热熔挤出的控制释放剂型

本发明系关热熔挤出的控制释放剂型，具以控制的方式释出被埋置在包含聚合物(C)的基质中的药物活成成分(A)，该剂型呈现出具有至少300牛顿的破裂强度且具有椭圆形状，其包含纵向延伸方向，与该纵向延伸方向成直角的横向延伸方向，正面、对立的背面以及处于该正面和该背面之间的周围边缘，其中该药物剂型的核具有因热熔挤出所造成的形态取向，其实质上与该剂型的纵向延伸方向成直角，该热熔挤出的控制释放剂型(A)由该正面和该对立的背面的每单位面积的释出比由该周围边缘的释出更快。
1. 热熔挤出的药物剂型，其以控制的方式释出药理活性成分 (A)，药理活性成分 (A) 被埋置在包含聚合物 (C) 的基质中，该剂型具有椭圆形状，其包含纵向的延伸方向，与该纵向延伸方向互成直角的横向延伸方向，正面、对立的背面和处于所述的正面和背面之间的周围边缘 (rim)；

其中
- 该药物剂型的核具有因热熔挤出所造成的形态取向，其实质上有与该剂型的纵向延伸方向成直角；和 / 或
- 该药物活性成分 (A) 通过该正面和该对立的背面每单位面积的释出比通过该周围边缘的释出更迅速。

2. 根据权利要求 1 的剂型，其中该因热熔挤出所造成的形态取向实质上与该剂型的横向延伸方向成直角。

3. 根据权利要求 1 或 2 的剂型，其包含单片整体式的核。

4. 根据前述权利要求中任一项的剂型，其中该药物活性成分 (A) 为阿片类物质。

5. 根据前述权利要求中任一项的剂型，其中该聚合物 (C) 是聚亚烷基氧化物，其所具有的重均分子量至少为 200,000 克 / 摩尔。

6. 根据前述权利要求中任一项的剂型，其中该聚合物 (C) 的含量至少为 30 个重量百分，其是以该剂型的总重量为依据。

7. 根据前述权利要求中任一项的剂型，其中该纵向延伸方向与该横向延伸方向的相对长度比至少为 1.1 : 1。

8. 根据前述权利要求中任一项的剂型，其包含膜衣涂层。

9. 根据前述权利要求中任一项的剂型，其是在体外的条件下在人工胃液中依据下列的释出曲线释出该药物活性成分 (A)：

 在 0.5 小时后至少 5 个重量百分，
 在 1 小时后至少 10 个重量百分，
 在 3 小时后至少 20 个重量百分，
 在 6 小时后至少 35 个重量百分，和
 在 12 小时后至少 55 个重量百分，

其是以最初被包含在该剂型中的药物活性成分 (A) 的总重量为依据。

10. 制造热熔挤出的药物剂型的方法，该药物剂型以控制的方式释出药物活性成分 (A)，药物活性成分 (A) 被埋置在包含聚合物 (C) 的基质中，该剂型呈现至少 300 牛顿的破裂强度且具有椭圆形状，其包含纵向的延伸方向，与该纵向延伸方向互成直角的横向延伸方向，正面、对立的背面和处于所述的正面和背面之间的周围边缘，该方法包含下列的步骤：

 (a) 以热熔方式将包含
 - 药理活性成分 (A) 和
 - 聚合物 (C)
 的物质团块从椭圆形的模具中挤出，因此得到具有椭圆形横切面的挤出物；

 (b) 将所述的挤出物切割成小片段，它们具有两个对立的椭圆形切削面；

 (c) 将所述的小片段以放入包含上冲模和下冲模的制片工具中，放入的方式使得这些
对立的椭圆形面分别与所述的上冲模和下冲模相对；
(d) 将这些小片段压制成剂型；和
(e) 可任选地涂覆膜衣涂层。

11. 根据权利要求 10 的方法，其用于制造根据权利要求 1-9 中任一项的剂型。
12. 根据权利要求 10 或 11 的方法，其中步骤 (a) 是利用双螺杆挤出机进行的。
13. 根据权利要求 10 至 12 中任一项的方法，其中由步骤 (b) 所取得小片段的总表面积的至少 50% 由该两个对立的切削面所形成。
14. 热熔挤出的药物剂型，其由根据权利要求 10 至 13 中任一项的方法所制得。
热熔挤出的控制释放剂型

技术领域
[0001] 本发明是关于热熔挤出的控制释放剂型，其呈现出经过增强的破裂强度（抗破碎）。该药物剂型的特征为具有经过改变的、在该剂型中所含有药理活性化合物的释出曲线图。

背景技术
[0002] 对许多药物活性化合物而言，以片剂口服方式摄取这些活性化合物是较优选的方式。已经十分清楚，释出药物活性成分的模式可以被改变，而此取决于该活性成分如何被配制成片剂的方式。在此方面，提供控制释放在时间的片剂是非常重要的。在控制释放在片剂方面，必须要留意的是该药物活性成分在任何情况下都不会以不经控制（“剂量倾倒”）的方式完全有瞬间被释出，因为通常用于控制型，尤其是使用于延缓型释出片剂的剂量比使用在非延缓型释出片剂的剂量要高出很多，而此可能会导致严重的不良作用或甚至死亡，而此取决于活性成分和其药效强度。

[0004] 最近有报告提出破裂强度（抗破碎）经过增强的药物剂型。除了药物剂型的类型外，也可以呈现出某种程度控制释放在该剂型中所含有药理活性化合物。该类药物剂型的主要优点在于以常规的方法，诸如在研钵中研磨或是用棒槌击碎的方式将这些剂型粉碎，特别是研磨粉未是不可行的，或至少实质上是被阻碍的。

[0005] 在另一方面，破裂强度经过增强的药物剂型在避免滥用该剂型中所含有的药理活性化合物方面是有帮助的。许多药物活性化合物，除在它们适切的应用上具有优越的活性外，也具有被滥用的潜在可能性，也就是说这些活性化合物可被药物滥用者所使用并发生所预期作用之外的效果。例如鸦片，其在对抗严重到非常严重的疼痛方面具有高的活性，经常被药物滥用者所使用以产生一种麻醉或兴奋的状态。为使药物可以被滥用，相关的药物剂型，诸如片剂或胶囊，被药物滥用者粉碎成粉末，例如在研钵中研磨成粉末，然后使用较优选为水性的液体从该生成的粉末中萃取出活性化合物，该生成的溶液，任选地经过棉绒或纤维素纸的过滤后，以不经肠胃道的方式，尤其是以经由静脉注射的方式被送入到体内。该种给药方式的另外一种现象，与滥用型的口服给药方式相比较，更进一步加速增加活性化合物的浓度，这能够产生药物滥用者所要的作用，即为“后劲”或“冲劲”。如果被研成粉末的药物剂型以经由鼻腔的途径，也就是以用鼻子吸入的方式给药时，此种后劲也会产生。因为含有有可能被滥用的活性化合物的控制释放在药物剂型，当甚至在以滥用的大量经由口腔方式服用，该类药物剂型也因为研磨成粉末，并被萃取以图加以滥用时，不会产生药物滥用者产生所要的后劲作用。然而，显示出破裂强度经过增强的药物剂型不可以传统的方法

[0006] 另一方面，破裂强度经过增强的药物剂型在避免在该剂型中所含的药理活性化合物出现（非故意）剂量过量方面是有帮助的，其中剂量过量另外由于被制成粉末而可延缓作用减少所致。目前已知有许多患者，尤其是较年老的患者在服用固体药物剂型，诸如片剂、明胶胶囊等药理活性化合物方面有出现困难的现象。这些患者被这些剂型喂食气管，故有时候会对此类药物剂型出现明显的反感。为处理此问题，于是发展出许多种各式各样的设备装置，利用该种设备可将传统的固体药物剂型粉碎或研成粉末（片剂粉碎机）。该类型的设备例如会被老人疗养院中的护理人员所使用。这些药物剂型然后不是以片剂，而是以粉末的形式被给予被照顾的人们，以克服有关在吞咽片剂方面的困难。但是，如果当药物剂型为延长型释出的制剂时，则以该类型的设备粉碎这些药物剂型就会出现问题。通常，粉碎会造成具有延长释出功能的药物剂型内部结构受到破坏，因而失去延长释出的作用。因此，在给药之后，所有原本包含在该药物剂型中的药理活性物质经常在相当短的时间内即全部被释出，由此在相当短的时间范围即突然达到该物质相对很高的血浆浓度。由此方式，原先是延长型释出的制剂却变成立即释出的制剂。然而，根据该物质的药理活性不同，此种情形可能会导致相当程度的副作用，且在极端的条件下甚至可能会造成患者死亡。但是，破裂强度经过增强的药物剂型却无法被片剂粉碎机所粉碎，因此必须以整颗片剂的形式加以吞噬，所以可以避免任何可能出现（非故意）的剂量过量的问题。有关这一方面，可进一步参考，例如WO 2006/082099。

[0008] 未呈现出破裂强度增强的常规药物剂型的释出曲线图通常可被调节在某些界限以内，通常是以改变药物赋形剂，诸如形成基质的聚合物，的含量和／或性质来进行调整。

[0009] 在有些实施例中，也有报告提出药物在体内的释出可由未呈现出破裂强度增强的常规药物剂型的表面积与体积的比方案加以控制。例如，US 5,427,798公开了膜衣片，其含有丁胺苯丙酮（bupropion）盐酸盐，并且含量为50、100和150毫克药物含量的片剂所具有表面积与片剂的体积比方案为3：1至25：1厘米³。同样地，US 4,940,556和US
5, 198, 226 公开了球状体，其含有二氯吡啶钙通道阻断剂，且所具有面积半径与圆周半径的比方案落在 0.85 至 1.0 的范围。

【0010】然而，在关于破裂强度呈现增强的药物剂型方面，改变制药赋形剂的含量、性质和／或表面积与体积的比方案也会影响到其机械方面的特性。这是因药物剂型的增强的断裂强度，典型地取决于当生产该药物剂型时，经过特定方法处理的特定聚合物的存在与否。而所述聚合物似乎也被使用作为缓释药理活性化合物的基质。其结果是，对于药物剂型断裂强度具有重要性的聚合物基质同时也被作为控制释放的基质使用，所以改变聚合物的含量、性质和／或空间上的分布也会造成该药物剂型在释出曲线图和机械性质方面二者的改变。

【0011】当药理活性化合物的剂量和于是药物剂型的总重量也太高时，会引起特殊的问题。根据药理活性化合物和制药上的赋形剂的含量和性质而定，该聚合物的延迟效应可能会因为太强烈而使得该药物剂型无法适合于某种特别的剂量制度，例如每日两次，尤其是当增强的破裂强度希望被维持时。

【0012】另一方面，为加速药物的释出而减少其延迟作用的聚合物的含量将对药物剂型的机械性质造成实质的影响，而且在最糟糕的情况下将会完全减小其特别的且独特的机械性质（破裂强度）。此外，当基质聚合物的含量减少超过某一界限值时还会造成其它所要的特性，诸如储存的稳定性，的恶化或甚至于丧失。不良的储存稳定性例如会造成释出曲线图随着时间的改变。

【0013】另一方面，为减弱其延迟作用的聚合物的延迟效应而增加不具延迟作用的制药用的赋形剂（辅助剂）将会使该剂型的总重量增加。由于高剂量的药物剂型无论如何都有相当高的总重量，所以进一步增加总重量是无益处的，而且还可能会造成患者的顺服性（例如可吞服性）变差。

【0014】此外，医药剂型其制造的方式，例如作为口服的剂型，在进行临床试验的期间可能会进行修正，例如在关于所使用的成分或是在关于制药用的赋形剂的相对用量方面，或是在关于在制造时所使用的反应条件和反应物方面进行修正。如上述的修正经常会至少至某种程度对制药活性成分的释出曲线图造成影响。而如果针对特殊的制剂已经找到被认可的最适宜释出曲线图而其又无法在该经过修正的制剂上被重现时，此种情形尤其是不为人所乐见的。在这样的情形下，临床试验必须被中断，或者是必须重头再开始进行。由于将新医药剂型推广到以及完成整个临床试验所需的经费相当庞大，所以上述的情形的确已被证明是相当不符合要求的。

【0015】所以，当前需要有抗破坏的药物剂型，该剂型的释出曲线图可在某些界限以内做变化而不会减少其抗破坏的特性，不会大幅改变制药用的赋形剂的性质或用量，且不会使该药物剂型的顺服性变差。

【0016】本发明的目的在提供药物剂型，相对现有技术的药物剂型，其具备优点。

【0017】此目的已经由本专利权利要求的主题内容所完成。

【0018】发明概述

【0019】本发明关系到热熔挤出的控制释放剂型，其以受控制的方式释出被埋置在包含聚合物的基质中的药物活性成分，该剂型呈现出具有至少 300 牛顿，较优选至少 500 牛顿的破裂强度，且具有椭圆形状，其包含纵向延伸方向，与该纵向延伸方向成直角的横向延伸方向，正面、对立的背面以及处于该正面和该背面之间的周围边缘；
其中其中
- 该药物剂型的核（core）具有因热熔挤出所造成的形态取向外，实质上与该剂型的纵向延伸方向成正角；和/or
- 该药物活性成分由该面平和该对立的背面的释放比由该周围边缘的释放更迅速。
- 令人意外的是已经发现剂型释出的速率可以经由改变形成剂型的挤出物的形状，尤其是经由改变挤出物的正面（切削面（cut surfaces））与挤出物的外表层（jacket）（圆柱体表层（barrel））的面积比而改变。
- 令人意外的是当切削面的面积增加时，释出的速率也会加快。所述切削面似乎比挤出物的外表层（圆柱体表层）呈现更快速释出药物活性成分的现象。因此，当由挤出物挤压形成药物剂型时，那些源自于挤出物的正面的药物剂型的表面似乎比那些源自挤出物的外表层（圆柱体表层）的表面显示具有更快释出的释出。此种效应可有利地被用于以加速的方式或减速的方式调整药物活性成分从药物剂型中释出的曲线图。
- 此外，还意外发现，药物剂型的机械特性，尤其是其破裂强度，取决于药物剂型本体中挤出方向的相对位置。因此，可通过将挤出的方向置于药物剂型本体内的适当方向上来改善药物剂型的机械特性。
- 附图简述
- 图1是根据本发明药物剂型的较优选实施方案的示意图。图1A是侧视图，且图B至B'是另外具有不同椭圆形的剂型横切面的上视图。
- 图2是根据图标的方式说明常规制造椭圆形经热熔挤出的具有破裂强度增强的药物剂型。图2A显示挤出物与具圆形横切面的挤出线形物的分割，图2B显示利用装备有上冲模（punch）与下冲模的制片工具由挤出物将药物剂型成型，和图2C显示所生成的剂型，图2C'为侧视图和图2C''为横切面的上视图。
- 图3是以图标的方式说明椭圆形的、经热熔挤出的具有破裂强度增强的药物剂型的发明性的制造方法。图3A显示挤出物与具椭圆形横切面的挤出线形物的分割，图3B显示利用装备有上冲模与下冲模的制片工具由挤出物将药物剂型成型，和图3C显示所生成的剂型，图3C为侧视图和图3C''为横切面的上视图。
- 图4是以图标的方式说明根据本发明药物剂型的较优选实施方案，其在对立的两面上具有两个凹陷。图4A示出说明上视图和侧视图，其也显示出环绕这些凹陷周围的曲线。图4B示出说明上视图和侧视图，其也显示出相对于剂型本体的挤出方向。
- 图5显示三维空间中太赫兹（terahertz）测量的结果。图5A显示太赫兹脉冲成像测量的结果（挤出线形物的横切面影像）。图5B显示太赫兹脉冲成像测量的结果（挤出线形物的纵切面影像）。
- 图6显示实施例1被制成7×17毫米的椭圆形状片剂的溶解曲线图。
- 图7显示实施例1被制成7×17毫米的H9形状片剂的溶解曲线图。
- 图8显示实施例2被制成9×21毫米的椭圆形状片剂的溶解曲线图。
- 图9显示实施例2被制成9×21毫米的H10形状片剂的溶解曲线图。
- 图10显示实施例2被制成8.6×22.6毫米的H1形状片剂的溶解曲线图。
- 图11显示实施例1的溶解：由圆形挤出物制成的H9形状片剂与由椭圆形挤出物制
成的椭圆形片剂的比较。

【0038】图12显示实施例2的溶解：由圆形挤出物制成的H0形片剂与由椭圆形挤出物制成的椭圆形片剂的比较。

【0039】图13显示实施例3的溶解：椭圆形的捏挤出物与由先前已经被对折过两次的挤出物制成的片剂的比较。

【0040】发明详述

【0041】本发明第一个方面关系到热熔挤出的药物剂型，其以控制的方式释出被埋置在包含聚合物（C）的基质中的药物活性成分（A），该剂型较优选适用于口服，并具有椭圆形状，其包含纵向延伸方向与该纵向延伸方向成直角的横向延伸方向，选择、对立的背面以及处于该正面和该背面之间的周边边缘。

【0042】其中

【0043】- 该药物剂型的模具有因热熔挤出所造成的形态取向，其实质上与该剂型的纵向延伸方向成直角，和／或

【0044】- 该药物活性成分（A）由正面和对立的背面的每单位面积的释出比由周围边缘的释出更迅速。

【0045】在图1中进一步以图示的方式说明根据本发明热熔挤出的药物剂型的较优选的实施方案。

【0046】图1A是药物剂型（1）较优选实施方案的透视图，该剂型包含正面（2a）、背面（2b）以及处于正面（2a）与背面（2b）间的周边边缘（3）。平面（4）位于药物剂型（1）本体以内，且包括纵向的延伸方向（5），其与横向的延伸方向（6）相互成直角。本实施方案可被视为是双面凸出的椭圆形剂型。

【0047】图1B1、1B2和1B3是平面（4）的另外的较优选实施方案上视图，其包括周边边缘（3），纵向延伸方向（5）和横向延伸方向（6）。依据图1B1所示的的实施方案，周边边缘（3）呈现为椭圆的形状，其纵向的延伸方向（5）是半主要轴（semi-major axis），且其横向的延伸方向（6）是半次要轴（semi-minor axis）。依据图1B2所示的的实施方案，周边边缘（3）呈现为半圆的形状，其在中间有矩形。依据图1B3所示的的实施方案，周边边缘（3）呈现为具有圆形拐角的矩形形状。

【0048】当制造常规经热熔挤出的椭圆形药物剂型时，是将包含药物活性成分和其它制药用的赋形剂的物质以热熔的方式经由模具挤出。传统上，该种模具呈圆形，产生具有圆形横切面的挤出物（圆柱体）。挤出的动作造成物质中的成分稍微有些呈现一维空间方式的走向，以至所形成的挤出物（被挤出的线形物）在挤出的方向上呈现出形态取向。该形态取向可利用适当分析方法观察到。

【0049】所述挤出物然后被分割（分割成小片段），通常被切成圆柱体，其通常呈现与挤出方向实质上成直角的平面。每个圆柱体都有两个对立的表面以及圆周（圆柱体表层／外表层）。两个对立的表面在将挤出物分割（例如切割）成圆柱体时形成。而圆周则在挤出的过程中（被挤出线形物的圆柱体表层／外表层）形成。所述圆柱体接着例如被制片机加工制成椭圆形的剂型。基于几何形状的原因，典型地将圆柱体置于制片的工具中以使圆柱体的纵轴与冲模纵向的延伸方向成平行。

【0050】压制成型挤出物通常会改变剂型的外形。所以，剂型的形状通常与挤出物的形状
不同，而挤出物可被视作为法制中的中间产物。

当制造根据本发明的药物剂型时，较优选通过椭圆形的模具进行热熔挤出，其产生椭圆形横切面的挤出物。所以，分割（分割成小片段）的结果产生具有二个椭圆形对立面，例如切削小的片段（挤出物）。当将所述小片段以某种方式放入包括有上冲模和下冲模的制片工具因而使得两个椭圆形对立面各自面对所述上下冲模时，此剂型的正面和对立的背面则由该小片段的切削面所制成（来源于），而此剂型的圆周边缘则源自于该挤出物的圆柱体表层 / 外表层（制成）。结果，挤出方向实质上和此剂型纵向的延伸方向成直角。

熟练技术人员完全知道，当由挤出物压制剂型时，挤出物中材料形态取向会被改变。至少在挤出物的外部区域，压制成型造成材料流动能以单面确实充满被使用于压制以及决定该剂型最终的外形状的模具 / 冲模。然而形成挤出物的核心部分的材料在压制成型的过程中却未移动过或仅稍微被移动，故核心的部分实质上仍维持其形态取向。因此，药物剂型的核心部分被做为定义材料的外形方向相对于剂型外型尺寸的参考点或是基准点。

更具体地说，剂型的核心部分构成中心体积要素，其占有该剂型至多 50% 的总体积，更优选至多 40%，又更优选至多 30%，还更优选至多 20% 和尤其优选该剂型至多 10% 的总体积。因此，当决定核心部分的材料在形态取向上是否和挤出方向实质上成直角时，应该要以适当的分析方法，诸如太赫兹（terahertz）光谱分析法或高解析成像技术，如电子显微镜、电子显微镜显微镜、电子显微镜和类似的方法研究适当核心要素。其它的方法还包括有固定原子磁共振、光电子光谱分析法和 X 光等方法。

在图 2 和图 3 中进一步图示说明以热熔挤出法制备的常规椭圆形剂型和本发明椭圆形剂型的基本差异性。

图 2 图示说明椭圆形热熔挤出的药物剂型的常规制造方法，其具有增强的破裂强度。

图 2A 显示被挤出的线形物（7）、和圆柱体的挤出物（8），其已经被分割，例如被切割成所要的长度和重量。由位于圆柱体挤出物（8）外表层（圆柱体外表层）上的水平线（9）和位于正面上的数个小点（10）指示出挤出的方向。每个小点（10）代表水平线（9）的终点。水平线（9）和小点（10）的示出仅作为说明目的，作为挤出方向的标记，其可利用适当方法检测得到。然而在实际上并无水平线（9）或小点（10）的存在。被挤出的线形物（7）和挤出物（8）具有圆形或椭圆形的横切面，也就是已完成通过圆形或椭圆形模具的热熔性挤出的动作。

图 2B 显示装有上冲模（11a）和下冲模（11b）的制片工具中的挤出物（8）。挤出物（8）被置入制片工具中，使得挤出物的外表层（圆柱体外表层）面对上冲模（11a）和下冲模（11b）。带有小点（10）的挤出物正面却没有面对任何的冲模。

图 2C 显示所生成常规的剂型（1），图 2C 为侧视图且图 2C 为横切面的上视图。平面（4）位于药物剂型（1）本体以内，并包括纵向延伸方向（5）内。该剂型的核心部分（12）具有因热熔挤出所造成的形态取向（由水平线（9）表示），其实质上与纵向的延伸方向（5）平行。

与图 2（比较用）相对照，图 3 图示说明经热熔挤出的根据本发明药物剂型的制造。
剖成所要的长度和重量。由位于圆柱体挤出物（8）外表层（圆柱体表层）上的水平线（9）
和位于正面上的数个小点（10）指出挤出的方向。每个小点（10）代表水平线（9）的终点。
水平线（9）和小点（10）的示出仅作为说明目的，作为挤出方向的标记，其可利用适当方法
检测得到。然而在实际上并无水平线（9）或小点（10）的存在。被挤出的线形物（7）和挤
出物（8）具有椭圆形的横切面，也就是通过椭圆形模具的热熔挤出的动作已完成。
[0061] 图 3B 显示在装有上冲模（11a）和下冲模（11b）的制片工具中的挤出物（8）。挤
出物（8）被置入制片工具中，以便使得带有小点（10）的椭圆形挤出物的正面面对上冲模
（11a）和下冲模（11b）。含有水平线（9）的挤出物外表层（圆柱体表层）却没有面对任意
一个冲模。
[0062] 图 3C 显示所生成的根据本发明的片剂（1），图 3C'为侧视图且图 3C"为横切面的
上视图。平面（4）位于药物剂型（1）本体上，并包括纵向延伸方向（5）在内。该剂型的
核心部分（12）具有因热熔挤出所造成的形态取向（由小点（10）所指示），其本质上与纵向
的延伸方向（5）成直角（垂直）。
[0063] 当制造 H 型的片剂时，本发明的优点变得特别清楚。H 型的片剂是利用 H 型的压
模（H 型的冲模）制成，且在图 4 中被图示说明。相较于常规的剂型，诸如双面凸出的片剂，
H 型的片剂在破裂强度试验中呈现出不同的破裂状态。
[0064] 此外，与圆形片剂相比较，在挤出物的取向上差异性也可对根据本发明的剂型
的优点产生贡献。在进行圆形片剂的制片时，压缩力通常由模具施在被挤出线形物的横切
面上，也就是在其切削面上。在进行椭圆形片剂的制片时，压缩力通常直角的施在被挤出线
形物的横切面上，也就是在其外表层或圆柱体表层上。
[0065] 根据本发明的药物剂型是经热熔挤出的。
[0066] 经热熔挤出的剂型是活性成分、功能性的赋形剂以及加工辅助剂的复合性混合
物。热熔挤出法相对于传统的加工技术提供数项优点，包括不需溶剂、加工步骤少、连续性
操作，以及形成固体分散体和改善生物可利用率的可能性（请比较 MM Crowley 等人，Drug
Dev Ind Pharm 2007,33(9), 909–26；以及 MA Repka 等人，ibid, 33(10), 1043–57）。
[0067] 经热熔挤出的剂型可与常规的剂型，例如其它热成型的剂型，有所区隔，这是因为
挤出过程所造成的形态取向。不打算被任何科学理论所束缚，但相信将热熔融体在挤出模
具方向上的一维空间加工方式以及最终的将其从该模具挤出造成分别在分子和超分子层次
上的形态取向过程，其仍可在最终的剂型中被检测得到，也就是，即使在挤出物被进一步
成形产生最终的剂型之后。
[0068] 热熔挤出法的细节和较优选的实施方案在关于制备根据本发明的药物剂型的方
法中被叙述。
[0069] 根据本发明的药物剂型具有椭圆形状。
[0070] 更具体地说，术语“椭圆”较优选指任何三维空间的物体，其长度分别比高度和宽
度更长。根据本发明的药物剂型包含纵向的延伸方向和与该纵向延伸方向成直角的横向延
伸方向。
[0071] 根据本发明的药物剂型包含横切面，较优选为该剂型主要的延伸面，包括纵向的
延伸方向和横向的延伸方向，它们彼此相互成直角（垂直）。
[0072] 主要的延伸面较优选为该药物剂型的最大切面。
纵向的延伸方向较优选为该剂型的最大延伸，较优选为该剂型主要延伸面中最大的端点至端点的距离。

横向的延伸方向较优选为该剂型与纵向的延伸方向成直角（垂直）的最大延伸，较优选位于该剂型主要延伸面以内。

该剂型的椭圆形也可用术语纵向延伸方向对横向延伸方向的相对长度比加以表示。通常纵向延伸方向比横向延伸方向更长。

较优选的是纵向延伸方向对横向延伸方向的相对长度比至少为 1.1 : 1，至少为 1.2 : 1，至少为 1.3 : 1，至少为 1.4 : 1 或至少为 1.5 : 1；更优选至少为 1.6 : 1，至少为 1.7 : 1，至少为 1.8 : 1，至少为 1.9 : 1 或至少为 2.0 : 1；又更优选至少为 2.1 : 1，至少为 2.2 : 1，至少为 2.3 : 1，至少为 2.4 : 1 或至少为 2.5 : 1；还更优选至少为 2.6 : 1，最优选至少为 2.7 : 1 以及尤其至少为 2.8 : 1。在特别优选的实施方案中，纵向延伸方向对横向延伸方向的相对长度比为 2.6±0.2 : 1，2.8±0.2 : 1 或 3.0±0.2 : 1。

较优选的是，根据本发明的药物剂型包含有单片整体式的核。关于这一方面，“单片整体式”要被理解为由无接缝或无接合点的物质所构成或组成并且构成块状 (massive) 无差异性和坚固 (rigid) 的整体。如果剂型不包括涂层，则整个剂型较优选为单片整体式的。如果剂型为膜衣所包覆时，则较优选仅仅核为单片整体式。

根据本发明的药物剂型含有正面、对立的背面以及处于所述正面和背面之间的周围边缘。

通常根据本发明的药物剂型采用片剂的形式。该药物剂型较优选不以膜的的形式存在。

根据本发明的药物剂型可采用各式不同的形状。由上视图可见，本药物剂型的形状可为任何圆状的形状，诸如实质上的圆状、矩状和类似的形状等。较优选的是，由侧视图可见，本药物剂型的形状实质上可为平面－凹面，双凹面，有啄面 (facet) 的平面，无啄面 (facet) 的平面，环状和类似的形状等。

在特别优选的实施方案中，根据本发明的药物剂型可被描述为物体，其至少在一个面上具有凹陷或空腔，较优选在两个面上，较优选在对立的侧面上，具有两个凹陷或两个空腔。此外，所述空腔或凹陷可分别被视为凸起 (bulges)、凹口 (indentations)、沟槽 (troughs)、空穴 (hollows)、凹穴 (depressions)、向斜层 (synclines)、深凹处 (deepenings) 和诸如此类等。

图 4 图示说明该种根据本发明的剂型的较优选的实施方案，其在对立的面上具有两个凹陷 (13)。图 4A 图示说明上视图和侧视图，其也显示出环绕这些凹陷 (13) 的圆周 (14) 的曲度。图 4B 图示说明上视图和侧视图，其也显示出相对于剂型本体的挤出方向，也就是水平线 (9) 和小点 (10)。

在图 4 中所示的剂型横切面呈现 H 形的形状，更具体地说，此剂型或片剂的形状也可被表示为“H 形”。为加以区别，较优选的常规椭圆形剂型被称为“双面凸出”。

至少与在图 4 中所示的剂型相关或类似的剂型的常规形状也可被描述为包含纵轴和两个对立的纵向边缘 (edge)、与该纵轴垂直的横轴和两个对立的横向边缘 (edge)、正面对立的背面以及处于所述正面和背面之间的周围边缘 (rim)，其中该正面和 / 或该背面包含底部区域且其中该正面和 / 或该背面包含至少一个凸出结构 (bulge)，其在所述底部
区域上方延伸，所述至少一个螺纹结构出现在和 / 或邻近于一个或两个纵向边缘 (edge) 的至少一段 (section) 和 / 或出现在和 / 或邻近于一个或两个横向边缘 (edge) 的至少一段 (section) 和 / 或处于两侧纵向边缘 (edge) 和两侧横向边缘 (edge) 之间。该射型的正面和 / 或背面，尤其是该正面的底部区域和 / 或该背面的底部区域可再进一步包裹至少一个凹口 (indentation)。

0085 由于本发明的射型具有比其横轴实质上更长的纵轴，故其呈现出椭圆的形状。纵轴通常由一侧的横向边缘 (edge) 延伸通过该射型部分处两侧纵轴边缘 (edge) 之间的中间部分至另一侧对立的横向边缘 (edge)，尤其以使其长度达到最大化的方式。横轴通常则从一侧的纵向边缘 (edge) 延伸至另一侧对立的纵向边缘 (edge)，尤其以使其长度达到最大化的方式。横轴的走向与纵轴相互垂直。

0086 本发明射型的正面和 / 或背面的底部区域未必必须为平面，然而在一个实施方案中可呈不规则或规则的三维空间图案，然而其未扩到任何成为凸起或凹口的大小的明显程度。

0087 本发明射型的实施方案的正面底部区域和背面底部区域之间的平均距离通常比其横轴的长度要小。射型的具有最小的平均距离的那些对立面通常包含正面底部区域和背面底部区域。

0088 根据另一个较优选的实施方案，其提供射型，其中该正面和背面各自包含至少一个凸出结构，该结构至少沿着两侧纵向边缘的一段和 / 或邻近于两侧纵向边缘、和 / 或至少沿着两侧横向边缘的一段和 / 或邻近于两侧横向边缘。关于这一方面，在某些实施方案中甚至更优选所述正面和所述背面含有至少基本上呈连续性的凸出结构 (bulge)，其位于和 / 或邻近于两侧对立的纵向边缘的至少三分之二处、和 / 或位于和 / 或邻近于两侧对立的横向边缘的至少三分之二处。

0089 该凸出结构可具有任意几何形状的横切面，且可例如为圆形或具有矩形、三角形或正方形的横切面。该凸出结构较优选具有宽度，其小于所述射型宽度的一半，更优选小于所述射型宽度的三分之二。而该凸出结构的长度可有大幅度的变化。较优选的是，每个凸出结构的全长至少为纵向边缘长度的一半，或为横向边缘长度的一半，取决于该凸出结构的位置。凸出结构的全长通常比其宽度要长出许多，例如数倍于该凸出结构的宽度，尤其超过其宽度的 2.3、4.5 或 6 倍，尤其是当按照纵向取向时，或超过其宽度的 2.3 或 4 倍，尤其是当按照横向取向时。在本发明意中的凸出结构应也包含一系列相邻的凸出结构部分。这些凸出结构部分，当从上方观察时，可例如具有圆形、卵圆形、矩形、正方形、三角形或任意其它的多角形的周围形状，或可接近这些形状，或甚至可具有不规则的形状。

0090 位于纵向和 / 或横向边缘 (edge) 的凸出结构由该射型的周边缘界规则地越过，其没有明显的过渡区域或过渡的阶跃，也就是没有“地带 (land)” 。在此类的实施方案中，从边缘 (rim) 部分至该凸出结构的部分存有平顺过渡，所以该边缘和该凸出结构的外表面至少有一段形成连续的表面。而位置邻近纵向和或邻近横向边缘 (edge) 的凸出结构相反地并非直接置于射型周缘边缘 (rim) 上，而是由一个部分，尤其是个次小部分，在该底部区域的平面中与边缘 (rim) 分隔开，其可被归属于底部区域的一部。所述次小部分在射型技术领域中称为“地带 (the land)”。此次小区域通常具有比凸出结构本身平均宽度还要更小的宽度。在较优选的实施方案中，该地带的范围从大约 0.05 毫米至大约 0.5 毫米，例如大
约 0.1 毫米。

在特别适宜的实施方案中，本发明的剂型在剂型正面和背面两侧纵向边缘 (edge) 和 / 或两侧横向边缘 (edge) 有凸出的结构，其中这些凸出结构延伸至少超过 (over) 该纵向 / 和或横向边缘 (edge) 长度的一半，较优选超过三分之一，甚至于更优选超过该纵向 / 和或横向边缘 (edge) 的整个长度。在另一个较优选的实施方案中，这些凸出结构在和 / 或邻近于个别纵向和横向边缘 (edge)，对正面和 / 或背面的底部区域，较优选与正面和背面，形成连续的边界。用经改善的释出曲线图的术语，最想得到的结果例如由本发明的剂型取得，其在剂型两面上的两侧两纵向边缘 (edge) 上都有凸出结构。这些剂型的横切面可被描述具有或接近 H 形。当使用“H 形”的表述时，应仅是指指明提供具有对立，尤其相当平面的底部区域的剂型本体，在该剂型本体两面纵向的边缘上有对立的凸出结构。例如，在 H 形状的实施方案中，凸出结构可突出在它们各别的底部区域之上，但相较于沿着对立纵向边缘的凸出结构间的横向距离，仅达到次要的程度，例如达到大约 1 或 2 毫米。

在一个较优选的实施方案中，本发明的剂型包含至少一个凸出结构，其在或邻近于，尤其是邻近于正面两侧对立纵向边缘 (edge) 的主要部分，尤其是至少沿着这些纵向边缘 (edge) 的三分之二。在另一个较优选的实施方案中，本发明的剂型至少包含一个凸出结构，其在或邻近于，尤其是邻近于该剂型的正面和背面二者的两侧对立纵向边缘 (edge) 的主要部分，尤其是至少沿着这些纵向边缘 (edge) 的三分之二。在另一个较优选的实施方案中，本发明的剂型包含环绕周边 (circumferential) 的凸出结构，其在或邻近于，尤其是邻近于所述剂型的正面和背面二者的周边边缘 (circumferential edge)。

根据本发明的剂型的另一适当的实施方案中，提供了：一或两侧的纵向边缘 (edge) 在它们长度的主要部分上基本上呈现直线和 / 或其中一或两侧的横向边缘在它们长度的主要部分上呈现弯曲，尤其是以本质上呈圆弧形式的弯曲。这些纵向边缘当然也可能呈现任意其它不规则或规则的形状，例如至少在一段上具有波浪状的边缘部分。而横向边缘也可呈现三角形或任意其它多角形的形状。常规而言，纵向边缘和横向边缘两者构成该剂型正面和背面的周边。

在大多数的应用而言，剂型的纵向长度，也就是纵轴的长度不超过 30 毫米是足够的。

依据另一实施方案，本发明的剂型在正面和背面的底部区域 (basis areas) 较优选具有平均厚度为至少大约 1 毫米，且尤其不超过大约 9 毫米，更加尤其处于大约 1 毫米至大约 7 毫米的范围，或更加尤其处于大约 2 毫米至大约 6 毫米的范围。

根据本发明的剂型的一个实施方案，凸出结构从正面的底部区域和 / 或从背面的底部区域垂直延伸的范围平均从大约 0.5 毫米至大约 2 毫米，尤其是从大约 0.5 毫米至大约 1 毫米。

本发明的剂型较优选具有纵向上的长度处于大约 5 毫米至大约 30 毫米的范围，尤其处于大约 15 毫米至大约 25 毫米的范围，更加尤其处于大约 17 毫米至大约 23 毫米的范围，甚至更尤其为大约 21 毫米；宽度处于大约 5 毫米至大约 15 毫米的范围，尤其处于大约 7 毫米至大约 12 毫米的范围，更加尤其处于大约 7 毫米至大约 10 毫米的范围，甚至更尤其
尤其为 7 毫米、9 毫米或 10 毫米；且在底部区域的厚度处于大约 1 毫米至大约 6 毫米的范围，尤其处于大约 1.5 毫米至大约 4 毫米的范围，甚至更加尤其处于大约 2 毫米至大约 4 毫米的范围，甚至进一步尤其处于大约为 2.5 毫米至大约 3.5 毫米。

[0098] 如上所述，本发明的剂型的正面和 / 或背面，尤其是正面的底部区域和 / 或背面的底部区域，可在一个实施方案中又包含至少一个凹口 (indentation)。如所发现，这通常可使释出曲线图的控制得到进一步的改善。凹口通常在一个实施方案中代表空心的空，其被设置或被埋置在该剂型的整个表面上。例如，正面、背面，尤其是正面的底部区域和 / 或背面的底部区域，边缘 (rim) 和 / 或至少一个凸出结构可被提供至少一个凹口。

[0099] 凸口，当从上方观看时，可具有任意不规则或规则的形状，例如正方形、矩形、三角形、卵圆形或圆形的形式。在一个实施方案中，凸口可采取圆柱体、立方体、长方体或半球体的形状，形成该凸口的壁和开口接近于描述圆柱体、立方体、长方体或半球体的形状。当从上方观看时，这些凸口的侧影 (silhouette) 形状基本上具有相同的宽度和长度尺寸。当从上方观看时，这些凸口的侧影形状也有可能具有比宽度尺寸更长的长度尺寸，例如长度尺寸至少为宽度尺寸的 2.3 或 4 倍。因此，当从上方观看时，侧影形状可被相当程度地延伸，例如矩形，且可具有规则的侧影形状，例如直线形、波浪形或锯齿形，或可相当不规则。在另一实施方案中，例如在正面和 / 或背面可形成阵列的凸口。就许多应用而言，已经发现，当从上方观看时，凸口的侧影形状具有的长度尺寸基本上与其宽度尺寸相等是足够的，如同例如可在圆形、类正方形或稍微有点卵圆形或稍微有点矩形等形状所发现到的情况。这些凸口的所述宽度尺寸，其通常确定平行于横轴，通常比该剂型横轴长度的一半还要小，尤其比该剂型横轴长度的三分之一还要小。在一个实施方案中，宽度的尺寸基本上和该凸口的深度相同或是不超过该凹口深度的 2 或 3 倍。该凹口的长度尺寸，其通常确定平行于纵轴，通常不超过该剂型纵向长度的四分之三，尤其不超过该剂型纵向长度的一半，且较优选不超过该剂型纵向长度的三分之一。在剂型中的孔洞 (hole) 并非本发明的含意中所指的凸口。所述凸口的侧影形状和深度可以被改变，其由所需要的释出曲线图所决定。通常应该要注意的是，这些凸口的深度不要与该剂型的厚度太过于接近，以避免当处理时将会形成个贯穿此剂型的孔洞。较优选的是，这些凹口具有的深度不超过本发明这些剂型厚度的一半。就大多数的应用而言，经常所述凸口的最大深度不超过本发明剂型厚度的三分之一就已经足够。本发明剂型的平均厚度通常是按该剂型的正面与背面间的距离或较优选按该正面的底部区域与该背面的底部区域间的距离进行测定。

[0100] 当使用正面和背面等表述语时，其应该表示本发明的剂型具有两个对立的面，其中每个面都可设置凸出结构和 / 或凹口。结果，选择何者是正面和何者是背面是相当武断的。因此，正面和背面等表述语也可分别以第一面和对立的第二面替代。

[0101] 在本发明的实施方案中，提供剂型，其中正面和 / 或背面，尤其是该正面（尤其本质上平坦的）底部区域，和 / 或该背面（尤其本质上平坦的）底部区域，除至少包含一个凸出结构以外，还至少包含一个凹口，尤其是处于对立的纵向和 / 或横向突出结构之间。

[0102] 在本发明的一个实施方案中，提供了：正面和背面二者至少都含有一个凹口。

[0103] 位在本发明的剂型正面和背面上的凹口可至少一次至少部分地被偏置 (off-set)，或可至少一次以全等 (congruent) 的方式被安置在位置上。在一较优选的实施方案中，该正面所有的凹口和该背面所有的凹口至少部分被偏置以全等 (congruent) 的
方式被安置在位置上。

[0104] 这些凹口被规定地安置在本发明剂型的正面和/或背面的底部区域中。例如可能
安置两个或两个以上此类的凹口彼此相邻，例如按的方式安置在正面和/或背面的纵向
边缘 (edge) 之间。这些凹口较优选被安置在对立的纵向延伸凸出结构之间，这些凸出结构
位于或邻近于本发明剂型正面和/或背面的纵向边缘。

[0105] 在一个较优选的实施方案中，本发明的剂型，尤其是其椭圆形的剂型，位于或邻
近于，尤其是邻近于，正面两侧纵向边缘的主要部分，尤其是至少沿着正面纵向边缘的三分
之二的位置，至少包含一个凸出结构，以及，尤其在沿着对立的纵向边缘上的凸出结构之
间，至少包含一个凹口。

[0106] 在另一个较优选的实施方案中，本发明的剂型，尤其是其椭圆形的剂型，至少包含
一个凸出结构，其位于或邻近于，尤其是邻近于，剂型正面和背面两侧对立纵向边缘的主
要部分，尤其是至少沿着该剂型正面和背面二者的纵向边缘的三分之二的位置，以及至少包
含一个凹口，其位于该剂型的正面和/或背面上，尤其位于该剂型的正面的底部区域和/或
背面的底部上，尤其是这些凸出结构之间，该凸出结构分布位于沿着该正面和/或背面
的对立纵向边缘的位置。在另一个较优选的实施方案中，本发明的剂型，尤其是其椭圆形
的剂型，包含有环绕周界的凸出结构，其位于或邻近于，尤其是邻近于，所述剂型的正面和
/或背面的周围边缘 (edge) 上，以及至少包含一个凹口，其位于正面和/或背面上，尤其是位
于由正面和或背面上环绕周界的凸出结构所限定的底部区域上。在另一个较优选的实施方
案中，本发明的剂型，尤其是其椭圆形的剂型，包含有环绕周界的凸出结构，其位于或邻近
于，尤其是邻近于，所述剂型的正面和背面二者的周界边缘上，以及至少包含一个凹口，其
位于该剂型的正面和背面上，尤其是位于正面上环绕周界的凸出结构所限定的底部区域
上，以及位于由背面上环绕周界的凸出结构所限定的底部区域上。

[0107] 在笛卡儿空间 (Cartesian space) 中，在图4中所示的本药物剂型的主要尺寸可
被定义为 a, b 和 c，其中 a = a_1 + a_2 + a_3, b = b_1 + b_2 + b_3 和 c = c_1 + c_2 + c_3。在图4中所示的本药
物剂型较优选的相对尺寸 D1 至 D6 可分别以 a, b 和 c; a_1, a_2 和 a_3; b_1, b_2 和 b_3; 和 c_1, c_2 和
 c_3 的相对关系来定义：

[0108] D1 : c > a > b; c > a > b;

[0109] D2 : c > 1.5a; c > 2a; c > 2.5a; c > 3a;

[0110] D3 : a_2 > a_1 = a_3; a_2 > 1.1 a_1 = 1.1 a_3; a_2 > 1.2 a_1 = 1.2 a_3; a_2 > 1.3 a_1
 = 1.3 a_3;

[0111] D4 : b_2 > b_1 ≅ b_3; b_2 > 1.1 b_1 ≅ 1.1 b_3; b_2 > 1.2 b_1 ≅ 1.2 b_3;

[0112] D5 : b_2 > 1.3 b_1 ≅ 1.3 b_3;

[0113] D6 : b_2 < b_1 ≅ b_3; b_2 < 0.9 b_1 ≅ 0.9 b_3; b_2 < 0.8 b_1 ≅ 0.8 b_3;

[0114] 有关于图 4 中所示的本药物剂型绝对尺寸的较优选实施方案 D7 至 D18 被显示在
下表中：
[0115]

<table>
<thead>
<tr>
<th>[毫米]</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>D11</th>
<th>D12</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8.6 ± 4.3</td>
<td>8.6 ± 2.1</td>
<td>8.6 ± 1.0</td>
<td>9.0 ± 4.5</td>
<td>9.0 ± 2.2</td>
<td>9.0 ± 1.1</td>
</tr>
<tr>
<td>b</td>
<td>4.9 ± 2.5</td>
<td>4.9 ± 1.3</td>
<td>4.9 ± 0.7</td>
<td>4.3 ± 2.1</td>
<td>4.3 ± 1.0</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>c</td>
<td>21.9 ± 11.0</td>
<td>21.9 ± 5.5</td>
<td>21.9 ± 2.7</td>
<td>20.4 ± 10.2</td>
<td>20.4 ± 5.1</td>
<td>20.4 ± 2.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[毫米]</th>
<th>D13</th>
<th>D14</th>
<th>D15</th>
<th>D16</th>
<th>D17</th>
<th>D18</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>9.0 ± 4.3</td>
<td>9.0 ± 2.1</td>
<td>9.0 ± 1.0</td>
<td>9.1 ± 4.5</td>
<td>9.1 ± 2.2</td>
<td>9.1 ± 1.1</td>
</tr>
<tr>
<td>b</td>
<td>4.1 ± 2.5</td>
<td>4.1 ± 1.3</td>
<td>4.1 ± 0.7</td>
<td>4.5 ± 2.1</td>
<td>4.5 ± 1.0</td>
<td>4.5 ± 0.6</td>
</tr>
<tr>
<td>c</td>
<td>20.5 ± 11.0</td>
<td>20.5 ± 5.5</td>
<td>20.5 ± 2.7</td>
<td>20.5 ± 10.2</td>
<td>20.5 ± 5.1</td>
<td>20.5 ± 2.5</td>
</tr>
</tbody>
</table>

[0116]
有关于图4中所示的本药物剂型绝对尺寸的较优选实施方案D19至D30被显示在下表中：

[0117]

<table>
<thead>
<tr>
<th>[毫米]</th>
<th>D19</th>
<th>D20</th>
<th>D21</th>
<th>D22</th>
<th>D23</th>
<th>D24</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>8.6 ± 4.3</td>
<td>8.6 ± 2.1</td>
<td>8.6 ± 1.0</td>
<td>9.0 ± 4.5</td>
<td>9.0 ± 2.2</td>
<td>9.0 ± 1.1</td>
</tr>
<tr>
<td>a_1</td>
<td>3.3 ± 1.6</td>
<td>3.3 ± 0.8</td>
<td>3.3 ± 0.4</td>
<td>3.5 ± 1.8</td>
<td>3.5 ± 0.9</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>a_2</td>
<td>2.1 ± 1.0</td>
<td>2.1 ± 0.5</td>
<td>2.1 ± 0.3</td>
<td>2.1 ± 1.1</td>
<td>2.1 ± 0.6</td>
<td>2.1 ± 0.3</td>
</tr>
<tr>
<td>a_3</td>
<td>3.3 ± 1.6</td>
<td>3.3 ± 0.8</td>
<td>3.3 ± 0.4</td>
<td>3.5 ± 1.8</td>
<td>3.5 ± 0.9</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td>b</td>
<td>4.9 ± 2.5</td>
<td>4.9 ± 1.3</td>
<td>4.9 ± 0.7</td>
<td>4.3 ± 2.1</td>
<td>4.3 ± 1.0</td>
<td>4.3 ± 0.6</td>
</tr>
<tr>
<td>b_1</td>
<td>0.9 ± 0.5</td>
<td>0.9 ± 0.3</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.4</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>b_2</td>
<td>3.1 ± 1.5</td>
<td>3.1 ± 0.7</td>
<td>3.1 ± 0.4</td>
<td>2.6 ± 1.3</td>
<td>2.6 ± 0.6</td>
<td>2.6 ± 0.3</td>
</tr>
<tr>
<td>b_3</td>
<td>0.9 ± 0.5</td>
<td>0.9 ± 0.3</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.4</td>
<td>0.9 ± 0.2</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>c</td>
<td>21.9 ± 11.0</td>
<td>21.9 ± 5.5</td>
<td>21.9 ± 2.7</td>
<td>20.4 ± 10.2</td>
<td>20.4 ± 5.1</td>
<td>20.4 ± 2.5</td>
</tr>
<tr>
<td>c_1</td>
<td>3.2 ± 1.6</td>
<td>3.2 ± 0.8</td>
<td>3.2 ± 0.4</td>
<td>3.3 ± 1.7</td>
<td>3.3 ± 0.9</td>
<td>3.3 ± 0.4</td>
</tr>
<tr>
<td>c_2</td>
<td>15.6 ± 7.8</td>
<td>15.6 ± 3.9</td>
<td>15.6 ± 2.0</td>
<td>13.8 ± 6.9</td>
<td>13.8 ± 3.5</td>
<td>13.8 ± 1.7</td>
</tr>
<tr>
<td>c_3</td>
<td>3.2 ± 1.6</td>
<td>3.2 ± 0.8</td>
<td>3.2 ± 0.4</td>
<td>3.3 ± 1.7</td>
<td>3.3 ± 0.9</td>
<td>3.3 ± 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[毫米]</th>
<th>D25</th>
<th>D26</th>
<th>D27</th>
<th>D28</th>
<th>D29</th>
<th>D30</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>9.0 ± 4.3</td>
<td>9.0 ± 2.1</td>
<td>9.0 ± 1.0</td>
<td>9.1 ± 4.5</td>
<td>9.1 ± 2.2</td>
<td>9.1 ± 1.1</td>
</tr>
<tr>
<td>a_1</td>
<td>3.2 ± 1.6</td>
<td>3.2 ± 0.8</td>
<td>3.2 ± 0.4</td>
<td>3.2 ± 1.8</td>
<td>3.2 ± 0.9</td>
<td>3.2 ± 0.5</td>
</tr>
<tr>
<td>a_2</td>
<td>2.6 ± 1.0</td>
<td>2.6 ± 0.5</td>
<td>2.6 ± 0.3</td>
<td>2.7 ± 1.1</td>
<td>2.7 ± 0.6</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>a_3</td>
<td>3.2 ± 1.6</td>
<td>3.2 ± 0.8</td>
<td>3.2 ± 0.4</td>
<td>3.2 ± 1.8</td>
<td>3.2 ± 0.9</td>
<td>3.2 ± 0.5</td>
</tr>
<tr>
<td>b</td>
<td>4.1 ± 2.5</td>
<td>4.1 ± 1.3</td>
<td>4.1 ± 0.7</td>
<td>4.5 ± 2.1</td>
<td>4.5 ± 1.0</td>
<td>4.5 ± 0.6</td>
</tr>
<tr>
<td>b_1</td>
<td>1.0 ± 0.5</td>
<td>1.0 ± 0.3</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.4</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>b_2</td>
<td>2.1 ± 1.5</td>
<td>2.1 ± 0.7</td>
<td>2.1 ± 0.4</td>
<td>2.5 ± 1.3</td>
<td>2.5 ± 0.6</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>b_3</td>
<td>1.0 ± 0.5</td>
<td>1.0 ± 0.3</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.4</td>
<td>1.0 ± 0.2</td>
<td>1.0 ± 0.1</td>
</tr>
<tr>
<td>c</td>
<td>20.5 ± 11.0</td>
<td>20.5 ± 5.5</td>
<td>20.5 ± 2.7</td>
<td>20.5 ± 10.2</td>
<td>20.5 ± 5.1</td>
<td>20.5 ± 2.5</td>
</tr>
<tr>
<td>c_1</td>
<td>3.3 ± 1.6</td>
<td>3.3 ± 0.8</td>
<td>3.3 ± 0.4</td>
<td>3.3 ± 1.7</td>
<td>3.3 ± 0.9</td>
<td>3.3 ± 0.4</td>
</tr>
<tr>
<td>c_2</td>
<td>13.9 ± 7.8</td>
<td>13.9 ± 3.9</td>
<td>13.9 ± 2.0</td>
<td>13.9 ± 6.9</td>
<td>13.9 ± 3.5</td>
<td>13.9 ± 1.7</td>
</tr>
<tr>
<td>c_3</td>
<td>3.3 ± 1.6</td>
<td>3.3 ± 0.8</td>
<td>3.3 ± 0.4</td>
<td>3.3 ± 1.7</td>
<td>3.3 ± 0.9</td>
<td>3.3 ± 0.4</td>
</tr>
</tbody>
</table>

[0118]
[0119] 本发明的药物剂型较优选适合用在口服给药，也就是应可被吞服。因此，模糊的几何形状的剂型，其明显有害，不可被视做为根据本发明的药物剂型。

[0120] 根据较优选的实施方案，本发明药物剂型的特征是其特殊的纵横比。更具体地说，纵横比定义为剂型主要延伸方向与和所述主要延伸方向互成直角的药物剂型最大延伸的比方案，例如分别为最大的长度与最大的高度比（和最大的长度与最大的宽度比）。

[0121] 较优选的是所述纵横比处于2.4±1.3：1，更优选处于2.4±1.0：1，又更优选处于2.4±0.8：1，还更优选处于2.4±0.6：1，最优选处于2.4±0.4：1和尤其是处于2.4±0.2：1的范围。

[0122] 根据较优选的实施方案，本发明药物剂型的特征是其特殊的长度与高度与宽度的比方案，其中长度＞高度≥宽度。更具体地说，在此实施方案中，长度是此剂型的纵向延伸方向，高度是此药物剂型与长度成直角的最大的延伸，宽度则与长度成直角且与宽度成直角的横向延伸方向（笛卡儿空间）。较优选的是，该长度与高度与宽度的比方案处于4.7±2.0：2.0±1.0：1，更优选处于4.7±1.6：2.0±0.8：1，又更优选处于4.7±1.2：2.0±0.6：1，还更优选处于4.7±0.8：2.0±0.4：1，最优选处于4.7±0.6：2.0±0.3：1和尤其是处于4.7±0.4：2.0±0.2：1的范围。

[0123] 较优选的是，本发明药物剂型的部分表面呈凸出的结构，也就是向外弯曲或向外凸出，且该表面的另一部分则呈现内凹（concave）的结构，也就是向内弯曲或朝内凹陷。更具体地说，此曲率半径是不重要的。

[0124] 较优选的是，本发明药物剂型的总表面（overall surface）可被区分为内凹部分、外凸部分以及平面部分。通常，内凹部分、外凸部分以及平面部分相加的总和即是本发明剂型的总表面。然而，至少从理论上来说，给定的部分可同时呈现凸出和内凹的结构（马鞍状）。在这些情况下，内凹部分、外凸部分以及平面部分相加的总和超过本发明剂型的总表面。

[0125] 在较优选的实施方案中，本发明剂型表面的外凸部分至多为95%，更优选至多为90%或至多为85%，又更优选至多为80%或至多为75%，还更优选至多为70%或至多为65%，最优选至多为60%或至多为55%以及尤其至多为50%或至多为45%，其是以内凹部分、外凸部分以及平面部分相加的总和为依据。

[0126] 在另一个较优选的实施方案中，本发明剂型表面的内凹部分至少为5%，更优选至少为10%或至少为15%，又更优选至少为20%或至少为25%，还更优选至少为30%或至少为35%，最优选至少为40%或至少为45%以及尤其至少为50%或至少为55%，其是以内凹部分、外凸部分以及平面部分相加的总和为依据。

[0127] 在根据本发明药物剂型的较优选实施方案中，剂型的最大延伸（其与剂型主要延伸区域互成直角）和剂型的质心（其与所述主要延伸区域平行）被间隔开。更具体地说，该剂型主要延伸区域较优选为最大的平面区域，其可沿着剂型本体的切面（cut）设置。较优选的是，从剂型的最大延伸（其与剂型主要延伸区域互成直角）至剂型质心的最近距离至少为0.5毫米，更优选至少为1.0毫米，又更优选至少为1.5毫米，还更优选至少为2.0毫米，最优选至少为2.5毫米以及尤其至少为3.0毫米。

[0128] 在较优选的实施方案中，药物剂型横切面（其与纵向延伸方向互成直角且含有该剂型的质心）具有的形状使得该面的至少有50%，更优选至少有60%以及尤其至少有75%
与质心间隔至少为 0.2 毫米，至少为 0.3 毫米，至少为 0.4 毫米或至少为 0.5 毫米，更优选至少为 0.6 毫米，至少为 0.7 毫米，至少为 0.8 毫米或至少为 0.9 毫米；又更优选至少为 1.0 毫米，至少为 1.1 毫米，至少为 1.2 毫米或至少为 1.3 毫米，还更优选至少为 1.4 毫米，至少为 1.5 毫米，至少为 1.6 毫米或至少为 1.7 毫米，最优选至少为 1.8 毫米，至少为 1.9 毫米，至少为 2.0 毫米或至少为 2.1 毫米以及尤其至少为 2.2 毫米，至少为 2.3 毫米，至少为 2.4 毫米或至少为 2.5 毫米。较优选的是，所述横切面包含有质心。

在根据本发明药物剂型的较优选实施方案中，在剂型中各个和每一个几何点至剂型表面的最近距离至少为 10 毫米，至少为 9 毫米，至少为 8 毫米或至少为 7.5 毫米；更优选至少为 7.0 毫米，至少为 6.5 毫米或至少为 6.0 毫米；又更优选至少为 5.8 毫米，至少为 5.6 毫米，至少为 5.4 毫米，至少为 5.2 毫米或至少为 5.0 毫米，还更优选至少为 4.8 毫米，至少为 4.6 毫米，至少为 4.4 毫米，至少为 4.2 毫米或至少为 4.0 毫米；还更优选至少为 3.8 毫米，至少为 3.6 毫米，至少为 3.4 毫米，至少为 3.2 毫米或至少为 3.0 毫米；最优选至少为 2.8 毫米，至少为 2.6 毫米，至少为 2.4 毫米，至少为 2.2 毫米或至少为 2.0 毫米；以及尤其至少为 1.8 毫米，至少为 1.6 毫米，至少为 1.4 毫米，至少为 1.2 毫米或至少为 1.0 毫米。

在较优选的实施方案中，药物剂型的质心位于该剂型主要延伸区域以内。较优选的是，该药物剂型相关其主要延伸区域是对称的。

在较优选的实施方案中，根据本发明药物剂型的表面积 S[平方毫米] 与重量 W[毫克] 的比值，S/W，至少为 0.50 平方毫米 / 毫克。较优选的是，S/W 比值至少为 0.51，至少为 0.52，至少为 0.53，至少为 0.54 或至少为 0.55；更优选至少为 0.56，至少为 0.57，至少为 0.58 或，至少为 0.59 或至少为 0.60；又更优选至少为 0.61，至少为 0.62，至少为 0.63，至少为 0.64 或至少为 0.65；还更优选至少为 0.66，至少为 0.67，至少为 0.68，至少为 0.69 或至少为 0.70；最优选至少为 0.705，至少为 0.710，至少为 0.715，至少为 0.720，至少为 0.725，至少为 0.730，至少为 0.735，至少为 0.740，至少为 0.745 或至少为 0.750；以及尤其至少为 0.755，至少为 0.760，至少为 0.765，至少为 0.770，至少为 0.775，至少为 0.780，至少为 0.785，至少为 0.790，至少为 0.795 或至少为 0.80 平方毫米 / 毫克。在另一个较优选的实施方案中，根据本发明药物剂型的表面积 S[平方毫米] 与重量 W[毫克] 的比值，S/W，至少为 0.80 平方毫米 / 毫克。较优选的是，S/W 比值至少为 0.81，至少为 0.82，至少为 0.83，至少为 0.84 或至少为 0.85；更优选至少为 0.86，至少为 0.87，至少为 0.88 或，至少为 0.89 或至少为 0.90；又更优选至少为 0.91，至少为 0.92，至少为 0.93，至少为 0.94 或至少为 0.95；还更优选至少为 0.96，至少为 0.97，至少为 0.98，至少为 0.99 或至少为 1.00；最优选至少为 1.05，至少为 1.10，至少为 1.15，至少为 1.20，至少为 1.25，至少为 1.30，至少为 1.35，至少为 1.40，至少为 1.45 或至少为 1.50；以及尤其至少为 1.55，至少为 1.60，至少为 1.65，至少为 1.70 或至少为 1.75 平方毫米 / 毫克。

在较优选的实施方案中，根据本发明的药物剂型具有的总表面积 (total surface) S 由下列的公式所定义

\[S \geq A \cdot \frac{W^{2/3}}{} \]

其中 A 至少为 4.5，也就是 S \geq 4.5 \cdot W^{2/3}。

例如，当根据本发明药物剂型的总重为 623 毫克时，则其总表面积 S 较优选至少为 328 平方毫米 \((4.5 \cdot 623^{2/3})\)，而且当根据本发明药物剂型的总重为 983 毫克时，则其总表面积
积S较优选至少为445平方毫米（4.5・983²/3）。

[0137] 在近似的算法中，药物剂型也可从理论上被分成许多大小适当的相同立体体积单元（立体象素），然后总表面积可通过计算位于该表面上的正方形体积单元（象素）而测得。

[0138] 较优选的是，当测量药物剂型的总表面积时，药理活性化合物（A）的微细结构以及剂型所有的其它组分，包括聚合物和制药上的赋形剂等的微细结构，例如它们的多孔性，没有被纳入考虑。更具体地说，术语药物剂型的“表面”较优选指宏观的表面（外表的尺寸，轮廓）而言。换句话说，在测定药物剂型的表面积时，表面结构较优选被视为完全平滑。

[0139] 在根据本发明药物剂型的较优选实施方案中，A是4.6.4.7.4.8.4.9.5.0.5.1.5.2.5.3.5.4.5.5.6.5.7.5.8.5.9.或6.0；更优选6.0.5.6.1.6.1.5.6.2.6.25.26.3.6.35.6.4.6.45.6.5.55.6.6.6.6.65.6.7.6.75.6.8.6.85.6.9.95.7.0.7.05.7.1.7.15.7.2.7.25.7.3.7.35.7.4.7.45或7.5。

[0140] 在根据本发明药物剂型的另一较优选实施方案中，A是7.6.7.7.7.9.7.9.8.0.8.1.8.2.8.3.8.4.8.5.8.6.8.7.8.8.8.9.或9.0；更优选9.1.9.2.9.3.9.4.9.5.9.6.9.7.9.8.9.9.10.1.0.1.10.2.10.3.10.4.或10.5；最优选10.6.10.7.10.8.10.9.11.0.11.1.11.2.11.3.11.4.11.5.11.6.11.7.11.8.11.9.或12.0；以及尤其为12.1.1.2.2.1.2.3.1.2.4.12.5.12.6.12.7.12.8.12.9.13.0.13.1.13.2.13.3.13.4.或13.5。

[0141] 在较优选的实施方案中，根据本发明药物剂型的总表面积S满足下列的条件

\[B \cdot \omega^2 \geq S \geq A \cdot \omega^2\]

其中

A和B的定义如上，而

B至多为20，更优选至多为19，又更优选至多为18，还更优选至多为17，最优选至多为16以及尤其至多为15。

[0146] 在本发明药物剂型的较优选实施方案中，根据本发明药物剂型的总表面积S至少为50平方毫米，至少为75平方毫米，至少为100平方毫米，至少为125平方毫米，至少为150平方毫米，至少为175平方毫米或至少为200平方毫米；更优选至少为225平方毫米，至少为250平方毫米，至少为275平方毫米，至少为300平方毫米，至少为325平方毫米，至少为350平方毫米，至少为375平方毫米或至少为400平方毫米；更优选至少为425平方毫米，至少为450平方毫米，至少为475平方毫米，至少为500平方毫米，至少为525平方毫米，至少为550平方毫米，至少为575平方毫米或至少为600平方毫米；更优选至少为625平方毫米，至少为650平方毫米，至少为675平方毫米，至少为700平方毫米，至少为725平方毫米，至少为750平方毫米，至少为775平方毫米或至少为800平方毫米；最优选至少为825平方毫米，至少为850平方毫米，至少为875平方毫米，至少为900平方毫米，至少为925平方毫米，至少为950平方毫米，至少为975平方毫米或至少为1000平方毫米；以及尤其至少为1025平方毫米，至少为1050平方毫米，至少为1075平方毫米，至少为1100平方毫米，至少为1125
平方毫米，至少为 1150 平方毫米，至少为 1175 平方毫米或至少为 1200 平方毫米。

在较优选的实施方案中，根据本发明药物剂型的总面积 S 至多为 1500 平方毫米，更优选至多为 1400 平方毫米，又更优选至多为 1300 平方毫米，还更优选至多为 1200 平方毫米，最优选至多为 1100 平方毫米，以及尤其至多为 1000 平方毫米。

在较优选的实施方案中，根据本发明的药物剂型至少有 35% 的外表面是源自挤出物的切削面，而其余的外表面则是源自挤出物的外表层（圆柱体表层）。较优选的是，根据本发明的药物剂型至少有 40% 或至少有 45%，更优选至少有 50% 或至少有 55%，又更优选至少有 60% 或至少有 65%，还更优选至少有 70% 或至少有 72.5%，最优选至少有 75% 或至少有 77.5%，以及尤其至少有 80% 或至少有 82.5% 的外表面是源自挤出物的切削面。

在较优选的实施方案中，根据本发明的药物剂型是利用所谓的 H 形压模所制成，尤其是由此成型。图 4 以图示说明利用此种 H 形压模所制得剂型的轮廓（silhouette）。适当尺寸和形状的 H 形压模可由商购取得。通常，由给定 H 形压模所制得的剂型的体积和表面积可由公式计算得到，该公式通常由该 H 形压模的制造商提供。

例如，德国 Notter 股份有限公司提供种 H 形压模，其所产生的体积为 94.3+171.6h 〔立方毫米〕和所产生的表面积为 382+52.3h 〔平方毫米〕，其中 h 是剂型的高度（即是图 4 中所示的距离 b2）。因此，例如倘若以此种 H 形压模将 650 毫克且总密度为 1.000 毫克 / 立方毫米的致密组成物或形时，则会得到剂型，其具有的高度为 h = (650-94.3)/171.6 = 3.24 毫米。所以，所述剂型所具有的表面积为 382+52.3*3.24 = 551 平方毫米。如果 A = 4.5，则满足 551 平方毫米 ≧ 4.5 * 650^{2/3} (= 337.6 平方毫米) 的条件。如果 A 大约为 7.3，则仍然满足 551 平方毫米 ≧ 7.3 * 650^{2/3} (= 547 平方毫米) 的条件，但如果 A 为 7.4，则不满足 551 平方毫米 ≧ 7.4 * 650^{2/3} (= 555 平方毫米) 的条件。

在较优选的实施方案中，根据本发明的药物剂型所具有的总重量 W 至少为 50 毫克，至少为 75 毫克，至少为 100 毫克，至少为 125 毫克或至少为 150 毫克，更优选至少为 175 毫克，至少为 200 毫克，至少为 225 毫克，至少为 250 毫克，或至少为 275 毫克；又更优选至少为 300 毫克，至少为 325 毫克，至少为 350 毫克，至少为 375 毫克或至少为 400 毫克；还更优选至少为 425 毫克，至少为 450 毫克，至少为 475 毫克，至少为 500 毫克或至少为 525 毫克；最优选至少为 550 毫克，至少为 575 毫克，至少为 600 毫克，至少为 625 毫克或至少为 650 毫克；以及尤其至少为 675 毫克，至少为 700 毫克，至少为 725 毫克，至少为 750 毫克或至少为 775 毫克。较优选的是，根据本发明的药物剂型的总重量处于 0.01 克至 1.5 克，更优选 0.05 克至 1.2 克，又更优选 0.1 克至 1.0 克，最优选 0.2 克至 0.9 克以及尤其处于 0.25 克至 0.8 克的范围。

在较优选的实施方案中，根据本发明药物剂型的核具有热熔挤出所形成的形态取向，其实质上与该剂型的纵向延伸方向成直角。

在此，“实质上”意指该角可从 90.0° 有些偏离。较优选的是，该角处于 90±30°，更优选 90±25°，又更优选 90±20°，还更优选 90±15°，最优选 90±10°，以及尤其处于 90±5° 的范围。

测定因热熔挤出所形成的形态取向的分析方法对本领域熟练技术人员是已知的，诸如有电子显微镜测定法，原子力光谱分析法和类似方法等。其它适用的方法还有三维空间的太赫兹光谱分析法，例如太赫兹时域光谱分析法 (THz-TDS)（请比较，例

【0155】图5A示图说明如何利用太赫兹光谱分析法可看见挤出物形态取向的情形。图5B示图说明在所述挤出物被压制成例如具有不同外形的片剂后仍可看见所述形态取向。

【0156】较优先的是，根据本发明的药物剂型的核具有因热熔挤出所造成的形态取向，其不仅实质上与该剂型的纵向延伸方向成直角（垂直），而且还实质上与该剂型的横向延伸方向成直角（垂直）。

【0157】在这方面，“实质上”也意指该角可自90.0°有所偏离。较优先的是，该角处于90±30°，更优先90±25°，又更优先90±20°，更更优先90±15°，最优选90±10°，以及尤其处于90±5°的范围。

【0158】在较优先的实施方案中，根据本发明的药物剂型所具有的总密度至少为0.85或至少为0.85克/立方厘米，更优选至少为0.90或至少为0.95克/立方厘米，又更优选至少为1.00，至少为1.05或至少为1.10克/立方厘米，最优选处于0.80至1.35克/立方厘米的范围，以及尤其处于0.95至1.25克/立方厘米的范围。

【0159】在较优先的实施方案中，根据本发明的药物剂型所具有的总密度处于1.00±0.30克/立方厘米，更优选处于1.00±0.25克/立方厘米，又更优选处于1.00±0.20克/立方厘米，还更优选处于1.00±0.15克/立方厘米，最优选处于1.00±0.10克/立方厘米，以及尤其处于1.00±0.05克/立方厘米的范围。在另一个较优先的实施方案中，根据本发明的药物剂型所具有的总密度处于1.10±0.30克/立方厘米，更优选处于1.10±0.25克/立方厘米，又更优选处于1.10±0.20克/立方厘米，还更优选处于1.10±0.15克/立方厘米，最优选处于1.10±0.10克/立方厘米，以及尤其处于1.10±0.05克/立方厘米的范围。在另一个较优先的实施方案中，根据本发明的药物剂型所具有的总密度处于1.20±0.30克/立方厘米，更优选处于1.20±0.25克/立方厘米，又更优选处于1.20±0.20克/立方厘米，还更优选处于1.20±0.15克/立方厘米，最优选处于1.20±0.10克/立方厘米，以及尤其处于1.20±0.05克/立方厘米的范围。较优先的是，根据本发明的药物剂型的总密度为1.00±0.02克/立方厘米，1.02±0.02克/立方厘米，1.04±0.02克/立方厘米，1.06±0.02克/立方厘米，1.08±0.02克/立方厘米，1.10±0.02克/立方厘米，1.12±0.02克/立方厘米，1.14±0.02克/立方厘米，1.16±0.02克/立方厘米，1.18±0.02克/立方厘米，1.20±0.02克/立方厘米，1.22±0.02克/立方厘米，1.24±0.02克/立方厘米，1.26±0.02克/立方厘米，1.28±0.02克/立方厘米，1.30±0.02克/立方厘米，1.32±0.02克/立方厘米，1.34±0.02克/立方厘米，1.36±0.02克/立方厘米，1.38±0.02克/立方厘米，1.40±0.02克/立方厘米。

【0160】较优先的是，根据本发明的药物剂型的特征为密度的分布比较均匀。较优先的是，所具有的体积各为1.0立方毫米的该药物剂型的两个部分的密度彼此间的偏差不超过±10%，更优选不超过±7.5%，又更优选不超过±5.0%，最优先不超过±2.5%，以及尤
其不超过±1.0%。如果药物剂型被包覆膜衣，则所述该药物剂型的两个部分，其各自具有1.0立方毫米的体积，较优选是该的部分，也就是不含有任何的涂层材料。

161. 根据本发明的药物剂型显示以控制方式释出包含在其中的药物活性成分（A）。
162. 在较优选的实施方案中，由根据本发明的药物剂型经由正面和背面每单位面积释出的药物活性成分（A）要比经由周围边缘（rim）的释出更加迅速。
163. 熟练技术人员知道如何测量药物活性成分（A）经由本发明的药物剂型各个表面的释出率。例如，药物剂型可被涂上不溶解于释放介质中的惰性的亮光漆（varnish）。该药物剂型的外表面仅有一段限柱状和形状的区隔部分没有被涂亮光漆，其方法例如是通过在涂亮光漆时，暂时将所述部分加以遮盖，或利用机械的方法将所要位置的亮光漆加以去除。
164. 或者，可用适当的装置将药物剂型包夹住使得该药物剂型仅有特定的面（分别为正面、背面和部分的周围边缘（rim）与释放介质相接触。
165. 为避免扩散长度影响释出曲线图，其中该影响是因剂型的形状所致，而非因研究材料各自的释出性质所致，较优选仅监测刚开始时的释出，例如监测在10、20、30、45或60分钟后的释出。
166. 在较优选的实施方案中，根据本发明的剂型是在体外的条件下、在人工胃液中、依据下列的释出曲线释出药物活性成分（A）：
167. 在0.5小时后至少5个重量百分，
168. 在1小时后至少10个重量百分，
169. 在3小时后至少20个重量百分，
170. 在6小时后至少35个重量百分，和
171. 在12小时后至少55个重量百分，
172. 其是以最初被包含在该剂型中的药物活性成分（A）的总重量为依据。
173. 较优选的是，根据本发明的药物剂型适合用于口服给药。但也可经由不同的途径给予本药物剂型，因此本药物剂型还可适用于口腔、舌头、直肠或阴道给药。将本药物剂型植入体内也是可行的。
174. 在较优选的实施方案中，根据本发明的药物剂型适合用于每日给药一次。在另一个较优选的实施方案中，根据本发明的药物剂型适合用于每日给药两次。在又另一个较优选的实施方案中，根据本发明的药物剂型适合用于每日给药三次。
175. 更具体地说，“每日两次”的意思是在每次给药之间间隔相等的时间间隔，也就是每12小时，或不同的时间间隔，例如8小时和16小时，或10小时和14小时。
176. 更具体地说，“每日三次”的意思是在每次给药之间间隔相等的时间间隔，也就是每8小时，或不同的时间间隔，例如6.6和12小时，或7.7和10小时。
177. 较优选的是，根据本发明的药物剂型以至少部分延缓的方式释出药物活性成分（A）而发挥作用。
178. 根据本发明的理解，延缓释出较优选意指释出曲线图，其中药物活性成分（A）是减少服药的频率，经过相对较长的时间释出，其目的是要达到延长治疗作用。而这尤其是由口服给药方式达成。根据本发明，术语“至少部分延缓的释出”这句话是涵盖确保经由经过改变的方式释出包含在该药物剂型中的药物活性成分（A）的任何药物剂型。本药物剂型较优
选含有经包覆或未经包覆的药物剂型，它们是通过特别的辅助性物质、或由特殊的方法、或以结合该两种可能的选优方法所制成，这是为了有目的地改变释出的速率或释出的位置。

【0179】就根据本发明的药物剂型而言，释出时间曲线可被修改如下：例如延缓释出、重复作用释出、延长释出和持续性释出。

【0180】更具体地说，“延缓释出”较优先意指某产物，其中活性化合物的释出被延缓一段有限的落后时间，在此时间之后，释出即不再受到阻挠。更具体地说，“重复作用释出”较优先意指某产物，其中活性化合物的第一个部分在刚开始时即被释出，接着至少另一个部分的活性化合物随后被释出。更具体地说，“延长释出”较优先意指某产物，其中，在给药之后，活性化合物从制剂中释出的速率已经被降低，其目的是维持治疗的活性，减少毒性，或某些其它治疗上的目的。更具体地说，“持续性释出”较优先意指某种配制药品的方式，使药物在一段长时间稳定地被释出至体内，因此减少给药的频率。欲知详情，可参考K. H. Bauer, Lehrbuch der Pharmazeutischen Technologie, 6th edition, WVG Stuttgart, 1999；和欧洲药典。

【0181】根据本发明的药物剂型可包含一或数种药物活性成分（A），它们至少一部分处于进一步延缓释出形式，其中可借助于本领域熟练技术人员所已知的常见材料和方法，例如将物质埋置在延缓释出的基质中，或应用一或数种延缓释出的包膜而达到延缓释出。然而，物质的释出必须被控制到某种程度，使得添加延缓释出的物质不会破坏所需的破裂强度。根据本发明的药物剂型较优先以将物质埋置在基质中的方式来达到控制释出。组分（C）可作为这种基质使用。具基质材料使用的辅助性物质控制释出。基质材料例如可以是亲水性的、形成凝胶的材料，从这些材料中的释出主要是以扩散方式进行，或是疏水性的材料，从这些材料中的释出主要是以从基质中的小孔进行扩散的方式进行。

【0182】较优先的是，在生理条件下，根据本发明的药物剂型在30分钟后已释出0.1至75%，在240分钟后已释出0.5至95%，在480分钟后已释出1.0至100%，以及在720分钟后已释出2.5至100%的药物活性成分（A）。下表中总结其它较优选的释出曲线R₁至R₅[所有数据都以被释出药理活性化合物（A）的重量百分比表示]：

<table>
<thead>
<tr>
<th>时间</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>R₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 分钟</td>
<td>0-30</td>
<td>0-50</td>
<td>0-50</td>
<td>15-25</td>
<td>20-50</td>
</tr>
<tr>
<td>120 分钟</td>
<td>0-40</td>
<td>0-75</td>
<td>0-75</td>
<td>25-40</td>
<td>40-75</td>
</tr>
<tr>
<td>240 分钟</td>
<td>3-55</td>
<td>3-95</td>
<td>10-95</td>
<td>40-70</td>
<td>60-95</td>
</tr>
<tr>
<td>480 分钟</td>
<td>10-65</td>
<td>10-100</td>
<td>35-100</td>
<td>60-90</td>
<td>80-100</td>
</tr>
<tr>
<td>720 分钟</td>
<td>20-75</td>
<td>20-100</td>
<td>55-100</td>
<td>70-100</td>
<td>90-100</td>
</tr>
<tr>
<td>960 分钟</td>
<td>30-88</td>
<td>30-100</td>
<td>70-100</td>
<td>> 80</td>
<td></td>
</tr>
</tbody>
</table>

23
说明 书

<table>
<thead>
<tr>
<th></th>
<th>1440 分钟</th>
<th>50-100</th>
<th>50-100</th>
<th>> 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>2160 分钟</td>
<td>> 80</td>
<td>> 80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0184] 较优选的是，在体外的条件下，根据本发明的药物剂型在 0.5 小时后已释出 1.0 至 35 个重量百分，在 1 小时后已释出 5.0 至 45 个重量百分，在 2 小时后已释出 10 至 60 个重量百分，在 4 小时后已释出至少 15 个重量百分，在 6 小时后已释出至少 20 个重量百分，在 8 小时后已释出至少 25 个重量百分，以及在 12 小时后已释出至少 30 个重量百分的最初在本发明的药物剂型中所含有的药物活性成分（A）。

[0185] 熟练技术人员已知适合的体外试验条件。有关这点，可参考例如欧洲药典和参考试验部分。较优选的是，释出曲线图是在下列的条件下所测得：附有铅锤的转桨装置，转速 50rpm，温度 37±5°C，900 毫升模拟小肠液 pH 6.8（磷酸盐缓冲溶液）。在较优选的实施方案中，转桨的旋转速度被增加至 100rpm。

[0186] 较优选的是，当根据本发明的药物剂型经过储存后，优选是经过在升高温度，例如在 37°C 下，及密封的容器中储存 3 个月之后，其释出曲线图是稳定的。在此，“稳定”意指如果将最初的释出曲线图与经过在任何指定时点的储存后的释出曲线图作比较，两者释出曲线图彼此偏差不超过 20%，又优选不超过 15%，又更优选不超过 10%，更优选不超过 5%，或优选不超过 5.0% 以及尤其不超过 2.5%。

[0187] 根据本发明的药物剂型含有药物活性成分（A），为明确说明，也被称为“组分（A）”。药物活性成分（A）被埋置在包含聚合物（C）的基质中。

[0188] 在较优选的实施方案中，在周围环境条件下，组分（A）在纯水中的溶解度至少为 1.0 克/升，更优选至少为 5.0 克/升，又更优选至少为 10 克/升，再更优选至少为 25 克/升，最优选至少为 50 克/升，以及尤其至少为 100 克/升。

[0189] 在另一个较优选的实施方案中，在周围环境条件下，组分（A）在纯水中的溶解度至少为 1.0 克/升，更优选至少为 0.5 克/升，又更优选至少为 0.1 克/升，再更优选至少为 0.05 克/升，最优选至少为 0.01 克/升，以及尤其至少为 0.005 克/升。

[0190] 根据本发明的药物剂型含有在制药上有疗效含量的药理活性化合物（A），其证明使用本发明的药物剂型作为药物的合理性，且其是本发明的药物剂型具有活性的原因所在。原则上可认为是根据本发明的药物剂型的药理活性化合物（A）为任何已知的药用物质，其中在根据本发明的药物剂型中的这些物质可以是其本身、它们衍生物的形式，尤其是特定的酯类或醚类，或各自以它们所对应的生理上可被接受的化合物的形式，尤其是以它们所对应的盐类或溶剂化物的形式，以外消旋体的形式或以经过富集的一或数种立体异构物（镜像异构物或非镜像异构物）的形式存在。

[0191] 根据本发明的药物剂型适合于在单一药物剂型中给予多种的药理活性化合物（A）。较优选为，药物剂型中仅含有中一种特定的药理活性化合物（A）。

[0192] 药理活性化合物（A）的含量，以药物剂型的总量为依据，较优选处于 0.01 至 95 个重量百分，更优选处于 0.5 至 80 个重量百分，又更优选处于 1.0 至 70 个重量百分，最优选处于 5.0 至 60 个重量百分以及尤其处于 10 至 50 个重量百分的范围。在较优选的实施方案中，其含量超过 20 个重量百分。

[0193] 在较优选的实施方案中，根据本发明的药物剂型含有精神作用性物质作为药理活
性化合物 (A)。

【0194】本领域熟练技术人员知道何种物质具有精神性作用。影响心理过程的物质通常都具有精神性作用,也就是这些物质特别地对心理功能起作用。具有精神性作用的物质因此可以影响情绪,也就是说情绪激昂或使情绪低落。详细地说,具有精神性作用的物质尤其包括阿片类物质、兴奋剂、镇静剂（例如巴比妥盐类和苯二氮卓类）和其它的麻醉剂。具有精神性作用的物质较优选应包含有下述的物质,其尤其是当不适当地给予（尤其是有滥用的敌意）时,会造成活性化合物的浓度比正常的口服给药更快速地增加,因而给予药物滥用者所期望的效果,即“后劲”（kick）或“冲劲”。如被研成粉末的药物剂型以经由鼻腔的途径给予,也就是用鼻子吸入的方式给药时,此种后劲也会产生。具有精神性作用的物质较优选为下述的药物,其（以适当的剂量和适当的药物剂型和适当地给予时）以使这些物质根本上适合于滥用的某种方式影响人类的精神活动和/或感官知觉。

【0195】较优选的是,药理活性化合物 (A) 是阿片类物质。

【0196】尤其是,根据本发明的药物剂型较优选含有由下列的组中所选的精神性作用物质,该组由下列组成:阿片类物质 [A07DA、N01AH、N02A、R05DA、R05FA],巴比妥盐类 [N01AF、N01AG、N03AA],苯并二氮杂卓衍生物 [N03AE];治疗阿片依赖性的药物 [N07BC],抗焦虑剂 [N05B];安眠药和镇定剂 [N05C];精神兴奋剂,治疗注意力不足 / 过动症 (ADHD) 的药物和智力增进剂 [N06B];止吐剂 [A04A];减肥剂型,包括减肥产品 [A08A];作用于中枢神经系统肌肉松弛剂 [N03B];和解毒剂 [V03AB]。此处在方括号中所指的缩写是与 ATC 索引相对应的“药物索引表”,其被世界卫生组织使用于药物分类 (较优选的版本:2007 或 2008)。

【0197】根据本发明的药物剂型较优选含有由下列的组中所选的精神性作用物质,该组由下列组成:阿片类物质、类香草素受体调节剂、血清素 / 新肾上腺素 / 多巴胺调节剂、GABA 调节剂、NMDA (N-甲基-D-天门冬氨酸) 抑抗剂、血管内阻断剂 / 调节剂、类大麻素,和其它的非类固醇消炎药物 (NSAIDS)。

【0198】以下的鸦片剂,阿片类物质、镇静剂或其它的麻醉剂是具精神性作用的物质,也就是有滥用的潜在性,因此较优选被包含在根据本发明的药物剂型中:阿芬太尼 (alfentanil)、二丙烯基巴比妥 (allobarbital)、丙烯普鲁汀 (allylprodine)、阿法罗定 (alphaprodine)、阿法唑他 (alprazolam)、甲苯丙胺 (amfepramone)、安非他命 (amphetamine)、安非他尼 (amphetaminil)、异戊巴比妥 (amobarbital)、阿尼利定 (anileridine)、阿朴可待因 (apocodeine)、阿索马多 (axomadol)、巴比妥 (barbital)、麦芬替啶 (bemidone)、苯甲基吗啡 (benzylnorphine)、培他西利明 (bezitramide)、溴西泮 (bromazepam)、溴替唑仑 (brotizolam)、丁丙诺啡 (buprenorphine)、丁巴比妥 (butobarbital)、布托啡诺 (butorphanol)、卡马西平 (camazepam)、卡芬太尼 (carfentanil)、去甲伪麻黄碱 (cathine/D-norpseudoephedrine)、氯二氮平 (chloridiazepoxide)、氯巴占 (clorazepate)、氯苯达诺 (clophenol)、氯丙嗪 (clotiazepam)、氯米西泰 (clonazepam)、氯西利酮 (clonitazene)、氯拉卓酸 (clorazepate)、氯西泮 (clorazepate)、氯甲呼仑 (cloxazolam)、古柯碱 (cocaine)、可待因 (codeine)、环巴比妥 (cyclobarbital)、赛克罗酚 (cyclophane)、环丙诺啡 (cyprenorphine)、地洛西泮 (delorazepam)、二氢脱氧吗啡 (desomorphine)、右旋吗酰胺 (dextromoramide)、右旋丙氧芬 (dextropropoxyphene)、地佐辛 (dezocine)、狄安普鲁密特 (diamromide)、二乙
酰吗啡酮（diamorphone）、地西泮（diazepam）、二氢可待因（dihydrocodeine）、二氯吗啡（dihydro morphone）、二氢吗啡酮（dihydro morphone）、狄门诺沙多（dimenoxadol）、狄门啡他莫（dimephetamol）、二甲胺二醛同丁烯（dimethylthiambutene）、吗啡二苯丁酸乙酯（dioxaphethylbutyrate）、地匹帕酮（dipipanone）、屈大麻酚（dronabinol）、依他佐辛（etazocine）、艾司唑仑（estazolam）、艾氏苯酚（ethoheptazine）、甲乙胺二醛同丁烯（ethylichlorothiambutene）、氯氟卓乙酯（ethyl loflazepate）、乙基吗啡（ethyl morphine）、爱托尼他净（etontazene）、爱托啡因（etorphine）、芬苯胺（fencamfamine）、芬乙丙碱（fenethylline）、芬哌酰胺（fenpi pramide）、芬普雷司（fenproporex）、芬太尼（fentanyl）、氟地西泮（fludiazepam）、氟硝西泮（flunitrazepam）、氟西泮（flurazepam）、哈拉西泮（halazepam）、卤唑仑（haloxazolam）、海洛英（heroin）、二氢可待因酮（hydrocodone）、氢吗啡酮（hydromorphine）、羟眯替酸（hydroxyethididine）、异美沙酮（isomethadone）、羟甲基吗啡（hydroxymethylmorphinan）、羟他唑仑（ketazolam）、羟托米酮（ketobemidone）、左旋乙酰美沙醇（levacetylmethadol, LAAM）、左旋美沙酮（levomethadone）、左旋吗啡（levorphanol）、左旋苯酰吗啡（levophenacylmorphane）、左旋塞马辛（levoxemacin）、甲磺酸腺苷酸非他命（lisdexamfetamine dimesylate）、洛芬太尼（lofentanil）、氯普唑仑（lorazepam）、劳拉西泮（lorazepam）、氯甲西泮（lormetazepam）、马来唑（mazindol）、美达西泮（medazepam）、美芬太司（mefenorex）、派替啶（meperidine）、甲丙氨酯（meprobamate）、甲基二氢吗啡（metapon）、美普他酚（meptazinol）、美他佐辛（metazocine）、甲基吗啡（methylmorphine）、甲基安非他命（methamphetamine）、美沙酮（methadone）、甲喹酮（methaqualone）、3-甲基芬太尼（3-methylfentanyl）、4-甲基芬太尼（4-methylfentanyl）、苯哌啶酸甲酯（methylphenidate）、苯基苯巴比妥（methylphenobarbital）、苯巴胺酮（methylpyrilon）、5-甲基二氢吗啡酮（metopon）、咪达唑仑（midazolam）、莫达非尼（modafinil）、吗啡（morphine）、十四烷基苯基吗啡（mytophyne）、那马度（nabilone）、那布啡（nalbuphene）、烯丙吗啡（nalorphine）、那破因碱（narceine）、那碱酸吗啡（nicomorphine）、尼美西泮（nimetazepam）、硝西泮（nitrizepam）、脱氧地莫西泮（nordazepam）、去甲左旋啡诺（norlevorphanol）、去甲美沙酮（normethadone）、去甲吗啡（normorphine）、二苯哌啶乙醇（norpipanone）、鸦片（opium）、奥沙西泮（oxazepam）、奥沙唑仑（oxazolam）、羟可待因酮（oxyco done）、羟二氢吗啡酮（oxymorphine）、罂粟（Papaver somniferum）、阿片全碱（papaveretum）、匹莫林（peridine）、喷他佐辛（pentazocine）、戊巴比妥（pentobarbital）、哌替啶（pethidine）、苯甲酯霖（phenadoxone）、非那啡烷（phenomorphane）、非那佐辛（phenazocine）、苯哌利定（phenoperidine）、匹米诺汀（piminoidine）、福尔可待因（pholcodeine）、苯甲酸吗啡（phenmetrazine）、苯巴比妥（phenobarbital）、二甲苯乙胺（phentermine）、匹那西泮（pinazepam）、哌苯甲醇（pipradrol）、匹匹利密特（piriramide）、普拉西泮（prazepam）、普罗法朵（profadol）、普罗庚嗪（proheptazine）、二甲哌替啶（promedol）、异丙哌替啶（properidine）、丙氯芬（propoxyphene）、瑞芬太尼（remifentanil）、仲丁巴比妥（secbutobarbital）、丙烯戊巴比妥（secobarbital）、舒芬太尼（sufentanil）、他喷他多（tapentadol）、替马西泮（temazepam）、四氢西泮（tetrazepam）、替利定（tilidine）（顺式和反式）、曲马多（tramadol）、三唑仑（triazolam）、乙烯比妥（vinylbital）、N—(1—甲
C_{max} | 在单次给药之后活性成分的最大测定血浆浓度（= 平均高峰血浆浓度）
\[\text{t}_{\text{max}} \] | 从活性成分给予后至达到 C_{max} 的时间间隔
\[\text{t}_{1/2} \] | 半衰期
\[\text{AUC}_{0-\infty} \] | 曲线下的总面积

[0205] 以上各项参数都分别以所有接受研究的患者 / 受试对象所得到个别数值的平均值表示。

[0206] 本领域熟练技术人员知道如何由活性成分在血浆中的测定浓度计算出活性成分药物代谢动力学的各项参数。有关这点，例如可参考 Willi Cawello (ed.) Parameters for Compartment-free Pharmacokinetics, Shaker Verlag Aachen (1999)。

[0207] 在较优选的实施方案中，在较优选口服给予根据本发明的药物剂型之后，达到体内平均高峰血浆浓度（C_{max}）的时间平均为 t_{max} 4.0 ± 2.5 小时之后，更优选在 t_{max} 4.0 ± 2.0 小时之后，又更优选在 t_{max} 4.0 ± 1.5 小时之后，最优选在 t_{max} 4.0 ± 1.0 小时之后以及尤其在 t_{max} 4.0 ± 0.5 小时之后。在另一个较优选的实施方案中，在较优选口服给予根据本发明的剂型之后，达到体内平均高峰血浆浓度（C_{max}）的平均时间为 t_{max} 5.0 ± 2.5 小时之后，再优选在 t_{max} 5.0 ± 2.0 小时之后，又更优选在 t_{max} 5.0 ± 1.5 小时之后，最优选在 t_{max} 5.0 ± 1.0 小时之后以及尤其在 t_{max} 5.0 ± 0.5 小时之后。在另一个较优选的实施方案中，在较优选口服给予根据本发明的药物剂型之后，达到体内平均高峰血浆浓度（C_{max}）的平均时间为 t_{max} 6.0 ± 2.5 小时之后，更优选在 t_{max} 6.0 ± 2.0 小时之后，又更优选在 t_{max} 6.0 ± 1.5 小时之后，最优选在 t_{max} 6.0 ± 1.0 小时之后以及尤其在 t_{max} 6.0 ± 0.5 小时之后。

[0208] 在较优选的实施方案中，在较优选口服给予根据本发明的药物剂型之后，体内 t_{1/2} 的平均值为 4.3 ± 2.5 小时，更优选为 4.3 ± 2.0 小时，又更优选为 4.3 ± 1.5 小时，最优选为 4.3 ± 1.0 小时，以及尤其为 4.3 ± 0.5 小时。在另一个较优选的实施方案中，在较优选口服给予根据本发明的药物剂型之后，体内 t_{1/2} 的平均值为 5.3 ± 2.5 小时，更优选为 5.3 ± 2.0 小时，又更优选为 5.3 ± 1.5 小时，最优选为 5.3 ± 1.0 小时，以及尤其为 5.3 ± 0.5 小时。在另一个较优选的实施方案中，在较优选口服给予根据本发明的药物剂型之后，体内 t_{1/2} 的平均值为 6.3 ± 2.5 小时，更优选为 6.3 ± 2.0 小时，又更优选为 6.3 ± 1.5 小时，最优选为 6.3 ± 1.0 小时，以及尤其为 6.3 ± 0.5 小时。

[0209] 在较优选的实施方案中，药理活性化合物（A）是他唑他多或其生理上可被接受的盐类，并且在较优选口服给予根据本发明的药物剂型之后，体内，曲线下总面积 AUC_{0-\infty} 的平均值为 825 ± 600 毫微克 • 小时 / 毫升，更优选为 825 ± 500 毫微克 • 小时 / 毫升，又更优选为 825 ± 400 毫微克 • 小时 / 毫升，再更优选为 825 ± 300 毫微克 • 小时 / 毫升，最优选为 825 ± 200 毫微克 • 小时 / 毫升，以及尤其为 825 ± 100 毫微克 • 小时 / 毫升。在另一个较优选的实施方案中，药理活性化合物（A）是他唑他多或其生理上可被接受的盐类，并且在较优选口服给予根据本发明的药物剂型之后，体内，曲线下总面积 AUC_{0-\infty} 的平均值为 1100 ± 600 毫微克 • 小时 / 毫升，更优选为 1100 ± 500 毫微克 • 小时 / 毫升，又更优选为 1100 ± 400 毫微克 • 小时 / 毫升，再更优选为 1100 ± 300 毫微克 • 小时 / 毫升，最优选为 1100 ± 200 毫微克 • 小时 / 毫升，以及尤其为 1100 ± 100 毫微克 • 小时 / 毫升。
【0210】在较优选的实施方案中，药理活性化合物（A）是他喷他多或其生理上可被接受的盐类，并且在较优选口服给予根据本发明的药物剂型之后，在体内，C_{max} 的平均值为 63 ± 40 毫微克/毫升，更优选为 63 ± 30 毫微克/毫升，又更优选为 63 ± 20 毫微克/毫升，还更优选为 63 ± 15 毫微克/毫升，最优选为 63 ± 10 毫微克/毫升以及尤其为 63 ± 5 毫微克/毫升。在另一个较优选的实施方案中，药理活性化合物（A）是他喷他多或其生理上可被接受的盐类，并且在较优选口服给予根据本发明的药物剂型之后，在体内，C_{max} 的平均值为 89 ± 40 毫微克/毫升，更优选为 89 ± 30 毫微克/毫升，又更优选为 89 ± 20 毫微克/毫升，还更优选为 89 ± 15 毫微克/毫升，最优选为 89 ± 10 毫微克/毫升以及尤其为 89 ± 5 毫微克/毫升。

【0211】在特别优选的实施方案中，药理活性化合物（A）是他喷他多或其生理上可被接受的盐类，且根据本发明的药物剂型与含有剂量分别为 200 毫克和 250 毫克他喷他多或其生理上可被接受的盐类的制剂具有生物等效性，且其特征为具有以下药物代谢动力学的数据：

<table>
<thead>
<tr>
<th>参数</th>
<th>剂量 200 毫克</th>
<th>剂量 250 毫克</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AUC_{0-\infty}$</td>
<td>825 毫微克·小时/毫升</td>
<td>1096 毫微克·小时/毫升</td>
</tr>
<tr>
<td>C_{max}</td>
<td>62.5 毫微克/毫升</td>
<td>89.3 毫微克/毫升</td>
</tr>
<tr>
<td>t_{max}</td>
<td>5.00 小时</td>
<td>5.00 小时</td>
</tr>
<tr>
<td>$t_{1/2}$</td>
<td>5.2 小时</td>
<td>5.4 小时</td>
</tr>
</tbody>
</table>

【0213】通常而言，如果两种药品在药学上是等效的或互为药学上的替代物时，以及如果在给予相同的摩尔剂量之后，两种药品的生物可利用率彼此类似至如下的程度，以致于它们在疗效和安全性方面基本上都相同时，此时两种药品即具有生物等效性。较优选的是，应该使用 ANOVA 进行统计数据的分析，其是以 90%的置信区间为依据。例如，就 AUC- 比值而言，该相对生物可利用率测量的 90% 置信区间应该落在 0.80 至 1.25 的接受区间的范围，且就 C_{max}- 比值而言，该相对生物可利用率测量的 90% 置信区间应该落在 0.80 至 1.25 的接受区间的范围。

【0214】在较优选的实施方案中，根据本发明的药物剂型不含有会刺激鼻腔通道和 / 或咽喉的物质，即自下而上的物质，其当经由鼻腔通道和 / 或咽喉给药时，会引起身体上
的反应。该反应或是使患者感觉到不舒服而使他 / 她不希望或无法继续被给药，例如灼伤，或是例如因为鼻腔分泌物打喷嚏而造成生理上排斥使用相关的活性化合物。会引起鼻腔通道和 / 或咽喉刺激，尾部的其它副作用还有那些物质，它们引起灼伤、瘙痒、急促引起打喷嚏、分泌物形成增加或至少两种这些刺激的组合。通常使用的相应的物质和它们的用量都为熟练技术人员所知道。有些会刺激鼻腔通道和 / 或咽喉的物质因此是源自于辛辣物质药材的一或数种组分或一或数种植物部位。相关的辛辣物质药材就是其本身而言对本领域熟练技术人员是已知的，且例如被叙述在 “ Pharmazeutische Biologie-Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982, pages 82 et seq.。相关的叙述在此被引用作为参考，而且被视为本公开内容的一部分。

[0216] 根据本发明的药物剂型此外较优选不含药理活性化合物 (A) 的拮抗剂，较优选不含有抗精神异常物质的拮抗剂，尤其不含有抗阿片类物质的拮抗剂。适合作为给定药理活性化合物 (A) 的拮抗剂是本领域熟练技术人员已知的，且可以其本身或以它们相对应衍生物的形式，尤其是酯类或醚类的形式存在，或在每种情况下以它们相对应的生理上可接受的化合物的形式，尤其是以它们的盐类或溶剂化物的形式存在。根据本发明的药物剂型较优选不含有由下列的组中选出的拮抗剂，该组包含有纳洛酮 (naloxone)、纳曲酮 (naltrexone)、纳美芬 (nalofene)、纳利得 (nalide)、纳美酮 (nalmexone)、纳洛啡 (nalorphine) 或那禄啡 (naluphine)，其在每种情况下任选地以相对应的生理上可接受的化合物的形式，尤其是以碱，盐类或溶剂化物的形式存在；且不含有抗精神分裂症药物，例如由下列的组中选出的化合物，该组包含有氯哌丙醇 (haloperidol)、普罗美辛 (promethazine)、氟芬那辛 (fluphenazine)、培芬那辛 (permitazine)、左美丙嗪 (levomepromazine)、甲硫达嗪 (thioridazine)、甲哌丙嗪 (perazine)、氯丙嗪 (chlorpromazine)、氯普噻嗪 (chlorprothixine)、氯普噻醇 (zuclopenthixol)、氟哌噻吨 (flupentixol)、丙硫嗪地 (prothipendyl)、络苯平 (zotepine)、苯哌利酮 (benperidol)、匹泮哌隆 (pipamperone)、美哌隆 (melperone) 和溴哌利多 (bromperidol)。

[0217] 根据本发明的药物剂型此外较优选不含催化剂。催化剂是本领域熟练技术人员已知的，且可例如以它们本身或它们相对应衍生物的形式，尤其是酯类或醚类的形式存在，或在每种情况下以它们相对应的生理上可接受的化合物的形式，尤其是以它们的盐类或溶剂化物的形式存在。根据本发明的药物剂型较优选不含催化剂，该催化剂源自于吐根 (ipecacuanha) (ipecac) root) 的一或数种组分，例如源自吐根碱 (emetine) 组分，例如在 “ Pharmazeutische Biologie-Drogen und ihre Inhaltsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, New York, 1982 中所述。相关的文献叙述在此被引用作为参考，而且被视为本公开内容的部分。根据本发明的药物剂型较优选不含阿朴吗啡 (apomorphine) 为催化剂。

[0218] 最后，根据本发明的药物剂型较优选也不含苦味物质。苦味物质和其有效的使用量可在 US-2003/0064999 A1 中得知，它们相关的公开内容应可被视为本申请的公开内容，因此被引用作为参考。苦味物质的范例有芳香油，如薄荷油、尤加利油、苦杏仁油、薄荷醇、木瓜芳香物质、硬脂酸铜或它们的混合物的芳香物质，或 / 或苯甲地那膜 (denatonium benzoate)。
[0219] 根据本发明的药物剂型因此较优选不含有会刺激鼻腔黏膜和/or咽喉的物质，也不含有药理活性化合物 (A) 的拮抗剂，且不含有催吐剂，不含有苦味物质。

[0220] 根据本发明的药物剂型的特征是药理活性化合物 (A) 的分布比较均匀。较优选的是，在本发明的药物剂型两个体积各自为 1.0 立方毫米的部分中药理活性化合物 (A) 的含量彼此间的偏差不超过 ±10%，更优选不超过 ±7.5%，又更优选不超过 ±5.0%，最优选不超过 ±2.5%，甚至尤其不超过 ±1.0%。如果药物剂型被包覆膜衣时，则所述该药物剂型的两个部分，其各自具有 1.0 立方毫米的体积，较优选是核的部分，也就是不含有任何的涂层材料。

[0221] 较优选的是，根据本发明的药物剂型的所有组分在该药物剂型中具有比较均匀的分布。较优选的是，在该药物剂型两个体积各自为 1.0 立方毫米的部分中每种组分的含量彼此间的偏差不超过 ±10%，更优选不超过 ±7.5%，又更优选不超过 ±5.0%，最优选不超过 ±2.5%，甚至尤其不超过 ±1.0%。如果该药物剂型被包覆膜衣时，则所述该药物剂型的两个部分，其各自具有 1.0 立方毫米的体积，较优选是核的部分，也就是不含有任何的涂层材料。

[0222] 较优选的是，根据本发明的药物剂型至少含有一种聚合物 (C)，更具体地说，也被称为“组分 (C)”。较优选的是，根据该药物剂型至少含有一种合成、半合成或天然的聚合物 (C)，其对在提升该药物剂型的破裂强度（抗粉碎强度）具有相当的贡献。明确地说，“半合成” 的产品是利用化学方法由存在于自然界的物质加工制造而成。

[0223] 较优选的是，根据本发明的药物剂型的机械性质，尤其是其破裂强度，实质上是取决于聚合物 (C) 的存在与否，虽然其独有的存在不足以达到所述性质。根据本发明的药物剂型的有利的性质，尤其是其机械性质，不可能由利用以热熔挤出法制备药物剂型的常规方法将药理活性化合物 (A)、聚合物 (C) 以及可任选地的其它赋形剂以热熔挤出的方式而自动达成。事实上，通常必须选择适用于挤出机进行生产制备，同时也必须调整重要的挤出参数，尤其是压力/施力、温度和时间。所以，即使在使用常规的挤出机时，通常也必须要调整工艺计划书以满足必需的要求。

[0224] 较优选的是，聚合物 (C) 为水溶性的物质。较优选的是，聚合物 (C) 实质上为未分支的物质。

[0225] 聚合物 (C) 可包含单一类型的、具有特定平均分子量的聚合物，或含有数种不同聚合物的混合物，诸如两种、三种、四种或五种聚合物，例如具有相同的化学性质但具有不同平均分子量的聚合物，具有不同化学性质但具有相同平均分子量的聚合物，或具有不同化学性质以及不同分子量的聚合物。

[0226] 单一的聚合物或数种聚合物的组合物可由下列的组中选出，该组包含聚烯化氧，较优选聚亚基甲基氧化物、聚氧化乙烯、聚氧化丙烯；聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚苯乙烯、聚乙烯硅烷聚酯、聚 (烷基) 丙烯酸酯、聚 (羟基甲酯) 丙稀酸酯，诸如聚 (3-羟基丁酸酯 - 共 -3- 羟基戊酸酯) (Biopol®)、聚 (羟基戊酸酯)；聚丙内酯、聚乙烯醇、聚氨酯 (polyurethane)、聚氨酯、聚丙交酯、聚缩醛 (例如聚多醇，其任选地具有修改的支链)、聚丙交酯 / 乙交酯、聚内酯、聚乙交酯、聚丙交酯、聚丙内酯与聚对苯二甲酸丁二酯的嵌段共聚物 (Polyactive®)、聚氨酯 (Polipropesan)，它们的共聚物，它们的嵌段共聚物，以及至少两种所述的聚合物的混合
物，或其它具有上述特征的聚合物。

【0227】较优选的是，聚合物 (C) 包含有聚亚烷基氧化物，更优选包含聚氧化乙烯、聚氧化丙烯、氧化乙烯与氧化丙烯的共聚物，其例如可为无规共聚物，交替共聚物或嵌段共聚物，或以上所述聚合物中任意种的混合物。

【0228】尤其优选的是高分子量聚合物，较优选其具有的重均分子量 (M_w) 或粘均分子量 (M_n) 至少为 0.1×10^6 克/摩尔，至少为 0.2×10^6 克/摩尔，至少为 0.5×10^6 克/摩尔，至少为 1×10^6 克/摩尔，至少为 2.5×10^6 克/摩尔，至少为 5×10^6 克/摩尔，至少为 7.5×10^6 克/摩尔，或至少为 10×10^6 克/摩尔，较优选 1×10^6 克/摩尔至 15×10^6 克/摩尔。熟练技术人员已知测定 M_w 或 M_n 的适当方法。较优选的是，M_w 是使用流量测量法所测得，且 M_n 是使用在适当相上的凝胶渗透色层分析法 (GPC) 所测定。

【0229】较优选的是，聚合物 (C) 分子量的分散性 M_w/M_n 处于 2.5 ± 2，更优选处于 2.5 ± 1.5，又更优选处于 2.5 ± 1，还更优选处于 2.5 ± 0.8，最优选处于 2.5 ± 0.6，以及尤其处于 2.5 ± 0.4 的范围。

【0230】这些聚合物较优选在 25°C 下所具有的粘度为 4500 至 17600 cP，其是在 5 个重量百分的水溶液中利用型号为 RYF Brookfield 的粘度测量计 (2 号测量轴/转速为 2 rpm) 所测得，400 至 4000 cP，其是在 2 个重量百分的水溶液中利用上述的粘度测量计 (1 或 3 号测量轴/转速为 10 rpm) 所测得，或 1650 至 10000 cP，其是在 1 个重量百分的水溶液中利用上述的粘度测量计 (2 号测量轴/转速为 2 rpm) 所测得。

【0231】最优选的是热塑性的聚亚烷基氧化物，其所具有的重均分子量 (M_w) 或粘均分子量 (M_n) 至少为 0.2×10^6 克/摩尔，更优选至少为 0.3×10^6 克/摩尔，又更优选至少为 0.4×10^6 克/摩尔，还更优选至少为 0.5×10^6 克/摩尔，最优选至少为 1×10^6 克/摩尔以及尤其较优选处于 1×10^6 至 15×10^6 克/摩尔的范围，例如聚氧化乙烯、聚氧化丙烯或它们的（嵌段）共聚物。

【0232】在根据本发明较优选的实施方案中，聚合物 (C) 包含有

【0233】- 聚亚烷基氧化物，其所具有的重均分子量 (M_w) 或粘均分子量 (M_n) 至少为 0.2×10^6 克/摩尔

【0234】并与下述组合

【0235】- 至少一种另外的聚合物，较优选但非必要也具有重均分子量 (M_w) 或粘均分子量 (M_n) 至少为 0.2×10^6 克/摩尔，其由下列的组合中所选出，该组由下列组成：聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯、聚苯乙烯、聚丙烯酸酯、聚（羟基脂酸）、聚己内酯、聚乙烯醇、聚酯酰胺、聚丁二酸乙二酯、聚内酯、聚乙交酯、聚酯酰胺、聚丙交酯、聚丙交酯 /乙交酯、聚内酯、聚乙交酯、聚原酸酯、聚酸酐、聚乙二醇与聚对苯二甲酸丁二酯的嵌段共聚物、聚酰胺、聚缩醛、纤维素酸、纤维素醚和它们的共聚物。尤其优选的是纤维素醚和纤维素醚，例如甲基纤维素、乙基纤维素、羟基甲基纤维素、羟基丙基甲基纤维素、羧甲基纤维素和类似的聚合物等。

【0236】在较优选的实施方案中，所述另外的聚合物既非聚亚烷基氧化物，也非聚亚烷基二醇。然而，本药物剂型仍可含有聚亚烷基二醇，例如作为增塑剂，但本药物剂型较优选为组分 (C) + 另外的聚合物 + 增塑剂的三元聚合物混合物。

【0237】在特别优选的实施方案中，所述另外的聚合物是亲水性的纤维素醚或纤维素醚，
较优选的是羟基丙基甲基纤维素，其所具有的平均粘度较优选为 100,000±50,000 毫
帕・秒，更优选为 100,000±20,000 毫帕・秒。

【0238】较优选的是，所述另外的聚合物的含量计为 0.5 至 25 个重量百分，更优选为 1.0
至 20 个重量百分，又更优选为 2.0 至 17.5 个重量百分，还更优选为 3.0 至 15 个重量百分
以及最优选为 4.0 至 12.5 个重量百分以及尤其为 5.0 至 10 个重量百分，其是与聚亚烷基
氧化物的总重量为依据。

【0239】在较优选的实施方案中，所述聚亚烷基氧化物与所述另外的聚合物的相对重量比
是处于从 20 ：1 至 1 ：20，更优选从 10 ：1 至 1 ：10，又更优选从 7 ：1 至 1 ：5，还更
优选从 5 ：1 至 1 ：1，最优选从 4 ：1 至 1.5 ：1 以及尤其从 3 ：1 至 2 ：1 的范围。

【0240】较优选的是，所述另外的聚合物的含量计为 0.5 至 25 个重量百分，更优选为 1.0
至 20 个重量百分，又更优选为 2.0 至 22.5 个重量百分，还更优选为 3.0 至 20 个重量百分
以及最优选为 4.0 至 17.5 个重量百分以及尤其为 5.0 至 15 个重量百分，其是与本药物剂
型的总重量为依据。

【0241】虽然不想受到任何理论的束缚，然而通常认为该另外的聚合物可作为互补的基质
材料使用，其保证对在药理活性化合物（A）的释出产生最低限度的延缓效果，即使是该聚
亚烷基氧化物的分子链在例如以挤出法制造本药物剂型的过程中遭受到部分的破坏而因
此使平均分子量减少时。此外，该另外的聚合物似乎还对在本药物剂型的储存稳定性，尤其
是在其释出曲线方面产生贡献。

【0242】本领域熟练技术人员所知的生理上可被接受的疏水性材料可被作为互补的基质
材料使用。聚合物，尤其较优选的有纤维素醚，纤维素酯和 / 或丙烯酸系树脂，较优选被
作为亲水性的基质材料使用。非常特别优选作为基质材料使用的有乙基纤维素、羟基丙基
甲基纤维素、羟基丙基纤维素、羟基甲基纤维素、聚（甲基）丙烯酸和 / 或它们的衍生物，诸
如它们的盐类、酰胺类或酯类等。此外也较优选的是由疏水性的材质，诸如疏水性的聚合
物、蜡、脂肪、长链脂肪酸、脂肪醇或它们相对应的酯类或醚类或它们的混合物所制备而成
的基质材料。由含 12 至 30 个碳原子的脂肪酸所形成的单甘油脂或二甘油脂和 / 或含 12
至 30 个碳原子的脂肪醇和 / 或酯或它们的混合物尤其优选被作为疏水性的材质使用。此
外，也可使用上述亲水性和疏水性的材质的混合物作为基质材料使用。

【0243】较优选的是，聚合物 (C) 的总含量至少占本药物剂型总重量的 5 个重量百分，至少
占 10 个重量百分，至少占 15 个重量百分或至少占 20 个重量百分，更优选至少占 30 个重量
百分，又更优选至少占 40 个重量百分，最优选至少占 50 个重量百分以及尤其至少占 60 个
重量百分。在较优选的实施方案中，聚合物 (C) 的含量处于本药物剂型总重量从大约 20 至
大约 49 个重量百分的范围。

【0244】在较优选的实施方案中，聚合物 (C) 的总含量处于 25±20 个重量百分，更优选处
于 25±15 个重量百分，最优选处于 25±10 个重量百分，以及尤其处于 25±5 个重量百分的
范围。在另一个较优选的实施方案中，聚合物 (C) 的总含量处于 35±20 个重量百分，更优选
处于 35±15 个重量百分，最优选处于 35±10 个重量百分，以及尤其处于 35±5 个重量百分的
范围。在又另一个较优选的实施方案中，聚合物 (C) 的总含量处于 45±20 个重量百分，
更优选处于 45±15 个重量百分，最优选处于 45±10 个重量百分，以及尤其处于 45±5 个重
量百分的范围。在还再另一个较优选的实施方案中，聚合物 (C) 的总含量处于 55±20 个

33
重量百分，更优选处于 55±15 个重量百分，最优选处于 55±10 个重量百分，以及尤其处于 55±5 个重量百分的范围。在进一步较优选的实施方案中，聚合物 (C) 的总含量处于 65±20 个重量百分，更优选处于 65±15 个重量百分，最优选处于 65±10 个重量百分，以及尤其处于 65±5 个重量百分的范围。在又进一步较优选的实施方案中，聚合物 (C) 的总含量处于 75±20 个重量百分，更优选处于 75±15 个重量百分，最优选处于 75±10 个重量百分，以及尤其处于 75±5 个重量百分的范围。

[0245] 在较优选的实施方案中，聚合物 (C) 均匀地分布在根据本发明的药物剂型中。较优选的是，聚合物 (C) 形成有药理活性化合物 (A) 埋置在其中的基质。在特别优选的实施方案中，药理活性化合物 (A) 与聚合物 (C) 被紧密且均匀地分布在本药物剂型中，使得该药物剂型不含有任何上述部分；在其中仅存有药理活性化合物 (A) 与聚合物 (C)，或在其中仅存有聚合物 (C) 而没有药理活性化合物 (A)。

[0246] 如果药物剂型被包含膜衣时，则聚合物 (C) 较优选地均匀分布在该药物剂型的核中，也就是所包覆的膜衣较优选不含有聚合物 (C)。然而，所包覆的膜衣就本身而言当然可以含有一或数种的聚合物，但是它们较优选不同于核中所含有的聚合物 (C)。

[0247] 根据本发明的药物剂型显现出的破裂强度至少为 300 牛顿，其通常由本药物剂型的纵向延伸方向测得。

[0249] 更具体地说，破裂强度较优选被定义为要破坏药物剂型所需要的施力大小（＝破坏力）。因此，更具体地说，当其被破坏时，也就是被断裂成至少两个独立、且彼此分开的部位，剂型较优选不表现出所想要的破裂强度。然而，在另一个较优选的实施方案中，如果所施的力减少在测量时所得的破裂程度的 25％（阈值）时，药物剂型被视为被破坏。

[0250] 根据本发明的药物剂型与常规剂型的明显区别在于，由于本发明剂型的破裂强度，因此无法应用常用的方法，诸如杵和研钵、锤子、大头槌，或其它普通将物品变成粉末的方法，尤其是针对此目的所发展出的装置（片剂粉碎机）的施力将剂型研磨成粉末。在此，有关于“研磨成粉末”意思是粉碎成将药理活性化合物 (A) 立即释放到适当介质中的小颗粒。避免被研磨成粉末事实上可将经由口服或不经肠胃道途径，尤其是经静脉内或经鼻腔途径的滥用加以排除。

[0251] 常规剂型通常所具有的破裂强度在任何延伸的方向上都远低于 200 牛顿。而根据下列的经验公式可以估算出常规圆形片剂的破裂强度：破裂强度 [以牛顿为单位] = 10 x 片剂的直径 [以毫米为单位]。所以，依据此所述经验公式，具有至少 500 牛顿破裂强度的圆形片剂将需要至少具有 50 毫米（大约 2 英寸）的直径。然而，此种片剂是无法被吞服的。所以上述的经验公式不适用于本发明的药物剂型，它们是非常规的剂型，而非常特殊的剂型。

顿的常规片剂可以通过咀嚼被粉碎，而根据本发明的剂型则不能通过咀嚼而被粉碎，至少在延伸方向 E1 上不能。

[0253] 再者，当应用大约 9.81 米 / 秒^2 的重力加速度时，300 牛顿相当于超过 30 千克的重力，也就是根据本发明的药物剂型可耐得住超过 30 千克的重量。

[0254] 熟练技术人员知道测量药物剂型破裂强度的方法。适合使用的装置可由购买取得。

[0255] 例如，破裂强度（抗粉碎程度）可依据欧洲药典 5.0, 2.9, 8 或 6.0, 2.09, 08“片剂抗粉碎的强度”的方法加以测量。此试验的目的是在明确定义的条件下测定片剂的抗粉碎强度，其是测量以粉碎方式破坏该片剂时所需要的力量。该装置由两片彼此相对的夹钳所组成，其中一片朝着另一片的方向移动。两片夹钳黄色平面与移动的方向互相垂直。两片夹钳夹住物体的表面为平面且比和片剂接触的区域面积更大。此装置的校正是使用具有精确度为 1 牛顿的系统完成的。片剂被放置在两片夹钳之间，如果可行时，并将形状，破裂点和刻印的文字考虑在内；每次测量时，都参照施力的方向（通常是沿着纵向延伸的方向）以相同的方式将片剂定住。该测量是以 10 颗片剂为进行的对象，并在每次测定之前注意片剂的所有碎片都已被完全清除完毕。测量的结果都以所测得施力的平均值、最小值和最大值表示，且所有数据都以牛顿为单位表示。

[0256] 在美国药典中也可找到类似有关于破裂强度（破坏力）的叙述。破裂强度也可依据美国药典中所述的方法进行测定，其中指出，破裂强度是造成片剂在特殊的平面中无法通过测试（也就是破裂）所需要的施力。片剂通常被放置在任何压板之间，其中一片移动并在片剂上施加足够的力，并造成它的破裂。对于常规圆形（圆形横切面）的片剂而言，所施的力是发生在横穿它们的直径上（有时候也称为直径方向负载（diametral loading）），且破裂是发生在平面中。片剂的破坏力在制药的文献中通常被称为硬度；但是使用该术语造成误导。在材料科学中，该术语硬度是指表面抗拒小探针穿透或凿 V 字形凹口的能力。该术语硬度也常被使用于叙述片剂抗裂力所给予的硬度负载的能力。虽然该术语在描述该试验真实性质方面比硬度的描述还要更加准确，但是它却意味着片剂在测试期间确实被粉碎，而通常情形却不是这样。

[0257] 或者，破裂强度（抗粉碎程度）可依据 WO 2006/082099 所述的方法进行测量，其也可被视为欧洲药典中所述方法的修改版。该测定所使用的设备较优选为“Zwick Z 2.5” 的材料测试机，其 Flax = 2.5 千牛顿且最大的拉曳为 1150 毫米，其应由一组圆柱和一支心轴构成而成，在 100 毫米的后面间隙（clearance behind）以及可在 0.1 和 800 毫米 / 分钟之间进行调整的测试速度，以及 testControl 软件。此测量是使用含有装入式插入物和圆柱体（直径 10 毫米）的压力活塞和力传感器进行的，其中 Flax 为 1 千牛顿，直径 = 8 毫米，0.5 级由 10 牛顿起，1 级由 2 牛顿至 ISO 7500-1, 其具有依据 DIN 55350-18 的制造商测试证明 M（Zwick 的总力 Flax = 1.45 千牛顿）（所有设备都来自在德国 Ulm, Zwick 股份有限公司），测试机的订货编号为 BTC-FR 2.5THD09，力传感器的订货编号为 BTC-1C 0050N。P01, 定心装置的订货编号为 B0 70000 S06。

[0258] 在较优选的本发明实施方案中，破裂强度是利用破裂强度测试机 Sotax®，型号 HT100（瑞士，Allschwil）所测量。Sotax® HT100 可依据两种不同的测量原理进行破裂强度的测量；恒定的速度（其中测试夹钳以恒定的速度移动，可在 5 至 200 毫米 / 分钟之间作
调整）或恒定的施力（其中测试夹具以可在5至100牛顿/秒钟之间作线性调整方式增加施力）。原则上，此两种测量的原理都适合用于测量根据本发明的药物剂型的破裂强度。较优选的是，破裂强度是在恒定的速度、较优选在120毫米/分钟的恒定速度下测得。

[0259] 在较优选的实施方案中，如果该剂型被断裂成至少两个分离的碎块时，药物剂型被视为是破裂。

[0260] 在另一个较优选的实施方案中，如果所施的力减少在测量时所测得最大施力的25%（阈值），药物剂型被视为是破裂。例如，如果在测量时测得的最大施力为144牛顿，当所施的力减少至低至108牛顿时（=144牛顿的75%；减少25%），则该片剂被视为是破裂。在各延伸方向上破裂强度的数值则为144牛顿。在较优选的实施方案中，所述阈值为30%，较优选为35%，再更优选为40%，最优选为45%以及尤其为50%。在这些情况下，剂型可能必须被视作为是破裂，虽然该剂型并未被断裂成至少两个分离的碎块。例如，已经产生龟裂但仍未碎裂的剂型依据破裂强度的定义可能必须被视作为是破裂。因此，依据该定义，在特定施力下破裂强度试验的失败可能是因为剂型断裂或任何其它造成该施力落到上述的阈值以下的变形，例如破裂（rupture）、开裂（cracking）、扯裂（dunting）、劈裂（cleaving）、裂纹（fissure），和类似的变形等。

[0261] 根据本发明的药物剂型所具有的破裂强度至少为300牛顿，较优选至少为400牛顿，更优选至少为500牛顿，再更优选至少为750牛顿，最优选至少为1000牛顿以及尤其至少为1500牛顿。

[0262] 根据本发明的药物剂型在大范围的湿度下表现出其机械强度，除破裂强度（抗粉碎强度）以外，任选地还有足够的硬度、耐撞击性、撞击弹性、张力强度和/或弹性模数，任选地也在低温下（例如低于–24℃下，低于–40℃下或在液态氨下）表现出来，使本剂型实际上不可能以自然咀嚼、在研钵中研磨和捣碎等方式被碎成粉末。因此，根据本发明的药物剂型优选甚至在低温或非常低的温度下仍维持相对较高的破裂强度，例如当药物剂型在开始被冷冻低于–25℃下，低于–40℃下或甚至在液态氨下时以增加其脆性。

[0263] 根据本发明的药物剂型呈现出高的撞击强度。

[0264] 例如，药物剂型的落下撞击强度较优选大约为0%，落下撞击强度是使片剂从50厘米的高度掉落在不锈钢的钢板上时所测得的破裂比，且其定义为（（破裂的片剂）/（受测试的片剂））100%。

[0265] 较优选的是，根据本发明的药物剂型具有足够高的撞击强度使得该剂型无法以槌子加以粉碎。较优选的是，当使用重量为500克的槌子以徒手方式给予5下槌击时，本药物剂型仍无法被粉碎。在较优选的实施方案中，本药物剂型不仅在周围环境的湿度下，而且还在+4℃以下（冰箱），更优选在–33℃以下（深度冷冻器），最优选在–77℃以下（干冰）以及尤其在–190℃以下（液态氨）呈现出该撞击强度。

[0266] 较优选的是，根据本发明的药物剂型在至少一个延伸的方向上，较优选在延伸方向E1上所呈现出的切割抗力至少为75牛顿，更优选至少为100牛顿，又更优选至少为125牛顿，再更优选至少为140牛顿，最优选至少为150牛顿以及尤其至少为160牛顿。较优选的是，切割试验是依据DIN EN ISO 604的方法进行的，其中较优选以30毫米/分钟的测试速度和利用厚度为0.30毫米的通用性玻璃清洗刮刀。

[0267] 根据本发明的药物剂型的脆度可例如依据欧洲药典（Ph.Eur.）的规格，例如利用
Pharmatest PTF-E 仪器（德国, Hainburg）加以测量。较优选的是，根据本发明的药物剂型的亲水度至少为 0.50%，较优选至少为 0.40%，又更优选至少为 0.30%，还更优选至少为 0.20%，最优选至少为 0.10% 以及尤其至少为 0.05%。

[0268] 较优选的是，根据本发明的药物剂型含有涂层，较优选为膜衣涂层。适合使用的涂层材料是熟练技术人员所知道的。可通过购买取得适用的涂层材料，例如以商标名称为 Opadry® 和 Eudragit® 的商品。

[0269] 适用材料的范例包含有纤维素醚和纤维素醚，诸如甲基纤维素 (MC)、羟丙基甲基纤维素 (HPMC)、羟丙基羟丙基纤维素 (HPC)、羟乙基纤维素 (HEC)、羧基甲基纤维素钠 (Na-CMC)、乙基纤维素 (EC)、邻苯二甲酸酯酸纤维素酯 (CAP)、邻苯二甲酸羟丙基甲基纤维素酯 (HPMC)；聚（甲基）丙烯酸酯 (poly(meth)acrylates)，诸如甲基丙烯酸氨基烷基酯 (aminoalkylmethacrylate) 共聚物、丙烯酸乙酯与甲基丙烯酸甲酯的共聚物、甲基丙烯酸与甲基丙烯酸甲酯的共聚物、甲基丙烯酸与甲基丙烯酸甲酯的共聚物；乙烯聚合物，例如聚乙烯吡咯烷酮、聚苯丙二甲酸酯酸乙烯酯 (polyvinylacetatephthalate)、聚乙烯醇、聚醋酸乙烯酯 (polyvinylacetate)；以及天然的薄膜形成剂，诸如虫胶清漆。

[0270] 认为优选的实施方案中，该涂层是水溶性的材质。较优选的是，该涂层是吸聚乙烯醇为主要结构，例如聚乙烯醇 - 部分经水解，和可另外再含有聚乙二醇，诸如 macrogol 3350，和/or 色素。

[0271] 本药物剂型的涂层可增加其储藏稳定性。

[0273] 除药理活性化合物 (A) 和聚合物 (C) 以外，根据本发明的药物剂型还可含有其它的组分，诸如常规药剂中的赋形剂。

[0274] 在较优选的实施方案中，本药物剂型含有至少一种天然、半合成或合成的蜡质 (D)，更具体地说，也被称为“组分 (D)”。较优选的蜡质是那些具有软化温度至少为 50℃，更优选至少为 55℃，又更优选至少为 60℃，最优选至少为 65℃，尤其至少为 70℃ 的蜡质。

[0275] 特别优选者有巴西棕榈蜡和蜂蜡。其中又以巴西棕榈蜡特别优选。巴西棕榈蜡是天然的蜡质，其得自于巴西棕榈树的树叶，且其所具有的软化温度至少为 80℃。当另外含有该蜡质组分时，该蜡质的含量是足够可以达到本药物剂型所要求的机械特性。

[0276] 辅助物质 (B)，更具体地说，也被称为 “组分 (B)”，其可包含在根据本发明的药物剂型中，是那些常被使用于固体药物剂型的制剂中的已知辅助物质。

[0277] 辅助物质 (B) 的范例有增塑剂、（其它的）基质材料、抗氧化剂和类似的物质等。

[0278] 适用的增塑剂包括有三醋酸甘油酯 (triacetin) 和聚乙二醇，较优选低分子量的聚乙二醇（例如 macrogol 6000）。
基质材料是影响活性化合物释出的辅助物质。较优选为疏水性或亲水性，较优选为亲水性的聚合物，或优选为羟基丙基甲基纤维素，和 / 或抗氧剂。较优选含有聚合物，尤其优选纤维素酯、纤维素酯和 / 或丙烯酸树脂作为亲水性的基质材料。较优选含有乙基纤维素、羟基丙基甲基纤维素、羟基丙基纤维素、羟基甲基纤维素、聚（甲基）丙烯酸和 / 或它们的衍生物，诸如它们的共聚物、盐类、酰胺类或酯类作为基质材料。

适用的抗氧剂有抗坏血酸（ascorbic acid）、丁基羟基苯甲酯（butylhydroxyanisole, BHA）、丁基羟基甲苯（BHT）、抗坏血酸钠、单硫酸甘油酯（monothioglycerol）、磷酸、维他命 C、维他命 E 和它们的衍生物、苯甲酸松柏酯（coniferyl benzoate）、去甲二氢愈创木酸（mordihydroguajaretic acid）、gallus acid esters、亚硫酸氢钠，尤其优选丁基羟基苯甲酯和 α-生育酚（α-tocopherol）。抗氧化剂较优选的用量相对于药物剂型总重量为 0.01 至 10 个重量百分比，较优选为 0.03 至 5 个重量百分比。

在较优选的实施方案中，根据本发明的药物剂型含有柠檬酸，或其在生理上可被接受的盐类。

在下表中总结根据本发明的药物剂型较优选的组合物 X₁ 至 X₄：

<table>
<thead>
<tr>
<th>重量百分</th>
<th>X₁</th>
<th>X₂</th>
<th>X₃</th>
<th>X₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>组分(A)</td>
<td>26.5 ± 25</td>
<td>26.5 ± 20</td>
<td>26.5 ± 15</td>
<td>26.5 ± 13</td>
</tr>
<tr>
<td>聚亚烷基氧化物(例如 PEO)</td>
<td>46.5 ± 25</td>
<td>46.5 ± 17</td>
<td>46.5 ± 12</td>
<td>46.5 ± 10</td>
</tr>
<tr>
<td>纤维素酯类醇(例如 HPMC)</td>
<td>14 ± 7</td>
<td>14 ± 5</td>
<td>14 ± 2.5</td>
<td>14 ± 0.5</td>
</tr>
<tr>
<td>增塑剂(例如 PEG)</td>
<td>12.5 ± 10</td>
<td>12.5 ± 7</td>
<td>12.5 ± 5</td>
<td>12.5 ± 3</td>
</tr>
<tr>
<td>抗氧化剂(例如 α-生育酚)</td>
<td>0.125 ± 0.12</td>
<td>0.125 ± 0.1</td>
<td>0.125 ± 0.05</td>
<td>0.125 ± 0.03</td>
</tr>
</tbody>
</table>

根据本发明的药物剂型是经热熔挤出，也就是以热成型的方式借助于挤出机制造而成，较优选挤出物没有任何可被观察到因热熔而产生变色的情形。

为研究因热成型而造成变色的程度，在还未添加赋于颜色的组分时，诸如未添加着色的色素或本质上经着色的组分（例如 α-生育酚）时，先测定构成药物剂型的起始组分混合物的颜色。然后将此组合物依据本发明的方法进行热成型，其中所有制法步骤，包括冷却挤出物内，在惰性气体中进行，以与前者做比较，利用相同的制法，但却未在惰性气体下，在惰性气体中，制造出相同的组合物。测定依据本发明的方法由起始组合物制成的药物剂型的颜色以及测定为比较和制造的药物剂型的颜色。此测定是借助于”Munsell Book of Color”、Munsell Color Company Baltimore, Maryland, USA, 1966 edition 手册的方法进行的。如果由依据本发明热成型的药物剂型的颜色具有鉴别号码为 N 9.5 的颜色，但至多具有鉴别号码为 5Y 9/1 的颜色时，则该热成型的结果被分在“没有改变颜色”类别的中。但是如果药物剂型具有依据 Munsell Book of Color 的方法测定时鉴别号码为 5Y 9/2 或更大的鉴别号码的颜色，则该热成型的结果被分在“有改变颜色”类别的中。

通常而言，热熔挤出法包含有下列的步骤：
[0287] i）将组分 (A)、(C)，任选地 (B) 和 / 或 (D) 加以混合，
[0288] ii) 将形成的混合物在挤出机中加热至少高达至组分 (C) 的软化温度，并施力将
经过加热的混合物经由挤出机的出口挤出，
[0289] iii) 将在具有弹性的挤出物分割成小片段，并将其成型为药物剂型或
[0290] iv) 将经过冷却或任选地被加热的经分割成小片段的挤出物成型为药物剂型。
[0291] 根据制法步骤 i）的组分的混合也可在挤出机中进行。
[0292] 组分 (A)、(C)，任选地 (B) 和 / 或 (D) 也可在本领域熟练技术人员知道的混合机中
加以混合。混合机例如为滚筒式混合机、震荡式混合机、切割式混合机或强制式混合机。
[0293] 在与剩余组分的混合以前，组分 (C) 和 / 或 (D) 根据本发明较优选被添加入抗氧
化剂。此步骤可以通过混合组分 (C) 和抗氧化剂两种组分的方式进行，其中较优选将抗氧
化剂溶解或悬浮在高度挥发的溶剂中，并将此溶液或悬浮液与组分 (C) 和任选地存在的组
分 (D) 均匀地混合，然后以干燥的方式，较优选在惰性气体下，将溶剂移除。
[0294] 将该较优选被熔化的混合物，其已在挤出机中被加热至少至高达组分 (C) 的软化
温度，从挤出机中通过具有至少一个孔的模具挤出。
[0295] 根据本发明的方法需要使用适当的挤出机，较优选使用螺杆式挤出机。其中尤其
优选的是配备两支螺杆的螺杆式挤出机（双螺杆挤出机）。
[0296] 本发明的另外的方面关系到制造热熔挤出的药物剂型的方法，该药物剂型较优选
如上文所定义，其以控制的方式释出如上定义的药物活性成分 (A)，活性成分 (A) 被埋置在
包含如上文定义的聚合物 (C) 的基质中，此剂型具有椭圆形的形状，其包含纵向的延伸方
向，与该纵向的延伸方向互成直角的横向延伸方向、正面、对立的背面、以及处于所述的正
面与背面之间的周围边缘 (rim)，该方法包含下列的步骤：
[0297] (a) 以热熔方式将包含
[0298] 药物活性成分 (A) 和
[0299] 聚合物 (C)，
[0300] 的物质团块 (mass) 从椭圆形的模具中挤出，因此得到具有椭圆形横切面的挤出
物；
[0301] (b) 将所述的挤出物切割成小片段（较优选在实质上和挤出方向互成直角的平面上）
，它们具有两个对立的椭圆形切面；
[0302] (c) 将所述的小片段以下述方式置入包含上冲模和下冲模的制片工具中，使得这
些对立的椭圆形面分别与所述的上冲模和下冲模相对；
[0303] (d) 将这些小片段压制成剂型；和
[0304] (e) 可任选地涂覆膜衣涂层。
[0305] 挤出的步骤较优选如下进行，使得线形物因挤出而造成的膨胀不超过 50％，也就是
当使用模具，其具有直径例如为 6 毫米的孔时，所挤出的线形物应该具有不超过 9 毫米的
直径。更优选的是，该线形物的膨胀不超过 40％，又更优选不超过 35％，最优选不超过 30％
以及尤其不超过 25％。在本发明意外地发现到如果在挤压机中被挤出的物质暴露在超过某
种界限的机械应力时，线形物会出现明显膨胀而因此造成挤出线形物的特性出现不必要的
无规则性，尤其是在其机械特性方面。
较优先的是，挤出步骤是在水下，也就是没有水的情况下进行。然而，微量的水（例如因大气的湿度所造成）是可以存在的。

挤出机的挤出机壳内至少两个温度区域，在第一个区域中所进行的工作是将混合物至少加热至高达组分（C）的软化温度，该区域位于给料区域和可任选地混合区域的下游位置。混合物的产出较优先从2.0千克至8.0千克/小时。

当被至少加热至高达组分（C）的软化温度之后，该熔化后的混合物在螺杆的帮助下跌输送，进一步被均质化，被压缩或压紧，使得就在挤出机的模具出现之前，该混合物呈现最低的压力为5巴，较优先至少为7.5巴，更优先至少为10巴，又更优先至少为12.5巴，还更优先至少为15巴，最优选至少为17.5巴以及尤其至少为20巴，且以一条挤出线形物或数条线形物的形式通过模具被挤出，其根据该模具上所具有孔数的目而定。

在较优先的实施方案中，该模具顶部的压力处于25至85巴的范围。该模具顶部的压力还可经由模具几何形状、温度曲线和挤出的速度进行调整。

根据本发明所使用的挤出机机壳可被加热或冷却。相应的温度控制，也就是加热或冷却，被凹入的安装，使得该挤出的混合物呈现出至少相应于组分（C）软化温度的平均温度（产物温度），且不升高到超过可能会破坏该待加工的药理活性化合物（A）的温度。较优先的是，将该待挤出混合物的温度调整至180°C以下，较优先至150°C以下，但至少达到组分（C）的软化温度。通常挤出的温度为120°C和130°C。

在较优先的实施方案中，挤出机的转矩处于25至55牛顿米的范围。挤出机的转矩还可经由模具几何形状、温度曲线和挤出的速度等等进行调整。

在根据本发明的方法步骤（a）中，物质块块以热熔的方式经由椭圆形的模具被挤出，因此得到椭圆横切面的挤出物。在根据本发明的方法步骤（b）中，将由步骤（a）得到的所述挤出物切割成具有两个对立椭圆形切面的小片段。

因此，模具几何形状预先决定挤出物的横切面以及小片段的横切面，其中此两者都为椭圆形，较优先实质上是相同的。

该椭圆形的横切面较优先具有最大纵长上的延伸为21毫米，以及最大横向上的延伸为10毫米。

在较优先的实施方案中，该椭圆形模具有最大纵长上的延伸与最大横向上的延伸的相对比方案至少为1.5:1，更优选至少为2.0:1，又更优选至少为2.2:1，还更优选至少为2.3:1，最优选至少为2.4:1以及尤其至少为2.5:1。

较优先的椭圆形模具有下列纵长上的延伸和横向上的延伸A1至A8：

<table>
<thead>
<tr>
<th>毫米</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>纵长上</td>
<td>16.5±4</td>
<td>16.5±2</td>
<td>15±2</td>
<td>15±1</td>
<td>15±0.5</td>
<td>18±2</td>
<td>18±1</td>
<td>18±0.5</td>
</tr>
<tr>
<td>横向上</td>
<td>6±2</td>
<td>6±1.5</td>
<td>5±2</td>
<td>5±1</td>
<td>5±0.5</td>
<td>7±2</td>
<td>7±1</td>
<td>7±0.5</td>
</tr>
</tbody>
</table>

较优先的是，该椭圆形的模具有椭圆形或矩形的形状，较优先矩形具有圆形的边缘，例如O、[]或O。
较优选的是，该模具的尺寸比最终椭圆形剂型的相应尺寸小约 2 毫米。

在挤出熔融的混合物和选任地进行冷却挤出的线形物或挤出的线形物束之后，较优选将这些挤出物分割成小片段。分割成小片段的步骤较优选可利用旋转式切刀或回旋式切刀、喷射式水刀、线丝、刀片或借助于雷射刀将挤出物切割的方式进行。

分割成小片段，例如切割，产生长度与重量明显界定的小片段，它们具有两个对立的椭圆形切削面和外表层（圆柱体表层）。通常，因为单一剂型较优选由单个小片段所形成，每单小片段已含有所需剂量的药物活性成分 (A) 并含有所需用量的聚合物 (C) 和选任地存在的其它也预计被包含在最终剂型中的赋形剂。

在较优选的实施方案中，分割成小片段是在实质上和挤出方向互成直角的平面上进行。然而，分割成小片段的平面也可例如包括与挤出方向成某种角度。分割成小片段，例如切割，产生尺寸上明确界定的小片段，尤其是体积和表面积明确界定的小片段。表面积是两个对立的椭圆形切削面面积与外表层（圆柱体表层）的面积的总和。

在较优选的实施方案中，由步骤 (b) 所取得到小片段的总表面积中至少有 50%。更优选至少有 55%，又更优选至少有 60%，再更优选至少有 65%，最优选至少有 70% 以及尤其至少有 75% 由两个对立的切削面所形成。

在较优选的实施方案中，该小片段（挤出物）的两个切削面的面积 S 与其外表层（圆柱体表层）的面积相对比方案至少为 0.1, 0.2, 0.3, 0.4 或 0.5; 更优选至少为 0.6, 0.7, 0.8, 0.9 或 1.0; 又更优选至少为 1.1, 1.2, 1.3, 1.4 或 1.5; 还更优选至少为 1.6, 1.7, 1.8, 1.9 或 2.0; 最优选至少为 2.1, 2.2, 2.3, 2.4 或 2.5; 以及尤其至少为 2.6, 2.7, 2.8, 2.9 或 3.0。在另一个较优选的实施方案中，该小片段（挤出物）的两个切削面的面积 S 与其外表层（圆柱体表层）的面积相对比方案至少为 3.1, 3.2, 3.3, 3.4 或 3.5; 更优选至少为 3.6, 3.7, 3.8, 3.9 或 4.0; 又更优选至少为 4.1, 4.2, 4.3, 4.4 或 4.5; 还更优选至少为 4.6, 4.7, 4.8, 4.9 或 5.0; 最优选至少为 5.1, 5.2, 5.3, 5.4 或 5.5; 以及尤其至少为 5.6, 5.7, 5.8, 5.9 或 6.0。

熟练技术人员理解：挤出物质块的组成、挤出模具的尺寸和由挤出线形物分割成小片段而产生小片段的长度决定了该剂型（不包含选任地被涂覆的涂层）的总重量、该剂型的药物含量和其释出曲线图。所述释出曲线图是基于该小片段的对立的切削面（其基本上将提供该剂型的正面和背面）和该小片段的外表层（圆柱体表层）（其基本上将提供剂型的周围边缘 (rim)）的不同的释出特性上。

对于选任地经分割成小片段的挤出物的中间或最后储存或根据本发明的药物剂型的最后形状来说，不需要用惰性气体气氛。

经分割成小片段的挤出物可通过常用的方法制成小药丸或被压制成片剂以赋予该药物剂型最终的形状。然而，也可以不将挤出的线形物分割成小片段，而是通过将压辊（calender rolls）（在它们的外套筒上含有对立的四处）做反向旋转以将它们成型为最终的形状，较优选为片剂，然后将这些以常用的方法分割成小片段。

如果任选地经分割成小片段的挤出物没有立即被成型为最终的形状，而是被冷却储存时，在经过一段储存之后，应该要提供惰性气体于该挤出物，较优选提供氮气于该挤出物，并且必须在加热该储存的挤出物期间维持惰性气体的供应，直到挤出物被塑化和被明确成形产生药物剂型为止。
挤出机中施加在至少经塑化的混合物上的力通过控制挤出机中输送装置的旋转速度和其几何形状，以及通过控制出口的尺寸等方式进行如下方式的调整，使得挤出经塑化的混合物所需的力被设定在挤出机中，较优选直接在挤出之前。针对每种特殊组成，产生抗粉碎强度至少为 300 牛顿，较优选至少为 400 牛顿，更优选至少为 500 牛顿的药物剂型所需的挤出参数可利用简单的预试验加以建立。

例如，热熔挤出可利用型号为 Micro 276L 40D 的双螺杆挤出机进行（德国，纽伦堡，Leistritz），螺杆直径为 27 毫米。可使用具有偏心端点的螺杆。可使用可加热的模具。整个挤出的过程应该在氮气下进行。挤出的参数可被调整例如至下列的数值：螺杆旋转速度：100rpm；输送速度：4 千克 / 小时；产物温度：125℃；和外壳温度：120℃。

或者，热熔挤出可利用行星齿轮（planetary-gear）挤出机进行。行星齿轮挤出机是已知的挤出机且在手册“Handbuch der Kunststoff-Extrusionstechnik I (1989) “ Grundlagen in Chapter 1.2” Klassifizierung von Extrudern”, 4-6”页等中有详细的说明。适用的行星齿轮挤出机例如有型号为 BCG 10 的挤出机（德国，Enngerloeh, LBB Bohle），其具有四支行星心轴和挤出模具。适用的重重量是 3.0 千克 / 小时。挤出例如可在 28.6rpm 的旋转速度和产物温度大约为 88℃下进行。

尤其重要的是根据本发明的药物剂型的成形。在混合混合物硬化时利用加热和施力的方式或在后续的步骤中可提供药物剂型最终的形状。在两种情形中，含有所有组分的混合物较优选在被塑化的状态下，也就是较优选的是，成形是在至少高于组分（C）软化温度的温度下进行。

成形可例如使用包含有适当形状的模具和压模（冲模）的制片机进行。

在较优选的实施方案中，该压模是 H-形压模，其使本药物剂型的横切面具有字母 H 的形状。

在另一个较优选的实施方案中，该压模是常见的椭圆形压模，其产生双面凸出、且具有周围边缘（rim）的椭圆形片剂。

制备根据本发明的药物剂型的方法较优选是连续进行的。较优选的是，该方法涉及挤出包含组分（A）和（C）的均匀混合物。如果所得到的中间产物，例如由挤出所取得的线形物，呈现出均勻的特性，是特别有利的。尤其重要的特性是均勻的密度、活性化合物均勻的分布、均勻的机械特性、均勻的多孔性、均勻的表面外观等。唯有在这些情况下，药理特性的均勻性，诸如释出曲线图的稳定性，才可以被确保，且弃置（rejects）量才可以保持在低量。本发明意外发现，利用双螺杆挤出机和行星齿轮挤出机可以获得以上的特性，其中尤其又以双螺杆挤出机特别优选。

本发明意外发现：根据本发明的方法克服了在经热熔挤出的片剂上被观察到的光学上的缺陷和结构上的弱点，上述片剂是由具有圆形横切面的圆柱体挤出线形物经 H-形压模压制而成的。

本发明意外发现，本产生的、具有椭圆形横切面的本发明的挤出物能够更完全地将制片的冲模充满，并因此解决了所观察到的该问题。

此外，本发明发现：当使用椭圆形的模具时，挤出即可进行很顺利，不需做参数上的修改。使用椭圆形的挤出模具可导致较低的熔化温度和较低的背压。此表示为更加保护聚合物的方法。
[0340] 因此，如果物质团块以热熔方式进行经由椭圆形的模具挤出时，对于“标准”（双面凸出）的椭圆形片剂和H-型片剂该制片方法可导致优良的质量。由椭圆形挤出物制成的片剂具有至少可比较的或更高的抗粉碎强度（破裂强度），该变形的H-型片剂型显示明显较少的缺陷。

[0341] 再者，本发明意外发现：由椭圆形挤出物制成的片剂，与源自具有圆形横切面的圆柱体挤出物的片剂相比较，溶解速度加快。

[0342] 总之，如果挤出物被成型为椭圆形的片剂时，则通过椭圆形模具的挤出是有利的。尤其是，椭圆形片剂的缺陷可以被克服。

[0343] 本发明的另外的方面关系到由上述的方法所制得的热熔挤出的药物剂型。

[0344] 本发明的另外的方面关系到封装物，其含有根据本发明的药物剂型和除氧剂。适当的封装包括有泡罩封装和瓶装，诸如玻璃瓶或由热塑性聚合物所制成的瓶装。

[0346] 根据本发明的药物剂型适用于避免各种不同的作用，尤其是

[0347] - 偶然性作用（例如非故意）;

[0348] - 娱乐性作用；和

[0349] - 有经验性的药物作用。

[0350] 本发明的另外的方面关系到药物类物质的用途，其用于制造如上所述的药物剂型以治疗疼痛。

[0351] 本发明的另外的方面关系到如上所述的药物剂型的用途，其用于避免或阻止该剂型中所含有的药理活性化合物（A）被滥用。

[0352] 本发明的另外的方面关系到如上所述的药物剂型的用途，其用于避免或阻止该剂型中所含有的药理活性化合物（A）非故意的剂量过量。

[0353] 此方面，本发明也关系到如上所述的药理活性化合物（A）和/或如上所述的合成或天然的聚合物（C）的用途，其用于制造根据本发明的药物剂型以预防和/或治疗疾病，借此防止药理活性化合物（A）的剂量过量，尤其是因药物剂型及机械性作用被粉碎。

[0354] 此外，本发明关系到预防和/或治疗疾病的方法，其包含给予根据本发明的药物剂型，借此防止药理活性化合物（A）的剂量过量，尤其是因药物剂型及机械性作用被粉碎。较优选的是，该机械性作用由下列的组中选出，该组由下列组成：咀嚼、在研钵中研磨、捣碎，和使用将常规的药物剂型磨成粉末的设备。

[0355] 以下将通过实施例对本发明进行说明。这些说明仅作为范例且不会对本发明的整体概念和范围造成限制。

[0356] 实施例 1：
针对尺寸测量值为 5×15 毫米和 7×18 毫米的椭圆形挤出模具进行研究。

制备粉末混合物。其组成显示在下表中：

<table>
<thead>
<tr>
<th>实施例 1 每片 [毫克]</th>
<th>赋形剂</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>174.72</td>
<td>他喷他多盐酸盐</td>
<td>38.83</td>
</tr>
<tr>
<td>166.83</td>
<td>聚氧化乙烯 7000000</td>
<td>37.07</td>
</tr>
<tr>
<td>63.00</td>
<td>羟基丙基甲基纤维素 100000mPa·s</td>
<td>14.00</td>
</tr>
<tr>
<td>45.00</td>
<td>聚乙二醇 6000 (Macrogol 6000)</td>
<td>10.00</td>
</tr>
<tr>
<td>0.45</td>
<td>α-生育酚</td>
<td>0.10</td>
</tr>
<tr>
<td>450.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

该粉末混合物是下列各附属实施例的基本组成：

<table>
<thead>
<tr>
<th>附属实施例</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>挤出物 6 毫米 椭圆形模具</td>
</tr>
<tr>
<td>1-2</td>
<td>挤出物 5×15 毫米 椭圆形模具</td>
</tr>
<tr>
<td>1-3</td>
<td>片剂 7×17 毫米 椭圆形 源自“圆形”挤出物</td>
</tr>
<tr>
<td>1-4</td>
<td>片剂 7×17 毫米 H9 形 源自“圆形”挤出物</td>
</tr>
<tr>
<td>1-5</td>
<td>片剂 7×17 毫米 椭圆形 源自“椭圆形”挤出物</td>
</tr>
<tr>
<td>1-6</td>
<td>片剂 7×17 毫米 H9 形 源自“椭圆形”挤出物</td>
</tr>
</tbody>
</table>

所研究的各项附属实施例可针对挤出模具对片剂特性的影响进行比较。

制备粉末混合物。其组成显示在下表中：
<table>
<thead>
<tr>
<th>实施例 2 每片[毫克]</th>
<th>赋形剂</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>291.2</td>
<td>他喷他多盐酸盐</td>
<td>41.6</td>
</tr>
<tr>
<td>245.0</td>
<td>聚氧化乙烯 7000000</td>
<td>35.0</td>
</tr>
<tr>
<td>98.0</td>
<td>羟基丙烯甲基纤维素 100000 mPa.s</td>
<td>14.0</td>
</tr>
<tr>
<td>65.1</td>
<td>聚乙二醇 6000</td>
<td>9.3</td>
</tr>
<tr>
<td>0.7</td>
<td>α-生育酚</td>
<td>0.1</td>
</tr>
<tr>
<td>700.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

该粉末混合物是下列各附属实施例的基本组成：

<table>
<thead>
<tr>
<th>附属实施例</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>挤出物 7 毫米 圆形模具</td>
</tr>
<tr>
<td>2-2</td>
<td>挤出物 7×18 毫米 椭圆形模具</td>
</tr>
<tr>
<td>2-3</td>
<td>片剂 9×21 毫米 椭圆形 起自“圆形”挤出物</td>
</tr>
<tr>
<td>2-4</td>
<td>片剂 9×21 毫米 H0-形 起自“圆形”挤出物</td>
</tr>
<tr>
<td>2-5</td>
<td>片剂 8.6×22.6 毫米 H1-形 起自“圆形”挤出物</td>
</tr>
<tr>
<td>2-6</td>
<td>片剂 9×21 毫米 椭圆形 起自“椭圆形”挤出物</td>
</tr>
<tr>
<td>2-7</td>
<td>片剂 9×21 毫米 H0-形 起自“椭圆形”挤出物</td>
</tr>
<tr>
<td>2-8</td>
<td>片剂 8.6×22.6 毫米 H1-形 起自“椭圆形”挤出物</td>
</tr>
</tbody>
</table>

所研究的各项附属实施例可针对挤出模具对片剂特性的影响进行比较。

制造方法

a) 挤出

挤出是在 Leistritz® PH27 微型双螺杆挤出机上进行，其产出减至 3.5 千克/小时。个别加热区域的温度被调整至 30℃至 135℃的数值。

b) 切割

圆形挤出物的切割是使用 Schlicht® CC250 切割机，而椭圆形挤出物的切割则是徒手使用面包切片机。徒手切割造成挤出物的质量非常不优良，包括，但不局限在，很多表面的残缺。

片剂成型

7×17 毫米 H9 格式的片剂是在 Korsch® EK0 上制作成型。所有其它的片剂则在 Kilian® S250 上制作成型。
分析方法

a) 尺寸

尺寸是使用手动测量仪器所测得。

b) 抗粉碎强度

抗粉碎强度是在附有平肘板（plain brackets）的 Sotax® HT100 上所测得。外径的取向为纵向方向。

c) 溶解

溶解的测量是依据欧洲药典 2.9.3 在附有铅锤的转动装置中在旋转速度 50rpm 和 37℃下在模拟的小肠液（900 毫升，pH 6.6，KH₂PO₄+NaOH）中进行。每个样本进行 6 次测量（n = 6）。释出情形是以紫外光光谱分析法在 271nm 下所监测。

结果

a) 挤出 - 实施例 1

挤出可在无任何意想不到的问题下进行。因为使用完全相同的挤出机设定，所以可做明显的观察。

<table>
<thead>
<tr>
<th>挤出模具</th>
<th>6 毫米（圆形）</th>
<th>5x15 毫米（椭圆形）</th>
</tr>
</thead>
<tbody>
<tr>
<td>熔化温度 [℃]</td>
<td>119</td>
<td>91</td>
</tr>
<tr>
<td>粉末消耗量 [%]</td>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>熔化压力 [巴]</td>
<td>79</td>
<td>75</td>
</tr>
</tbody>
</table>

以上所示的数据显示出通过圆形模具的挤出物的熔化温度明显高于由椭圆形模具所产生的挤出物的熔化温度。因为线形物的外观从目视上都相同，使用椭圆形的模具产生较低的熔化温度，因此对材料的要求比较少。在椭圆形模具所观察到的背压比在圆形模具所观察到的背压稍微更低 (minimal lower)。

a) 挤出 - 实施例 2

挤出可在无任何意想不到的问题下进行。因为使用完全相同的挤出机设定，所以可做明显的观察。

<table>
<thead>
<tr>
<th>挤出模具</th>
<th>7 毫米（圆形）</th>
<th>7x18 毫米（椭圆形）</th>
</tr>
</thead>
<tbody>
<tr>
<td>熔化温度 [℃]</td>
<td>128</td>
<td>90</td>
</tr>
<tr>
<td>粉末消耗量 [%]</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>熔化压力 [巴]</td>
<td>74</td>
<td>59</td>
</tr>
</tbody>
</table>

以上所示的数据再次显示通过圆形模具的挤出物的熔化温度明显在由椭圆形模具所产生的挤出物的熔化温度。因为线形物的外观从目视上都相同，使用椭圆形的模具导致较低的熔化温度，因此对材料的要求比较少。在椭圆形模具所观察到的背压比在圆
形模具所观察到的背压低大约 20%。

1. 片剂成型：尺寸、外观、和抗粉碎强度

- 椭圆形双面凸出的片剂；

<table>
<thead>
<tr>
<th>实施例 1</th>
<th>1-3</th>
<th>1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤出模具</td>
<td>6 毫米 圆形</td>
<td>5 × 15 毫米 椭圆形</td>
</tr>
<tr>
<td>外观 (%含有肝脏结构，n=50)</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>长度 [毫米] (平均值，最小值-最大值，n=10)</td>
<td>16.28(16.22 - 16.35)</td>
<td>16.76(16.73 - 16.81)</td>
</tr>
<tr>
<td>宽度 [毫米] (平均值，最小值-最大值，n=10)</td>
<td>6.99 (6.98 - 7.00)</td>
<td>6.94 (6.91 - 6.95)</td>
</tr>
<tr>
<td>厚度 [毫米] (平均值，最小值-最大值，n=10)</td>
<td>4.82 (4.79 - 4.84)</td>
<td>4.73 (4.66 - 4.95)</td>
</tr>
<tr>
<td>抗粉碎强度 [牛顿] (平均值，n=50)，范围限定在括号中</td>
<td>931 (474 - >1000)</td>
<td>978 (405 - >1000)</td>
</tr>
</tbody>
</table>

因为抗粉碎试验是在仪器范围的上限值进行的，所以其平均值仅是作为信息参考用。

上述的结果显示椭圆实施例 1-5 优于矩形实施例 1-3。在后者中，22%的片剂显示具有肝脏的结构，相对的，在前者中完全无肝脏结构的存在。此项发现意味着片剂被成型得更好，并且由长度的测量所支持，椭圆实施例 1-5 被冲模成型得更加完整，其产生长度明显更长的片剂。椭圆实施例 1-5 的抗粉碎强度稍微比较高些。两批变形的片剂在外观上是类似的。

2. 椭圆, H 形片剂：

<table>
<thead>
<tr>
<th>实施例 1</th>
<th>1-4</th>
<th>1-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤出模具</td>
<td>6 毫米圆形</td>
<td>5 × 15 毫米椭圆形</td>
</tr>
<tr>
<td>外观 (%含有肝脏结构，n=50)</td>
<td>0 (n=46)</td>
<td>0 (n=43)</td>
</tr>
<tr>
<td>宽度 [毫米] (平均值，最小值-最大值，n=10)</td>
<td>7.04 (7.03 - 7.04)</td>
<td>6.99 (6.99 - 7.00)</td>
</tr>
<tr>
<td>厚度 [毫米] (平均值，最小值-最大值，n=10)</td>
<td>4.13 (4.05 - 4.18)</td>
<td>4.01 (3.91 - 4.12)</td>
</tr>
<tr>
<td>抗粉碎强度 [牛顿] (平均值，n=50)，范围限定在括号中</td>
<td>542 (249 - >1000)</td>
<td>510 (294 - >1000)</td>
</tr>
</tbody>
</table>
[0400] 因为抗粉碎试验是在仪器范围的上限值进行的，所以其平均值仅是作为信息参考用。

[0401] 显示在上表中的结果显示附实施例 1-6 优于附实施例 1-4。虽然在该二者的批次中都没有含肚脐的片剂，然而附实施例 1-6 被成型得更加准确。此又再度为从长度测量得到的结论：附实施例 1-6 被冲模成型得更加完全，其产生长度明显更长的片剂。即使无法在抗粉碎强度上显示出优越性，在此试验后片剂的照片显示附实施例 1-6 的优点。附实施例 1-4 的大多数片剂在先前 H- 形冲模被撕开所造成的低凹处的切削面上 (trough section) 显示特有的小洞，附实施例 1-6 仅有颗片剂显示一个小洞，且位于在低凹区域的外面。此项发现指出附实施例 1-6 本身的强度已经增加。

[0402] 橄圆形双面凸出的片剂；

<table>
<thead>
<tr>
<th>实施例 2</th>
<th>2-3</th>
<th>2-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤出模具</td>
<td>7 毫米圆形</td>
<td>7 × 18 毫米椭圆形</td>
</tr>
<tr>
<td>外观 (%含有肚脐结构，n=50)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>长度毫米</td>
<td>20.26(20.2 – 20.27)</td>
<td>20.67(20.57 – 20.84)</td>
</tr>
<tr>
<td>宽度毫米</td>
<td>9.00(8.98 – 9.03)</td>
<td>8.95(8.91 – 9.01)</td>
</tr>
<tr>
<td>厚度毫米</td>
<td>5.38(5.36 – 5.42)</td>
<td>5.31(5.13 – 5.46)</td>
</tr>
<tr>
<td>抗粉碎强度牛顿，范围限定在括号中</td>
<td>1000 (998 – >1000)</td>
<td>942 (483 – >1000) (n=49)</td>
</tr>
</tbody>
</table>

[0404] 因为抗粉碎试验是在仪器范围的上限值进行的，所以其平均值仅是作为信息参考用。

[0405] 以上的数据指出附实施例 2-6 具有较多的肚脐。此可能为徒手切割的产品且不应该被高估。由长度的测量再次显示椭圆形的挤出物更完全地充满在冲模中，如上文所述。抗粉碎强度相当类似，但仅在附实施例 2-6 被测量到数值低于大约 1000 牛顿以下且其可能与外观的缺陷有关。片剂在该试验后的外观相当类似。

[0406] 橄圆，H- 形片剂；

[0407]
<table>
<thead>
<tr>
<th>实施例 2</th>
<th>2-4</th>
<th>2-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤出模具</td>
<td>7 毫米圆形</td>
<td>7×18 毫米圆形</td>
</tr>
<tr>
<td>外观 (%含有胀裂结构，n=50)</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>长度毫米</td>
<td>20.33(20.29 - 20.38)</td>
<td>20.68(20.52 - 20.84)</td>
</tr>
<tr>
<td>宽度毫米</td>
<td>9.01 (8.99 - 9.02)</td>
<td>8.99 (8.96 - 9.02)</td>
</tr>
<tr>
<td>厚度毫米</td>
<td>4.32 (4.29 - 4.34)</td>
<td>4.30 (4.21 - 4.39)</td>
</tr>
<tr>
<td>抗粉碎强度牛顿，范围限定在括号中</td>
<td>292 (211 - 444)</td>
<td>479 (267 - >1000)</td>
</tr>
</tbody>
</table>

[0408] 因为抗粉碎试验是在仪器范围的上有限进行的，所以其平均值仅是作为信息参考。

[0409] 由上表中可见，附录实施例 2-7 具有较多光学上的缺陷，且再次显示椭圆形的挤出物更完全地充满制片的冲模。抗粉碎强度比由圆形挤出物所制成片剂的强度高出大约 60%。片剂在试验后的相片再次显示椭圆形挤出物的优点。

[0410] 椭圆，H- 形片剂:

<table>
<thead>
<tr>
<th>实施例 2</th>
<th>2-5</th>
<th>2-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>挤出模具</td>
<td>7 毫米圆形</td>
<td>7×18 毫米圆形</td>
</tr>
<tr>
<td>外观 (%含有胀裂结构，n=50)</td>
<td>44</td>
<td>52</td>
</tr>
<tr>
<td>长度毫米</td>
<td>21.79(21.70 - 21.87)</td>
<td>22.04(21.97 - 22.12)</td>
</tr>
<tr>
<td>宽度毫米</td>
<td>8.62 (8.60 - 8.65)</td>
<td>8.61 (8.60 - 8.61)</td>
</tr>
<tr>
<td>厚度毫米</td>
<td>4.23 (4.20 - 4.25)</td>
<td>4.24 (4.13 - 4.34)</td>
</tr>
<tr>
<td>抗粉碎强度牛顿，范围限定在括号中</td>
<td>353 (215 - >1000)</td>
<td>550 (249 - >1000)</td>
</tr>
</tbody>
</table>

[0412]

[0413] 因为抗粉碎试验是在仪器范围的上有限进行的，所以其平均值仅是作为信息参考。

[0414] 在 H0- 形的片剂和 H1- 形的片剂之间实际上并无定量上的差异性。显示有胀裂的片剂量在附录实施例 2-5 和 2-8 之间比其之前更加类似。然而，此不应被高估，因为徒手切割的挤出物质量上较不精确。

[0415] 图 6 至图 10 显示体外溶解试验的结果。

[0416] 图 6: 被成型为 7×17 毫米，椭圆形片剂的实施例 1 的溶解曲线图，平均值，n = 3

[0417] 图 7: 被成型为 7×17 毫米，H9- 形片剂的实施例 1 的溶解曲线图，平均值，n = 3
图8和图9示出的曲线，平均值，n = 3
图10：被成分为 8.6×22.6 毫米，H1- 形片剂的实施例 2 的溶解曲线图，平均值，n = 3
图11和图12 以图示说明溶解加度的结果。通过使用椭圆形的挤出模具，非 H- 形的椭圆片剂的溶解达到加度的结果，其与使用由从圆柱体模具制成的挤出物所制成的 H- 形片剂溶解的结果相等同。
图11：实施例 1 的溶解；由椭圆形挤出物制成的 H9 形片剂与由椭圆形挤出物制成的椭圆形片剂的溶解比较，平均值，n = 3
图12：实施例 2 的溶解；由椭圆形挤出物制成的 H0- 形片剂与由椭圆形挤出物制成的椭圆形片剂的溶解比较，平均值，n = 3
从溶解的数据可明显得出，由椭圆形挤出物制成的椭圆形片剂的溶解，相较于源自圆柱体挤出物的椭圆形片剂，有速度增加的现象。此种加速具有某种程度，其使得（常见）双面突出的（biconvex）椭圆形片剂达到足够迅速的溶解成为可能，也就是，就溶解速率而言，无需提供 H- 形的椭圆形片剂。
此项发现是预期的，其指出挤出物内某些结构上的改变与所选择的挤出模具有关，或暗指挤出物本身非等距的（un-isometric）变化。
此外，如果要将挤出物成型为椭圆形的片剂时，经由椭圆形模具所进行的挤出是较有利的。在抗粉碎强度的试验中，在所要求的破坏力下并未出现破裂的情形。光学上的缺陷（“肚脐”）可被减少，甚至完全被消除。出现偏离的溶解行为指示出挤出物中存在某些结构上的变化。
实施例 3：
制备粉末混合物。其组成显示在下表中：

<table>
<thead>
<tr>
<th>实施例 3 每片[毫克]</th>
<th>聚合剂</th>
<th>[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0</td>
<td>阿马多盐酸盐</td>
<td>18.60</td>
</tr>
<tr>
<td>122.1</td>
<td>聚氧化乙烯 7000000</td>
<td>56.80</td>
</tr>
<tr>
<td>21.5</td>
<td>硒基丙基甲基纤维素 1000000 mPa.s</td>
<td>10.00</td>
</tr>
<tr>
<td>29.2</td>
<td>聚乙二醇 6000</td>
<td>13.56</td>
</tr>
<tr>
<td>0.4</td>
<td>α-生育酚</td>
<td>0.20</td>
</tr>
<tr>
<td>1.8</td>
<td>无水柠檬酸</td>
<td>0.84</td>
</tr>
<tr>
<td>215.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
该粉末混合物是下列附属实施例的基本组成:

<table>
<thead>
<tr>
<th>附属实施例</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>椭圆形的小片段</td>
</tr>
<tr>
<td>3-2</td>
<td>椭圆形的小片段，经两次对折，然后被制成片剂</td>
</tr>
</tbody>
</table>

与实施例2相似，挤出是使用7 x 18毫米椭圆形的模具进行的。在附属实施例3-1中，在无进一步的修改的情况下进行未经加工的挤出小片段的研究。在附属实施例3-2中，未经加工的挤出小片段被对折两次，然后被压制成直径为9毫米且曲率半径为7.2毫米的片剂。

仿照实施例2的方法测得曲马多盐酸盐的溶解曲线图。其结果显示在图13中。
图 1
在片剂中的深度

图 5