An adiabatic condenser or fluid cooler is provided. A condensing or fluid cooling coil is provided. An adiabatic pad is provided wherein water can be used to cool the ambient air before entering or impacting the condensing or fluid cooling coil. Controls are provided that can adjust or eliminate the amount of water flowing over the adiabatic pad. The adiabatic pad may also be physically moved to allow ambient air to directly impact the condensing or fluid cooling coil.
FIG. 3
FIG. 7

The diagram illustrates the energy usage as a function of air temperature in both standard mode and energy savings mode. The line graph shows a descending trend, indicating a decrease in energy usage with increasing air temperature. The legend labels the lines as follows:

- Solid line: Standard Mode Energy Usage
- Dashed line: Energy Savings Mode Energy Usage

The y-axis represents energy usage, ranging from 0 to 12, while the x-axis represents air temperature, ranging from 100 to 40.
ADIABATIC REFRIGERANT CONDENSER CONTROLS SYSTEM

BACKGROUND OF INVENTION

[0001] This invention relates to improvements in the design of an adiabatic condenser or fluid cooler. More specifically, this detail two new control modes; energy savings mode and water savings mode; which are designed to the optimize the use of the resources based on cost and availability. This invention may be applied to units employing adiabatic saturation pads and also applied to units that employ any means to evaporate water (such as spray nozzles) before an indirect coil to reduce and cool the entering air temperature to the indirect coil.

[0002] Prior art adiabatic control systems use a combination of water and electrical energy to provide the necessary cooling required. Electrical energy is used to drive the fans, which moves air through the coil(s). Water is used to wet the adiabatic material and lower the temperature of the air passing through the coil. This prior art system saves energy over an air cooled system and saves water over an evaporative system by using the combination of resources. Typical prior art condensers or fluid coolers can switch from dry to wet operation at a certain preset outdoor temperature or preset temperature or pressure condition; however, the prior art systems do not allow the savings of either water or energy resource to be optimized.

[0003] This invention allows the system to reduce the usage of the customer chosen resource (either water or energy) to the minimum level possible while still meeting the cooling demand. The system will favor the resource, either energy or water, that is less costly or less scarce at a given time. For example, if energy is determined to be scarcer or more costly, the system will use water whenever possible to minimize energy use. If water is the scarcer or more costly resource, then the system will use water only when necessary to meet the heat rejection target.

[0004] This invention also includes multiple methods for switching between the modes of operation. Mode selection can occur manually by changing a setting in the controls or can be automated to the provide the lowest utility usage cost for the user. Utility rates for electricity and water can be provided either manually or automatically via communications. With this information, the controls can determine the mode of operation that provides the lowest cost of ownership to the customer.

[0005] Another method for switching between modes is to accept a peak demand signal from a utility provider. This signal may be manually input or automatically sent by the utility. When this signal is triggered, it would cause the unit to favor the resource that is not currently in peak demand (typically electrical energy). This method of control would help to conserve scarce regional resources as well as reducing peak demand charges for the user.

[0006] For units employing adiabatic saturation cooler pads, this invention also includes the ability to increase the airflow through the coil when operating “dry”. When running in the dry mode, the prior art product has a penalty of pressure drop through the adiabatic pads and consequently having reduced airflow through the unit. By bypassing air flow around the pads during dry operation, more airflow may be achieved thereby reducing fan motor energy usage and allows more conserving of water for longer periods of time.

[0007] Another feature of this invention is a coil cleaning program. This feature runs the fans backwards to force air through the coil in the opposite direction to force dirt and other debris out of the coil fins to improve the efficiency of the coil. This coil cleaning feature can be combined with a spray system on the coil to improve the cleaning. It can also be combined with the air bypass system so that any material blown out of the coil is blown clear of the unit. The pads could also be wet during cleaning mode to rinse debris that comes off the coil down into the sump other than onto the ground.

SUMMARY OF THE INVENTION

[0008] The product is an adiabatic condenser or fluid cooler with aluminum micro channel or copper/aluminum fin/tube heat exchangers, adiabatic heat transfer pads, speed-controlled fans, integral pump, and microprocessor-based control system. It should be noted that this invention can be used with any style unit employing the evaporation of water to cool the air before it reaches indirect heat exchange coils. Further the air may be blown through or pulled through the unit and is not a limitation of the invention. Further, the materials of construction may be any material used in the art and is not a limitation to this invention. It should also be noted that the method of delivering air to the unit is not a limitation to the invention. It should also be noted that the indirect coils may be mounted in an “A”, “V”, horizontally or vertically mounted or be single or multiple and that any indirect coil orientation known in the art can be used and is not a limitation of this invention. The control system is enhanced with the design described below. However, this invention can also be applied to any adiabatic condenser, any adiabatic fluid cooler.

[0009] Two modes of operation are possible for the invention. The first mode is described as the energy savings mode. Prior art adiabatic operation is controlled by an outdoor temperature set point. When the outdoor temperature exceeds this set point, the wet mode is initiated regardless of whether it is needed or not. This method of control is referred to as standard mode. A new inventive energy savings mode is presented that, in order to save electrical energy usage, will turn the wet operation on as soon as the temperature is high enough to prevent water freezing on the adiabatic pads. With wet operation running at a much lower temperature than with the standard mode, cooler air will be entering the coil driving system head pressure lower than otherwise obtained without wet operation and the variable speed motor driven fans may run at a slower speed thereby reducing energy consumption from the compression system and/or cooler fans. Overall energy consumption is reduced when compared to the prior art standard mode.

[0010] The second mode of operation is the water savings mode. This method of control keeps wet operation off until it is necessary to meet the heat rejection requirement. Only once the capacity of the unit has been maximized in dry operation and the variable speed motor driven fans are at full speed (set point is adjustable), the wet cooling operation will be turned on to increase heat rejection capacity. Delaying the wet operation until absolutely necessary will minimize the amount of water used by the unit. Overall water consumption is reduced when compared to the prior art standard mode.

[0011] The prior art adiabatic condenser (or fluid cooler) utilizes a periodic pan dump cycle which removes the recirculated water from the unit and replaces it with fresh water, thus keeping the water chemistry in the unit near that of the
water supply and eliminating maintenance associated with scale deposits or algae or biological growth. In prior art, the dump cycle would occur on a predetermined schedule regardless of how high or low the mineral content of the water was in the unit—and to prevent potential fouling, was set to a regular schedule that represented an assumption of poor water quality. The proposed water savings mode can also be combined with a “water saving feature” to further reduce water use. This water saving feature includes a water quality sensor that will measure the conductivity of the water in the unit and only dump the water only when the level of solids reach a predetermined level. It should be noted that the water quality sensor can be conductivity or any other means of determining water quality and is not a limitation of this invention. This addition prevents clean water (that can still be used) from being wasted in regions where the supplied water is of good quality. Essentially all prior art water quality water dump systems on cooling tower related products check water conductivity and dump a small portion of water (called bleed-off) while the system is running (also called blow-down). The present water savings mode is different in that the entire pan water is dumped and flushed, and it is essential to not do this unless it is indicated by water conductivity for water savings.

[0012] This invention also includes multiple methods for selecting the mode of operation. The most basic way is for the user to select the mode manually in the control system. There are also automated selection methods available. The control system can choose the mode of operation to minimize the energy usage. To do this, the control system needs inputs related to the cost for electricity and water. This information can either be entered manually into the control system, or it can be communicated electronically via a communications protocol. Once the control system has this information, it can calculate the cost of running in energy savings mode and water savings mode and determine which mode provides the lowest overall operating cost to the user. This decision can be continually updated based on changing cost information.

[0013] Another method for switching modes is to do so based on a peak demand signal from utility providers. This signal would let the unit know that either electricity or water is in high demand, and that the high demand resource should be conserved. For example, if the electric utility sent a peak demand signal, the controls could switch to energy savings mode to conserve electricity. This method of mode control helps to reduce the strain on utility systems. It also helps the user by lowering possible peak demand charges as much as possible.

[0014] For units employing adiabatic pads, this invention also includes the ability to increase the airflow through the coil when operating “dry”. When running in the dry mode, the prior art product has a penalty of pressure drop through the adiabatic pads and consequently having reduced airflow through the unit. In the present invention, the ability to bypass air flow around the pads during dry operation, more airflow may be achieved thereby reducing fan motor energy usage and allows for less water consumption for longer periods of time. This bypass air flow around the adiabatic pads can be achieved by physically moving the adiabatic pads so fresh air flows easily around the pads. Alternately, the bypass air may enter the dry coil by opening air bypass dampers which allows fresh air to enter between the arms and pads. In this embodiment, the pads are spaced away from the coil and dampers are placed above and in-between the pads and coils to control a side stream of air that can bypass the pads. In the rotating or swing away pad embodiments, the pads themselves are contoured to open so they can open without interfering; when closed they tightly nest to force the air to flow through the pads and maintain a pressure drop across the unit to ensure airflow is even across the coil. FIG. 4 shows how the pads can be rotated to provide a reduced profile to the airflow entering the unit (relative to the base design where the pads shield the heat exchangers), thereby reducing the net airflow resistance and thus increasing airflow for a given fan power. Another embodiment of the design, shown in FIG. 5, would be to have the pads flip upward like gull wing doors during the bypass mode. Increased airflow across the micro channel heat exchangers is achieved which increases heat rejection, and thus, the efficiency of the unit. During this mode, the air bypass is controlled by the control system of the unit. The control system can control each side independently (for systems that operate two separate refrigerant loops operating at different condensing temperatures) or in tandem. The control system has a set point below which the pump deactivates, the pads dry out, and the air temperature entering the heat exchangers becomes that of the ambient dry bulb temperature (as opposed to the temperature of the air entering the heat exchanger in wet operation, when it is an adiabatically reduced temperature somewhere between the ambient dry-bulb and wet-bulb temperatures). Once the pads are dry (as sensed by equal temperatures between the ambient dry bulb temperature and the dry bulb temperature between the pads and coils), the control system rotates the pads outward. Alternately, the system logic can be set that whenever operating dry, the system enters the air bypass mode regardless if the pads are a bit wet. The actuators controlling the swinging pads or dampers may be spring-return to shut the pads in case of a component failure. Users in the art will recognize there are many ways to bypass air around adiabatic pads and are not a limitation of this invention.

[0015] This invention also details a cleaning cycle for the unit which can be used to clean the coil of dirt and debris. This cycle can be triggered manually by the user, scheduled to run on a periodic interval, or triggered to run when the coil is sensed to be dirty. During hot ambient periods, a signal will be sent to the refrigeration system to shut down during the cleaning cycle. The cleaning cycle runs the fans in reverse to move air in the opposite direction through the coil. The reversed air flow will push dirt and debris on the face off the coil off toward the pads. This cleaning cycle can be combined with the open swing away pads to allow the dirt to be blown clear of the unit. Alternatively, the pads may remain stationary and wet operation may be enabled to wash any dirt and debris down into the sump where it can be emptied from the unit. The cleaning cycle can also be combined with sprays washers in the unit. These spray nozzles would direct water onto the coil to assist in removing dirt and debris from the face of the coil. This spray water would then rinse down into the sump so it can be emptied from the unit. The control system may also be equipped with a sensor that alarms the customer when the pads are dirty and need to be cleaned or changed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 is a side view of a prior art of an adiabatic condenser or fluid cooler.

[0017] FIG. 2 is a side view of an embodiment of an adiabatic condenser with adiabatic pads and with additional sensors and controls modes.
FIG. 3 is a side view of an embodiment of an adiabatic condenser with reversed fans and spray washers to clean the coil.

FIG. 4 is a top view of an embodiment of an adiabatic condenser showing swing away pads.

FIG. 5 is a side view of an embodiment of an adiabatic condenser showing louvers that allow air to bypass the pads.

FIG. 6 is a side view of an embodiment of an adiabatic condenser showing swing away pads that swing up instead of to the side.

FIG. 7 is a chart showing the energy savings from using “Energy Savings Mode.”

FIG. 8 is a chart showing the water savings from using “Water Savings Mode.”

FIG. 9 is a chart showing the cost savings from automatic switching between “Energy Savings Mode” and “Water Savings Mode.”

FIG. 10 is a side view of an embodiment of an adiabatic condenser with adiabatic water spray system with additional sensors and control modes.

DESCRIPTION OF THE EMBODIMENTS

Referring now to FIG. 1, a prior art adiabatic condenser or fluid cooler 10 is shown. The product usually has left and right hand side heat transfer coils 16 and 24. Coils 16 and 24 may be in the same or different refrigerant or fluid cooling circuits. Coil 16 has an inlet pipe 17 and outlet pipe 13 as does coil 24 (shown as 28 and 29 respectively). Adiabatic pads 14 and 25 are located outside of the coils 16 and 24 on the ambient fresh air entering the adiabatic condenser 10. Fresh ambient air flows in through the adiabatic pads 14 and 25, then generally crossways and up through the coils 16 and 24 then out through the fan 21 and motor 22 assembly. When ambient air temperature sensor 15 senses a temperature that is above a preselected set point, the water mode is energized regardless of the load on the adiabatic condenser 10 or whether the fans can produce enough cooling without water being used. When the water mode is energized, pump 12 is turned on by the controller in control box 19. Pump 12 pumps water from water sump 11 through spray branches 20 and out of nozzles or orifices 18 then onto the top of adiabatic pads 14 and 25. The evaporative fluid, usual water then flows generally downward through the adiabatic pads and evaporates which cools the incoming air. The optimum performance is the adiabatic pads to drop the adiabatic pad inlet dry bulb temperature to equal the wet bulb temperature. For example, if the ambient outdoor dry bulb temperature at the adiabatic pad inlet is 95°F and the outdoor ambient wet bulb temperature is 75°F, then the coldest the adiabatic pads could reduce the temperature at the adiabatic pad outlet is 75°F.

FIG. 2, shows preferred embodiment of an adiabatic condenser or fluid cooler 40 with advanced controls 45. Controller 45 selectively operates the speed and direction of variable speed motor 55 which drives fan 54 and brings on and off pump 42 to pump water from sump 41 when adiabatic cooling is desired. It should be noted that pump 42 can be replaced with a fresh water supply to supply fresh water to the adiabatic pads and is not a limitation of the invention. It should also be noted that some adiabatic pads are designed to wick water into them and therefore a pump may not be needed in this case and is not a limitation of the invention. It should also be noted that fan motors 55 may be staged so that they be selectively turned off and on separately when not required. A pressure sensor 49 is placed on the inlet (or alternatively on the outlet) of coil 48 to measure and feedback the pressure of the refrigerant via control line 56 back to controller 45. If coil 48 is a fluid cooler, sensor 49 may be a temperature sensor. If the refrigerant in coil 57 is different than coil 48, then two pressure sensors, one for each coil may be used. It should be recognized that units may have single or multiple refrigerant or fluid cooler circuits and is not a limitation of this invention. Temperature sensor location 50 is placed after (meaning on the air inlet side) the adiabatic pads 44 but before coils 48 and 57 to measure air temperature after (meaning on the air outlet side) the adiabatic pads while the temperature sensor 46 measures outdoor ambient air temperature before the adiabatic pads. Alternatively, sensors 46 and 50 may be any type of sensor known in the art, such as an RH sensor, to measure the condition of the air before and after the adiabatic pads. It should be noted that in an effort to save water, even when the water pump could be operated, controller 45 may selectively choose to not operate water pump 42 during ambient conditions which are determined that evaporation is not beneficial, such as when it is raining. Or controller 45 may choose to change the water flow rate to the adiabatic pads or control which pads operate wet and which can operate dry depending on the if the heat exchange performance requirement is being met on one circuit compared to the other. Conductivity (or water quality) sensor 43 measures the conductivity (or quality) of the spray water 52 inside spray water pipes 53 and feeds the signal to controller 45 via sensor wire 60. Sensor 43 may alternatively be mounted in the sump. Controller 45 will control valve 61 via control wire 62 to selectively dump all or some of the water from unit 40 when the conductivity (or water quality) of the water is unacceptable. Control panel 51 contains controller 45 which controls the operation and operating modes of unit 40. Controller 45 may have one or more of inputs 47 (energy cost) 58 (water cost) 59 (peak demand electricity charges) 46 (outdoor ambient temperature) 49 (coil 48 and coil 57 operating pressure) and 50 (air temperature entering coils 48 and 57) to determine which mode of operation to use. Sensor 63, 64 and 65, typically known as pressure sensors, are used by controller 45 to sense when either the adiabatic pads or indirect coils are dirty. When either the pads or indirect coils are sensed as being dirty, controller 45 may send an alarm to the customer.

FIG. 3, shows an improved adiabatic condenser or fluid cooler embodiment 30 which includes a coil cleaning mode. In this embodiment, the airflow may be reversed so it enters through the fan 35 generally downward and is pushed out through the coils 34 and 39 so as to force accumulated dirt deposits back out of the coils. There may also be coil spray washers 33 inside of the unit to spray water directly onto and through coil 34 to assist in washing the accumulated dirt and debris off of coils 34 and 39. A water connection point 31 and a water valve 32 with control wire 37 are provided so fresh water can be piped to the spray washers 33 and controlled selectively with the fan 35 running backwards by reversing motor 36 via controller 38. The coil cleaning mode may run during the cooling mode or can run when there is no demand for cooling.

FIG. 4, shows embodiment of an adiabatic condenser or fluid cooler 70 which includes swing away adiabatic pads 74 (shown open) and 82 (shown closed) so that outdoor ambient air may bypass a majority of adiabatic pads 74 and pass directly to coils 76 and 77 when adiabatic pads 74 and 82 are not needed. Controller 75 selectively operates actuator 86.
What is claimed is:
1. A method of operating of a heat exchange assembly comprising providing:
 an indirect heat exchange section,
 an air cooler located adjacent the indirect heat exchange section, the air cooler comprised of a moisture absorbent material,
 a water distribution system to provide water to the air cooler moisture absorbent material,
 a sump to collect water that is used by the air cooler,
 and a fan powered by a variable speed motor to move air through the air cooler and into the indirect heat exchange section and outwardly from the heat exchange assembly, wherein when water is being provided to the moisture absorbent material of the air cooler, the moisture absorbent material transfers moisture vapor to air drawn through the air cooler, such that the air drawn through the air cooler is cooled by evaporation of the moisture vapor, whereby the air drawn over the indirect heat exchange section is precooled,
 and wherein a control system is provided comprising a first sensing control device that senses the ambient outdoor condition,
 and when the ambient outdoor condition is above a preselected level, the water distribution system will provide water to the air cooler moisture absorbent material,
 and a second sensing control device that senses the condition of the air exiting the air cooler and adjusts the speed of the variable speed motor to adjust the amount of air drawn by the fan.

2. The method of operating the heat exchange assembly of claim 1 further comprising providing
 a third sensing control device that senses the quality of the water collected in the sump, and that releases the water collected in the sump for partial or complete replacement when the water quality exceeds a preselected level.

3. The method of operating the heat exchange assembly of claim 1 further comprising providing
 a fourth sensing control device for operating the heat exchange assembly in a water saving mode whereby the variable speed motor driving the fan is operated at up to maximum speed and the water distribution system is not supplying water to the air cooler moisture absorbing material.

4. The method of operating the heat exchange assembly of claim 3 wherein
 the fourth sensing control device allows water to be supplied to at least a portion of the air cooler moisture absorbing material when the fan is operating at maximum speed and a heat exchange performance requirement of the heat exchange assembly is not being met.

5. The method of operating the heat exchange assembly of claim 1 wherein
 the variable speed motor is operated in a reverse mode such that air is drawn by the fan into the heat exchange assembly thereby blowing accumulated debris and dirt from the indirect heat exchange section and from the air cooler.

6. "The method of operating the heat exchange assembly of claim 1 wherein there is a means to bypass air around the air cooler moisture absorbent material to allow fresh air to be drawn directly into at least 10% and up to 100% of the indirect heat exchange section.
7. The method of operating the heat exchange assembly of claim 1 wherein the air cooler moisture absorbent material can be moved from their position adjacent the indirect heat exchange section to allow air to bypass the air cooler and to be drawn by the fan into direct contact with the indirect heat exchange section.

8. The method of operating the heat exchange assembly of claim 7 wherein the pads of the air cooler moisture absorbent material are hung from an upper swivel and are rotated about the swivel.

9. The method of operating the heat exchange assembly of claim 7 wherein the pads of the air cooler moisture absorbent material are supported at an upper edge and a lower edge, and the structural pads are moved laterally outwardly from a position adjacent the indirect heat exchange section.

10. The method of operation of the heat exchange unit of claim 1 wherein the air cooler and the indirect heat exchange section have air bypass dampers that are selectively operable to bypass air around the air cooler section to allow air to be drawn directly into the indirect heat exchange section.

11. The method of operating the heat exchange unit of claim 1 wherein the indirect heat exchange section is comprised of a coil assembly with thermally conductive tubing.

12. The method of operating the heat exchange assembly of claim 1 further comprising a fifth sensing control device that receives a signal with information relating to the cost of electricity and in turn controls the variable speed motor to provide for efficient operation of the heat exchange assembly.

13. The method of operating the heat exchange assembly of claim 1 further comprising a sixth sensing control device that receives a signal with information relating to the cost of water and in turn controls the variable speed motor to provide for efficient operation of the heat exchange assembly.

14. The method of operating the heat exchange assembly of claim 1 further comprising a seventh sensing control device that receives a signal with information that the cooler pads are dirty to provide for efficient operation of the heat exchange assembly.

15. The method of operating the heat exchange assembly of claim 1 further comprising an eighth sensing control device that receives a signal with information that the indirect heat exchanger is dirty to provide for efficient operation of the heat exchange assembly.

16. A method of controlling the operation of a heat exchange unit comprising providing: an indirect heat exchange section, an air cooler adjacent the indirect heat exchange section, the air cooler comprised of a moisture absorbent material, a water distribution system to provide water to the air cooler moisture absorbent material, a sump to collect water that is used by the air cooler, and a fan powered by a variable speed motor to draw air through the air cooler and into the indirect heat exchange section and outwardly from the heat exchange unit, wherein when water is being provided to the moisture absorbent material of the air cooler, the moisture absorbent material transfers moisture vapor to air drawn through the air cooler, such that the air drawn through the air cooler is cooled and the air drawn over the indirect heat exchange section is precooled, and wherein a control system is provided comprising a first sensing control device that senses the ambient outdoor condition, and when the ambient outdoor condition is above a preselected level, the water distribution system will provide water to the air cooler moisture absorbent material.

17. The method of operation of the heat exchange unit of claim 16 further comprising providing a second sensing control device that senses the condition of the air exiting the air cooler moisture absorbent material and adjusts the speed of the variable speed motor to adjust the amount of air drawn by the fan.

18. The method of operation of the heat exchange unit of claim 16 further comprising providing a third sensing control device that senses the quality of the water collected in the sump, and that releases the water collected in the sump for partial or complete replacement when the quality exceeds a preselected level.

19. The method of operation of the heat exchange unit of claim 16 further comprising providing a fourth sensing control device for operating the heat exchange unit in a water saving mode whereby the variable speed motor driving the fan is operated at up to maximum speed and the water distribution system is not supplying water to the air cooler moisture absorbing material.

20. The method of operation of the heat exchange unit of claim 19 wherein the fourth sensing control device allows water to be supplied to the air cooler moisture absorbing material when the fan is operating at maximum speed and a heat exchange performance requirement of the heat exchange unit is not being met.

21. The method of operation of the heat exchange unit of claim 16 wherein the variable speed motor is operated in a reverse mode such that air is drawn by the fan into the heat exchange assembly thereby blowing accumulated debris and dirt from the indirect heat exchange section and from the air cooler.

22. The method of operation of the heat exchange unit of claim 16 wherein the air cooler moisture absorbent material is present in the form of pads, and that the pads can be moved from their position adjacent the indirect heat exchange section to allow air to bypass the air cooler and to be drawn by the fan into direct contact with the indirect heat exchange section.

23. The method of operation of the heat exchange unit of claim 22 wherein the pads of the air cooler moisture absorbent material are hung from an upper swivel and are rotated about the swivel.

24. The method of operation of the heat exchange unit of claim 22 wherein the pads of the air cooler moisture absorbent material are supported at an upper edge and a lower edge, and the structural pads are moved laterally outwardly from a position adjacent the indirect heat exchange section.

25. The method of operation of the heat exchange unit of claim 16 wherein the air cooler and the indirect heat exchange section are separated by a distance along a path of air flow.
from the air cooler to the indirect heat exchange section to reduce the likelihood of moisture in a liquid state passing from the moisture absorbent material of the air cooler and impinging upon the indirect heat exchange section.

26. The method of operation of the heat exchange unit of claim 16 wherein the indirect heat exchange section is comprised of a coil assembly with thermally conductive tubing.

27. The method of operating the heat exchange unit of claim 16 further comprising a fifth sensing control device that receives a signal with information relating to the cost of electricity and in turn controls the variable speed motor to provide for efficient operation of the heat exchange unit.

28. The method of operating the heat exchange unit of claim 16 further comprising a sixth sensing control device that senses the condition of the air exiting the air cooler and adjusts the speed of the variable speed motor to provide for efficient operation of the heat exchange unit.

29. A method of operating a heat exchange assembly comprising providing:

- an indirect heat exchange section,
- an air cooler located adjacent the indirect heat exchange section, the air cooler comprised of a water spray system,
- a water distribution system to provide water to water spray system,
- and a fan powered by a variable speed motor to draw air through the air cooler and into the indirect heat exchange section and outwardly from the heat exchange assembly, wherein when water is being provided, the water spray transfers moisture vapor to air drawn through the air cooler, such that the air drawn through the air cooler is cooled by evaporation of the moisture vapor, whereby the air drawn over the indirect heat exchange section is precooled,

and wherein a control system is provided comprising

- a first sensing control device that senses the ambient outdoor conditions,
- and when the ambient outdoor condition is above a preselected level, the water distribution system will provide water to the water spray system,

and a second sensing control device that senses the condition of the air exiting the air cooler and adjusts the speed of the variable speed motor to adjust the amount of air drawn by the fan.

30. The method of operating the heat exchange assembly of claim 29 further comprising providing a fourth sensing control device for operating the heat exchange assembly in a water saving mode whereby the variable speed motor driving the fan is operated at up to maximum speed and the water distribution system is not supplying water to the air cooler water spray system.

31. The method of operating the heat exchange assembly of claim 30 wherein

- the fourth sensing control device allows water to be supplied to the air cooler spray system when the fan is operating at maximum speed and performance requirement of the heat exchange assembly is not being met.

32. The method of operating the heat exchange assembly of claim 26 wherein

- the variable speed motor is operated in a reverse mode such that air is drawn by the fan into the heat exchange assembly thereby blowing accumulated debris and dirt from the indirect heat exchange section.

33. The method of operating the heat exchange unit of claim 29 wherein the indirect heat exchange section is comprised of a coil assembly with thermally conductive tubing.

34. The method of operating the heat exchange assembly of claim 29 further comprising a fifth sensing control device that receives a signal with information relating to the cost of electricity and in turn controls the variable speed motor to provide for efficient operation of the heat exchange assembly.

35. The method of operating the heat exchange assembly of claim 29 further comprising a sixth sensing control device that receives a signal with information relating to the cost of water and in turn controls the variable speed motor to provide for efficient operation of the heat exchange assembly.

36. The method of operating the heat exchange assembly of claim 29 further comprising a seventh sensing control device that receives a signal with information that the indirect heat exchanger is dirty to provide for efficient operation of the heat exchange assembly.