) and p(v) are piecewise constant over just two
intervals, as in the Hunzinger Cold model described above, for which F(v) takes on the

following form:

£(v—v,)ifvé v, = G(v)zgand p(v): —gvr

F(v)=1"; & & (22)
£(v—vl)if V>v, = G(v):£ and p(v): —Evl
7, 7, +
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[0099] All models above, with the exception of the FitzHugh-Nagumo model, are
referred to as two-dimensional hybrid models because, in addition to the description
given by Egs. (15) and (16), reset conditions are given. These are provided in such
models, for example, because the variable v will grow to infinity once a voltage

threshold is crossed. Therefore the following reset conditions may be used:

Ifv>v _,,thenv—>v and u »>u+d (23)

peak °

[0100]  In other words, when the voltage v crosses a spiking threshold v, (or, for
certain aspects, a determination is made that the voltage will cross v, ), the voltage is

reset to a resting value v,, and the recovery variable u is reset to a value equal to the
present value plus a constant d. For certain aspects, ¥ may be reset to a predetermined

constant value (u,__, ), instead of u +d . According to certain aspects, a reset condition

may occur in response to activation or reception of a control signal. The reset condition
in the hybrid models enriches the possible behaviors of two-dimensional dynamical

Systems.

[0101] Most generally, the input current /() is modeled by a combination of
synaptic currents Isyn(?) and a generic current /o(¢). The synaptic current takes on the

form
i @= 52,0 [£, ) 2

[0102] In Eq. (24), g, (z‘) indicates the time-dependent conductance for a particular
channel (the /™ channel), and E . indicates the reversal potential for that channel.

Although a synaptic current of the form above is sufficient to describe substantially
linear current-voltage relationships, in some cases (e.g., the N-methyl-D-aspartate
(NMDA) channel), the conductance is also a function of the post-synaptic membrane

voltage. In this case Eq. (24) takes on a more complex form, namely
[Nl\d])A(t): gNMDA(t)'h(V)[ENMDA _V(t)] (25)

with the function A(v) capturing the dependence on the post-synaptic voltage. The

function A(v) is modeled as
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h(v)=1/(1+ pe ) (26)

with the parameters a and f taking on the following values, for example: a = 0.062 and
p=1/3.57.

[0103] Therefore, most generally, up to L different synaptic channels may be

modeled as follows:

L) =3 g (OB OEONE —(0) @7)

i=1
where

B = ifi=NMDA

hy (4(2)) = ———— with 28
Z(V(t)) 1+ ﬁie—a.v(t) wi {ﬁz = O otheI'WiSG ( )

[0104]  Additionally, the time-dependent conductance g,(¢) can be modeled by a

simple exponential function, an alpha function, or by a difference-of-exponentials
function. In the case of a simple decaying exponential with time constant ¢ where 6(¢) is

the Heaviside step function, one has

t

gi(t):gie TZH(I) (29)
In the case of an alpha function, one has

g(0)=g~e “6l0) (30)

In the case of a difference-of-exponentials function, the exponentials having differing

rise and decay time constants, one has

gi(t)g{erdmy —e Tm}g(t) (31)

[0105] The constant g, contains a normalization factor such that the peak is equal to

g, as follows:
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- __ & 5
g i j Loea 7@ (3 )
e Tdecay —e Trise
where
Tdecay ) Trise Tdecay
tpeak = ‘In (33)

decay - Trise Trise

[0106] In the next sections, approximations to the solution of the dynamical system
are explored. Since the system is nonlinear, exact solutions cannot be found. Therefore
when referring to or comparing to the “exact” solution (as in Example 1), what is meant

is a solution obtained numerically (e.g., Runge-Kutta), but with great precision.

Formulation and Derivation

[0107] Before proceeding with the derivation, some definitions and notation
conventions are introduced. Henceforth, boldface capital letters denote matrices,

whereas boldface lowercase letters denote vectors. A two-dimensional state vector X

x= m (34)
u

[0108] The first state variable is the membrane voltage v, and the second state

may be defined as

variable is the recovery variable . Eqgs. (15) and (16) are now rewritten explicitly for

the most general case as follows:

L v{e)= F{e)-u(0)+ igi () (ONE, = v{e))+ Lo e) (35)

dt F

%u(t) = abW(t)—ault)—abv, (36)
[0109] Therefore, in the most general case, one is dealing with a nonlinear time-
varying (NLTV) two-dimensional dynamical system, as illustrated at 702 in FIG. 7. In

the following, such a system is first approximated by a piecewise linear time-varying

(pLTV) system at 706 and is successively further approximated as either: (1) a
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piecewise linear time-invariant system (pLTI) with constant coefficients that are time-
interval dependent at 710 or (2) a pLTI with constant coefficients that are time-interval

independent at 714.
Piecewise Linear Time-Varying System

[0110] First the time axis ¢ € [O, oo] is divided into arbitrary non-overlapping time

intervals, namely
telr, T, n=0123,.} (37)

[0111] Within each time interval (e.g., the n™ interval), the neuron behavior is
approximated by a linear time-varying (LTV) system whose parameters are obtained
from the state of the artificial neuron at the start of the interval (e.g., at time ¢t = 7;)). In

order to develop such an approximation, first define

[u0)= | OO S 08 CONE -0+ 100 @)

and the system of Egs. (35) and (36) becomes

iv(t) = F(v, t)+ alzu(t) (39)
dt

d

E u(t) = amv(t) + azzu(t)Jr b, (40)

[0112] Next, the function F(v,t) is approximated with an approximate, affine-lincar
expression over the interval ¢e[T,,T,,]. The coefficients in the approximation are a

function of the voltage at time 7,. To simplify notations when unequivocal, denote

W(T)<> v, such that

F(V’t);an[ n’t]v(t)+bl[vn’t] (41)

[0113] Some examples of such approximations include the Taylor expansion
method, the average slope method, the first order linear interpolation method, and the

optimal linear interpolation method minimizing the L, approximation error. For the
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Taylor expansion method:
r) =160+ T80 ) 7))
Yo b,
an[ nat]EM and
ov v (41a)

bl [vn’t] = F(Vn ’t)_all[ n’t]vn

[0114] For a given voltage step Av, in the average slope method, the average slope

is computed as follows:

a [T )t = L(AT, )+ Av,,6)-T(AT, ) ) and

Av, (41b)
bl [Vn’t] = F(Vn’t)_ all[ n’t]vn

[0115] In the first-order linear interpolation method, the voltage axis is partitioned

into intervals, v € [V,,¥,, & =0,1,2,... with ¥, <w(T,)<¥,,,. Then

[V(Tn ),t] = F(Vkmt)_ F(Vk’t) and
Via = Vi (41c)

bl[vn’t] = F(Vn’t)_all[vn’t]vn

ap

[0116] In the optimal linear interpolation method minimizing the L, approximation

error, the voltage axis is, as before, partitioned into intervals, v e [Vk,V,H1 ],k =0,12,....

However, the linear approximation
1;(V’l‘): an[vn,t] V(t)"' b [Vn’t]

is designed to minimize a linear approximation error with respect to the original

function based on an L, norm. The approximation error over the interval v e [Vk,VkH]

may be defined as

1
Vk+1 4

J

Ve

byl [vn,d){ o) ot dv}
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where

1;(V’l‘): all[vn’t]v(t)+bl[vn’t]

[0117] Based on Eq. (41), the LTV system described by Eqgs. (39) and (40) may

now be expressed as follows:

d

Ev(t):an[ n’t]v(t)+a12u(t)+bl[vn’t] (42)
d
Eu(t) = aﬂv(t) + azzu(z‘) +b, (43)

[0118] More compactly, one has the matrix equation

x(2)= A(v,,)x(¢)+b(v,,1) (44)
o e po ]

where a, =-1/C, a,,=ab, a,,=—a, and b, =—abv,.

[0119]  The solution of the LTV system above, for ¢ < [T, T, |, may be expressed as

x(e)=@(e.7, )X(T, )+

q)(r, T, )b(vn,z')dr (46)

N e

where the transition matrix q)(t, T n) is given by the Peano-Baker formula, namely

ot,T,) =1+ [A(y,.2, ) dt, + J.A(vn,to)ﬁA(vn,tl)dtl}dto +
I, T, T, 7

I3

IA(vn,to)ﬁA(vn,tl){j.A(vn,tz)dtz}dq] dty+.
7, 7,

TW
[0120] The series given in Eq. (47) simplifies for some specific cases, for example:

) A(vn,z‘) is constant and equal to A . Then q)(z‘,Tn) takes on the familiar
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form of a matrix exponential, namely
o(t,T,)= eAn)

where the matrix exponential of a matrix A is defined as

2 3
A =T+A+—+—+
213

t
A more general case is when A(v,,#) and fA(vn,r)dr commute for any 7.
TW

Then
®(t,T,)=exp IA(vn,r)dr
7,

Any of the following conditions guarantees that the above commutative
property is satisfied: (a) A(vn,t) is constant; (b) A(vn,z‘): a(t)M, where
a(t)is a scalar function and M is a constant matrix; or (c)
A(v,,t)= Zal.(t)Ml. where ,(¢) is a scalar function and MM, =M M, are

constant matrices that commute for any 7,j.

A somewhat more general case is when for all te[Tn, M], the matrix

A(v,,t) can be expressed as a sum of two components:

k+1

o+ i1 |
A(v”’t):Ak(vn’r’tc)(t_fc)k+Ak+s(vn,r,z‘c){(t_t0) —(T—l‘c) }

for some integers £ > 0 and s > 1, some fixed time-instants ¢. <7 <t¢, and
some fixed matrices A,(v,,7,z,) and A, (v,,7,z.). The time-instants and
matrices are “fixed” in the sense that they are independent of the time
parameter ¢ € [T, T,,,]. Perhaps the most useful example is when & = 0 and s
=1 or 2. In any case, if the second term in the above expression (i.e., the

term involving the matrix A,, (v,,7,z )) is much smaller than the first term
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for all te [T T ], then it turns out that the matrix q)(t,Tn) may be

no " ntl

approximated by the following infinite series:

_ tc )k+1

f—t k+1_
q)(t’Tn):eXp Ak(vn’r’tc)( C) k+(1T

Z AI’? (vn 5Ty Z’c )Ak+s (vn 5Ty Z’c )Gm,k,s (Ak (vn 5Ty tc )’ (t - tc )’ (T - tc ))
m=0

where a function G, , | (z,t,r) of a complex variable z and real-valued
parameters ¢ and 7 is defined. The function G, , | (z,t,r) is analytic at z =0

and is given by

_ akﬂ ~(m+1) l‘kJrl — ‘L'kJrl
Gm,k,s(Z3t9T): % 4 eXp ZT

where the notation <f(z)> denotes the analytical component of f{z). In the
above equation, the analytical component is obtained by replacing the
exponential term with its power series representation, computing the product
and derivative, and then dropping terms associated with negative powers of

Z.

For all other cases of time-varying matrix A(vn,z‘), approximations to the

transition matrix of Eq. (47) can be found, and then approximate solutions to Eq. (46)

may be obtained.

[0122]

Piecewise Linear Time-Invariant System

Further simplifications may be achieved by transforming the linear time

varying (LTV) system described by Eq. (44) into a linear time-invariant (LTI) system.

In order to do so, the coefficient a,,[v,,¢] is held constant over the interval ¢ [T, T, ,].

This result may be achieved in several ways, a few of which are described below. For

cach of the affine-linear approximations described above, the constant coefficient may

be defined as follows:

au[ nat]Eau[vnaTn]
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for any interval ¢ e [Tn T n+1].

[0123] Alternatively, if the value of the next time step 7,,, is known at time 1 =7,
the average value of the coefficient ,,[v,,z] may be calculated as follows:
G

T -7 Iall[ naT]dT

n+l n

au[vn,l‘]f

for any interval £ [T, T, ]

[0124] To clarify with an example for the Taylor expansion method, an LTI system
is obtained by using
8F(v, T, )

au["naTn]ET

v
n

or

1 "ar(ve)
all[vn’Tn]:T —Tn'[ P dt

n+l

T, v

n

[0125] The same averaging approach may be applied to any of the methods

described above. The LTI system is now described by the following matrix equation:

()= {an[vn,Tn] au}x(t) N {bl [Vnaf]} (48)

ay Qs b,

[0126] The solution may be expressed as

x(t)=@(.7, )X(T, )+

(T, +¢—7,T b(v,,7)dr (49)

S e

where the transition matrix ®(z,7,,) is now the matrix exponential
O(t,T,)= AULT,) (50)

[0127] For the case in which 7, =nT (i.ec., fixed and uniform time intervals of
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length 7), Eq. (49) becomes
nI+T
xX(nT+7)= Al ’”T)Tx(nT)Jr J.eA(V”’”T)(”ﬂT*T)b(Vn ,7)dr (51
nl
[0128] In summary, the initial general model is a nonlinear time-varying two-

dimensional system. This nonlinear system was first transformed into a linear time-
varying system by applying linear approximations to the nonlinear functional F(v,t)
over a given time interval. The time-varying system was further transformed into a
linear time-invariant (LTI) system by taking the time-varying system matrix A(vn,z‘)

and approximating it with a constant matrix A over the same given interval.

Solutions

[0129] Now that the problem has been formulated and a number of possible affine
linear approximations to the nonlinear functional have been proposed, the focus now is

on the solution to the LTI system over the interval z‘e[ T ] given by Eqgs. (49) and

n+l
(51) and their implementation. Further simplifying the notations in Eq. (49) and
denoting A(v,,T.)=A,,

X(0)= N, )+ [, 2)dz (52)

and the matrix A(v,,T,) and vector b(v,,t) are given by

o] el g R

an ay b,
where the coefficients a, [v,,T,] and b [v,,z] are calculated by any of the methods

described above.

[0130] Next, the solution for the Taylor expansion method is derived (the solutions

for any of the other methods follow accordingly). In this case, one has



WO 2014/081561 PCT/US2013/068531

37
R L e A S O R (3 €3
and
[t)= PO 3 Oh0E, 3, ) 10 e
b= 5 2T g im{a’g‘ﬁ ] ) hl<vn)] (55

[0131] Simplifying notations,

b L= F )+ £ 3 0 0, B v, )=, (56)

i=l

[0132]  Ttis convenient to express the vector b(v,,z) as follows:

o) {bl [Zz,t]} _ Bj N {bl ét)} . [% I(e)m (t)]

[0133] Eq. (52) may then be expressed as

¢ ¢ ¢ 1
X(f)z eAn(z—Tn)X(Tn)_i_ J'eAn(z—r)dT |:Zo:| i J'eAn(zr)|:b1 (T):| dr + J'eAW(zr)[Elext (T)] dr (57)
2 T, T,

0 0

[0134] The first integral of Eq. (57) may be solved in closed form, such that one

obtains

M) g by _ A—I(eAn(z—Tn)_I by (58)
b " b
T, 2 2
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where I is the 2x2 identity matrix.

[0135] Eq. (52) may now be expressed as follows:

t 1 t
x(t)= e x(T )+ A (eA” (=) _ I{Zﬂ + %l. e b () dr {O} + 1.r[eA”(”) %Im (r)dr Lﬂ
(59)

[0136] If the external current is such that closed-form expression for the last integral
of Eq. (59) cannot be obtained, it may have to be approximated. One example of an

approximation is the zero-hold, namely

t

=R o1 [oaln g | 1] _ ] A panten) _q) b
IeA E[ext(r)dr |:O:|:E[ext(Tn)].!.eA dT |:O _E[ext(Tn)Anl(eA " _I) O

TW

(60)

[0137] In this case, the closed-form solution for any interval ¢ < [T, T, ] takes on

n

the following form:

1 :
X(t) — eAn(l*Tn)X(Tn )+ A;l (eAn(l’Tn) _I) bO +E[ext (Tn) + J.eAn(l’T)bl (T)dT |:(1):| (61)
b, 7,

[0138] A key ingredient in Eq. (61) is the matrix exponential e®", which can be

expressed as follows. Let A4, and A,, be the eigenvalues of the 2x2 matrix A, . Then

At ot
e =1+ % (A, —A 1) ford, +A,rcal (62)
ﬂ’nl _ﬂ’nZ
e =™ + e (An - ﬂ,nll) forA, =4, real (63)
w
e = e cos fr1+ 22 sin fit (A,—al) fori, =4, =a+if B>0 (64)

where A, and A, are the solutions of the characteristic equation det(An - /11) =0.

[0139] Eqgs. (62)-(64) give explicit expressions for the matrix exponential.

Alternatively, a large number of efficient numerical algorithms are available to compute
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the matrix exponential. Therefore, it is feasible to determine the state of the system at

time t=T

n+l

through either method. But in a hardware implementation, it may be

beneficial to use a different approach, as described next.

[0140] First, notice that in the matrix A, only one coefficient g, [vn T n] changes

as the system evolves; the remaining three coefficients remain constant throughout. The
coefficient is given, for example, by Eq. (56). An example efficient procedure is as
follows: (1) quantize the first state variable (i.e., the membrane voltage v ) at each time
to step to a finite number of values and (2) index lookup tables with pre-calculated

values of the functions F’'(v,)%/(v,), and #,(v,). Similarly, time instants may be
quantized, as well, and pre-calculated values of g, (T n) may be stored in lookup tables.
The retrieved values may now be used to evaluate a,,[v,,7,] via Eq. (56) and to

quantize the result to a finite number of values Q(a,,[v,,T,]).

[0141] Similarly, a number of choices for AT, may be pre-selected, and the matrix
exponential and the matrix inverse of the matrices appearing in Eq. (62) may be pre-

calculated and addressed by Qla,,[v,,T,]) and AT,

Adaptive and Fixed Time Steps

[0142] In the previous section, the expressions for the state of the LTI system were
derived at arbitrary time instants. The following describes in more detail the case where
the time steps are chosen adaptively and the simpler case of a synchronous system

where the time instants are uniform with a fixed and predetermined step size AT, =T .

[0143] An adaptive strategy may be beneficial both with respect to complexity and
precision. For example, time steps may be chosen farther apart (i.e., larger A7,) when
the state is evolving slowly, thus increasing the speed of computations. In contrast, the
time steps may be made small when, for example, the neuron model is near a spiking
event, thereby increasing the precision with which the spike time is calculated. Next, a

possible algorithm for the choice of the time steps is described.

[0144] As Eq. (63) shows, the time constants of the system evolution are inversely

proportional to the eigenvalues of the matrices A, . In particular, if the eigenvalues are
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close to zero, then the time constants are large, and the system evolves slowly. If, on
the contrary, at least one of the eigenvalues becomes large (and possibly positive), the
system evolves very rapidly. One example algorithm for the choice of the time steps

that accomplishes the above task is the following:

T

n+l

1
= T+rnin( el ,ATmax} (65)

7,max

[0145] In Eq. (65), 4 denotes the maximum eigenvalue (in magnitude) of the

matrix A,, while AT, and u, are configurable parameters. This ensures that the

following relationships hold:

ﬂ’n,max < |all [V(Y—;i )’ T;a] + |a22 ’ T;Hl B T;a < ATmax (66)
and for any interval ¢ € [T o1 M]
||x(t)| <u, X(T n} (67)

[0146] Next, the general solutions of the previous section are specialized for the
important case of fixed and uniform time steps of size 7. Starting with Eq. (61), one

obtains

1
x(nT +T)=e*" x(nT)+ A} (eA”T —I) by +E[e’“ (n7) + LT e™' b (nT +T —t)dt Lﬂ
b,
(68)

Example 1: Taylor Expansion for the Izhikevich (Simple) Model

[0147] In this example, Eq. (68) is evaluated for the simple model and linearization
based on the Taylor expansion method. To simplify the formulas somewhat, it is

assumed that the external current is not present.

[0148] First, the coefficients of the Taylor expansion for the simple model, i.c.,

F(v)=k(v—v, Yv—v,), are derived starting from Eq. (56). Provided that
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Lorb) 2k, kL) (69)
C ov . C C
one obtains
an[v nT]—Fv —%(v +v, +—Zgl nT ( )(E —v) ( )] (70)

Al 1= T0,00)- a0, %{k(vn—v,xvn—v,>+igi<r>h,.<vani—m}—

i=l

(71)
{%vnz—%v +v, W, +— Zgl nT[ )(E —v) ( )]v}
[0149] For non-NMDA synaptic channels, Egs. (70) and (71) simplify to
L
i nT) =, =50, +0) -5 2 g a7) 72
C Ca

b= Lot b s Selarh [+ L3 e ) 9

i=1

[0150] Taking

b= Lot b s ST I X )0

Eq. (68) now becomes

X(nT +T)=e>"x(nT)+ A, ™" - I)Bﬂ - i[hi (v, XE, -, )]f e*g,(nT + T —7)dr m

(74)

with
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Rt AL RNy (A AR

—abv,

[0151] Once again for non-NMDA synaptic currents, Eq. (74) simplifies to
AT -1{ AT bO L A, T 1
x(nT+T)=e*"x(nT)+ A e 1)\ " [+ D E [ g (a7 + T~ 7)dz . (75)

with

i=1
—abv,

{bo} _ %{— kv: +kv,v, + igi(nT)Vn}

[0152] Furthermore, the integrals in Eqs. (74) and (75) can be solved in closed form.

For example, if
g.(1)=g.e " 0()

then
TeA”Tgl-(nT +T —T)dT — gl(l’lT +T) eAn +Tifll -1 e(An +T;11)T . | (76)
J
0

[0153] To complete the example, the accuracy of Eq. (75) is tested with 7= 1 ms
for a slow excitatory neuron model with parameters k= 0.7, C = 100, a =0.03, b =-2, v,
= -60 mV, and v, = -40 mV and a single exponential AMPA channel with parameters
TamrA = 5 mS, Eampa = 0 mV, and gampa = 5. As illustrated in the membrane potential
plot 500 and the recovery current plot 520 of FIGs. 5A and 5B, respectively, the
linearization based on Eq. (75) accurately tracks the plots based on the nonlinear time-

varying model.

Example 2: Subthreshold Dynamics of the Hunzinger Cold Model
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[0154] Another example is developed in an effort to examine the subthreshold
dynamics of the simple intrinsic conductance model known as the Hunzinger Cold
model. In this example, no synaptic currents and the simple, but interesting case of

impulsive external current are assumed.

[0155] In the Hunzinger Cold model (see Eq. (22) above) when the membrane

voltage is below threshold, the matrix, A  is constant and equal to A :

A = {—1/1 —1/0}

ab —a

[0156] The derivation can be further simplified if the first state variable is defined
as the membrane voltage minus the reference voltage. With such a definition, all the

constant terms are equal to zero, and Eq. (61) simplifies to

fer 01, (r)dr m (77)

T,

1
C

t
n

[0157] Furthermore, if the external current is assumed to be a Dirac delta function at

time 7, with amplitude 7, i.e., I_,(¢)= I5(t — T,), then

x<z>=eA<an>[x<Tn>+ifD %)

[0158] Note that impulsive inputs have the same effect on the system as that of an

initial condition. If the eigenvalues are real and A, # 4, , Eq. (62) may be substituted in

Eq. (78) to obtain the following continuous time solution for v < v, :

A(e-1,) _  A(-T,)
N P (A—AI)} LX(TW)+LFD 79)

[0159] By defining a new matrix

and denoting
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Eq. (72) may be written as

x(¢) = [ea(zsg)(l LA )_ RV ]{vn } 50
u

n

In particular for 7, = 0, one obtains

x(t)=[e*(1+A )- e%’X]{V0 w1 C} (81)

Uy

[0160] The membrane potential plot 600 and the recovery current plot 620 of FIGs.
6A and 6B, respectively, show the time evolution of Eq. (81) for the following values of
the parameters: 7.= 14 ms, C =100, a = 0.03, b = -2, Ix(¢) = 1005(?), and vy = uy = 0.

The membrane voltage and recovery current are given by the following functions:

V(f) —v, =0.8228e """ +0.1771e 0" &)

u(t)=0.9351e 7" —0.9351¢ " (83)

[0161] Since the matrices and eigenvalues involved in the computation of Eq. (80)
are known a priori, the time course of the system may be calculated very easily and
with the desired precision by pre-calculating and storing (e.g., in a look-up table) the
two exponential functions with a given time resolution. Alternatively, fast algorithms
for the computation (approximation) of the exponential function may be employed, and

Eq. (80) may be computed in real time.

[0162] The above formulation is particularly relevant in an event-based
implementation where it is of interest to compute the state vector at the time of an event.

For instance given Eq. (80) and the occurrence of an event at time 7,1, one may wish to

—T,, one has

n+l

compute 7,,,. With A, =T

(7 )=l (I+K)—e”2A”K]B”} (84)

n
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[0163] One important event is the spike time (i.e. the time at which the artificial
neuron’s membrane voltage crosses a peak threshold, as described above). When the
model for the artificial neuron is close to the spike time, at least one of the eigenvalues
is positive and dominant. Therefore, a good approximation may be achieved by
retaining only the dominant term in the expression of the voltage. In other words, since

the function () is of the form shown in Eq. (82), i.c.,
W(t)=ce™ +c,e™ (85)
v(f) may be approximated by its dominant term, i.c.,
W(t)=ce™ +c, (86)

The spiking time may be easily obtained from

Lpike = //Liln((vpeak - Cz) C1) (87)

1

Additional Simplifications

[0164] The end of the subsection entitled “Solutions” mentions that in order to pre-

calculate the matrix exponential and matrix inverse, the first element au[vn,T n] of the
matrix A, should be quantized to a finite number of values that cover the dynamic

range. As seen from the derivations of the previous subsection and specifically from

Example 1, the coefficient a, [v,,T,] is a function of v, and of the conductance at time
T, . Although the dynamic range of the membrane voltage is fairly limited, the dynamic

range of the conductance can be very large. Therefore, a large number of pre-calculated
matrices may most likely have to be stored in this case. Next, further simplifications are
explored in order to reduce the memory demands. One approach is that of pre-
computing and storing the desired matrices over a limited range and performing

calculations to approximate the desired matrices for values beyond that range.

[0165] For example, when the coefficient a,[v,,7,] becomes much larger (in
magnitude) than the other three fixed coefficients of the matrix A, the following

approximation may be used:
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‘//(A): 1 {an —dy —ap }{‘//(71) 0 }{an —dy ay }
(an —dy )2 ta,a,, ay a4y, —dy 0 l//(7/2) —dy ay —dy
a,da a,,d
gl :an"'# and 7, =a,, - (88)
a; —dy a;; —dy

for any complex-valued function l//(-), such as y/(x): e’ and y/(x): x~'. With this

approach, memory demands and computational complexity can be traded off.

[0166] Further reduction of the memory demands may be accomplished via certain
approximations. For example, an affine linear approximation may be applied to a

revised functional F(v,t):F(v)E%F (W(¢)) rather than that defined by Eq. (38).

Additionally, the synaptic current may be treated as an external current, and the
resulting integral may be approximated by a backward rectangular rule. In this case, the
dynamic range involved for pre-calculating and storing the matrix exponential and
matrix inverse is that of the membrane voltage alone and is, therefore, quite small. The

tradeoff is one of memory demands versus accuracy of the solutions.

[0167] Next, the paragraph above is explained in more detail by re-deriving the
solution under this additional simplification. One may begin as before with Eqs. (35)

and (36), repeated here for convenience:

L

()= FO0)-ule)+ X2 (W ONE, o)+ L 1) (89)

%u(t) = abv(t) — au(z‘) —abv, (90)

[0168] Now, however, the functional in Eq. (38) is modified as follows:

(v, t)=T(v)=—=F(()) (91)

1
C

and the system of equations is reformulated as
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—u(t): a21v(t)+ azzu(t)Jr b, (93)

[0169] The system matrix A now simplifies to

A, E{au["n] au} (94)

a Ay

with the vector b(v,,¢) is now defined as

Mwﬂzvbzq LS On 6 )10 o5

b,

[0170] With the above approximation, the system matrix (coefficient a,,)
dependence on the conductance values is avoided, thus considerably reducing the
dynamic range to be covered in computing the matrix exponential. The synaptic current
may be treated as an external current by holding the membrane voltage to a constant

value for the time period. In a fixed-time-step implementation, the solution would then

be

X(nT + T) = eA”Tx(nT)Jr J.nﬂT et (”’”T*T)b(v

nl

r)dr (96)

no

[0171] The first component of the vector integral in Eq. (96) is

nT

rT+T A, (nT+7-7) {Zgl )(E -y )—i—[ext(T)}dT 97)

which can be solved in most cases of interest. The best results for the above
approximation have been obtained by using a backward rectangular rule, namely using

the value v, = v(nT + T) in Eq. (97).

Example 3: Approximation with a Backward Rectangular Rule
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[0172] To simplify the exposition and notations, this example assumes that the
synaptic current does not contain voltage-dependent conductance channels (e.g., NMDA

channels) and that there is no external current /_,(f). The derivation is obtained for

fixed step sizes of length 7. To begin, Eq. (68) may be simplified as follows:
1t aee 1
x(nT + T) = eA”TX(nT)Jr q+ EIeA”T Zgl. (nT +T - z')(El. - v(nT + T))dz' {O} (98)

0 i=1

where the vector ¢ contains constant terms, namely

b
q=A (eA”T —I{ 0} (99)
b,
[0173] For notational convenience, the following vector and matrix may also be
defined:
1 10
b= B= (100)
0 0 0

such that Eq. (98) may be rewritten as

T L
X(nT +T)=e™"x( +%Ie‘”2gl nT+T—7)E, drh-
> L° (101)
EIeA”TZgi(nT+T—r)drB-x(nTJrT)+q
0 i=1

[0174] Now, the solution is derived for g, (t) modeled as simple exponentials per

Eq. (29). In this case, one has

I T
x(nT +T)= eA”TX(nT)JrlZg.(nT)Ei.[eA”Tef(Tff)/Tf dr-b-
) ' 0 (102)
%Zgl(nTJ. Ao g B x(nT +7T)+q

= 0

[0175] The integrals can be readily solved, and if one further defines
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hiy

, 103
2 } (103)
then Eq. (102) may be written as

x(nT +T)=e* x(nT)+ Z Eigg”T) _

i

hi—Z%-Hi-B-x(nTJrT)Jrq (104)

[0176] Collecting terms containing the state at time #7+7 on the left-hand side leads
to
{1 + Z—gl‘(gT) H, -B} X(nT +T)=e*"x(nT)+ Z—El‘gg”T) h,+q  (105)
and finally
-1
x(nT+7T)= {1 + Z@-Hi -B} -{eA'TX(nT)Jr ZEZ'Z'T(”T)-hZ. + q} (106)
[0177] Notice that the matrix to be inverted is
- g,(nT)
. 14> i & 1)
A\nT I 0 nT 0 —~ 11
ezt opsly S
i i h21 0 Zh;l 8 c 1

and that its inverse is

-1 1 0
{IJFZ%.HZ_.B} %[Zhélgi(gT) A],whereAlJrZ l&% (108)

I

[0178] The computation of the state update may proceed as follows (where

e* =G):

I.  Pre-calculate with the desired quantization and store all coefficients

(G,h,,and q).

II.  For each channel, calculate 4/,g, (nT )/ C and Kl g, (nT )/ C.
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1.  Calculate the sums and scaled-by- £, sums

Eihlilgi(nT) hlilgi(nT) Eihélgi(nT) hélgi(nT)
Z ’Z ’Z ’Z

i C i C i C i C

IV.  Evaluate the right-hand side of Eq. (105) and store in auxiliary variables, i.c.,

ZEi}Hilgi(nT)

5 Sl Gesaen ]

i

auxy = gnv(nT)+ guu(nT)+ Z%’Oﬂwh— ¢,

i

auxu = g21v(nT)+ gzzu(nT)Jr Z Eﬂ&%(nT) ‘q,

V.  Perform the multiplication by the inverse matrix:

auxy auxy

v(nT+T):

u(nT +T)=— auxy Z 1y, (nT) +awxu = —v(nT + T)thgl—(nT) + auxu
A i C i C
[0179] Note that for the NMDA case with a double exponential, each exponential
may most likely be dealt with individually. This leads to pre-calculating and storing
two vectors, one for the decaying exponential term and one for the rising exponential

term.

[0180] FIG. 21 is a block diagram 2100 illustrating the realization of Eq. (106). For
simplicity, the matrix inversion block 2102 representing the first portion of Eq. (106) is
not expanded. From the current state vector x(n7), the membrane potential v(nT) from
the state vector is quantized in the quantization block 2104 to determine the memory
index. The memory index is used to select the predetermined parameters (e.g.,

coefficients) for the piecewise linear approximation of the neuron model corresponding
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to the quantization interval of the membrane potential and stored in the memory lookup
table(s) 2106. Based on the memory index, the parameters associated with the
quantization interval are loaded, including the coefficients for the exponential matrix G
2108 and the defined vector q 2110 from Eq. (99) above. The parameters also include

the coefficients for input current vector h 2112 and N synaptic current input vectors h,

2114. Summation block 2116 sums the input current /(n7)/C applied to the vector h

2112 and conductance values scaled by the reverse potentials E.g,(n7T)/C applied to
the N synaptic current input vectors h, 2114. The result is processed according to Eq.

(106) with the matrix inversion block 2102 to generate the updated state vector x(n7+7).
A delay block 2118 may be added so that the states are updated at each step size 7 in

time, rather than continuously.

[0181] Other approximations to the integrals in Eq. (101) could be used. For

example, rather than calculating the exact values and storing them in the h, vectors, a
trapezoidal rule applied to g(t) can be used, thus avoiding storage of the h, vectors and

further reducing the memory demands at the expense of a slightly worse approximation.

Summary

[0182] In the subsections above, a general approach to piecewise linearization of
neuron models was described. FIG. 7 summarizes the various steps and linearization
methods. Starting with a nonlinear time varying system at 702, piccewise linearization

may be performed over the interval 7, <¢t<T  at 704 to generate a piecewise linear
time-varying system in terms of the matrix A(vn ,t) at 706. If constant coefficients (i.c.,
a piecewise constant function) are used for each interval 7, <t <7 , at 708, then a
piecewise LTI system is formed at 710 in terms of the matrix A(vn,Tn). If this

linearization is performed independent of the time interval at 712, then a piecewise LTI

system is created at 714 in terms of the matrix A(, ).
EXAMPLE STATE-SPACE REGION-DEPENDENT LINEAR NEURON

MODELING

[0183] Certain aspects of the present disclosure described above mainly cover the

partitioning of a two-dimensional state-space limited to one of the state variables (e.g.,
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the membrane potential v). As described above, the (v,u) state-space is partitioned into
vertical blocks using a single state, and each block, representing a voltage interval, is

associated with a distinct set of linear differential equations.

[0184] Certain aspects of the present disclosure as described below extend this
concept. The state space may be partitioned into different regions (not limited to
vertical blocks), where each region is associated with a distinct set of linear differential
equations. The regions may be non-overlapping. The description below is primarily
focused on the two-state (or, equivalently, two-dimensional) model with the
understanding that the two-state model may be readily extended to three or more states

where the partitions may be volumes and multi-dimensional regions, respectively.

Review of the Piecewise Linear Formulation as a Function of v

[0185] The two-dimensional piecewise linear differential equations may be

expressed as a set of K pairs of differential equations where the n™ pair is defined by

C%Vka\H—dk—LH—I, v, Sv<v,, (109)
d
—u =abv—au—abv, (110)
dt

where k € [I,K ] and F (v) =m,v+d,. In this approach, the voltage space is partitioned

into K distinct regions, and the k™ region is associated with the &A™ pair of differential
equations. The union of the K regions covers the space of (v,u) values. FIG. 8
illustrates the partitioning given K = 4, where the voltage space is divided into four
regions: v<v,, vy <v<v,, v, <v<vy,, and v, <v. For K = 2, this reduces to the
Hunzinger Cold neuron model (with the closed and open intervals switched such that

v, <VEv ).

Generalized Formulation

[0186] The basic idea is to extend the piecewise linear concept beyond regions
defined solely in terms of v (i.e., allow Eq. (110) to vary with each interval, as well as

Eq. (109)). This can be accomplished by defining K two-dimensional regions Q, in the
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(v,u) space where ke [1, K ] and where the union of the K regions covers the entire
space of (v,u) values. Furthermore, the parameters a and b, in addition to m, and d,,

are allowed to be distinct for each region such that these parameters become a function

of k. The parameter C may also be made distinct per region as C, , but is left as fixed

per region henceforth, with the understanding that C can be made region-specific.
These extensions may not necessarily have biological equivalents. However, from an
engineering and computational perspective, such extensions enable the design of richer

neuron models and a simpler platform to develop neuron models.

[0187] The two aforementioned extensions yield:

C%Vka\H—dk—LH—I, (v,u)er (111)

Euzakbkv—aku—akbkvr, (v,u)e Q, (112)

[0188] The above expressions may be expressed more compactly, using the state-

space notation described above, as

X:Akx+b(éj+pk, xeQ, (113)
where
v
XE|::| (114)
u
mo 1
A, =| C C (115)
ab, —a,
d,/C
pkz{ o/ } (116)
—abv,

b=| 117
) an)
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[0189] Next, the M-dimensional state-space region-dependent case and the state-

space solution are described.

M-Dimensional State-Space Case

[0190] In the M-dimensional case where there are M state variables, the state-space

equations become

X:Akx+b(éj+pk, xeQ,

where
X
x=| :
xM
d9 gt
A =| :
alil ... i,
d
P, =|
d
1
0
b= :
0

Region-Dependent State-Space Solutions

(118)

(119)

(120)

(121)

(122)

[0191] The state-space solutions of Eq. (113) in the continuous-time domain and

discrete-time domain are presented. Their derivations follow naturally using the same

approach as that described above. The continuous-time solution may be expressed as

x(¢)=e*x(0) + J.eAk(H) b-I(r)/Cdr+q,, x(0)eQ,
0

(123)
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where x(0) represents the initial value of x(z),
a, =A™ -1)p, (124)

and e™ represents the matrix exponential of a matrix X.

[0192] The corresponding discrete-time solution, with a sampling period of 7, may

be expressed as:

x(nT +T)=e* -x(nT)+h, - I(nT)/C+q,, x(nT)eQ, (125)
where
T
h, =[e* drb (126a)
0
= A e =) (126b)

The present state-space vector x(nT ) identifies the region €2, and which set of

{eAk’,h -9 k} matrix and vectors to use to compute x(nT +T ) according to Eq. (120).

[0193] Furthermore, the same solutions for non-synaptic and synaptic current types
described above readily apply. This includes the linear-time varying (LTV) solutions.
This would involve replacing the voltage-dependent regions (vertical partitions) with

these more general state-space regions.
Hlustrative Examples

[0194] FIG. 9 illustrates an example with three regions (i.e., 2, where k € [1,3]).

All three regions in FIG. 9 are rectangular regions.

[0195] FIG. 10 illustrates an example with four regions illustrating how the regions
need not be rectangular. This particular design may be used to create a subthreshold
oscillation neuron where €,,Q,,Q.,andQ, represent regions where (v,u),
respectively, spirals outward with a growing radius, spirals in a circular fashion (with no

decay or no growth), spirals inward with a decaying radius, and tends to spike
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(equivalent to the ALIF region of the Hunzinger Cold model). This design is described

in more detail below.

[0196] FIG. 11 illustrates a more academic example with five regions to illustrate
that a region with any shape (e.g., a hexagonal, triangular, or star-shaped region) could

be created in theory.

Realization of the State-Space Region-Dependent Linear Neuron Modeling

[0197] Presently, the regions are defined by
Q= {(V,u)| v, Sv< vkﬂ}

where v, and v, , represent the left and right boundaries for voltage. So, at each time
step, the index £ is determined by taking the present state (v(nT ),u(nT )) and checking it
against each of the K regions: Q, .,k € [l,K ] The index £, represented by k., may be

computed directly via a function of only v as well as the quantization interval, the

minimum possible voltage, and number of intervals:

k — \‘V(nT)_Vmin,FJ_i_l

Av,

[0198] For certain aspects, the regions (or at least a portion thereof) may be slightly
overlapping. In this case, hysteresis may be used in identifying which of the K regions

(Q, ke [l,K ]) contains the present state (v(nT ),u(n T ))

[0199] Two examples of generalized regions are provided below. Other regions

may also be developed.
For Rectangular Regions Dependent on Both v and u

[0200] For generalized rectangular regions, the ™ region may be defined by
Q, = {(V,u) Vv, Sv<v, U, Su< ukﬂ}

where v, and v, ,, represent the left and right boundaries for voltage, respectively, and
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where u, and u,,, represent the lower and upper boundaries for the recovery variable,

respectively. So, at each time-step, the index £ may be determined by identifying which

of the K regions (Q, ,k € [1,K]) contains the present state (W(nT),u(nT)).

For Elliptical Regions

[0201] For ecase of explanation, assume only elliptical regions each centered about

the rest state (v, ,O). Then the k™ region may be defined by

Q, = {(V’”) Pr = P(V’”)< pk+l}

where p, is the “radial distance” to the inner elliptical boundary along the v-axis, p, is

the “radial distance” to the outer elliptical boundary along the v-axis, the “radial

distance” may be defined as

plvu)=(v=v,)" +(/ B)

and f is a parameter associated with the ellipse (£ =1 leads to concentric regions). As

before, at cach time-step, the index k& is determined by taking the present state

(v(n T ),u(nT )) and checking it against each of the K regions: Q, ,k [l,K ] .

Advantages of State-Space Region-Dependent Linear Neuron Modeling

[0202] Such generalized partitioning of the state-space for neuron modeling can
help support the synthesis of neurons and do so in a systematic manner. Two examples
of this are in implementing: (1) onset detection and event counting and (2) subthreshold

oscillation behavior, the latter of which is described in the next section.

[0203] An artificial neuron based on the Hunzinger Cold model (which has two
partitions) may be developed for onset detection and event counting. This artificial
neuron, initially at rest, is designed to fire immediately if it receives a spike for onset
detection. Thereafter, the neuron is designed to start counting incoming spikes and fire
after a certain number of spikes. This continues to repeat itself as spikes arrive. A
potential drawback of this design occurs after there are no more spike arrivals since the

neuron can take about 500 ms before reaching the equilibrium rest state. This may be
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too long a time before the neuron can perform onset detection. Part of the constraint in
this design is how shortening the time to the rest state impacts the spike-counting ability

by making it behave more as a LIF neuron.

[0204] According to certain aspects of the present disclosure, the constraint can be
removed by separating the two behaviors via partitioning, analogous to how the LIF and
ALIF behavior of the Izhikevich neuron model may be broken by partitioning the two
regions with the Hunzinger Cold model. The time to reset the neuron to perform onset
detection may be reduced by noticing how the u state variable behaves above and below
a threshold of roughly 0.3 in the LIF region. Below that value, it takes a long time for
the system to reach the rest state. This can be expedited by partitioning the state-space
in terms of # as well as v as illustrated in the three-region state-space of FIG. 9 to realize

an improved onset and event counting neuron. In the LIF region where v <v,, the

artificial neuron now behaves as an integrate and fire (IF) neuron for event counting if

u>u, (ie., region £,) and a LIF neuron which goes to v, otherwise (i.e., region £2,).

Once the state enters region £, the system may be designed to move to the rest state as
quickly as desired with shorter time constants. By partitioning the LIF region as a
function of u into the two desired regions ( £2, for IF and £, for LIF) with two pairs of

differential equations per region, the large delay may be eliminated.

EXAMPLE SUBTHRESHOLD OSCILLATION NEURON DESIGN BASED ON
STATE-SPACE REGION-DEPENDENT LINEAR NEURON MODELS

[0205] Subthreshold oscillations may be used in an artificial nervous system to
increase the likelihood of spiking in the upswing of the membrane potential from the
resting potential (i.e., “priming” the artificial neuron to spike) and to decrease the
likelihood in the downswing. The previous section describes an extension to the
piecewise linear neuron modeling by allowing partitioning of a two-dimensional (or
multi-dimensional) state-space based not only on one of the state variables (e.g., the
voltage), but also a combination and regions (or functions) of state variables. This
section addresses the shortcomings of existing subthreshold oscillation neuron designs.
For example, existing neuron models can support the design of a subthreshold
oscillation neuron exhibiting at most one of three oscillation types (e.g., decaying

oscillations as illustrated in the graph 1200 of FIG. 12A, sustained oscillations as
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illustrated in the graph 1210 of FIG. 12B, or growing oscillations as illustrated in the
graph 1220 of FIG. 12C), but these models cannot enable the design of an artificial
neuron exhibiting two or more of the three types. Moreover, existing neuron models
cannot support the systematic design of subthreshold oscillation neurons with a
particular oscillation frequency, a rate of decay for decaying oscillation, a rate of growth

for growing oscillations, and/or a magnitude for sustained oscillations.

[0206] Accordingly, what is needed are artificial neurons with an improved neuron
model capable of exhibiting all three types of oscillations and supporting the systematic

realization of desired oscillation behaviors.

Comparison between Subthreshold-Oscillation-Capable Neuron Models

[0207] There are four existing neuron models that can produce subthreshold
oscillations: the Izhikevich (simple) model, the Adaptive Exponential (AdEx) neuron
model (which is the linear-plus-exponential function of Brette and Gerstner described
above), the quartic model, and the Hunzinger Cold model. These neuron models may
characterized in four ways: (1) which of the three possible subthreshold oscillation
behaviors (damped oscillation, sustained oscillation, or growing oscillations) they can
produce; (2) how many of the three behaviors can be exhibited by a single neuron; (3)
how easy it is to design a neuron with a desired oscillation frequency; and (4). how easy
it is to fine tune the oscillation design (e.g., defining the magnitude of the sustained
oscillation or defining multiple rates of decays or growths). The following table
summarizes how each neuron model fares for the first measure (where these neuron

models can possibly support from one to all of the three oscillation types):

Izhikevich model and Y

AdEx model

Quartic model Y Y Y
Hunzinger Cold Y Y Y
model

State-space region- Y Y Y
dependent model

[0208] The next table summarizes how each neuron model fares for the remaining



WO 2014/081561 PCT/US2013/068531
60

characterization measures:

Izhikevich and Y

AdEx models

Quartic model Y

Hunzinger Cold Y Y

model

State-space Y Y Y Y Y
region-

dependent model

[0209] Each neuron model (besides the state-space region-dependent approach
described below) can reproduce a neuron capable of exhibiting only a single oscillation
type. And only the Hunzinger Cold model, due to its linear design, is capable of
offering a systematic way of designing a target. None of them (besides the state-space
region-dependent approach described below), however, offers the capability of fine

tuning.

Subthreshold Oscillation based on State-Space Region-Dependent Linear Neuron

Modeling

[0210] Certain aspects of the present disclosure, as indicated in the tables above and
in contrast with existing neuron models, can: (1) produce an artificial neuron that can
exhibit in the subthreshold regime all or any subset of the three oscillation types and (2)
be designed not only systematically like the Hunzinger Cold model, but can also support

fine tuning of the design.
Design

[0211] Exhibition of all three oscillation types may be created by using the state-
space region dependent approach described above. For example, a four-region, two-

dimensional neuron model may be defined as illustrated in FIG. 10.

[0212] Each state-space region €, is associated with a set of linear differential

equations such that
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d
CEVka\H—dk—LH—I, (v,u)er (127)
d
Zu =a,byv-au—-abyv, (v,u)e Q, (128)
or, in state-space vector notation,
: 1
X:Akx+b(6j+pk, xef, (129)
and
me 1
A=l c C (130)
ab, —a;
d. |C
P, E|: o/ } (131)
—abv,

Regions £, (appearing circular, but is generally elliptical), £, (also generally
elliptical), ©,, and £, may be designed to reproduce growing oscillations, sustained

oscillations, decaying oscillations, and ALIF behavior, respectively.

[0213] According to certain aspects, the state-space may be defined by more than

two dimensions. In this case, the following alternate forms may be used instead:

(k) (k)
S

a iy
A =| U (132)
)
d
P, =| ¢ (133)
d®
[0214] If sustained oscillations are desired, some thickness may be warranted in

case of time-stepped approaches to handle the scenario where v(nT +T ) could

inadvertently bypass the sustained oscillation region.
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Reset Modification

[0215] As described above, the reset mechanism may involve resetting « to u+d
which amounts to incrementing u after a spike event or after a control signal is
activated, for example. For certain aspects, to ensure that the u +d value is not so large
that it can cause the neuron to immediately spike or enter sustained oscillation right
from the start, it may be desirable to have the option of resetting u to a target constant
(i.e., to something other than u +d ). This way, the designer has control of where in the

state-space the neuron resets.

Defining the State-Space Regions

[0216] In general, the (v,u) trace in sustained oscillations may take on the form of an
ellipse whose major and minor axes may not be aligned with the v, u Cartesian axes

(i.e., the ellipse may have a tilt). The solutions may take on the following form:

W(t) = AV cos(wr)+ AV sin(wt) (134a)
u(t)= A cos(wt )+ AW sin(wt ) (134b)

where the four coefficients are functions of the matrix elements in A (where the index

k has been dropped) and the initial conditions: (v(0),x(0)).

[0217] For ease in exposition and design, the description here focuses on circular
traces whose major and minor axes are equal. These call for the matrix elements to

satisfy the following constraints:

1
ay =ay =4 :; (135)

a, =—a, =4, =24, (136)

where A, and A, represent the real and imaginary parts, respectively, of the complex
eigenvalues: A, =A,*tA4,, 7 represents the (decay or rise) time constant, f,

represents the oscillation frequency, and the index & has been dropped. This results in

circular regions and a straightforward form of the matrix:
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L oy
A= 7 ) (137)
_27#'6 —_
T

[0218] Using this simpler form with circular regions, the radius of the circle

centered about the equilibrium point (v,,0) is

p(v,u)z (V—vr)2 +u’ (138)

representing the distance from (v,u) to the equilibrium point. For example,

p(vr +2 rnV,O) =2. So, the k™ region may be defined by

Q, = {(V’”) | Prin < p(V’”)S P out andv < Vt} (139)

where p,; represents the radius of the inner circular boundary of Q, and p, .,

represents the outer circular boundary of Q, .

[0219] For the K = 4 example in FIG. 10, the sustained oscillation region 2, would
be defined by

Q, = {(V,u)|pg < p(v,u)é P, andv < vt} (140)

where p_ represents the radius of the circular boundary separating £, and £, and

where p, represents that between 2, and Q..
[0220] For the growing oscillation region £, :

o, :{(V,u)|p(v,u)é P, andvévt} (141)
[0221] For the decaying oscillation region £,

Q. = {(V,u)|pd < p(v,u)andv < vt} (142)

[0222] The ALIF region £, in FIG. 10 is defined by
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Q,= {(V,u)|v>vt} (143)

Additional Regions for Multi-Stage Decay and Growth Regions

[0223] The above idea may be extended to support more gradual decaying or
gradual growing of the oscillations. For example, to have varying rates of decaying
orbits and varying rates of growing orbits, multiple rings may be used as shown in FIG.

13 with six regions. In this example, £, may be considered as the sustained oscillation
region. The region £, may have a faster decaying orbit, and €2, may have a slower

decaying orbit. This would allow for a graded and more gentle decay to the sustained

oscillation region Q.. Similarly, £, may have a faster growing orbit, and €2, may have

a slower growing orbit. This concept may be extended to more rings for even more
gradual changes. Furthermore, multi-stage sustained oscillation regions may be used if

different sustained oscillation parameters (e.g., different frequencies) are desired.
EXAMPLE OPERATIONS FOR IMPLEMENTING AN ARTIFICIAL NEURON

[0224] FIG. 14 is a flow diagram of example operations 1400 for updating a state of
an artificial neuron in an artificial nervous system, in accordance with certain aspects of
the present disclosure. The operations 1400 may be performed in hardware (e.g., by one
or more neural processing units (e.g., artificial neurons), such as a neuromorphic
processor), in software, or in firmware. The artificial nervous system may be modeled
on any of various biological or imaginary nervous systems, such as a visual nervous

system, an auditory nervous system, the hippocampus, etc.

[0225] The operations 1400 may begin, at 1402, by determining that a first state of
the artificial neuron is within a first region. At 1404, a second state of the artificial
neuron is determined based at least in part on a first set of linear dynamical equations,
wherein the first set of linear dynamical equations is based, at least in part, on a first set
of parameters (e.g., coefficients) corresponding to the first region. At 1406, it is
determined that the second state of the artificial neuron is within a second region. At
1408, a third state of the artificial neuron is determined based, at least in part, on a
second set of linear dynamical equations. The second set of linear dynamical equations
may be based, at least in part, on a second set of parameters corresponding to the second

region.
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[0226] According to certain aspects, the first and second sets of linear equations
include discrete time solutions of linear time-invariant (LTI) state-space equations. For
other aspects, the discrete time solutions may be based at least in part on closed-form

solutions for continuous-time state-space equations.

[0227] According to certain aspects, the operations 1400 further include fetching at
least one of the first or second set of parameters from memory. As used herein, memory
may refer to any of various suitable means for storing data, whether permanently or
temporarily, locally or remotely to a processing unit, on-chip or off-chip, including
random access memory (RAM), cache memory, registers, latches, flip-flops, and the
like. Such fetching may include fetching the at least one of the first or second set of
parameters from a memory local to the artificial neuron. For certain aspects, the
operations 1400 further include calculating at least a portion of at least one of the first or
second set of parameters. At least the portion of the at least one of the first or second

set of parameters may be calculated using one or more values fetched from memory.

[0228] According to certain aspects, at least one of the first or second set of
parameters may be obtained by approximating, with a piecewise linear function, at least
a portion of a nonlinear function in a neuron model associated with the artificial neuron.
For certain aspects, the nonlinear function includes a membrane potential (v) multiplied
with a voltage-dependent conductance (g(v)). The voltage-dependent conductance may
be approximated with a piecewise constant function. For other aspects, the nonlinear
function includes a voltage-dependent function (F(v)), where v is a membrane potential
of the artificial neuron. The piecewise linear function may have a slope (m) and an
intercept (d) for each of the first and second regions. For certain aspects, the first region
has a different width in the piecewise linear function than the second region. A width of
the first or the second region in the piecewise linear function may be dependent on the
nonlinear function. For certain aspects, the piecewise linear approximation is based at
least in part on at least one of a Taylor expansion method, a first order linear
interpolation method, an optimal linear interpolation method, or an average slope

method.

[0229] According to certain aspects, at least one of the first or second set of
parameters may be designed at least in part to achieve a particular behavior in the

artificial neuron. For example, the first and/or second set of parameters may be
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generated (e.g., manually selected by a neuron model designer) to effectively create a
particular function (e.g., a tunable curve), which approximates the desired behavior. In
this manner, the artificial neuron may operate based on an entirely new neuron model or

a modification to an existing neuron model.

[0230] The first, second, and third states of the artificial neuron may be defined by a
membrane potential (v) and a recovery current (). These are two examples of artificial
neuron state variables. According to certain aspects, the operations 1400 may further
include resetting at least one of the membrane potential or the recovery current of the
artificial neuron based at least in part on a determination that a spike event has occurred
or will occur. The membrane potential may be reset to a resting potential (v(z‘) - vr).
The recovery current may be reset to a sum of a present value of the recovery current

and an offset (u(t) —>u(t)+ d).

[0231] According to certain aspects, at least one of the first set or second set of
linear equations is based at least in part on a neuron model for the artificial neuron. For
certain aspects, the neuron model is based at least in part on at least one of an Izhikevich
simple model, an exponential-integrate-and-fire (EIF) model, a FitzZHugh-Nagumo
model, a quartic model, or an intrinsic conductance model (e.g., a neuron model
expressed as a membrane potential v multiplied with a voltage-dependent conductance
g(v)). For certain aspects, the neuron model comprises at least two dimensions (i.c., at
least two state variables). The neuron model may be based at least in part on one or

more first-order ordinary differential equations (ODEs), which may be linear.

[0232] According to certain aspects, a step size in time of the neuron model is based
at least in part on a type of the artificial neuron being modeled. A step size in time of
the neuron model may be non-uniform. For certain aspects, the step size in time of a
particular time step is determined based at least in part on at least one of a current or
past state of the artificial neuron or on a particular set of parameters (which may be
associated with the current or past state). For certain aspects, a first step size in time
between determining the first and second states is different than a second step size in
time between determining the second and third states. According to certain aspects,
determination of the second state of the artificial neuron at 1404 may be performed for a

first time step, and determination of the third state of the artificial neuron at 1408 may
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be performed for a second time step subsequent to the first time step.

[0233] According to certain aspects, determining at least one of the second or third
state of the artificial neuron is based at least in part on currents input to the artificial
neuron. For certain aspects, the input currents comprise at least one of a synaptic
current or a general, external current. The synaptic current may be based at least in part
on a time-dependent conductance for cach of one or more channels and a reversal
potential for each of the one or more channels. For certain aspects, the synaptic current
is based at least in part on a post-synaptic membrane potential of the artificial neuron
for an N-methyl-D-aspartate (NMDA) channel. The time-dependent conductance may
be modeled by an exponential function, an alpha function, or a difference-of-

exponentials function.
[0234] For certain aspects, the first and second regions are the same region.

[0235] According to certain aspects, the operations 1400 may further include
outputting an indication of at least one of the first state, the second state, or the third

state to a display.

[0236] According to certain aspects, at least one of the first region or the second region is
defined by two or more dimensions. The at least one of the first region or the second region is
an M-dimensional subspace, where M > 2. The M-dimensional subspace may have any
shape or be defined by any boundary (e.g., v > 10 mV). For certain aspects, the two or
more dimensions are two dimensions, and the M-dimensional subspace has a two-dimensional
shape, such as an ellipse, a circle, a polygon, a rectangle, or a square. For other aspects, the two
or more dimensions are three dimensions, and the M-dimensional subspace has a three-
dimensional shape, such as a sphere, an ellipsoid, a polygonal prism, a rectangular prism, or a
cube. For certain aspects, the first region is associated with a different set of linear equations
than the second region. The first and second regions may be partially overlapping or non-
overlapping regions. The first and second regions may have at least one of different shapes or
different sizes. For certain aspects, the first region is associated with a first behavior of the
artificial neuron, and the second region is associated with a second behavior of the artificial
neuron, different from the first behavior. For certain aspects, the first and second regions

have layered shapes, such as concentric rings, tubes, rectangular frames, and the like.

[0237] According to certain aspects, the two or more dimensions are composed of two
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dimensions defined by a membrane potential (v) and a recovery current (). For certain
aspects, the operations 1400 may further include resetting at least one of the membrane
potential or the recovery current of the artificial neuron based at least in part on at least
one of receipt of a control signal or a determination that a spike event has occurred or
will occur. In this case, the membrane potential may be reset to a resting potential, and

the recovery current may be reset to a constant.

[0238] According to certain aspects, at least a portion of the second region overlaps
the first region. In this case, determining that the second state of the artificial neuron is

within the second region at 1406 may be based at least in part on hysteresis.

[0239] According to certain aspects, the artificial neuron is configured for onset
detection and event counting. In this case, the first region may be associated with an
integrate-and-fire (IF) behavior for the event counting, and the second region may be

associated with a leaky integrate-and-fire (LIF) behavior.

[0240] According to certain aspects, the artificial neuron is configured for
subthreshold oscillation behavior. The subthreshold oscillation behavior may include at
least one of a damped oscillation behavior, a sustained oscillation behavior, or a
growing oscillation behavior. For certain aspects, the first region may be associated
with the growing oscillation behavior, the second region may be associated with the
sustained oscillation behavior, and a third region may be associated with the decaying
oscillation behavior. Furthermore, a fourth region is associated with an ALIF behavior.
For certain aspects, the first region may have an elliptical shape, whereas the second

region may have a ring shape.

EXAMPLE COMMON AND FLEXIBLE NEURAL ARCHITECTURE

[0241] Certain aspects of the present disclosure generally relate to developing a
common and flexible architecture supporting dynamical neuron models. The design
goals include low complexity, accurate modeling of the neuron dynamics, and the
ability to implement any neuron model. With this flexible architecture, any of various
suitable neuron models may be executed and substituted as desired. For example, the
neuron model may include at least one of an Izhikevich simple model, an exponential-
integrate-and-fire (EIF) model, a FitzHugh-Nagumo model, a quartic model, or a

Hunzinger Cold model. Such neuron models may be implemented using the piecewise
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linear approximations and parameters (e.g., coefficients) associated therewith, as
described above. Furthermore, this flexible architecture allows different artificial
neurons in an artificial nervous system to operate with different neuron models

simultaneously.

[0242] FIG. 15A illustrates implementation of such a common and flexible neural
architecture for a single neural processing unit 1502, where parameters for neuron
models can be selected, loaded, accessed, added, deleted, adjusted, and/or updated, in
accordance with certain aspects of the present disclosure. The concepts described
herein may easily be expanded to a system of neural processing units 1502 (e.g., an
artificial nervous system), but for ease of description, only a single neural processing
unit is shown in FIG. 15A. The neural processing unit 1502 may implement a state
machine 1506 that receives one or more inputs and a set of parameters for a neuron
model and outputs one or more state variables as shown. The state machine 1506 may

implement any suitable processing algorithm for an artificial neuron.

[0243] The parameters for a given neuron model may be selected from a set of
parameters 1504 for a plurality of neuron models. For certain aspects, for example, an
operator may wish to use a certain neuron model in a given neural processing unit and
select this model from a list of available neuron models. For other aspects, a certain
neuron model may be selected by the system of neural processing units based on
learning or training operations. The parameters for a given neuron model may be
parameters based on the piecewise linear approximations described above. The set of
parameters 1504 may be stored in a memory associated with and/or local to the neural
processing unit 1502 for certain aspects. For other aspects, the set of parameters 1504
may be stored in a memory globally accessible by multiple neural processing units or a
cache memory internal to the neural processing unit 1502. The parameters for neuron
model A may be stored in a first memory location 1508 (e.g., an addressable memory
block), while the parameters for neuron model B may be stored in a second memory

location 1510.

[0244] In FIG. 15A, the parameters for neuron model A have been loaded into the
neural processing unit 1502. As used herein, the term “loading” may be defined broadly
and may include fetching the parameters for a given neuron model from a memory

accessible by the neural processing unit (or by the system of neural processing units);
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storing the parameters in a memory local to the neural processing unit; or accessing, in a
memory, one or more memory areas associated with (e.g., designated for) the neural
processing unit. According to certain aspects, loading the parameters for a certain
neuron model into a particular neural processing unit may occur in response to a
configuration event. For example, the configuration event may include powering up the
particular neural processing unit, powering up one or more regions of neural processing
units (which may or may not include the particular processing unit), or powering up the

entire system of neural processing units.

[0245] In FIG. 15B, the parameters for neuron model B have been loaded into the
neural processing unit 1502. From then on, the state machine 1506 may operate based
at least in part on these most recently loaded parameters. In this manner, the neural
processing unit 1502 may function according to a different neuron model, simply by
loading different parameters. Furthermore, the parameters for a particular neuron model

may be updated or deleted at any time.

[0246] In FIG. 15C, parameters for neuron model C may be added to the set of
parameters 1504. For example, neuron model C may be a recently developed,
purchased, or licensed neuron model that was not available when the neural processing
unit 1502 became operational. In other example scenarios, the architect or system
designer may have not considered neuron model C or may have originally thought this

model did not fit the desired application, but now desires to add this model.

[0247] In FIG. 15D, the parameters for neuron model C may be stored in a third
memory location 1512. The parameters for neuron model C may be loaded into the
neural processing unit 1502, such that the state machine 1506 may operate based at least
in part on these most recently loaded parameters. The ability to effectively change
neuron models for a neural processing unit by simply loading different parameters

therein provides a very flexible architecture that can be updated and changed as desired.

[0248] FIG. 16 is a flow diagram of example operations 1600 for implementing a
combination of a plurality of neuron models in a system of neural processing units (e.g.,
an artificial nervous system), in accordance with certain aspects of the present
disclosure. The operations 1600 may be performed in hardware (e.g., by one or more

processing units, such as a neuromorphic processor), in software, or in firmware. The
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artificial nervous system may be modeled on any of various biological or imaginary
nervous systems, such as a visual nervous system, an auditory nervous system, the

hippocampus, etc.

[0249] The plurality of neuron models may include any combination of the neuron
models described above, as well as any suitable neuron models in existence or as yet
undeveloped or undisclosed. For example, the plurality of neuron models may include
at least one of an Izhikevich simple model, an exponential-integrate-and-fire (EIF)
model, a FitzHugh-Nagumo model, a quartic model, a Hunzinger Cold model, or an
intrinsic conductance model. As used herein, the phrase “combination of the neuron
models” generally refers to a set of the plurality of neuron models, where the set may
include a single member. In other words, the combination of the plurality of neuron

models includes one of the plurality and any combination of any subset of the plurality.

[0250] The operations 1600 may begin, at 1602, by loading parameters for a first
neuron model selected from the plurality of neuron models into a first neural processing
unit (e.g., an artificial neuron). The parameters for a given neuron model may be
parameters derived from the piecewise linear approximations of the neuron models as
described above. At 1604, a first state of the first neural processing unit may be
determined based, at least in part, on the loaded parameters for the first neuron model.
At 1606, a second state of the first neural processing unit may be determined based, at

least in part, on the parameters for the first neuron model and on the first state.

[0251] According to certain aspects, the plurality of neuron models may be updated,
at 1608. As described above, updating the plurality of neuron models may include
deleting or adjusting certain parameters for the existing neuron models or adding
parameters for another neuron model (e.g., a new neuron model that was not available at
the time the plurality of neuron models were made available to the system or a desired
modification to an existing neuron model to effectively create a new neuron model).
For certain aspects, updating the plurality of neuron models may occur before loading
(or re-loading) the parameters for the first neuron model and determining the next state

of the first neural processing unit.

[0252] At 1610, parameters for a second neuron model may optionally be loaded

into the first neural processing unit. These parameters for the second neuron model may
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replace the parameters loaded at 1602 for the first neuron model. The plurality of
neuron models need not be updated at 1608 before the parameters for the second neuron
model are loaded at 1610. At 1612, a third state of the first neural processing unit (e.g.,
subsequent to the second state) may be determined based, at least in part, on the

parameters for the second neuron model.

[0253] According to certain aspects, loading the parameters for the first model at
1602 (or for the second neuron model at 1610) is in response to a configuration event.
For certain aspects, the configuration event is a power up for at least one of the system

of neural processing units or the first neural processing unit.

[0254] According to certain aspects, determining the third state at 1612 is further
based, at least in part, on the second state. If a determination of a subsequent state
based on parameters for a subsequent neuron model is based on a previous state
determined under parameters for a previous neuron model (different from the
subsequent neuron model), this may be referred to as a “hot swap.” For certain aspects,
the second neuron model is configured, at least in part, to generate a subthreshold
oscillation under this “hot swap” condition. This oscillation may start from the second
state or at another time. For certain aspects, the loading of the parameters for the
second neuron model at 1610 is based, at least in part, on at least one of a state
condition (e.g., the state entering a particular region or exhibiting a certain behavior,
such as a rate of change, etc.), a time condition (e.g., based on a timer), or a trigger.

The trigger may be external to the first neural processing unit, for example.

[0255] According to certain aspects, the operations 1600 may further include
loading parameters for a second neuron model selected from the plurality of neuron
models into a second neural processing unit. Then, a state of the second neural
processing unit may be determined based, at least in part, on the parameters for the
second neuron model. For certain aspects, the first and second neural processing units
are located in different arecas of the system. For certain aspects, the first and second
neuron models represent different types of neurons. In other words, the different neuron
models in the system of neural processing units may be used to emulate neurons that are
in different regions of a neural system. For example, neurons in the visual, auditory, or

motor control system may be represented by different neuron models.
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[0256] Loading the parameters for the first, the second, or any other neuron model
may involve any of various suitable operations. The description below includes loading
the parameters for the first neuron model for ease of description, but such loading
applies to the parameters for any other neuron model, as well. According to certain
aspects, loading the parameters for the first neuron model includes loading the
parameters for the first neuron model into a plurality of neural processing units
including the first neural processing unit. For certain aspects, loading the parameters
for the first neuron model includes fetching at least a portion of the parameters for the
first neuron model from a memory. This memory may be accessible by the system of
neural processing units for certain aspects. For certain aspects, at least a portion of the
memory may be local to the first neural processing unit. At least portion of the memory
may be cache memory. For certain aspects, loading the parameters for the first neuron
model further includes accessing, in the memory, a memory block associated with the
first neuron model. In this case, the memory block may be designated by a pointer to a

memory address in the memory block.

[0257] FIG. 17 illustrates an example block diagram 1700 of components for
implementing the aforementioned methods for operating an artificial neuron using a
general-purpose processor 1702 in accordance with certain aspects of the present
disclosure. Variables (neural signals), synaptic weights, and/or system parameters
associated with a computational network (neural network) may be stored in a memory
block 1704, while instructions related executed at the general-purpose processor 1702
may be loaded from a program memory 1706. In an aspect of the present disclosure, the
instructions loaded into the general-purpose processor 1702 may comprise code for
determining that a first state of an artificial neuron is within a first region; code for
determining a second state of the artificial neuron based at least in part on a first set of
linear equations, wherein the first set of linear equations is based at least in part on a
first set of parameters corresponding to the first region; code for determining that the
second state of the artificial neuron is within a second region; and code for determining
a third state of the artificial neuron based at least in part on a second set of linear
equations, wherein the second set of linear equations is based at least in part on a second
set of parameters corresponding to the second region. For certain aspects, at least one

of the first or second region is defined by two or more dimensions.
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[0258] In another aspect of the present disclosure, the instructions loaded into the
general-purpose processor 1702 may comprise code for loading parameters for a first
neuron model selected from a plurality of neuron models into a first neural processing
unit (in a system of neural processing units) and code for determining a first state of the
first neural processing unit based at least in part on the parameters for the first neuron

model.

[0259] FIG. 18 illustrates an example block diagram 1800 of components for
implementing the aforementioned method for operating an artificial neuron where a
memory 1802 can be interfaced via an interconnection network 1804 with individual
(distributed) processing units (neural processors) 1806 of a computational network
(neural network) in accordance with certain aspects of the present disclosure. Variables
(neural signals), synaptic weights, and/or system parameters associated with the
computational network (neural network) may be stored in the memory 1802, and may
be loaded from the memory 1802 via connection(s) of the interconnection network 1804
into ecach processing unit (neural processor) 1806. In an aspect of the present
disclosure, the processing unit 1806 may be configured to determine that a first state of
an artificial neuron is within a first region; to determine a second state of the artificial
neuron based at least in part on a first set of linear equations, wherein the first set of
linear equations is based at least in part on a first set of parameters corresponding to the
first region; to determine that the second state of the artificial neuron is within a second
region; and to determine a third state of the artificial neuron based at least in part on a
second set of linear equations, wherein the second set of linear equations is based at
least in part on a second set of parameters corresponding to the second region. For
certain aspects, at least one of the first or second region is defined by two or more

dimensions.

[0260] In another aspect of the present disclosure, the processing unit 1806 may be
configured to load parameters for a first neuron model selected from a plurality of
neuron models into a first neural processing unit (in a system of neural processing units)
and to determine a first state of the first neural processing unit based at least in part on

the parameters for the first neuron model.

[0261] FIG. 19 illustrates an example block diagram 1900 of components for

implementing the aforementioned method for operating an artificial neuron based on
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distributed weight memories 1902 and distributed processing units (neural processors)
1904 in accordance with certain aspects of the present disclosure. As illustrated in FIG.
19, one memory bank 1902 may be directly interfaced with one processing unit 1904 of
a computational network (neural network), wherein that memory bank 1902 may store
variables (neural signals), synaptic weights, and/or system parameters associated with
that processing unit (neural processor) 1904. In an aspect of the present disclosure, the
processing unit(s) 1904 may be configured to determine that a first state of an artificial
neuron is within a first region; determine a second state of the artificial neuron based at
least in part on a first set of linear equations, wherein the first set of linear equations is
based at least in part on a first set of parameters corresponding to the first region;
determine that the second state of the artificial neuron is within a second region; and
determine a third state of the artificial neuron based at least in part on a second set of
linear equations, wherein the second set of linear equations is based at least in part on a
second set of parameters corresponding to the second region. For certain aspects, at

least one of the first or second region is defined by two or more dimensions.

[0262] In another aspect of the present disclosure, the processing unit(s) 1904 may
be configured to load parameters for a first neuron model selected from a plurality of
neuron models into a first neural processing unit (in a system of neural processing units)
and to determine a first state of the first neural processing unit based at least in part on

the parameters for the first neuron model.

[0263] FIG. 20 illustrates an example implementation of a neural network 2000 in
accordance with certain aspects of the present disclosure. As illustrated in FIG. 20, the
neural network 2000 may comprise a plurality of local processing units 2002 that may
perform various operations of methods described above. Each processing unit 2002
may comprise a local state memory 2004 and a local parameter memory 2006 that store
parameters of the neural network. In addition, the processing unit 2002 may comprise a
memory 2008 with a local (neuron) model program, a memory 2010 with a local
learning program, and a local connection memory 2012. Furthermore, as illustrated in
FIG. 20, each local processing unit 2002 may be interfaced with a unit 2014 for
configuration processing that may provide configuration for local memories of the local
processing unit, and with routing connection processing elements 2016 that provide

routing between the local processing units 2002.
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[0264] According to certain aspects of the present disclosure, each local processing
unit 2002 may be configured to determine parameters of the neural network based upon
desired one or more functional features of the neural network, and develop the one or
more functional features towards the desired functional features as the determined

parameters are further adapted, tuned and updated.

[0265] The various operations of methods described above may be performed by
any suitable means capable of performing the corresponding functions. The means may
include various hardware and/or software component(s) and/or module(s), including,
but not limited to a circuit, an application specific integrated circuit (ASIC), or
processor. For example, the various operations may be performed by one or more of the
various processors shown in FIGs. 17-20. Generally, where there are operations
illustrated in figures, those operations may have corresponding counterpart means-plus-
function components with similar numbering. For example, operations 1400 illustrated

in FIG. 14 correspond to means 1400A illustrated in FIG. 14A.

[0266] For example, means for displaying may comprise a display (e.g., a monitor,
flat screen, touch screen, and the like), a printer, or any other suitable means for
outputting data for visual depiction (e.g., a table, chart, or graph). Means for
processing, means for generating, means for loading, means for resetting, means for
fetching, means for updating, means for calculating, means for computing, means for
outputting, or means for determining may comprise a processing system, which may
include one or more processors or processing units. Means for storing may comprise a
memory or any other suitable storage device (e.g., RAM), which may be accessed by

the processing system.

[0267] As used herein, the term “determining” encompasses a wide variety of
actions. For example, “determining” may include calculating, computing, processing,
deriving, investigating, looking up (e.g., looking up in a table, a database or another data
structure), ascertaining, and the like. Also, “determining” may include receiving (e.g.,
receiving information), accessing (e.g., accessing data in a memory), and the like. Also,

“determining” may include resolving, selecting, choosing, establishing, and the like.

[0268] As used herein, a phrase referring to “at least one of”” a list of items refers to
any combination of those items, including single members. As an example, “at least

one of a, b, or ¢” is intended to cover a, b, ¢, a-b, a-c, b-¢, and a-b-c.
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[0269] The various illustrative logical blocks, modules, and circuits described in
connection with the present disclosure may be implemented or performed with a general
purpose processor, a digital signal processor (DSP), an application specific integrated
circuit (ASIC), a field programmable gate array signal (FPGA) or other programmable
logic device (PLD), discrete gate or transistor logic, discrete hardware components or
any combination thereof designed to perform the functions described herein. A general-
purpose processor may be a microprocessor, but in the alternative, the processor may be
any commercially available processor, controller, microcontroller, or state machine. A
processor may also be implemented as a combination of computing devices, ¢.g., a
combination of a DSP and a microprocessor, a plurality of microprocessors, one or

more microprocessors in conjunction with a DSP core, or any other such configuration.

[0270] The steps of a method or algorithm described in connection with the present
disclosure may be embodied directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module may reside in any form
of storage medium that is known in the art. Some examples of storage media that may
be used include random access memory (RAM), read only memory (ROM), flash
memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a single instruction, or
many instructions, and may be distributed over several different code segments, among
different programs, and across multiple storage media. A storage medium may be
coupled to a processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be

integral to the processor.

[0271] The methods disclosed herein comprise one or more steps or actions for
achieving the described method. The method steps and/or actions may be interchanged
with one another without departing from the scope of the claims. In other words, unless
a specific order of steps or actions is specified, the order and/or use of specific steps

and/or actions may be modified without departing from the scope of the claims.

[0272] The functions described may be implemented in hardware, software,
firmware, or any combination thereof. If implemented in hardware, an example
hardware configuration may comprise a processing system in a device. The processing

system may be implemented with a bus architecture. The bus may include any number
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of interconnecting buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus may link together various
circuits including a processor, machine-readable media, and a bus interface. The bus
interface may be used to connect a network adapter, among other things, to the
processing system via the bus. The network adapter may be used to implement signal
processing functions. For certain aspects, a user interface (e.g., keypad, display, mouse,
joystick, etc.) may also be connected to the bus. The bus may also link various other
circuits such as timing sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and therefore, will not be

described any further.

[0273] The processor may be responsible for managing the bus and general
processing, including the execution of software stored on the machine-readable media.
The processor may be implemented with one or more general-purpose and/or special-
purpose processors. Examples include microprocessors, microcontrollers, DSP
processors, and other circuitry that can execute software. Software shall be construed
broadly to mean instructions, data, or any combination thercof, whether referred to as
software, firmware, middleware, microcode, hardware description language, or
otherwise. Machine-readable media may include, by way of example, RAM (Random
Access Memory), flash memory, ROM (Read Only Memory), PROM (Programmable
Read-Only Memory), EPROM (Erasable Programmable Read-Only Memory),
EEPROM (Electrically Erasable Programmable Read-Only Memory), registers,
magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any
combination thereof. The machine-readable media may be embodied in a computer-

program product. The computer-program product may comprise packaging materials.

[0274] In a hardware implementation, the machine-readable media may be part of
the processing system separate from the processor. However, as those skilled in the art
will readily appreciate, the machine-readable media, or any portion thercof, may be
external to the processing system. By way of example, the machine-readable media
may include a transmission line, a carrier wave modulated by data, and/or a computer
product separate from the device, all which may be accessed by the processor through
the bus interface. Alternatively, or in addition, the machine-readable media, or any

portion thereof, may be integrated into the processor, such as the case may be with
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cache and/or general register files.

[0275] The processing system may be configured as a general-purpose processing
system with one or more microprocessors providing the processor functionality and
external memory providing at least a portion of the machine-readable media, all linked
together with other supporting circuitry through an external bus architecture.
Alternatively, the processing system may be implemented with an ASIC (Application
Specific Integrated Circuit) with the processor, the bus interface, the user interface,
supporting circuitry, and at least a portion of the machine-readable media integrated into
a single chip, or with one or more FPGAs (Field Programmable Gate Arrays), PLDs
(Programmable Logic Devices), controllers, state machines, gated logic, discrete
hardware components, or any other suitable circuitry, or any combination of circuits that
can perform the various functionality described throughout this disclosure. Those
skilled in the art will recognize how best to implement the described functionality for
the processing system depending on the particular application and the overall design

constraints imposed on the overall system.

[0276] The machine-readable media may comprise a number of software modules.
The software modules include instructions that, when executed by the processor, cause
the processing system to perform various functions. The software modules may include
a transmission module and a receiving module. Each software module may reside in a
single storage device or be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a hard drive when a
triggering event occurs. During execution of the software module, the processor may
load some of the instructions into cache to increase access speed. One or more cache
lines may then be loaded into a general register file for execution by the processor.
When referring to the functionality of a software module below, it will be understood
that such functionality is implemented by the processor when executing instructions

from that software module.

[0277] If implemented in software, the functions may be stored or transmitted over
as one or more instructions or code on a computer-readable medium. Computer-
readable media include both computer storage media and communication media
including any medium that facilitates transfer of a computer program from one place to

another. A storage medium may be any available medium that can be accessed by a



WO 2014/081561 PCT/US2013/068531
80

computer. By way of example, and not limitation, such computer-readable media can
comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other medium that can be used to
carry or store desired program code in the form of instructions or data structures and
that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if the software is transmitted from a website,
server, or other remote source using a coaxial cable, fiber optic cable, twisted pair,
digital subscriber line (DSL), or wireless technologies such as infrared (IR), radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wircless
technologies such as infrared, radio, and microwave are included in the definition of
medium. Disk and disc, as used herein, include compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually
reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in
some aspects computer-readable media may comprise non-transitory computer-readable
media (e.g., tangible media). In addition, for other aspects computer-readable media
may comprise transitory computer-readable media (e.g., a signal). Combinations of the

above should also be included within the scope of computer-readable media.

[0278] Thus, certain aspects may comprise a computer program product for
performing the operations presented herein. For example, such a computer program
product may comprise a computer readable medium having instructions stored (and/or
encoded) thercon, the instructions being executable by one or more processors to
perform the operations described herein. For certain aspects, the computer program

product may include packaging material.

[0279] Further, it should be appreciated that modules and/or other appropriate
means for performing the methods and techniques described herein can be downloaded
and/or otherwise obtained by a device as applicable. For example, such a device can be
coupled to a server to facilitate the transfer of means for performing the methods
described herein. Alternatively, various methods described herein can be provided via
storage means (¢.g., RAM, ROM, a physical storage medium such as a compact disc
(CD) or floppy disk, etc.), such that a device can obtain the various methods upon
coupling or providing the storage means to the device. Moreover, any other suitable

technique for providing the methods and techniques described herein to a device can be
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utilized.

[0280] It is to be understood that the claims are not limited to the precise
configuration and components illustrated above. Various modifications, changes and
variations may be made in the arrangement, operation and details of the methods and

apparatus described above without departing from the scope of the claims.
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CLAIMS
WHAT IS CLAIMED IS:
1. A method for implementing a combination of a plurality of neuron models in a

system of neural processing units, comprising:

loading parameters for a first neuron model selected from the plurality of neuron
models into a first neural processing unit;

determining a first state of the first neural processing unit based at least in part
on the parameters for the first neuron model; and

determining a second state of the first neural processing unit based at least in

part on the parameters for the first neuron model and on the first state.

2. The method of claim 1, further comprising updating the plurality of neuron
models.
3. The method of claim 1, further comprising:

loading parameters for a second neuron model into the first neural processing
unit; and
determining a third state of the first neural processing unit based at least in part

on the parameters for the second neuron model.

4. The method of claim 3, wherein loading the parameters for the second neuron

model is in response to a configuration event.

5. The method of claim 4, wherein the configuration event comprises a power up
for at least one of the system of neural processing units or the first neural processing

unit.

6. The method of claim 3, wherein determining the third state is further based at

least in part on the second state.

7. The method of claim 6, wherein the second neuron model is configured at least

in part to generate an oscillation.

8. The method of claim 6, wherein loading the parameters for the second neuron

model is based at least in part on at least one of a state condition, a time condition, or a
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trigger, wherein the trigger is external to the first neural processing unit.

9. The method of claim 1, further comprising:

loading parameters for a second neuron model selected from the plurality of
neuron models into a second neural processing unit; and

determining a state of the second neural processing unit based at least in part on

the parameters for the second neuron model.

10.  The method of claim 9, wherein the first and second neuron models represent

different types of neurons.

11.  The method of claim 1, wherein loading the parameters for the first neuron
model comprises fetching at least a portion of the parameters for the first neuron model

from a memory.

12. The method of claim 11, wherein at least a portion of the memory is local to the

first neural processing unit.

13.  The method of claim 11, wherein at least a portion of the memory is cache
memory.
14.  The method of claim 11, wherein loading the parameters for the first neuron

model further comprises accessing, in the memory, a memory block associated with the

first neuron model.

15. The method of claim 14, wherein the memory block is designated by a pointer to

a memory address in the memory block.

16.  The method of claim 1, wherein the plurality of neuron models comprises at
least one of an Izhikevich simple model, an exponential-integrate-and-fire (EIF) model,

a FitzHugh-Nagumo model, a quartic model, or an intrinsic conductance model.

17.  An apparatus for implementing a combination of a plurality of neuron models in
a system of neural processing units, comprising:
a processing system configured to:
load parameters for a first neuron model selected from the plurality of

neuron models into a first neural processing unit;



WO 2014/081561 PCT/US2013/068531
&4

determine a first state of the first neural processing unit based at least in
part on the parameters for the first neuron model; and

determine a second state of the first neural processing unit based at least
in part on the parameters for the first neuron model and on the first state; and

a memory coupled to the processing system.

18.  The apparatus of claim 17, wherein the processing system is further configured

to update the plurality of neuron models.

19.  The apparatus of claim 17, wherein the processing system is further configured
to:

load parameters for a second neuron model into the first neural processing unit;
and

determine a third state of the first neural processing unit based at least in part on

the parameters for the second neuron model.

20.  The apparatus of claim 19, wherein the processing system is configured to load

the parameters for the second neuron model in response to a configuration event.

21.  The apparatus of claim 20, wherein the configuration event comprises a power
up for at least one of the system of neural processing units or the first neural processing

unit.

22.  The apparatus of claim 19, wherein the processing system is configured to

determine the third state further based at least in part on the second state.

23.  The apparatus of claim 22, wherein the second neuron model is configured at

least in part to generate an oscillation.

24.  The apparatus of claim 22, wherein the processing system is configured to load
the parameters for the second neuron model based at least in part on at least one of a
state condition, a time condition, or a trigger, wherein the trigger is external to the first

neural processing unit.

25.  The apparatus of claim 17, wherein the processing system is further configured
to:

load parameters for a second neuron model selected from the plurality of neuron
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models into a second neural processing unit; and
determine a state of the second neural processing unit based at least in part on

the parameters for the second neuron model.

26.  The apparatus of claim 25, wherein the first and second neuron models represent

different types of neurons.

27.  The apparatus of claim 17, wherein the processing system is configured to load
the parameters for the first neuron model by fetching at least a portion of the parameters

for the first neuron model from the memory.

28.  The apparatus of claim 27, wherein at least a portion of the memory is local to

the first neural processing unit.

29.  The apparatus of claim 27, wherein at least a portion of the memory is cache
memory.
30.  The apparatus of claim 27, wherein the processing system is configured to load

the parameters for the first neuron model by accessing, in the memory, a memory block

associated with the first neuron model.

31.  The apparatus of claim 30, wherein the memory block is designated by a pointer

to a memory address in the memory block.

32. The apparatus of claim 17, wherein the plurality of neuron models comprises at
least one of an Izhikevich simple model, an exponential-integrate-and-fire (EIF) model,

a FitzHugh-Nagumo model, a quartic model, or an intrinsic conductance model.

33.  An apparatus for implementing a combination of a plurality of neuron models in
a system of neural processing units, comprising:

means for loading parameters for a first neuron model selected from the plurality
of neuron models into a first neural processing unit;

means for determining a first state of the first neural processing unit based at
least in part on the parameters for the first neuron model; and

means for determining a second state of the first neural processing unit based at

least in part on the parameters for the first neuron model and on the first state.
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34.  The apparatus of claim 33, further comprising:

means for loading parameters for a second neuron model into the first neural
processing unit; and

means for determining a third state of the first neural processing unit based at

least in part on the parameters for the second neuron model.

35. A computer program product for implementing a combination of a plurality of
neuron models in a system of neural processing units, comprising a computer-readable
storage device having instructions executable to:

load parameters for a first neuron model selected from the plurality of neuron
models into a first neural processing unit;

determine a first state of the first neural processing unit based at least in part on
the parameters for the first neuron model; and

determine a second state of the first neural processing unit based at least in part

on the parameters for the first neuron model and on the first state.
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