WO 2006/118926 A2 || 000 00 01O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 November 2006 (09.11.2006)

529 |00 00O OO0

(10) International Publication Number

WO 2006/118926 A2

(51) International Patent Classification:

GOGF 3/06 (2006.01)
(21) International Application Number:
PCT/US2006/015917
(22) International Filing Date: 27 April 2006 (27.04.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/119,118 29 April 2005 (29.04.2005) US

(71) Applicant (for all designated States except US): NET-
WORK APPLIANCE, INC. [US/US]; 495 East Java
Drive, Sunnyvale, California 94089 (US).

(72) Inventor: JERNIGAN, Richard, P., IV; 1016 Rice Av-
enue, Ambridge, Pennsylvania 15003 (US).

(74) Agent: BARBAS, Charles, J.; CESARI AND
MCKENNA, LLP, 88 Black Falcon Avenue, Boston,
Massachusetts 02210 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, HI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR RESTRIPING DATA ACROSS A PLURALITY OF VOLUMES

2000

e

2005

CSM RECEIVES OPERATION
REQUEST DIRECTED TO
VOLUME OF SV8

2015

STRIPE
PRESENT ON
VOLUME?

NO YES

2020
v

L~ 2010

(57) Abstract: A system and method
re-stripes one or more data containers across
a striped volume set (SVS) that has been
modified by the addition of one or more
volumes. The SVS is associated with an
existing set of striping rules that define
a stripe algorithm, a stripe width and an
ordered list of volumes distributed across
a plurality of nodes interconnected as a
cluster. Each node of the cluster includes (i)
a disk element (D-blade) adapted to service
a volume of the SVS and (ii) a network
element (N-blade) adapted to redirect a data
access request to any D-blade of the cluster.
Notably, the content of each data container

RETRIEVE CONTENT FROM
VOLUME CURRENTLY

PROCESS

i 2035 is apportioned among the volumes of the
< SVS to thereby improve the effi- ciency of
REQUEST storage service provided by the cluster. To

STORING STRIPE

2025
h 4 z

WRITES DATA
TO STRIPE

2030
A 4 P

| PROCESS REQUEST

that end, the stripe algorithm specifies the
manner in which the data container content
is apportioned as stripes across the plurality
of volumes, while the stripe width specifies
the size/width of each stripe.

2040

15

20

25

WO 2006/118926 PCT/US2006/015917

SYSTEM AND METHOD FOR RESTRIPING DATA ACROSS A
PLURALITY OF VOLUMES

FIELD OF THE INVENTION

The present invention relates to file systems and, more particularly, to restriping a

data across a plurality of volumes in a file system.

BACKGROUND OF THE INVENTION

A storage system typically comprises one or more storage devices into which in-
formation may be entered, and from which information may be obtained, as desired. The
storage system includes a storage operating system that functionally organizes the system
by, inter alia, invoking storage operations in support of a storage service implemented by
the system. The storage system may be implemented in accordance with a variety of
storage architectures including, but not limited to, a network-attached storage environ-
ment, a storage area network and a disk assembly directly attached to a client or host
computer. The storage devices are typically disk drives organized as a disk array,
wherein the term "disk" commonly describes a self-contained rotating magnetic media
storage device. The term disk in this context is synonymous with hard disk drive (HDD)

or direct access storage device (DASD).

4

The storage operating system of the storage system may implement a hjgﬁ-level
module, such as a file system, to logically organize the information stored on volumes as
a hierarchical structure of data containers, such as files and logical units. For example,
each “on-disk” file may be implemented as set of data structures, i.e., disk blocks, con-
figured to store information, such as the actual data for the file. These data blocks are
organized within a volume block number (vbn) space that is maintained by the file sys-
tem. The file system may also assign each data block in the file a corresponding “file
offset” or file block number (fbn). The file system typically assigns sequences of fbns on

a per-file basis, whereas vbns are assigned over a larger volume address space. The file

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

system organizes the data blocks within the vbn space as a "logical volume"; each logical

volume may be, although is not necessarily, associated with its own file system.

A known type of file system is a write-anywhere file system that does not over-
write data on disks. If a data block is retrieved (read) from disk into a memory of the
storage system and “dirtied” (i.e., updated or modified) with new data, the data block is
thereafter stored (written) to a new location on disk to optimize write performance. A
write-anywhere file system may initially assume an optimal layout such that the data is
substantially contiguously arranged on disks. The optimal disk layout results in efficient
access operations, particularly for sequential read operations, directed to the disks. An
example of a write-anywhere file system that is configured to operate on a storage system
is the Write Anywhere File Layout (WAFL™) file system available from Network Appli-

ance, Inc., Sunnyvale, California.

The storage system may be further configured to operate according to a cli-
ent/server model of information delivery to thereby allow many clients to access data
containers stored on the system. In this model, the client may comprise an application,
such as a database application, executing on a computer that “connects” to the storage
system over a computer network, such as a point-to-point link, shared local area network
(LAN), wide area network (WAN), or virtual private network (VPN) implemented over a
public network such as the Internet. Each client may request the services of the storage
system by issuing file-based and block-based protocol messages (in the form of packets)

to the system over the network.

A plurality of storage systems may be interconnected to provide a storage system
environment configured to service many clients. Each storage system may be configured
to service one or more volumes, wherein each volume stores one or more data containers.
Yet often a large number of data access requests issued by the clients may be directed to
a small number of data containers serviced by a particular storage system of the environ-
ment. A solution to such a problem is to distribute the volumes serviced by the particular
storage system among all of the storage systems of the environment. This, in turn, dis-
tributes the data access requests, along with the processing resources needed to service

such requests, among all of the storage systems, thereby reducing the individual process-

10

15

20

25

WO 2006/118926 PCT/US2006/015917

ing load on each storage system. However, a noted disadvantage arises when only a sin-
gle data container, such as a file, is heavily accessed by clients of the storage system en-
vironment. As a result, the storage system attempting to service the requests directed to
that data container may exceed its processing resources and become overburdened, with a

concomitant degradation of speed and performance.

One technique for overcoming the disadvantages of having a single data container
that is heavily utilized is to stripe the data container across a plurality of volumes config-
ured as a striped volume set, where each volume is serviced by a different storage system,
thereby distributing the load for the single data container among a plurality of storage
systems. One technique for data container striping is described in the above-referenced
U.S. Patent Application Serial No. 11/119,278, entitled STORAGE SYSTEM
ARCHITECTURE FOR STRIPING DATA CONTAINER CONTENT ACROSS
VOLUMES OF A CLUSTER. However, a noted disadvantage of such a file striping
technique arises when the number of volumes within a striped volume set changes. For
example, a striped volume set may initially be generated with three volumes populated
with data; subsequently, a fourth volume may be added to the striped volume set. More-
over, additional volumes may be added to the striped volume set to enable distribution of

the load among an even greater number of storage systems.

A conventional “brute force” re-striping technique operates to first copy all of the

data from an existing striped volume set to a temporary holding storage data container.

A new striped volume set is configured that includes the additional volumes and all of the
data is then copied to the newly configured striped volume set. As can be appreciated,
the computational overhead required for such a brute force re-striping operation is sub-
stantial. Additionally, there may be times during the re-striping process when data is not
available for clients. Another noted disadvantage of such a re-striping technique is that it
requires a second data storage container of sufficient size to hold the entire contents of
the existing striped volume set. As this second data storage container is only utilized dur-
ing the brief period of the striped volume set reconfiguration, the conventional brute force

re-striping technique is extremely costly in terms of storage space utilization.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

SUMMARY OF THE INVENTION

The present invention overcomes the disadvantages of the prior art by providing a
system and method for re-striping one or more data containers across a striped volume set
(SVS) that has been modified by the addition or removal of one or more volumes. The
SVS is associated with an existing set of striping rules that define, inter alia, a stripe al-
gorithm, a stripe width and an ordered list of volumes distributed across a plurality of
nodes interconnected as a cluster. Each node of the cluster includes (i) a disk element
(D-blade) adapted to service a volume of the SVS and (ii) a network element (N-blade)
adapted to redirect a data access request to any D-blade of the cluster. Notably, the con-
tent of each data container is apportioned among the volumes of the SVS to thereby im-
prove the efficiency of storage service provided by the cluster. To that end, the stripe al-
gorithm specifies the manner in which the data container content is apportioned as stripes
across the plurality of volumes, while the stripe width specifies the size/width of each

stripe.

According to a first embodiment of the invention, a new set of striping rules is
created in response to a re-striping operation request received by an N-blade from, e.g.,
an administrator desiring to increase the number of volumes in the SVS. Although the
stripe algorithm and stripe width may remain the same, the new set of striping rules in-
corporates the additional volumes as constituents of the ordered list of volumes in the
SVS. The new set of striping rules is then marked as “new” and installed in a SVS entry
of a volume location database (VLDB). Any subsequent data access request received at
an N-blade of a node is processed in accordance with the new striping rules. In addition,

the existing set of striping rules is marked “old”.

The N-blade then initiates the re-striping operation by instructing each D-blade of
each node about the re-striping request. Each D-blade includes a container striping mod-
ule (VSM) configured to implement a Locate() function that computes the location of
data container content (i.e., a stripe) in its SVS volume. Accordingly, the VSM of each
D-blade determines whether the volume holds a stripe of the data container affected by
the re-striping operation and, if so, re-locates the content of the stripe to the additional

volume in accordance with the new striping rules. Data relocation illustratively occurs as

10

15

20

WO 2006/118926 PCT/US2006/015917

a background procedure to ensure that D-blades prioritize servicing of subsequent data
access requests issued by clients. If a subsequent data access request is forwarded to a D-
blade of an additional volume that has yet to receive the re-located content of a stripe, the
VSM of the D-blade serving that volume uses the old set of striping rules to retrieve the
data from the volume currently storing the stripe so that it may promptly service the re-
quest. Upon completion of data relocation among the additional volumes, the old set of

striping rules is deleted from the SVS entry of the VLDB.

In a second embodiment of the invention, the SVS is associated with multiple
(e.g., new and old) sets of striping rules, each defining a stripe algorithm, a stripe width
and an ordered list of volumes distributed across a plurality of nodes in the cluster. Here,
the new set of striping rules is used for any newly created data containers stored on the
SVS, while the old set of striping rules is used for all existing data containers stored on
the SVS. Essentially, each data container in the SVS is associated with a set of striping
rules. This second embodiment of the invention advantageously enables substantially
instantaneous re-striping of new data containers without disrupting the existing striped

containers.

According to an aspect of the invention, the association between a data container
and set of striping rules is illustratively effected through the use of an additional field
added to a data container handle used to access the data container in the node. The data
container handle is convenient for rendering such an association because it is accessible
by the N-blade, which needs to know the appropriate set of striping rules for a data con-
tainer when determining to which D-blade (and volume) to re-direct a data access re-
quest. Alternatively, a generation value of the data container handle can be manipulated

(i.e., “overloaded”) to identify the set of striping rules to be applied to the data container.

10

20

25

30

WO 2006/118926 PCT/US2006/015917

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of invention may be better understood by refer-
ring to the following description in conjunction with the accompanying drawings in
which like reference numerals indicate identical or functionally similar elements:

Fig. 1 is a schematic block diagram of a plurality of nodes interconnected as a
cluster in accordance with an embodiment of the present invention;

Fig. 2 is a schematic block diagram of a node in accordance with an embodiment
of the present invention;

Fig. 3 is a schematic block diagram of a storage operating system that may be ad-
vantageously used with the present invention;

Fig. 4 is a schematic block diagram illustrating the format of a cluster fabric (CF)
message in accordance with an embodiment of with the present invention;

Fig. 5 is a schematic block diagram illustrating the format of a data container
handle in accordance with an embodiment of the present invention;

Fig. 6 is a schematic block diagram of an exemplary inode in accordance with an
embodiment of the present invention;

Fig. 7 is a schematic block diagram of an exemplary buffer tree in accordance
with an embodiment of the present invention;

Fig. 8 is a schematic block diagram of an illustrative embodiment of a buffer tree
of a file that may be advantageously used with the present invention;

Fig. 9 is a schematic block diagram of an exemplary aggregate in accordance with
an embodiment of the present invention;

Fig. 10 is a schematic block diagram of an exemplary on-disk layout of the aggre-
gate in accordance with an embodiment of the present invention;

Fig. 11 is a schematic block diagram illustrating a collection of management pro-
cesses in accordance with an embodiment of the present invention;

Fig. 12 is a schematic block diagram of a volume location database (VLDB) vol-
ume entry in accordance with an embodiment of the present invention;

Fig. 13 is a schematic block diagram of a VLDB aggregate entry in accordance

with an embodiment of the present invention;

10

15

20

25

WO 2006/118926 PCT/US2006/015917

Fig. 14 is a schematic block diagram of a striped volume set (SVS) in accordance
with an embodiment of the present invention;

Fig. 15 is a schematic block diagram of a VLDB SVS entry in accordance with an
embodiment the present invention;

Fig. 16 is a schematic block diagram illustrating the periodic sparseness of file
content stored on volumes of a SVS in accordance with an embodiment of the present
invention;

_Fig. 17 is a flow chart detailing the steps of'a procedure for performing a re-

striping operation in accordance with a first embodiment of the present invention;

Fig. 18 is a schematic block diagram of an exemplary SVS after the addition of a

volume to the SVS of Fig. 16 in accordance with an embodiment of the present invention;

Fig. 19 is a schematic block diagram of an exemplary SVS after completion of the
re-striping procedure of Fig. 17 in accordance with an embodiment of the present inven-

tion;

Fig. 20 is a flowchart detailing the steps of a procedure for processing a data ac-
cess request directed to a volume of a SVS prior to completion of a re-striping operation

in accordance with an embodiment of the present invention;

Fig. 21 is a flow chart detailing the steps of a background procedure for re-

locating data in accordance with an embodiment of the present invention;

Fig. 22 is a schematic block diagram of the format of a data container handle that
is modified to include a striping rule set identifier field in accordance with an embodi-

ment of the present invention;

Fig. 23 is a flow chart detailing the steps of a procedure for performing a re-

striping operation in accordance with a second embodiment of the present invention; and

Fig. 24 is a schematic block diagram of an exemplary SVS after the re-striping

operation in accordance with the second embodiment of the present invention.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

DETAILED DESCRIPTION OF AN ILLUSTRATIVE
EMBODIMENT

A. Cluster Environment

Fig. 1 is a schematic block diagram of a plurality of nodes 200 interconnected as a
cluster 100 and configured to provide storage service relating to the organization of in-
formation on storage devices. The nodes 200 comprise various functional components
that cooperate to provide a distributed storage system architecture of the cluster 100. To
that end, each node 200 is generally organized as a network element (N-blade 310) and a
disk element (D-blade 350).- The N-blade 310 includes functionality that enables the
node 200 to connect to clients 180 over a computer network 140, while each D-blade 350
connects to one or more storage devices, such as disks 130 of a disk array 120. The
nodes 200 are interconnected by a cluster switching fabric 150 which, in the illustrative
embodiment, may be embodied as a Gigabit Ethernet switch. An exemplary distributed
file system architecture is generally described in U.S. Patent Application Publication No.
US 2002/0116593 titled METHOD AND SYSTEM FOR RESPONDING TO FILE
SYSTEM REQUESTS, by M. Kazar et al. published August 22, 2002. It should be noted
that while there is shown an equal number of N and D-blades in the illustrative cluster
100, there may be differing numbers of N and/or D-blades in accordance with various
embodiments of the present invention. For example, there may be a plurality of N-blades
and/or D-blades interconnected in a cluster configuration 100 that does not reflect a one-
to-one correspondence between the N and D-blades. As such, the description of a node

200 comprising one N-blade and one D-blade should be taken as illustrative only.

The clients 180 may be general-purpose computers configured to interact with the
node 200 in accordance with a client/server model of information delivery. That is, each
client may request the services of the node, and the node may return the results of the
services requested by the client, by exchanging packets over the network 140. The client
may issue packets including file-based access protocols, such as the Common Internet
File System (CIFS) protocol or Network File System (NFS) protocol, over the Transmis-
sion Control Protocol/Internet Protocol (TCP/IP) when accessing information in the form

of files and directories. Alternatively, the client may issue packets including block-based

10

15

20

25

30

WO 2006/118926 : PCT/US2006/015917

access protocols, such as the Small Computer Systems Interface (SCSI) protocol encap-
sulated over TCP (iSCSI) and SCSI encapsulated over Fibre Channel (FCP), when ac-

cessing information in the form of blocks.

B. Storage System Node

Fig. 2 is a schematic block diagram of a node 200 that is illustratively embodied
as a storage system comprising a plurality of processors 222a,b, a memory 224, a nei-
work adapter 225, a cluster access adapter 226, a storage adapter 228 and local storage
230 interconnected by a system bus 223. The local storage 230 comprises one or more
storage devices, such as disks, utilized by the node to locally store configuration informa-
tion (e.g., in configuration table 235) provided by one or more management processes
that execute as user mode applications 1100 (see Fig. 11). The cluster access adapter 226
comprises a plurality of ports adapted to couple the node 200 to other nodes of the cluster
100. In the illustrative embodiment, Ethernet is used as the clustering protocol and inter-
connect media, although it will be apparent to those skilled in the art that other types of
protocols and interconnects may be utilized within the cluster architecture described
herein. In alternate embodiments where the N-blades and D-blades are implemented on
separate storage systems or computers, the cluster access adapter 226 is utilized by the

N/D-blade for communicating with other N/D-blades in the cluster 100.

Each node 200 is illustratively embodied as a dual processor storage system exe-
cuting a storage operating system 300 that preferably implements a hi gh-level module,
such as a file system, to logically organize the information as a hierarchical structure of
named directories, files and special types of files called virtual disks (hereinafter gener-
ally “blocks”) on the disks. However, it will be apparent to those of ordinary skill in the
art that the node 200 may alternatively comprise a single or more than two processor sys-
tem. [llustratively, one processor 222a executes the functions of the N-blade 310 on the
node, while the other processor 222b executes the functions of the D-blade 350,

The memory 224 illustratively comprises storage locations that are addressable by
the processors and adapters for storing software program code and data structures associ-
ated with the present invention. The processor and adapters may, in turn, comprise proc-

essing elements and/or logic circuitry configured to execute the software code and ma-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
10

nipulate the data structures. The storage operating system 300, portions of which is typi-
cally resident in memory and executed by the processing elements, functionally organizes
the node 200 by, inter alia, invoking storage operations in support of the storage service
implemented by the node. It will be apparent to those skilled in the art that other process-
ing and memory means, including various computer readable media, may be used for

storing and executing program instructions pertaining to the invention described herein.

The network adapter 225 comprises a plurality of ports adapted to couple the node
200 to one or more clients 180 over point-to-point links, wide area networks, virtual pri-
vate networks implemented over a public network (Internet) or a shared local area net-
work. The network adapter 225 thus may comprise the mechanical, electrical and signal-
ihg circuitry needed to connect the node to the network. Illustratively, the computer
network 140 may be embodied as an Ethernet network or a Fibre Channel (FC) network.
Each client 180 may communicate with the node over network 140 by exchanging dis-

crete frames or packets of data according to pre-defined protocols, such as TCP/IP.

The storage adapter 228 cooperates with the storage operating system 300 execut-
ing on the node 200 to access information requested by the clients. The information may
be stored on any type of attached array of writable storage device media such as video
tape, optical, DVD, magnetic tape, bubble memory, electronic random access memory,
micro-electro mechanical and any other similar media adapted to store information, in-
cluding data and parity information. However, as illustratively described herein, the in-
formation is preferably stored on the disks 130 of array 120. The storage adapter com-
prises a plurality of ports having input/output (I/O) interface circuitry that couples to the
disks over an I/O interconnect arrangement, such as a conventional high-performance, FC

link topology.

Storage of information on each array 120 is preferably implemented as one or
more storage “volumes” that comprise a collection of physical storage disks 130 cooper-
ating to define an overall logical arrangement of volume block number (vbn) space on the
volume(s). Each logical volume is generally, although not necessarily, associated with its
own file system. The disks within a logical volume/file system are typically organized as

one or more groups, wherein each group may be operated as a Redundant Array of Inde-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

11

pendent (or Inexpensive) Disks (RAID). Most RAID implementations, such as a i{AID-4
level implementation, enhance the reliability/integrity of data storage through the redun-
dant writing of data “stripes™ across a given number of physical disks in the RAID group,
and the appropriate storing of parity information with respect to the striped data. An il-
lustrative example of a RAID implementation is a RAID-4 level implementation, al-
though it should be understood that other types and levels of RAID implementations may

be used in accordance with the inventive principles described herein.

C. Storage Operating System

To facilitate access to the disks 130, the storage operating system 300 implements
a write-anywhere file system that cooperates with one or more virtualization modules to
“virtualize” the storage space provided by disks 130. The file system logically organizes
the information as a hierarchical structure of named directories and files on the disks.
Each “on-disk” file may be implemented as set of disk blocks configured to store infor-
mation, such as data, whereas the directory may be implemented as a specially formatted
file in which names and links to other files and directories are stored. The virtualization
module(s) allow the file system to further logically organize information as a hierarchical

structure of blocks on the disks that are exported as named logical unit numbers (luns).

In the illustrative embodiment, the storage operating system is preferably the
NetApp® Data ONTAP™ operating system available from Network Appliance, Inc.,
Sunnyvale, California that implements a Write Anywhere File Layout (WAFL™) file sys-
tem. However, it is expressly contemplated that any appropriate storage operating system
may be enhanced for use in accordance with the inventive principles described herein.

As such, where the term “WAFL” is employed, it should be taken broadly to refer to any

storage operating system that is otherwise adaptable to the teachings of this invention.

Fig. 3 is a schematic block diagram of the storage operating system 300 that may
be advantageously used with the present invention. The storage operating system com-
prises a series of software layers organized to form an integrated network protocol stack
or, more generally, a multi-protocol engine 325 that provides data paths for clients to ac-
cess information stored on the node using block and file access protocols. The multi-

protocol engine includes a media access layer 312 of network drivers (e.g., gigabit

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

12

Ethernet drivers) that interfaces to network protocol layers, such as the IP layer 314 and
its supporting transport mechanisms, the TCP layer 316 and the User Datagram Protocol
(UDP) layer 315. A file system protocol layer provides multi-protocol file access and, to
that end, includes support for the Direct Access File System (DAFS) protocol 318, the
NFS protocol 320, the CIFS protocol 322 and the Hypertext Transfer Protocol (HT'TP)
protocol 324. A VI layer 326 implements the VI architecture to provide direct access
transport (DAT) capabilities, such as RDMA, as required by the DAFS protocol 318. An
iSCSI driver layer 328 provides block protocol access over the TCP/IP network protocol
layers, while a FC driver layer 330 receives and transmits block access requests and re-
sponses to and from the node. The FC and iSCSI drivers provide FC-specific and iSCSI-
specific access control to the blocks and, thus, manage exports of luns to either iSCSI or

FCP or, alternatively, to both iSCSI and FCP when accessing the blocks on the node 200.

In addition, the storage operating system includes a series of software layers or-
ganized to form a storage server 365 that provides data paths for accessing information
stored on the disks 130 of the node 200. To that end, the storage server 365 includes a
file system module 360 in cooperating relation with a volume striping module (VSM)
370, a RAID system module 380 and a disk driver system module 390. The RAID sys-
tem 380 manages the storage and retrieval of information to and from the volumes/disks
in accordance with /O operations, while the disk driver system 390 implements a disk
access protocol such as, e.g., the SCSI protocol. The VSM 370 illustratively iinplements
a striped volume set (SVS) of the present invention. As described further berein, the
VSM cooperates with the file system 360 to enable storage server 365 to service a vol-
ume of the SVS. In particular, the VSM 370 implements the novel Locate() function 375
to compute the location of data container content in the SVS volume to thereby ensure

consistency of such content served by the cluster.

The file system 360 implements a virtualization system of the storage operating
system 300 through the interaction with one or more virtualization modules illustratively
embodied as, e.g., a virtual disk (vdisk) module (not shown) and a SCSI target module
335. The vdisk module enables access by administrative interfaces, such as a user inter-
face of a management framework 1110 (see Fig. 11), in response to a user (system ad-

ministrator) issuing commands to the node 200. The SCSI target module 335 is generally

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

13

disposed between the FC and iSCSI drivers 328, 330 and the file system 360 to provide a
translation layer of the virtualization system between the block (lun) space and the file

system space, where luns are represented as blocks.

The file system 360 is illustratively a message-based system that provides logical
volume management capabilities for use in access to the information stored on the stor-
age devices, such as disks. That is, in addition to providing file system semantics, the file
system 360 provides functions normally associated with a volume manager. These func-
tions include (i) aggregation of the disks, (ii) aggregation of storage bandwidth of the
disks, and (iii) reliability guarantees, such as mirroring and/or parity (RAID). The file
system 360 illustratively implements the WAFL file system (hereinafter generally the
“write-anywhere file system™) having an on-disk format representation that is block-
based using, e.g., 4 kilobyte (kB) blocks and using index nodes (“inodes™) to identify
files and file attributes (such as creation time, access permissions, size and block loca-
tion). The file system uses files to store meta-data describing the layout of its file system;
these meta-data files include, among others, an inode file. A file handle, i.e., an identifier

that includes an inode number, is used to retrieve an inode from disk.

Broadly stated, all inodes of the write-anywhere file system are organized into the
inode file. A file system (fs) info block specifies the layout of information in the file sys-
tem and includes an inode of a file that includes all other inodes of the file system. Each
logical volume (file system) has an fsinfo block that is preferably stored at a fixed loca-
tion within, e.g., 2a RAID group. The inode of the inode file may directly reference (point
to) data blocks of the inode file or may reference indirect blocks of the inode file that, in
turn, reference data blocks of the inode file. Within each data block of the inode file are
embedded inodes, each of which may reference indirect blocks that, in turn, reference
data blocks of a file.

Operationally, a request from the client 180 is forwarded as a packet over the
computer network 140 and onto the node 200 where it is received at the network adapter
225. A network driver (of layer 312 or layer 330) processes the packet and, if appropri-
ate, passes it on to a network protocol and file access layer for additional processing prior

to forwarding to the write-anywhere file system 360. Here, the file system generates op-

15

20

25

30

WO 2006/118926 PCT/US2006/015917
14

erations to load (retrieve) the requested data from disk 130 if it is not resident “in core”,
i.e., in memory 224. If the information is not in memory, the file system 360 indexes into
the inode file using the inode number to access an appropriate entry and retrieve a logical
vbn. The file system then passes a message structure including the logical vbn to the
RAID system 380; the logical vbn is mapped to a disk identifier and disk block number
(disk,dbn) and sent to an appropriate driver (e.g., SCSI) of the disk driver system 390.
The disk driver accesses the dbn from the specified disk 130 and loads the requested data
block(s) in memory for processing by the node. Upon completion of the request, the

node (and operating system) returns a reply to the client 180 over the network 140.

It should be noted that the software “path” through the storage operating system
layers described above needed to perform data storage access for the client request re-
ceived at the node may alternatively be implemented in hardware. That is, in an alternate
embodiment of the invention, a storage access request data path may be implemented as
logic circuitry embodied within a field programmable gate array (FPGA) or an applica-
tion specific integrated circuit (ASIC). This type of hardware implementation increases
the performance of the storage service provided by node 200 in response to a request is-
sued by client 180. Moreover, in another alternate embodiment of the invention, the
processing elements of adapters 225, 228 may be configured to offload some or all of the
packet processing and storage access operations, reépectively, from processor 222, to
thereby increase the performance of the storage service provided by the node. It is ex-
pressly contemplated that the various processes, architectures and procedures described

herein can be implemented in hardware, firmware or software.

As used herein, the term “storage operating system" generally refers to the com-
puter-executable code operable on a computer to perform a storage function that manages
data access and may, in the case of a node 200, implement data access semantics of a
general purpose operating system. The storage operating system can also be imple-
mented as a microkernel, an application program operating over a general-purpose oper-
ating system, such as UNIX® or Windows NT®, or as a general-purpose operating sys-
tem with configurable functionality, which is configured for storage applications as de-

scribed herein.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

15

In addition, it will be understood to those skilled in the art that the invention de-
scribed herein may apply to any type of special-purpose (e.g., file server, filer or storage
serving appliance) or general-purpose computer, including a standalone computer or por-
tion thereof, embodied as or including a storage system. Moreover, the teachings of this
invention can be adapted to a variety of storage system architectures including, but not
limited to, a network-attached storage environment, a storage area network and disk as-
sembly directly-attached to a client or host computer. The term “storage system” should
therefore be taken broadly to include such arrangements in addition to any subsystems
configured to perform a storage function and associated with other equipment or systemsi
It should be noted that while this description is written in terms of a write any where file
system, the teachings of the present invention may be utilized with any suitable file sys-

tem, including a write in place file system.

D. CF Protocol

In the illustrative embodiment, the storage server 365 is embodied as D-blade 350
of the storage operating system 300 to service one or more volumes of array 120. In ad-
dition, the multi-protocol engine 325 is embodied as N-blade 310 to (i) perform protocol
termination with respect to a client issuing incoming data access request packets over the
network 140, as well as (ii) redirect those data access requests to any storage server 365
of the cluster 100. Moreover, the N-blade 310 and D-blade 350 cooperate to provide a
highly-scalable, distributed storage system architecture of the cluster 100. To that end,
each blade includes a cluster fabric (CF) interface module 340a,b adapted to implement
intra-cluster communication among the blades, including D-blade-to-D-blade communi-

cation for data container striping operations described herein.

The protocol layers, e.g., the NFS/CIFS layers and the iSCSI/FC layers, of the N-
blade 310 function as protocol servers that translate file-based and block based data ac-
cess requests from clients into CF protocol messages used for communication with the D-
blade 350. That is, the N-blade servers convert the incoming data access requests into
file system primitive operations (commands) that are embedded within CF messages by
the CF interface module 340 for transmission to the D-blades 350 of the cluster 100. No-
tably, the CF interface modules 340 cooperate to provide a single file system image

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

16

across all D-blades 350 in the cluster 100. Thus, any network port of an N-blade that re-
ceives a client request can access any data container within the single file system image

located on any D-blade 350 of the cluster.

Further to the illustrative embodiment, the N-blade 310 and D-blade 350 are im-
plemented as separately-scheduled processes of storage operating system 300; however,
in an alternate embodiment, the blades may be implemented as pieces of code within a
single operating system process. Communication between an N-blade and D-blade is
thus illustratively effected through the use of message passing between the blades al-
though, in the case of remote communication between an N-blade and D-blade of differ-
ent nodes, such message passing occurs over the cluster switching fabric 150. A known
message-passing mechanism provided by the storage operating system to transfer infor-
mation between blades (processes) is the Inter Process Communication (IPC) mechanism.
The protocol used with the IPC mechanism is illustratively a generic file and/or block-
based “agnostic” CF protocol that comprises a collection of methods/functions constitut-
ing a CF application programming interface (API). Examples of such an agnostic proto-
col are the SpinFS and SpinNP protocols available from Network Appliance, Inc. The
SpinFS protocol is described in the above-referenced U.S. Patent Application Publication
No. US 2002/0116593.

The CF interface module 340 implements the CF protocol for communicating file
system commands among the blades of cluster 100. Communication is illustratively ef-
fected by the D-blade exposing the CF API to which an N-blade (or another D-blade) is-
sues calls. To that end, the CF interface module 340 is organized as a CF encoder and CF
decoder. The CF encoder of, e.g., CF interface 340a on N-blade 310 encapsulates a CF
message as (i) a local procedure call (LPC) when communicating a file system command
to a D-blade 350 residing on the same node 200 or (ii) a remote procedure call (RPC)
when communicating the command to a D-blade residing on a remote node of the cluster
100. In either case, the CF decoder of CF interface 340b on D-blade 350 de-encapsulates

the CF message and processes the file system command.

Fig. 4 is a schematic block diagram illustrating the format of a CF message 400 in

accordance with an embodiment of with the present invention. The CF message 400 is

10

15

20

25

WO 2006/118926 PCT/US2006/015917

17

illustratively used for RPC communication over the switching fabric 150 between remote
blades of the cluster 100; however, it should be understood that the term “CF message”
may be used generally to refer to LPC and RPC communication between blades of the
cluster. The CF message 400 includes a media access layer 402, an IP layer 404, a UDP
layer 406, a reliable connection (RC) layer 408 and a CF protocol layer 410. As noted,
the CF protocol is a generic file system protocol that conveys file system commands re-
lated to operations contained within client requests to access data containers stored on the
cluster 100; the CF protocol layer 410 is that portion of message 400 that carries the file
system commands. Illustratively, the CF protocol is datagram based and, as such, in-
volves transmission of messages or “envelopes” in a reliable manner from a source (e.g.,
an N-blade 310) to a destination (e.g., a D-blade 350). The RC layer 408 implements a
reliable transport protocol that is adapted to process such envelopes in accordance with a

connectionless protocol, such as UDP 406.

A data container, e.g., a file, is accessed in the file system using a data container
handle. Fig. 5 is a schematic block diagram illustrating the format of a data container
handle 500 including a SVS ID field 502, an inode number field 504, a unique-ifier field
506 a striped flag field 508 and a striping epoch number field 510. The SVS ID field 502
contains a global identifier (within the cluster 100) of the SVS within which the data con-
tainer resides. The inode number field 504 contains an inode number of an inode (within
an inode file) pertaining to the data container. The unique-ifier field 506 contains a
monotonically increasing number that uniquely identifies the data container handle 500.
The unique-ifier is particularly useful in the case where an inode number has been de-
leted, reused and reassigned to a new data container. The unique-ifier distinguishés that
reused inode number in a particular data container from a potentially previous use of
those fields. The striped flag field 508 is illustratively a Boolean value that identifies
whether the data container is striped or not. The striping epoch number field 510 indi-
cates the appropriate striping technique for use with this data container for embodiments

where the SVS utilizes differing striping techniques for different data containers.

E. File System Organization

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
18

In the illustrative embodiment, a data container is represented in the write-
anywhere file system as an inode data structure adapted for storage on the disks 130. Fig.
6 is a schematic block diagram of an inode 600, which preferably includes a meta-data
section 605 and a data section 660. The information stored in the meta-data section 605
of each inode 600 describes the data container (e.g., a file) and, as such, includes the type
(e.g., regular, directory, vdisk) 610 of file, its size 615, time stamps (e.g., access and/or
modification time) 620 and ownership, i.e., user identifier (UID 625) and group ID (GID
630), of the file. The meta-data section 605 also includes a generation number 631, and a
meta-data invalidation flag field 634. As described further herein, meta-data invalidation
flag field 634 is used to indicate whether meta-data in this inode is usable or whether it
should be re-acquired from the MDV. The contents of the data section 660 of each inode
may be interpreted differently depending upon the type of file (inode) defined within the
type field 610. For example, the data section 660 of a directory inode contains meta-data
controlled by the file system, whereas the data section of a regular inode contains file sys-
tem data. In this latter case, the data section 660 includes a representation of the data as-

sociated with the file.

Specifically, the data section 660 of a regular on-disk inode may include file sys-
tem data or pointers, the latter referencing 4kB data blocks on disk used to store the file
system data. Each pointer is preferably a logical vbn to facilitate efficiency among the
file system and the RAID system 380 when accessing the data on disks. Given the re-
stricted size (e.g., 128 bytes) of the inode, file system data having a size that is less than
or equal to 64 bytes is represented, in its entirety, within the data section of that inode.
However, if the length of the contents of the data container exceeds 64 bytes but less than
or equal to 64kB, then the data section of the inode (e.g., a first level inode) comprises up

to 16 pointers, each of which references a 4kB block of data on the disk.

Moreover, if the size of the data is greater than 64kB but less than or equal to 64
megabytes (MB), then each pointer in the data section 660 of the inode (e.g., a second
level inode) references an indirect block (e.g., a first level L1 block) that contains 1024
pointers, each of which references a 4kB data block on disk. For file system data having
a size greater than 64MB, each pointer in the data section 660 of the inode (e.g., a third
level L3 inode) references a double-indirect block (e.g., a second level L2 block) that

15

20

25

30

WO 2006/118926 PCT/US2006/015917

19

contains 1024 pointers, each referencing an indirect (e.g., a first level L1) block. The in-
direct block, in turn, that contains 1024 pointers, each of which references a 4kB data
block on disk. When accessing a file, each block of the file may be loaded from disk 130
into the memory 224.

When an on-disk inode (or block) is loaded from disk 130 into memory 224, its
corresponding in-core structure embeds the on-disk structure. For example, the dotted
line surrounding the inode 600 indicates the in-core representation of the on-disk inode
structure. The in-core structure is a block of memory that stores the on-disk structure
plus additional information needed to manage data in the memory (but not on disk). The
additional information may include, e.g., a “dirty” bit 670. After data in the inode (or
block) is updated/modified as instructed by, e.g., a write operation, the modified data is
marked “dirty” using the dirty bit 670 so that the inode (block) can be subsequently
“flushed” (stored) to disk. The in-core and on-disk format structures of the WAFL file
system, including the inodes and inode file, are disclosed and described in the previously
incorporated U.S. Patent No. 5,819,292 titled METHOD FOR MAINTAINING
CONSISTENT STATES OF A FILE SYSTEM AND FOR CREATING USER-
ACCESSIBLE READ-ONLY COPIES OF A FILE SYSTEM by David Hitz et al., issued
on October 6, 1998.

Fig. 7 is a schematic block diagram of an embodiment of a buffer tree of a file
that may be advantageously used with the present invention. The buffer tree is an inter-
nal representation of blocks for a file (e.g., file 700) loaded into the memory 224 and
maintained by the write-anywhere file system 360. A root (top-level) inode 702, such as
an embedded inode, references indirect (e.g., level 1) blocks 704. Note that there may be
additional levels of indirect blocks (e.g., level 2, level 3) depending upon the size of the
file. The indirect blocks (and inode) contain pointers 705 that ultimately reference data
blocks 706 used to store the actual data of the file. That is, the data of file 700 are con-
tained in data blocks and the locations of these blocks are stored in the indirect blocks of
the file. Each level 1 indirect block 704 may contain pointers to as many as 1024 data
blocks. According to the “write anywhere” nature of the file system, these blocks may be
located anywhere on the disks 130.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

20

A file system layout is provided that apportions an underlying physical volume
into one or more virtual volumes (or flexible volume) of a storage system, such as node
200. An example of such a file system layout is described in U.S. Patent Application Se-
rial No. 10/836,817 titled EXTENSION OF WRITE ANYWHERE FILE SYSTEM
LAYOUT, by John K. Edwards et al. and assigned to Network Appliance, Inc. The un-
derlying physical volume is an aggregate comprising one or more groups of disks, such
as RAID groups, of the node. The aggregate has its own physical volume block number
(pvbn) space and maintains meta-data, such as block allocation structures, within that
pvbn space. Each flexible volume has its own virtual volume block number (vvbn) space
and maintains meta-data, such as block allocation structures, within that vvbn space.
Each flexible volume is a file system that is associated with a container file; the container
file is a file in the aggregate that contains all blocks used by the flexible volume. More-
over, each flexible volume comprises data blocks and indirect blocks that contain block

pointers that point at either other indirect blocks or data blocks.

In one embodiment, pvbns are used as block pointers within buffer trees of files
(such as file 700) stored in a flexible volume. This “hybrid” flexible volume embodiment
involves the insertion of only the pvbn in the parent indirect block (e.g., inode or indirect
block). On a read path of a logical volume, a “logical” volume (vol) info block has one
or more pointers that reference one or more fsinfo blocks, each of which, in turn, points
to an inode file and its corresponding inode buffer tree. The read path on a flexible vol-
ume is generally the same, following pvbns (instead of vvbns) to find appropriate loca-
tions of blocks; in this context, the read path (and corresponding read performance) of a
flexible volume is substantially similar to that of a physical volume. Translation from
pvbn-to-disk,dbn occurs at the file system/RAID system boundary of the storage operat-
ing system 300.

In an illustrative dual vbn hybrid flexible volume embodiment, both a pvbn and
its corresponding vvbn are inserted in the parent indirect blocks in the buffer tree of a
file. That is, the pvbn and vvbn are stored as a pair for each block pointer in most buffer
tree structures that have pointers to other blocks, e.g., level 1(L1) indirect blocks, inode
file level 0 (LO) blocks. Fig. 8 is a schematic block diagram of an illustrative embodi-

ment of a buffer tree of a file 800 that may be advantageously used with the present in-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

21

vention. A root (top-level) inode 802, such as an embedded inode, references indirect
(e.g., level 1) blocks 804. Note that there may be additional levels of indirect blocks
(e.g., level 2, level 3) depending upon the size of the file. The indirect blocks (and inode)
contain pvbn/vvbn pointer pair structures 808 that ultimately reference data blocks 806
used to store the actual data of the file.

The pvbns reference locations on disks of the aggregate, whereas the vvbns refer-
ence locations within files of the flexible volume. The use of pvbns as block pointers
808 in the indirect blocks 804 provides efficiencies in the read paths, while the use of
vvbn block pointers provides efficient access to required meta-data. That is, when free-
ing a block of a file, the parent indirect block in the file contains readily available vvbn
block pointers, which avoids the latency associated with accessing an owner map to per-

form pvbn-to-vvbn translations; yet, on the read path, the pvbn is available.

Fig. 9 is a schematic block diagram of an embodiment of an aggregate 900 that
may be advantageously used with the present invention. Luns (blocks) 902, directories
904, qtrees 906 and files 908 may be contained within flexible volumes 910, such as dual
vbn flexible volumes, that, in turn, are contained within the aggregate 900. The aggre-
gate 900 is illustratively layered on top of the RAID system, which is represented by at
least one RAID plex 950 (depending upon whether the storage configuration is mirrored),
wherein each plex 950 comprises at least one RAID group 960. Each RAID group fur-

ther comprises a plurality of disks 930, e.g., one or more data (D) disks and at least one
(P) parity disk.

Whereas the aggregate 900 is analogous to a physical volume of a conventional
storage system, a flexible volume is analogous to a file within that physical volume. That
is, the aggregate 900 may include one or more files, wherein each file contains a flexible
volume 910 and wherein the sum of the storage space consumed by the flexible volumes
is physically smaller than (or equal to) the size of the overall physical volume. The ag-
gregate utilizes a physical pvbn space that defines a storage space of blocks provided by
the disks of the physical volume, while each embedded flexible volume (within a file)
utilizes a logical vvbn space to organize those blocks, e.g., as files. Each vvbn space is

an independent set of numbers that corresponds to locations within the file, which loca-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
22

tions are then translated to dbns on disks. Since the flexible volume 910 is also a logical
volume, it has its own block allocation structures (e.g., active, space and summary maps)

in its vvbn space.

A container file is a file in the aggregate that contains all blocks used by a flexible
volume. The container file is an internal (to the aggregate) feature that supports a flexible
volume; illustratively, there is one container file per flexible volume. Similar to a pure
logical volume in a file approach, the container file is a hidden file (not accessible to a
user) in the aggregate that holds every block in use by the flexible volume. The aggre-
gate includes an illustrative hidden meta-data root directory that contains subdirectories

of flexible volumes:
WAFL/fsid/filesystem file, storage label file

Specifically, a physical file system (WAFL) directory includes a subdirectory for
each flexible volume in the aggregate, with the name of subdirectory being a file system
identifier (fsid) of the flexible volume. Each fsid subdirectory (flexible volume) contains
at least two files, a filesystem file and a storage label file. The storage label file is illus-
tratively a 4kB file that contains meta-data similar to that stored in a conventional raid
label. In other words, the storage label file is the analog of a raid label and, as such, con-
tains information about the state of the flexible volume such as, e.g., the name of the
flexible volume, a universal unique identifier (uuid) and fsid of the flexible volume,

whether it is online, being created or being destroyed, etc.

Fig. 10 is a schematic block diagram of an on-disk representation of an aggregate
1000. The storage operating system 300, e.g., the RAID system 380, assembles a physi-
cal volume of pvbns to create the aggregate 1000, with pvbns 1 and 2 comprising a
“physical” volinfo block 1002 for the aggregate. The volinfo block 1002 contains block
pointers to fsinfo blocks 1004, each of which may represent a snapshot of the aggregate.
Each fsinfo block 1004 includes a block pointer to an inode file 1006 that contains inodes
of a plurality of files, including an owner map 1010, an active map 1012, a summary map
1014 and a space map 1016, as well as other special meta-data files. The inode file 1006
further includes a root directory 1020 and a “hidden” meta-data root directory 1030, the

latter of which includes a namespace having files related to a flexible volume in which

10

15

20

25

WO 2006/118926 PCT/US2006/015917

23

users cannot “see” the files. The hidden meta-data root directory includes the WAFL/fsid/
directory structure that contains filesystem file 1040 and storage label file 1090. Note
that root directory 1020 in the aggregate is empty; all files related to the aggregate are
organized within the hidden meta-data root directory 1030.

In addition to being embodied as a container file having level 1 blocks organized
as a container map, the filesystem file 1040 includes block pointers that reference various
file systems embodied as flexible volumes 1050. The aggregate 1000 maintains these
flexible volumes 1050 at special reserved inode numbers. Each flexible volume 1050
also has special reserved inode numbers within its flexible volume space that are used
for, among other things, the block allocation bitmap structures. As noted, the block allo-
cation bitmap structures, e.g., active map 1062, summary map 1064 and space map 1066, -

are located in each flexible volume.

Specifically, each flexible volume 1050 has the same inode file structure/content
as the aggregate, with the exception that there is no owner map and no
WAFL/fsid/filesystem file, storage label file directory structure in a hidden meta-data root
directory 1080. To that end, each flexible volume 1050 has a volinfo block 1052 that
points to one or more fsinfo blocks 1054, each of which may represent a snapshot, along
with the active file system of the flexible volume. Each fsinfo block, in turn, points to an
inode file 1060 that, as noted, has the same inode structure/content as the aggregate with
the exceptions noted above. Each flexible volume 1050 has its own inode file 1060 and
distinct inode space with corresponding inode numbers, as well as its own root (fsid) di-
rectory 1070 and subdirectories of files that can be exported separately from other flexi-

ble volumes.

The storage label file 1090 contained within the hidden meta-data root directory
1030 of the aggregate is a small file that functions as an analog to a conventional raid la-
bel. A raid label includes physical information about the storage system, such as the vol-
ume name; that information is loaded into the storage label file 1090. Illustratively, the
storage label file 1090 includes the name 1092 of the associated flexible volume 1050,
the online/offline status 1094 of the flexible volume, and other identity and state informa-

15

20

25

30

WO 2006/118926 PCT/US2006/015917

24

tion 1096 of the associated flexible volume (whether it is in the process of being created

or destroyed).

F. VLDB

Fig. 11 is a schematic block diagram illustrating a collection of management pro-
cesses that execute as user mode applications 1100 on the storage operating system 300
to provide management of configuration information (i.e. management data) for the
nodes of the cluster. To that end, the management processes include a management
framework process 1110 and a volume location database (VLDB) process 1130, each
utilizing a data replication service (RDB 1150) linked as a library. The management
framework 1110 provides a user to an administrator 1170 interface via a command line
interface (CLI) and/or a web-based graphical user interface (GUI). The management
framework is illustratively based on a conventional common interface model (CIM) ob-
ject manager that provides the entity to which users/system administrators interact with a

node 200 in order to manage the cluster 100.

The VLDB 1130 is a database process that tracks the locations of various storage
components (e.g., SVSs, flexible volumes, aggregates, etc.) within the cluster 100 to
thereby facilitate routing of requests throughout the cluster. In the illustrative embodi-
ment, the N-blade 310 of each node accesses a configuration table 235 that maps the SVS
ID 502 of a data container handle 500 to a D-blade 350 that "owns" (services) the data
confainer within the cluster. The VLDB includes a plurality of entries which, in turn,
provide the contents of entries in the configuration table 235; among other things, these
VLDB entries keep track of the locations of the flexible volumes (hereinafter generally
“yolumes 910”) and aggregates 900 within the cluster. Examples of such VLDB entries
include a VLDB volume entry 1200 and a VLDB aggregate entry 1300.

Fig. 12 is a schematic block diagram of an exemplary VLDB volume entry 1200.
The entry 1200 includes a volume ID field 1205, an aggregate ID field 1210 and, in alter-
nate embodiments, additional fields 1215. The volume ID field 1205 contains an ID that
identifies a volume 910 used in a volume location process. The aggregate ID field 1210
identifies the aggregate 900 containing the volume identified by the volume ID field
1205. Likewise, Fig. 13 is a schematic block diagram of an exemplary VLDB aggregate

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
25

entry 1300. The entry 1300 includes an aggregate ID field 1305, a D-blade ID field 1310
and, in alternate embodiments, additional fields 1315. The aggregate ID field 1305 con-
tains an ID of a particular aggregate 900 in the cluster 100. The D-blade ID field 1310
contains an ID of the D-blade hosting the particular aggregate identified by the aggregate
ID field 1305.

The VLDB illustratively implements a RPC interface, e.g., a Sun RPC interface,
which allows the N-blade 310 to query the VLDB 1130. When encountering contents of
a data container handle 500 that are not stored in its configuration table, the N-blade
sends an RPC to the VLDB process. In response, the VLDB 1130 returns to the N-blade
the appropriate mapping information, including an ID of the D-blade that owns the data
container. The N-blade caches the information in its configuration table 235 and uses the
D-blade ID to forward the incoming request to the appropriate data container. All func-
tions and interactions between the N-blade 310 and D-blade 350 are coordinated on a
cluster-wide basis through the collection of management processes and the RDB library

user mode applications 1100.

To that end, the management processes have interfaces to (are closely coupled to)
RDB 1150. The RDB comprises a library that provides a persistent object store (storing
of objects) for the management data processed by the management processes. Notably,
the RDB 1150 replicates and synchronizes the management data object store access
across all nodes 200 of the clustqr 100 to thereby ensure that the RDB database image is
identical on all of the nodes 200. At system startup, each node 200 records the
status/state of its interfaces and IP addresses (those IP addresses it "owns") into the RDB

database.

G. Storage System Architecture

The present invention is related to a storage system architecture illustratively
comprising two or more volumes 910 distributed across a plurality of nodes 200 of clus-
ter 100. The volumes are organized as a SVS and configured to store content of data con-
tainers, such as files and luns, served by the cluster in response to multi-protocol data ac-
cess requests issued by clients 180. Notably, the content of each data container is appor-

tioned among the volumes of the SVS to thereby improve the efficiency of storage ser-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

26

vice provided by the cluster. To facilitate a description and understanding of the present

invention, data containers are hereinafter referred to generally as “files”.

According to an aspect of the invention, the SVS comprises a meta-data volume
(MDV) and one or more data volumes (DV). The MDV is configured to store a canoni-
cal copy of meta-data, including access control lists (ACLs) and directories, associated
with all files stored on the SVS, whereas each DV is configured to store, at least, data
content of those files. For each file stored on the SVS, one volume is designated the
CAV and, to that end, is configured to store (“cache”) certain, rapidly-changing attribute
meta-data associated with that file to thereby offload access requests that would other-
wise be directed to the MDV. In the illustrative embodiment described herein, determina-
tion of the CAV for a file is based on a simple rule: designate the volume holding the first
stripe of content (data) for the file as the CAV for the file. Not only is this simple rule
convenient, but it also provides an optimization for small files. That is, a CAV may be
able to perform certain operations without having to communicate with other volumes of
the SVS if the file is small enough to fit within the specified stripe width. Ideally, the
first stripes of data for files are distributed among the DVs of the SVS to thereby facili-
tate even distribution of CAV designations among the volumes of the SVS. In an alter-

nate embodiment, data for files is striped across the MDV and the DVs.

Fig. 14 is a schematic block diagram of the inode files of an SVS 1400 in accor-
dance with an embodiment of the present invention. The SVS 1400 illustratively com-
prises three volumes, namely MDV 1405 and two DVs 1410, 1415. It should be noted
that in alternate embodiments additional and/or differing numbers of volumes may be
utilized in accordance with the present invention. Illustratively, the MDV 1405 stores a
plurality of inodes, including a root directory (RD) inode 1420, a directory (DIR) inode
1430, file (F) inodes 1425, 1435, 1445 and an ACL inode 1440. Each of these inodes
illustratively includes meta-data (M) associated with the inode. In the illustrative em-
bodiment, each inode on the MDV 1405 does not include data (D); however, in alternate

embodiments, the MDV may include user data.

In contrast, each DV 1410, 1415 stores only file (F) inodes 1425, 1435, 1445 and
ACL inode 1440. According to the inventive architecture, a DV does not store directo-

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
27

ries or other device inodes/constructs, such as symbolic links; however, each DV does
store F inodes, and may store cached copies of ACL inodes, that are arranged in the same
locations as their respective inodes in the MDV 1405. A particular DV may not store a
copy of an inode until an I/O request for the data container associated with the inode is
received by the D-Blade serving a particular DV. Moreover, the contents of the files de-
noted by these F inodes are periodically sparse according to SVS striping rules, as de-
scribed further herein. In addition, since one volume is designated the CAV for each file
stored on the SVS 1400, DV 1415 is designated the CAV for the file represented by
inode 1425 and DV 1410 is the CAV for the files identified by inodes 1435, 1445. Ac-
cordingly, these CAVs cache certain, rapidly-changing attribute meta-data (M) associated
with those files such as, e.g., file size 615, as well as access and/or modification time

stamps 620.

According to another aspect of the invention, the SVS is associated with a set of
striping rules that define a stripe algorithm, a stripe width and an ordered list of volumes
within the SVS. The striping rules for each SVS are illustratively stored as an entry of
VLDB 1130 and accessed by SVS ID. Fig. 15 is a schematic block diagram of an exem-
plary VLDB SVS entry 1500 in accordance with an embodiment of the present invention.
The VLDB entry 1500 includes a SVS ID field 1505 and one or more sets of striping
rules 1530. In alternate embodiments additional fields 1535 may be included. The SVS
ID field 1505 contains the ID of a SVS which, in operation, is specified in data container
handle 500.

Each set of striping rules 1530 illustratively includes a stripe width field 1510, a
stripe algorithm ID field 1515, an ordered list of volumes field 1520 and, in alternate em-
bodiments, additional fields 1525. The striping rules 1530 contain information for identi-
fying the organization of a SVS. For example, the stripe algorithm ID field 1515 identi-
fies a striping algorithm used with the SVS. In the illustrative embodiment, multiple
striping algorithms could be used with a SVS; accordingly, stripe algorithm ID is needed
to identify which particular algorithm is utilized. Each striping algorithm, in turn, speci-
fies the manner in which file content is apportioned as stripes across the plurality of vol-
umes of the SVS. The stripe width field 1510 specifies the size/width of each stripe. The

ordered list of volumes field 1520 contains the IDs of the volumes comprising the SVS.

10

20

25

WO 2006/118926 PCT/US2006/015917

28

In an illustrative embodiment, the ordered list of volumes comprises a plurality of tuples
comprising of a flexible volume ID and the aggregate ID storing the flexible volume.
Moreover, the ordered list of volumes may specify the function and implementation of
the various volumes and striping rules of the SVS. For example, the first volume in the
ordered list may denote the MDV of the SVS, whereas the ordering of volumes in the list

may denote the manner of implementing a particular striping algorithm, e. g., round-robin.

A Locate() function 375 is provided that enables the VSM 370 and other modules
(such as those of N-blade 310) to locate a D-blade 350 and its associated volume of a
SVS 1400 in order to service an access request to a file. The Locate() function takes as
arguments, at Jeast (i) a SVS ID 1505, (ii) an offset within the file, (iii) the inode number
for the file and (iv) a set of striping rules 1530, and returns-the volume 910 on which that
offset begins within the SVS 1400. For example, assume a data access request directed
to a file is issued by a client 180 and received at the N-blade 310 of a node 200, where it
is parsed through the multi-protocol engine 325 to the appropriate protocol server of N-
blade 310.

To determine the location of a D-blade 350 to which to transmit a CF message
400, the N-blade 310 may first retrieve a SVS entry 1500 to acquire the striping rules
1530 (and list of volumes 1520) associated with the SVS. The N-blade 310 then executes
the Locate() function 375 to identify the appropriate volume to which to direct an opera-
tion. Thereafter, the N-Blade may retrieve the appropriate VLDB volume entry 1200 to
identify the aggregate containing the volume and the appropriate VLDB aggregate entry
1300 to ultimately identify the appropriate D-blade 350. The protocol server of N-blade
310 then transmits the CF message 400 to the D-blade 350.

Fig. 16 is a schematic block diagram illustrating the periodic sparseness of file
content stored on volumes A 1605, B 1610 and C 1615 of SVS 1600 in accordance with
an embodiment of the present invention. As noted, file content is periodically sparse ac-
cording to the SVS striping rules, which specify a striping algorithm (as indicated by
stripe algorithm ID field 1515) and a size/width of each stripe (as indicated by stripe
width field 1510). Note that, in the illustrative embodiment, a stripe width is selected to

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

29

ensure that each stripe may accommodate the actual data (e.g., stored in data blocks 806)

referenced by an indirect block (e.g., level 1 block 804) of a file.

In accordance with an illustrative round robin striping algorithm, volume A 1605
contains a stripe of file content or data (D) 1620 followed, in sequence, by two stripes of
sparseness (S) 1622, 1624, another stripe of data (D) 1626 and two stripes of sparseness
(S) 1628, 1630. Volume B 1610, on the other hand, contains a stripe of sparseness (S)
1632 followed, in sequence, by a stripe of data (D) 1634, two stripes of sparseness (S)
1636, 1638, another stripe of data (D) 1640 and a stripe of sparseness (S) 1642. Volume
C 1615 continues the round robin striping pattern and, to that end, contains two stripes of
sparseness (S) 1644, 1646 followed, in sequence, by a stripe of data (D) 1648, two stripes
of sparéeness (S) 1650, 1652 and another stripe of data (D) 1654.

H. Re-striping Operations

The present invention is directed to a system and method for re-striping one or
more data containers across a SVS that has been modified by the addition/removal of one
or more volumes. Illustratively, an administrator creates additional volumes using, e.g.,
conventional volume create commands available via the user interface of management
framework 1110. The newly-created additional volumes may be configured for service
by one or more D-blades 350 of the cluster 100; however, to achieve maximum load bal-

ancing, each additional volume is preferably serviced by a separate D-blade.

Fig. 17 is a flow chart detailing the steps of a procedure 1700 for performing a re-
striping operation in accordance with a first embodiment of the present invention. The
procedure 1700 begins in step 1705 and continues to step 1710 where an administrator
creates one or more additional volumes for use with a SVS. In step 1715, a new set of
striping rules (new rule set) 1530 is created, e.g., in response to a re-striping operation
request received by an N-blade 310 from the administrator. Creation of the new rule set
is illustratively effected via user interface operations that specify, in this embodiment,
any changes to the specific rules of the existing rule set. For example, although the stripe
algorithm 1515 and stripe width 1510 may remain the same, the new rule set incorporates
the additional volumes as constituents of the ordered list of volumes 1520 in the SVS. In

step 1720, the new rule set is marked as “new” and, in step 1725, installed in a SVS entry

15

20

25

30

WO 2006/118926 PCT/US2006/015917

30

1500 of the VLDB 1130. As described herein, any subsequent data access request re-
ceived at an N-blade 310 of a node 200 is processed in accordance with the new striping
rules. In addition, the existing rule set in the SVS entry 1500 is marked “o0ld” (step
1730).

In step 1735, the N-blade initiates the re-striping operation by instructing each D-
blade of each node about the re-striping request. As noted, the VSM 370 of each D-blade
350 is configured to implement the Locate() function 375 to compute the location of data
container content (i.e., a stripe) in its SVS volume. In step 1740, the VSM determines
whether the volume holds a stripe of a file affected by the re-striping operation. If not,
the procedure completes at step 1755. Otherwise, the VSM re-locates the content of the
stripe to the additional volume in accordance with the new striping rules (step 1745). As
described further herein, data relocation illustratively occurs as a background procedure
to ensure that D-blades prioritize servicing of subsequent data access requests issued by
clients. Upon completion of data relocation among the additional volumes, the old set of
striping rules is deleted from the SVS entry of the VLDB in step 1750 and the procedure
ends at Step 1755.

Fig. 18 is a schematic block diagram of an exemplary SVS 1800 after the addition
of a volume (volume D) 1805 to the striped volume set 1600 of Fig. 16. Initially, after
creation of volume 1805 and prior to re-striping, the entire contents of that volume reflect
stripes of sparseness (S). However, after completion of the re-striping procedure of Fig.
17, the contents of volume 1805 are modified according to a specific striping algorithm.
Fig. 19 is a schematic block diagram of an exemplary SVS 1900 after completion of the
re-striping procedure of Fig. 17. Assuming a round robin striping algorithm, volume D
1805 has been fully integrated into the SVS and, as such, contains a stripe of data (D)
1814 in round-robin relation to the other stripes of data (D) across the volumes of SVS
1900. Specifically, volume D 1805 contains three stripes of sparseness (S) 1808, 1810,
1812, followed, in sequence, by one stripe of data (D) 1814 and two stripes of sparseness
(S) 1816, 1818. It should be noted that in other embodiments, other striping algorithms
may be utilized which will result in different striping patterns and sequences once addi-

tional volume(s) have been integrated into the SVS.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

31

As noted, any data access request received at an N-blade 310 of a node 200 sub-
sequent to the initiation of the re-striping procedure 1700 is processed in accordance with
the new striping rules. However, if a subsequent data access request is forwarded to a D-
blade 350 of an additional volume that has yet to receive the re-located content of a stripe
according to the new striping rules, the VSM 370 of the D-blade serving that volume uses
the old set of striping rules to retrieve the data from the volume currently storing the
stripe so that it may promptly service the request. Fig. 20 is a flowchart detailing the
steps of a procedure 2000 for processing a data access request directed to a volume of a
SVS prior to completion of a re-striping operation in accordance with an embodiment of
the present invention. The procedure begins in step 2005 and continues to step 2010
where a VSM of a D-blade receives the request directed to its volume of the SVS. In step
2015, the VSM determines whether the stripe to which the request is directed is present
on the volume. If so, the VSM, in cooperation with the file system 360, processes the
request according to conventional techniques in step 2035. An example of a conventional
technique for processing data access requests directed to a SVS is described in the above-
referenced U.S. Patent Application entitled STORAGE SYSTEM ARCHITECTURE
FOR STRIPING DATA CONTAINER CONTENT ACROSS VOLUMES OF A
CLUSTER. The procedure then completes in step 2040.

However, if the stripe is not present on the volume (thus denoting an additional
volume that has yet to receive the re-located content on the stripe), the procedure
branches to step 2020 where the VSM retrieves the content of the requested stripe from
the D-blade of the volume that currently stores the stripe. To that end, the VSM imple-
ments the Locate() function 375 to compute the location of the stripe (data container con-
tent) using the old set of striping rules maintained in the SVS entry 1500. Such inter-D-
blade data retrieval may be performed by generating appropriate CF messages 400 trans-
ferred over the cluster switching fabric 150. Upon retrieving the content of the requested
stripe, the VSM 370 writes the content (data) to the appropriate stripe on its volume (step
2025). In step 2030, the VSM cooperates with the file system to process the request and

the procedure completes in step 2040.

As can be appreciated, the procedure 2000 operates to ensure that stripes are re-

located to their proper locations in response to data access requests directed to the stripes.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
32

However, the content of certain stripes may not be accessed for substantial periods of
time, resulting in a slow re-striping procedure. To expedite re-striping, data relocation
illustratively occurs as a background procedure to constantly, but non-disruptively, move
file content in accordance with the new set of striping rules. Fig. 21 is a flow chart detail-
ing the steps of a background procedure 2100 for re-locating data in accordance with an
embodiment of the present invention. The procedure 2100 begins in step 2105 and con-
tinues to step 2110 where the VSM selects a non-sparse stripe within a volume serviced
by its D-blade. In step 2115, the VSM determines whether the selected stripe belongs on
the volume according to the new set of striping rules using, e.g., the Locate() function. If

so, the procedure branches to step 2135.

However, if the selected stripe does not belong the volume, the VSM determines
on which volume the stripe should reside (step 2120) using, e.g., the Locate() function in
connection with the new set of striping rules. In step 2125, the VSM forwards the con-
tent of the stripe to the D-blade serving the appropriate volume and the stripe content is
stored at the appropriate location. In step 2130, the VSM deletes its local copy of the
stripe from its volume to ensure the volume remains periodically sparse. In step 2135,
the VSM determines whether there are additional stripes to be checked. If so, the proce-
dure returns to step 2110; otherwise, the procedure completes in step 2140.

In a second embodiment of the invention, a SVS 1400 is associated with multiple
(e.g., new and old) sets of striping rules, each defining a stripe algorithm, a stripe width
and an ordered list of volumes distributed across a plurality of nodes in the cluster. Here,
the new set of striping rules is used for any newly created data containers (files) stored on
the SVS, while the old set of striping rules is used for all existing files stored on the SVS.
For example, a fourth volume (volume 1805) added to a three volume SVS (SVS 1800) is
not used in the SVS until such time as a new file is created. Yet once the new file is cre-
ated, the content (data) of that file is striped across all four volumes in accordance with .
the new striping rules. This technique may be expanded by, for example, adding a fifth
volume and yet another set of striping rules such that files may be striped across three,
four or five volumes of the SVS. Essentially, each file in the SVS is associated with a set
of striping rules. This second embodiment of the invention advantageously enables sub-

stantially instantaneous re-striping of new files without disrupting the existing files.

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917

33

According to an aspect of the invention, the association between a data container
(file) and set of striping rules is illustratively effected through the use of an additional
field added to the data container handle 500 used to access the file. The data container
handle is convenient for rendering such an association because it is accessible by the N-
blade 310, which needs to know the appropriate set of striping rules for the file when de-
termining to which D-blade 350 (and volume) to re-direct a data access request. Fig. 22
is a schematic block diagram of the format of a data container handle 2200 that is modi-
fied to include an additional field 2210 configured to store an identifier (ID) of a striping
rule set. Note that the field 2210 may illustratively replace the unique-ifier field 506.

Alternatively, a generation value 2220 of the data container handle can be ma-
nipulated (i.e., “overloaded™) to identify the set of striping rules to be applied to the data
container. Here, each striping rule set is associated with a particular range of generation
values. For example, a first rule set may be associated with generation values 0-
1,000,000 and a second rule set may be associated with generation values of 1,000,001 —
2,000,000, etc. For this alternative embodiment, there may be no need to modify the data
container handle 500, as each handle typically includes a generation value 2200. When
creating a new set of striping rules, a new “floor” may be placed on the generation value,
so that a file (inode) allocated after the creation of the new rule set will have a generation
value 2200 sufficiently large to require use of the new-created set of striping rules. This
generation value floor is illustratively stored in a generation value floor field 1517 of the

striping rules 1530.

Fig. 23 is a flow chart detailing the steps of a procedure 2300 for performing a re-
striping operation in accordance with a second embodiment of the present invention. The
procedure 2300 begins in step 2305 and continues to step 2310 where an N-blade 310
receives a data access request directed to a data container (file) of a SVS. In step 2315,
the N-blade determines which volume of the SVS stores the desired stripe of the file. In
the embodiment where the data container handle is modified to include the rule set ID
2210, the N-blade invokes the Locate() function 375 using the rule set ID and appropriate
offset to identify the volume. In step 2320, the N-blade forwards the request to the D-
blade 350 serving the volume and, in step 2325, the VSM 370 of the D-blade cooperates

10

15

20

25

30

WO 2006/118926 PCT/US2006/015917
34

with the file system 360 to process the request. The procedure then completes in step
2330.

Fig. 24 is a schematic block diagram of an exemplary SVS 2400 after the re-
striping operation in accordance with the second embodiment of the present invention.
Assume that for each set of striping rules, the striping algorithm remains the same, e.g., a
round-robin algorithm. Initially, content for a first file, File A (Fa), is striped across three
original volumes 2402, 2404 and 2406 of SVS 2400 according to a first set of striping
rules. As a result, F5 occupies stripes 2412, 2430, 2448, 2418, 2436, 2454, 2424 and
2442 of SVS 2400. At some later point in time, a fourth volume 2408 is added to the
SVS 2400 and a second file, File B (Fp), is striped across the four volumes 2402-2408
using a new set of striping rules. Fp consequently occupies stripes 2414, 2432, 2450,
2468, 2420, 2438, 2456 and 2474 of the SVS. Notably, although Fg has been striped
across all four volumes of the SVS, F, remains striped across the original three volumes.
At yet another later point in time, a fifth volume 2410 is added to the SVS 2400 and a
third file, File C (F), is striped across the five volumes 2402-2410 using yet another new
set of striping rules. Therefore, Fc occupies stripes 2416, 2434, 2452, 2470, 2488, 2422,
2440 and 2458. It is thus apparent that this second re-striping embodiment does not
guarantee full re-striping of all files across all volumes in a SVS until each “older” file is
deleted.

The foregoing description has been directed to particular embodiments of this in-
vention. It will be apparent, however, that other variations and modifications may be
made to the described embodiments, with the attainment of some or all of their advan-
tages. Specifically, it should be noted that the principles of the present invention may be
implemented in non-distributed file systems. Furthermore, while this description has
been written in terms of N and D-blades, the teachings of the present invention are
equally suitable to systems where the functionality of the N and D-blades are imple-
mented in a single system. Alternately, the functions of the N and D-blades may be dis-
tributed among any number of separate systems, wherein each system performs one or
more of the functions. Additionally, the procedures, processes and/or modules described
herein may be implemented in hardware, software, embodied as a computer-readable

medium having program instructions, firmware, or a combination thereof. Therefore, it is

WO 2006/118926 PCT/US2006/015917

35

the object of the appended claims to cover all such variations and modifications as come

within the true spirit and scope of the invention.

What is claimed is:

WO 2006/118926 PCT/US2006/015917

36

CLAIMS

1. A method for restriping data across a striped volume set, the method comprising
the steps of:
_creating a new striping rule set identifying a sef: of volumes to be utilized as the
striped volume set;
in response to receiving an operation directed to a stripe of the data, determining
if the stripe is located on a correct volume of the set of volumes; and
in response to determining that the stripe is not located on the correct volume, re-

locating the stripe to the correct volume before processing the received operation.

2. The method of claim 1 further comprising the steps of:

for each stripe in the striped volume set, determining if the stripe is located on a
correct volume;

in response to determining that the stripe is not located on the correct volume, re-

locating the stripe to the correct volume.

3. The method of claim 1 wherein the step of relocating the stripe comprises the step

of copying the stripe from a current volume to the correct volume.

4, The method of claim 1 wherein the step of determining if the stripe is located on
the correct volume of the set of volumes comprises the step of using a locate function

with the new striping rule set to determine the correct volume.

5. A system for reétriping data across a striped volume set, the system comprising:
means for creating a new striping rule set identifying a set of volumes to be util-
ized as the striped volume set;
means for determining, in response to receiving an operation directed to a stripe

of the data, if the stripe is located on a correct volume of the set of volumes; and

SUBSTITUTE SHEET (RULE 26)

WO 2006/118926 PCT/US2006/015917

37

means for relocating, in response to determining that the stripe is not located on
the correct volume, the stripe to the correct volume before processing the received opera-

tion.

6. The system of claim 5 further comprising:

means for determining, for each stripe in the striped volume set, if the stripe is lo-
cated on a correct volume; and

means for relocating, in response to determining that the stripe is not located on

the correct volume, the stripe to the correct volume.

7. The system of claim 5 wherein the means for relocating the stripe comprises

means for copying the stripe from a current volume to the correct volume.

8. The system of claim 5 wherein the means for determining if the stripe is located
on the correct volume of the set of volumes comprises means for using a locate function

with the new striping rule set to determine the correct volume.

9. A computer readable medium for restriping data across a striped volume set, the
computer readable medium including program instructions for performing the steps of::

creating a new striping rule set identifying a set of volumes to be utilized as the
striped volume set;

in response to receiving an operation directed to a stripe of the data, determining
if the stripe is located on a correct volume of the set of volumes; and

in response to determining that the stripe is not located on the correct volume, re-

locating the stripe to the correct volume before processing the received operation.

10. A system for restriping data across a striped volume set, the system comprising:
a plurality of computers, each of the plurality of computers comprising a con-
tainer striping module, each container striping module adapted to determine, for each

stripe in the striped volume set, if the stripe is currently located on a correct volume and,

SUBSTITUTE SHEET (RULE 26)

WO 2006/118926 PCT/US2006/015917

38

in response to determining that the stripe is not on a correct volume, relocating the stripe

to the correct volume.

11. The system of claim 10 wherein the determination of whether the stripe is on the
correct volume is made by a locate function that analyzes an inode, an offset and a set of

striping rules.

12. The system of claim 11 wherein the set of striping rules comprises an ordered list

of volumes.

13. A method for restriping data across a striped volume set, the method comprising
the steps of:

receiving a command directed to a file in the striped volume set;

determining which of a plurality of volumes of the striped volume set stores a
stripe associated with the received command, the determination being made by selecting
one of a plurality of striping rules associated with the striped volume set; and

forwarding the received command to a computer serving the volume storing the

stripe associated with the command.

14. The method of claim 13 wherein the step of selecting one of a plurality of file
striping rules associated with the striped volume set comprises the step of analyzing a

striped volume set identifier in a file handle associated with the received command.

15. The method of claim 13 wherein the step of selecting one of a plurality of striping
rules associated with the striped volume set comprises the step of analyzing an inode
generation value associated with an inode associated with a data container being operated

on by the received command.

SUBSTITUTE SHEET (RULE 26)

WO 2006/118926 PCT/US2006/015917

39

16. The method of claim 15 wherein each of the plurality of striping rules comprises a
generation value floor that identifies which inodes are associated each of the plurality of

striping rules.

17. A system for restriping data across a striped volume set, the system comprising:
means for receiving a command directed to a file in the striped volume set;
means for determining which of a plurality of volumes of the striped volume set

stores a stripe associated with the received command, the determination being made by ‘

selecting one of a plurality of striping rules associated with the striped volume set; and
means for forwarding the received command to a computer serving the volume

storing the stripe associated with the command.

18. The system of claim 17 wherein the means for selecting one of a plurality of strip-
ing rules associated with the striped volume set comprises means for analyzing a striped

volume set identifier in a file handle associated with the received command.

19. The method of claim 17 wherein the means for selecting one of a plurality of
striping rules associated with the striped volume set comprises means for analyzing an
inode generation value associated with an inode associated with a data container being

operated on by the received command.

20. A computer readable medium for restriping data across a striped volume set, the
computer readable medium including program instructions for performing the steps of:
- receiving a command directed to a file in the striped volume set;
determining which of a plurality of volumes of the striped volume set stores a
stripe associated with the received command, the determination being made by selecting
one of a plurality of striping rules associated with the striped volume set; and
forwarding the received coimmand to a computer serving the volume storing the

stripe associated with the command.

21. A system for restriping data across a siriped volume set, the system comprising:

SUBSTITUTE SHEET (RULE 26)

WO 2006/118926 PCT/US2006/015917

40

one or more storage servers having a cc;ntajner striping module adapted to process
commands directed to the striped volume set; and

at Jeast one multi-protocol engine having a cluster fabric interface module adapted
to determine which of a plurality of striping rules to utilize in processing a received
command, the cluster fabric interface module further adapted to forward the received
command to one of the one or more storage servers for processing in response to deter-

mining which of the plurality of striping rules to utilize.

SUBSTITUTE SHEET (RULE 26)

PCT/US2006/015917

WO 2006/118926

1/20

I Old

021 Avedv MsId

002 3AON
ost ock oie
<
Msia Msia 3Iavig-N /
olygav4 08t
ONIHOLIMS NSO
¥3a1sn1o
00Z 3AON
[
MsIa

PCT/US2006/015917

WO 2006/118926

2/20

¢ 9l4

\ll/

gez
Iavi
05t 914NOD
ozZh oidav4 —
AVYYY ONIHOLIMS 082 08t
ysia H3LsnNo JOVHOLS SIN3D
WO¥4/0L WoYH/0L o0 WOY4/0L
_ 244 572
see y3idvay
H3LdVaVY §S300V d3aldvay
JOVHOLS HALSNTO MHOMLAN
3 | |
| 1 ez |
— B777
r474 0% Z2¢
HOSSIDONd W31LSAS HOSSIOONUd
ONILYYIdO
FOVHOLS
¥ee AHOWIN

002

PCT/US2006/015917

WO 2006/118926

3/20

g9¢e
H3IAEIS
J9VHOLS

¢ Old

cig

423

06€ $S300V §S390V
W3 LSAS H3AIKMA MSIA vIaan VIa3an
o FIE 753
08¢ di di
WILSAS Qivy
oee 9L Glg 9i¢
ooE o doL dan dol 57
IWSL1SAS 314 INIONT
I == 7000104d
828 9ce LN
ISOS! A
p— 1Z43 F443 0z¢
gee dLtH | sdID | S4N —
31NAON 81e
0ZE WSA 1394VL 1S0S sdva
P2 R
GOFE IOV-HILNI 4D fa == B0FE FOVAUILNI 40
_ m — v
- ' oLp . TN
0S¢ 3avia-a 7000104d 49 0l€ 3AvIg-N
N 00

WO 2006/118926

PCT/US2006/015917
4/20
400
CF PROTOCOL 410
RC 408
UDP 406
P 404
MEDIA ACCESS 402
500
SVs INODE | UNIQUE-IFIER | STRIPED | STRIPING EPOCH
ID NUMBER FLAG NUMBER
502 504 506 508 510

FIG. 5

WO 2006/118926 PCT/US2006/015917

5/20
600
v !
1
: META-DATA SECTION 605 "
_____________________________ 1
: !
! TYPE 610 |
1 1
: SIZE 615 !
! TIME STAMP 620 E
1
: uID 625 |
1
' GID 630 |
{
! GENERATION NUMBER 631 ;
1
i META DATA INVALIDATION FLAG 634 !
1
: !
! 1
' t
! DATA SECTION 660 E
! !
! 1
: i
! DIRTY BIT 670 E
1
1

WO 2006/118926

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

LEVEL
1
BLOCKS

LEVEL
0
BLOCKS

PCT/US2006/015917

6/20
INODE 702
POINTER POINTER
705 |°° 705

INDIRECT BLOCK 704 INDIRECT BLOCK 704
POINTER POINTER POINTER POINTER
DATA DATA DATA | DATA
BLOCK . BLOCK BLOCK ceo BLOCK
706 706 706 706

FIG. 7 FILE 700
INODE 802
PVBN/VVBN PVBN/VVEN
POINTER PAIR | »«+| POINTER PAIR
808 808

/

\

INDIRECT BLOCK 804

INDIRECT BLOCK 804

PVBN/VVBN
POINTER
PAIR

808

FIG. 8

PVBN/VVBN PVBN/VVEN | PVBN/VVBN
POINTER POINTER POINTER
cee PAIR PAIR coe PAIR
808 808 808
—T _ /
DATA DATA DATA
ces BLock | | BLOCK cos BLOCK
806 806 806
FILE 800

WO 2006/118926 PCT/US2006/015917

7120

960

0
“— RAID GROUP

E 910

FILE
908

FLEXIBLE VOLUM

RAID PLEX 950

FIG. 9

AGGREGATE 900

QTREE
906

DIR
904

FLEXIBLE VOLUME 910

LUN
902
|

960

RAID GROUP _/

60/ 3JLVLS ONV ALLLNAA-

$60F SMLVLS INITI40/ENITNO- e
Z60F IWVN IWNITOA 3T4IX3T4

060 34 138V1 IOVHOLS

PCT/US2006/015917

8/20

] O0ror T4 WALSAST IS
QiS44vm Al_
050F IWNTOA 2791X3714
0801 0c0r
AMOLO3¥Ia AHOLOFMIA
100 Looy
v.iva viva
VIIN g ViAW - g
N3aaH NaaaiH OF mU_ ..n_
0207 0cor
A¥OLO3NId AHOLOFNIA
1008 [1008 [€=
990% gror
dvn dviy
Fovds = 30vds |4
$G0L F00%
0078 M0014
F90L O4NISH FI0T QOdNISH
dvi dvi re .
AUVINNNS AYYANNNS .
L]
2901 ¥50F 2501 Zior | —1 35o0or #00F Z00}
dvi 0074 w018 | [dviN ENIE 00719 o014
3AILOV O:NISH | OSNITOA 3AILOV SAON! [@e=f O:NISH @ O3NITOA
L]
. 0I0%
dviN
_ uanvo [AJ
050F IWNTOA 319IX3 14 < 0001

WO 2006/118926

WO 2006/118926 PCT/US2006/015917

9/20

1100
cLl
ADMINISTRATOR '\ggm(ésvl\gﬂ‘g VLDB
1170 WEB (GUI) 1110 1130

RDB RDB
1150 1150

FIG. 11

WO 2006/118926

10/20

PCT/US2006/015917

1200

VOLUME ID

~a
N
S
[$73

AGGREGATE ID

~
N
~\
(]

|

~
-~
)]

FIG. 12

1300

AGGREGATE ID

1305

D-BLADE ID

-
g
(=]

~
-
O

FIG. 13

PCT/US2006/015917

WO 2006/118926

11/20

oot

vl Old

A

a la a a
Tn | W
4 1oV 4 4
o’ om” aent” —
a i a a a
W W W
4 1oV 4 4
o’ o’ cers” ozrt”
a a a a a a
W W W W W W
4 1oV 4 ¥ia 4 ay
o’ ovws” cers” oers” ozr” ozrt”

Sivl
Ad

(1]5 4%
NG

sorl
AGN

WO 2006/118926 PCT/US2006/015917
12/20
1500
SVSID 1505
p
STRIPE WIDTH 1510
STRIPING STRIPE ALGORITHM ID 1515
RULES <
1530 VOLUMES [] 1520
. 1525
\ []
M 1535

FIG. 15

PCT/US2006/015917

WO 2006/118926

13/20

009}

91 Ol

S S
vmww\ wav\ 099} mvmh\ mwmw\ Eumh\
a S
cr9l ove\ 8€9. 9€91 eIl Nmmh\
S a
€91 wwmh\ 9294 vegl 2colt owoh\

Glol
3 IANTOA

0L94
9 3INNTOA

G091
Vv INNTOA

WO 2006/118926 PCT/US2006/015917

14/20

1705 /

CREATE ONE OR MORE VOLUMES FOR USE WITH SVS L— 1710

v

CREATE A NEW SET OF STRIPING RULES

v

MARK THE NEW RULE SET AS “NEW" L— 1720

v

INSTALL THE NEW RULE SET IN SVS ENTRY

v

MARK THE EXISTING RULE SET IN SVS ENTRY AS “OLD” p— 1730

v

1700

~— 1716

~— 1725

— 1735
INITIATE RE-STRIPING OPERATION
1745 1750
1740 L L
s VES c%’quT%?ﬁrTgF DELETE OLD
SET OF
STRIPE (E)";‘ STRPETO [P SsTRIPING
VOLUME? ADDITIONAL RULES
VOLUME

FIG. 17

PCT/US2006/015917

WO 2006/118926

15/20

0081

8l Old

S S S S
8181 9181 1427 / th:‘\ ohm;.\ momh\
S a S S
vG9. cq9t 08994 / 8r9. / 9v94 / vy9i %
S S a S
4474 0v91 8€9l % 9€91 / vE9L % cE9l %
a) S a
0€91 8¢9t 9¢91 / 4] 3 4 [44°] % 029} %

G081
a 3InNToA

Gi91
O JANTOA

091
g JANTOA

G609}
Y INNTOA

PCT/US2006/015917

WO 2006/118926

16/20

0061

61 Ol

S a S S

8181 chmh\ Ems\ ths\ ohw“\ 808!
S) a S

141 ca9l / 0594 / 8v9l / 9791 % 42°]3
S S S a

4 4°)3 079} / 8€9} / 9€91 / €91 / ce9l
a S) S

0e9l 829t / 929} / ¥ecol / ¢col % 0291

Go8t
a aInNToA

GL9t
O FNNTOA

0i91
g 3NNTOA

G094
Y JANTOA

WO 2006/118926 PCT/US2006/015917

17/20
2000
2005
CSM RECEIVES OPERATION | — 2010
REQUEST DIRECTED TO
VOLUME OF SVS
2015
NO STRIPE YES
PRESENT ON
VOLUME?
2035
Z
RETRIEVE CONTENT FROM PROCESS REQUEST
VOLUME CURRENTLY
STORING STRIPE
l 2025
Z
WRITES DATA
TO STRIPE

l 2030
Z

PROCESS REQUEST

2040

FIG. 20

WO 2006/118926

YES

18/20

2105

2100

seLecT sTRIPE | 2170

SELECTED

STRIPE BELONGS ON
THIS VOLUME?

DETERMINE WHICH
VOLUME STRIPE
SHOULD RESIDE

l 2125
Z

APPROPRIATE VOLUME

FORWARD STRIPE TO
D-BLADE SERVING

l 2130
Z

DELETE STRIPE
LOCALLY

ADDITIONAL
STRIPES TO CHECK?

FIG. 21

YES

PCT/US2006/015917

WO 2006/118926 PCT/US2006/015917
19/20
2200
_______ 1
RULE SET | GENERATION | Svs INODE | UNIQUE-IFIER |
ID VALUE ID NUMBER I
2210 2200 502 504 506 .'.
1
_________ 1

FIG. 22

2305

2300

N-BLADE RECEIVES DATA ACCESS REQUEST

DIRECTED TO SVS

L—2310

v

DETERMINE WHICH VOLUME STORES THE DESIRED STRIPE |~ 2315

v

FORWARD THE REQUEST TO
D-BLADE SERVING VOLUME

—2320

v

PROCESS REQUEST

2325

FIG. 23

PCT/US2006/015917

WO 2006/118926

20/20

v¢ Old

S oF S S S S S S

06¥2 7 mmvw\ 9852 / 145144 / z8re / omwm\ 8.ve / 9/ve 7

g4 S 04 g4 S S S S

vive 7 cive ’ 0.vC % 89v¢ / 9972 / 125144 / cove / 09%¢ /

04 a4 V4 04 84 V4 S S
mmwm\ 96ve % ¥582 4 zsve % 05¥2 ’ 8rve / orve % 4444 %

vy 04 a4 V4 94 EE| V4 S

4 444 % orve / 8€6¢ / 9Ere / veve / cere / oere / 8cve /

a4 V4 04 g4 V4 J4 a4 V4

\ mwww\ wmvw\ vaw\ omwmq\ mt&\ mhvw\ w:&\ N:»N\

oove

olve
3 INNTIOA

807¢
a aINATOA

90¥¢ -
O INNTOA

yove
g 3NNT0A

core
v INNTOA

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

