

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199928894 B2
(10) Patent No. 762404

(54) Title
Acylated betulin and dihydrobetulin derivatives, preparation thereof and use thereof

(51)⁶ International Patent Classification(s)
C07J 053/00

(21) Application No: 199928894 (22) Application Date: 1999 . 03 . 02

(87) WIPO No: WO99/45025

(30) Priority Data

(31) Number (32) Date (33) Country
60/076449 1998 . 03 . 02 US

(43) Publication Date : 1999 . 09 . 20

(43) Publication Journal Date : 1999 . 11 . 18

(44) Accepted Journal Date : 2003 . 06 . 26

(71) Applicant(s)
The University of North Carolina at Chapel Hill; Panacos Pharmaceuticals, Inc.

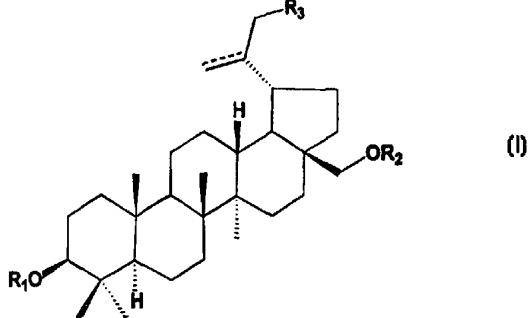
(72) Inventor(s)
Kuo-Hsiung Lee; I-Chen Sun; Hui-Kang Wang; Louis Mark Cosentino

(74) Agent/Attorney
CALLINAN LAWRIE, Private Bag 7, KEW VIC 3101

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

20894/99


INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07J 53/00	A1	(11) International Publication Number: WO 99/45025 (43) International Publication Date: 10 September 1999 (10.09.99)
(21) International Application Number: PCT/US99/04605		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 2 March 1999 (02.03.99)		
(30) Priority Data: 60/076,449 2 March 1998 (02.03.98) US		
(71) Applicants: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL [US/US]; Office of Technology Development, 308 Bynum Hall, Campus Box 4105, Chapel Hill, NC 27599-4105 (US). BBI BIOTECH RESEARCH LABORATORIES, INC. [US/US]; 217 Perry Parkway, Gaithersburg, MD 20877 (US).		Panacos Pharmaceuticals, Inc. Published With international search report.
(72) Inventors: LEE, Kuo-Hsiung; 1426 Gray Bluff Trail, Chapel Hill, NC 27514 (US). SUN, I-Chen; Apartment 204, 600 Airport Road, Chapel Hill, NC 27514 (US). WANG, Hui-Kang; Apartment B-35, 105 Fidelity Street, Carrboro, NC 27510 (US). COSENTINO, Louis, Mark; 6648 Green Ash Drive, Springfield, VA 22152 (US).		
(74) Agents: GOLDSTEIN, Jorge, A. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).		

(54) Title: ACYLATED BETULIN AND DIHYDROBETULIN DERIVATIVES, PREPARATION THEREOF AND USE THEREOF

(57) Abstract

Betulin and dihydrotetulin acyl derivatives according to the present invention have been found to have potent anti-HIV activity. The compounds of the present invention have formulae (I) or pharmaceutically acceptable salts thereof; wherein R₁ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl, R₂ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl; and R₃ is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or -OR₄, where R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl, or C₂-C₂₀ substituted or unsubstituted carboxyacyl; wherein the dashed line represents an optional double bond between C20 and C29.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

5510

5511

5512

5513

5514

5515

5516

5517

5518

5519

5520

5521

5522

5523

5524

5525

5526

5527

5528

5529

5530

5531

5532

5533

5534

5535

5536

5537

5538

5539

5540

5541

5542

5543

5544

5545

5546

5547

5548

5549

5550

5551

5552

5553

5554

5555

5556

5557

5558

5559

5560

5561

5562

5563

5564

5565

5566

5567

5568

5569

55610

55611

55612

55613

55614

55615

55616

55617

55618

55619

55620

55621

55622

55623

55624

55625

55626

55627

55628

55629

55630

55631

55632

55633

55634

55635

55636

55637

55638

55639

55640

55641

55642

55643

55644

55645

55646

55647

55648

55649

55650

55651

55652

55653

55654

55655

55656

55657

55658

55659

55660

55661

55662

55663

55664

55665

55666

55667

55668

55669

55670

55671

55672

55673

55674

55675

55676

55677

55678

55679

55680

55681

55682

55683

55684

55685

55686

55687

55688

55689

55690

55691

55692

55693

55694

55695

55696

55697

55698

55699

556100

556101

556102

556103

556104

556105

556106

556107

556108

556109

556110

556111

556112

556113

556114

556115

556116

556117

556118

556119

556120

556121

556122

556123

556124

556125

556126

556127

556128

556129

556130

556131

556132

556133

556134

556135

556136

556137

556138

556139

556140

556141

556142

556143

556144

556145

556146

556147

556148

556149

556150

556151

556152

556153

556154

556155

556156

556157

556158

556159

556160

556161

556162

556163

556164

556165

556166

556167

556168

556169

556170

556171

556172

556173

556174

556175

556176

556177

556178

556179

556180

556181

556182

556183

556184

556185

556186

556187

556188

556189

556190

556191

556192

556193

556194

556195

556196

556197

556198

556199

556200

556201

556202

556203

556204

556205

556206

556207

556208

556209

556210

556211

556212

556213

556214

556215

556216

556217

556218

556219

556220

556221

556222

556223

556224

556225

556226

556227

556228

556229

556230

556231

556232

556233

556234

556235

556236

556237

556238

556239

556240

556241

556242

556243

556244

556245

556246

556247

556248

556249

556250

556251

556252

556253

556254

556255

556256

556257

556258

556259

556260

556261

556262

556263

556264

556265

556266

556267

556268

556269

556270

556271

556272

556273

556274

556275

556276

556277

556278

556279

556280

556281

556282

556283

556284

556285

556286

556287

556288

556289

556290

556291

556292

556293

556294

556295

556296

556297

556298

556299

556300

556301

556302

556303

556304

556305

556306

556307

556308

556309

556310

556311

556312

556313

556314

556315

556316

556317

556318

556319

556320

556321

556322

556323

556324

556325

556326

556327

556328

556329

556330

556331

556332

556333

556334

556335

556336

556337

556338

556339

556340

556341

556342

556343

556344

556345

556346

556347

556348

556349

556350

556351

556352

556353

556354

556355

556356

556357

556358

556359

556360

556361

556362

556363

556364

556365

556366

556367

556368

556369

556370

556371

556372

556373

556374

556375

556376

556377

556378

556379

556380

556381

556382

556383

556384

556385

556386

556387

556388

556389

556390

556391

556392

556393

556394

556395

556396

556397

556398

556399

556400

556401

556402

556403

556404

556405

556406

556407

556408

556409

556410

556411

556412

556413

556414

556415

556416

556417

556418

556419

556420

556421

556422

556423

556424

556425

556426

556427

556428

556429

556430

556431

556432

556433

556434

556435

556436

556437

556438

556439

556440

556441

556442

556443

556444

556445

556446

556447

556448

556449

556450

556451

556452

556453

556454

556455

556456

556457

556458

556459

556460

556461

556462

556463

556464

556465

556466

556467

556468

556469

556470

556471

556472

556473

556474

556475

556476

556477

556478

556479

556480

556481

556482

556483

556484

556485

556486

556487

556488

556489

556490

556491

556492

556493

556494

556495

556496

556497

556498

556499

556500

556501

556502

556503

556504

556505

556506

556507

556508

556509

556510

556511

556512

556513

556514

556515

556516

556517

556518

556519

556520

556521

556522

556523

556524

556525

556526

556527

556528

556529

556530

556531

556532

556533

556534

556535

556536

556537

556538

556539

556540

556541

556542

556543

556544

556545

556546

556547

556548

556549

556550

556551

556552

556553

556554

556555

556556

556557

556558

556559

556560

556561

556562

556563

556564

556565

556566

556567

556568

556569

556570

556571

556572

556573

556574

556575

556576

556577

556578

556579

556580

556581

556582

556583

556584

556585

55

the sequence of the RNA-dependent DNA polymerase, also known as reverse transcriptase. Many molecules of reverse transcriptase are found in close association with the genomic RNA in the mature viral particles. Upon entering a cell, this reverse transcriptase produces
5 a double-stranded DNA copy of the viral genome, which is then inserted into the chromatin of a host cell. Once inserted, the viral sequence is called a provirus. Retroviral integration is directly dependent upon viral proteins. Linear viral DNA termini (the LTRs) are the immediate precursors to the integrated proviral DNA. There is a characteristic duplication of short stretches of the host's DNA at the site of integration.
10
15
20
25
Progeny viral genomes and mRNAs are transcribed from the inserted proviral sequence by host cell RNA polymerase in response to transcriptional, regulatory signals in the terminal regions of the proviral sequence, the long terminal repeats, or LTRs. The host cell's protein production machinery is used to produce viral proteins, many of which are inactive until processed by virally encoded proteases. Typically, progeny viral particles bud from the cell surface in a non-lytic manner. Retroviral infection does not necessarily interfere with the normal life cycle of an infected cell or organism. However, neither is it always benign with respect to the host organism. While most classes of DNA viruses can be implicated in tumorigenesis, retroviruses are the only taxonomic group of RNA viruses that are oncogenic. Various retroviruses, such as the Human Immunodeficiency Virus (HIV), which is the etiological agent responsible for acquired immune deficiency syndrome (AIDS) in humans, are also responsible for several very unusual diseases of the immune system of higher animals.

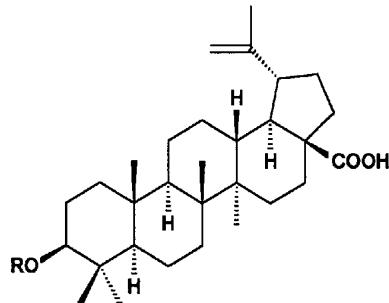
Human Immunodeficiency Virus (HIV) is a member of the lentiviruses, a subfamily of retroviruses. Many retroviruses are well-known carcinogens. HIV *per se* is not known to cause cancer in humans or other animals, but it does present a formidable challenge to the host. The viral genome contains many regulatory elements which allow the virus to control its rate of replication in both resting and dividing cells. Most importantly, HIV infects and invades cells of the immune system; it breaks down the body's immune system and renders the patient susceptible to opportunistic infections and neoplasms. The immune defect appears to be progressive and irreversible, with a high mortality rate that approaches 100% over several years.

HIV-1 is trophic and cytopathic for T4 lymphocytes, cells of the immune system which express the cell surface differentiation antigen CD4, also known as OKT4, T4 and leu3. The viral tropism is due to the interactions between the viral envelope glycoprotein, gpl20, and the cell-surface CD4 molecules (Dagleish *et al.*, *Nature* 312:763-767 (1984)). These interactions not only mediate the infection of susceptible cells by HIV, but are also responsible for the virus-induced fusion of infected and uninfected T cells. This cell fusion results in the formation of giant multinucleated syncytia, cell death, and progressive depletion of CD4 cells in HIV-infected patients. These events result in HIV-induced immunosuppression and its subsequent sequelae, opportunistic infections and neoplasms.

In addition to CD4+ T cells, the host range of HIV includes cells of the mononuclear phagocytic lineage (Dagleish *et al.*, *supra*), including blood monocytes, tissue macrophages, Langerhans cells of the skin and dendritic reticulum cells within lymph nodes. HIV is also neurotropic, capable of infecting monocytes and macrophages in the

central nervous system causing severe neurologic damage. Macrophage/monocytes are a major reservoir of HIV. They can interact and fuse with CD4-bearing T cells, causing T cell depletion and thus contributing to the pathogenesis of AIDS.

5 Considerable progress has been made in the development of drugs for HIV-1 therapy during the past few years. There are now 12 drugs approved for use in the U.S., including five nucleoside analog reverse transcriptase inhibitors (AZT, 3TC, ddI, ddC, and D4T), three non-nucleoside RT inhibitors (nevirapine, delavirdine, and efavirenz) and four protease inhibitors (saquinavir, ritonavir, indinavir, and nelfinavir). Combinations of these drugs are particularly effective and can reduce levels of viral RNA to undetectable levels in the plasma and slow the development of viral resistance, with resulting improvements in patient health and life span.

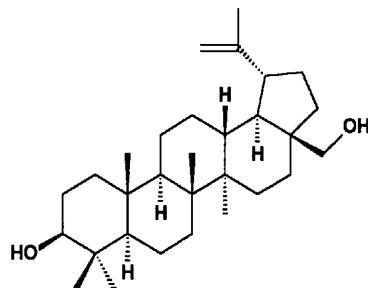

10 15 20
Despite these advances, there are still problems with the currently available drug regimens. Many of the drugs exhibit severe toxicities, have other side-effects (e.g., fat redistribution) or require complicated dosing schedules that reduce compliance and thereby limit efficacy. Resistant strains of HIV often appear over extended periods of time even on combination therapy. The high cost of these drugs is also a limitation to their widespread use, especially outside of developed countries.

25 There is still a major need for the development of additional drugs to circumvent these issues. Ideally these would target different stages in the viral life cycle, adding to the armamentarium for combination therapy, and exhibit minimal toxicity, yet have lower manufacturing costs.

Previously, betulinic acid and platanic acid were isolated as anti-HIV principles from *Syzygium claviflorum*. Betulinic acid and platanic acid

exhibited inhibitory activity against HIV-1 replication in H9 lymphocyte cells with EC₅₀ values of 1.4 μ M and 6.5 μ M, respectively, and T.I. values of 9.3 and 14, respectively. Hydrogenation of betulinic acid yielded dihydrobetulinic acid, which showed slightly more potent anti- HIV activity with an EC₅₀ value of 0.9 and a T.I. value of 14 (Fujioka, T., *et al.*, *J. Nat. Prod.* 57:243-247 (1994)).

Esterification of betulinic acid (1) with certain substituted acyl groups, such as 3',3'-dimethylglutaryl and 3',3'-dimethylsuccinyl groups produced derivatives having enhanced activity (Kashiwada, Y., *et al.*, *J. Med. Chem.* 39:1016-1017 (1996)). Acylated betulinic acid and dihydrobetulinic acid derivatives that are potent anti-HIV agents are also described in U.S. Patent No. 5,679,828.

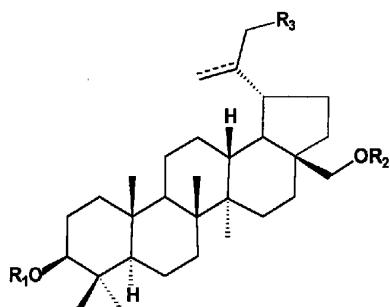


25

1 R = H (Betulinic acid)

U.S. Patent No. 5,468,888 discloses 28-amido derivatives of lupanes that are described as having a cytoprotecting effect for HIV-infected cells.

5 Japanese Patent Application No. J 01 143,832 discloses that betulin (3) and 3,28-diesters thereof are useful in the anti-cancer field.



3 (Betulin)

A need continues to exist for compounds which possess potent anti-HIV activity with different modes of action. Such compounds are urgently needed to add to existing anti-HIV therapies.

Summary of the Invention

A first aspect of the present invention is directed to novel compounds of Formula I:

or pharmaceutically acceptable salts thereof; wherein

15 R₁ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl,

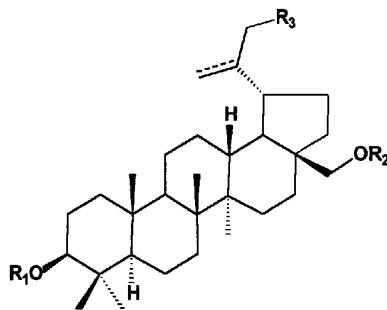
 R₂ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl; and

 R₃ is hydrogen, halogen, amino, optionally substituted mono- or
di-alkylamino, or -OR₄, where R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl,
or C₂-C₂₀ substituted or unsubstituted carboxyacyl;

 wherein the dashed line represents an optional double bond between
C20 and C29.

 A second aspect of the present invention is directed to
pharmaceutical compositions, comprising one or more compounds of
Formula I, and a pharmaceutically acceptable carrier or diluent. One
or more additional pharmaceutically active compounds can also be
included in these compositions.

15 The compounds are useful as anti-retroviral agents. Therefore, a
third aspect of the present invention is directed to methods for
inhibiting a retroviral infection in cells or tissue of an animal,
comprising administering an effective retroviral inhibiting amount of
20 a compound of Formula I. A preferred embodiment is directed to a
method for treating a patient suffering from a retroviral-related


pathology, comprising administering to said subject a retroviral inhibiting effective amount of a pharmaceutical composition that includes a compound of Formula I.

5 A fourth aspect of the present invention is directed to a method for making compounds of Formula I.

Detailed Description of the Preferred Embodiments

The compounds of the present invention have the general Formula

I:

I

or a pharmaceutically acceptable salt thereof: wherein

R₁ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl,

R₂ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl; and

15 R₃ is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or -OR₄, where R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl, or C₂-C₂₀ substituted or unsubstituted carboxyacyl;

wherein the dashed line represents an optional double bond between C20 and C29.

20 Preferred compounds of the present invention are those where:

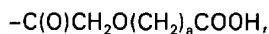
R₁ and R₂ are each C₂-C₂₀ substituted or unsubstituted carboxyacyl, and R₃ is hydrogen. In one embodiment, the bond between C20 and C29 is a double bond. In another embodiment, the bond between C20 and C29 is a single bond.

5

Another group of preferred compounds are those where:

R₁ and R₂ are each C₂-C₂₀ substituted or unsubstituted carboxyacyl, and R₃ is halogen or -OR₄, where R₄ is C₂-C₂₀ substituted or unsubstituted carboxyacyl. In one embodiment, the bond between C20 and C29 is a double bond. In another embodiment, the bond between C20 and C29 is a single bond.

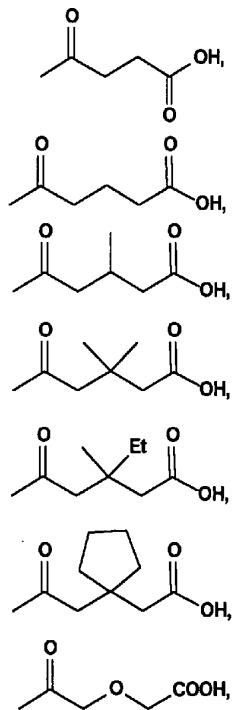
Even more preferred are those compounds wherein R₁ and R₂ are each a C₄-C₁₆ carboxyalkanoyl group that is mono- or di- substituted at the 3' carbon atom. Such a side chain has the formula:

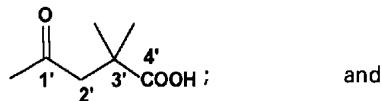


where

R' and R" are each C₁₋₄ alkyl, preferably methyl or ethyl, or R' is hydrogen and R" is C₁₋₄ alkyl, or R' and R" are taken together to form a di-, tri-, tetra- or pentamethylene linkage, and b is from zero to twelve, preferably zero to 4, most preferably zero or 1.

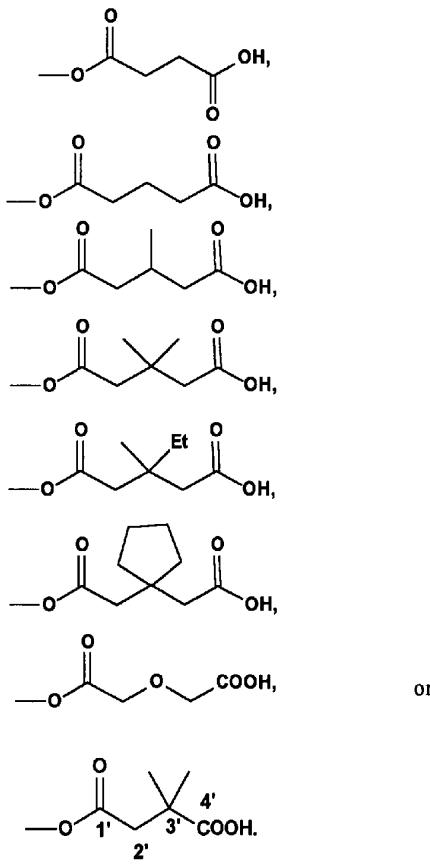
Additionally preferred are those compounds where R₁ and R₂ are both a C₄-C₁₆ carboxyalkoxyacetyl group of the formula:


25



where a is from one to ten, preferably one to four, most preferably one or two.

Preferred values of R₃ include: hydrogen, halogen, or -OR₄, where R₄ is preferably hydrogen; -C(O)CH₂CR'R"(CH₂)_bCOOH, where R', R" and b are as defined above; or -C(O)CH₂O(CH₂)_aCOOH, where a is as defined above.


5 Particularly preferred compounds are those of Formula I, wherein:
R₁ and R₂ are each one of:

R₃ is preferably hydrogen, chloro, bromo, or hydroxy or is one of:

5
10
15

20

Betulin and dihydrobetulin acyl derivatives according to the present invention have been found to have potent anti-HIV activity. The

5 C3-hydroxy, C28-hydroxy and C20-exomethylene groups in betulin can be easily modified. It has been found that introducing a C₂ to C₂₀ substituted or unsubstituted acyl group at the C3-hydroxy or C28-hydroxy groups of betulin and dihydrobetulin readily produces the corresponding 3-O-acyl, 28-O-acyl, and/or 28-O-acyl derivatives.

10 The C3 and C28 acyl groups of the most active compounds have dimethyl groups or oxygen at the C3 position. This observation suggests that this type of acyl group might be important to the enhanced anti-HIV activity.

15 The invention is also directed to a method for treating a subject infected with HIV-1 by administering at least one of the above-noted betulin derivatives, optionally in combination with any one or more of the known anti-AIDS therapeutics or an immunostimulant.

20 Other features, advantages, embodiments, aspects and objects of the present invention will be clear to those skilled in the areas of relevant art, based upon the description, teaching and guidance presented herein.

25 The compounds of the present invention have been discovered to have anti-retroviral activity, thus providing suitable compounds and compositions for treating retroviral infections, optionally with additional pharmaceutically active ingredients, such as anti-retroviral, anti-HIV, and/or immuno-stimulating compounds or antiviral antibodies or fragments thereof.

By the term "anti-retroviral activity" or "anti-HIV activity" is intended 25 the ability to inhibit at least one of:

- (1) viral pro-DNA integration into host cell genome;
- (2) retroviral attachment to cells;
- (3) viral entry into cells;
- (4) cellular metabolism which permits viral replication;

(5) inhibition of intercellular spread of the virus;
(6) synthesis and/or cellular expression of viral antigens;
(7) activity of virus-coded enzymes (such as reverse transcriptase, integrase and proteases); and/or
5 (8) any known retroviral or HIV pathogenic actions, such as, for example, immunosuppression. Thus, any activity which tends to inhibit any of these mechanisms is "anti-retroviral activity" or "anti-HIV activity."

10 A betulin or dihydrobetulin derivative of the present invention can be used for treatment of retroviral (e.g., HIV) infection either alone, or in combination with other modes of therapy known in the art. Such modes of therapy can include chemotherapy with drugs, such as, but not limited to, at least one of AZT, ddC, ddA, d4T, ddl, or any other antiretroviral drugs or antibodies in combination with each other, or associated with a biologically based therapeutic, such as, for example, soluble CD4, antibodies to CD4, and conjugates of CD4 or anti-CD4, or as additionally presented herein.

15 Because the betulin or dihydrobetulin derivatives of the present invention are relatively less or substantially non-toxic to normal cells, their utility is not limited to the treatment of established retroviral infections. For example, a betulin derivative according to the present invention can be used in treating blood products, such as those maintained in blood banks. The nation's blood supply is currently tested for antibodies to HIV. However, the test is still imperfect and 20 samples which yield negative tests can still contain HIV virus. Treating the blood and blood products with the betulin derivatives of the present invention can add an extra margin of safety by killing any retrovirus that may have gone undetected.

Pharmaceutical Compositions

Pharmaceutical compositions of the present invention can comprise at least one of the betulin or dihydrobetulin derivatives.

5 Pharmaceutical compositions according to the present invention can also further comprise other anti-viral agents such as, but not limited to, AZT (Glaxo Wellcome), 3TC (Glaxo Wellcome), ddI (Bristol-Myers Squibb), ddC (Hoffmann-La Roche), D4T (Bristol-Myers Squibb), abacavir (Glaxo Wellcome), nevirapine (Boehringer Ingelheim), delavirdine (Pharmacia and Upjohn), efavirenz (DuPont Pharmaceuticals), saquinavir (Hoffmann-La Roche), ritonavir (Abbott Laboratories), indinavir (Merck and Company), nelfinavir (Agouron Pharmaceuticals), amprenavir (Glaxo Wellcome), adefovir (Gilead Sciences) and hydroxyurea (Bristol-Meyers Squibb).

10 Additional suitable antiviral agents for optimal use with a betulin derivative of the present invention can include, but are not limited to, AL-721 (lipid mixture) manufactured by Ethigen Corporation and Matrix Research Laboratories; Amphotericin B methyl ester; Ampligen (mismatched RNA) developed by DuPont/HEM Research; anti-AIDS antibody (Nisshon Food); 1 AS-101 (heavy metal based immunostimulant); Betaseron (β -interferon) manufactured by Triton Biosciences (Shell Oil); butylated hydroxytoluene; Carrosyn (polymannoacetate); Castanospermine; Contracan (stearic acid derivative); Creme Pharmatex (containing benzalkonium chloride) manufactured by Pharmalec; CS-87 (5-unsubstituted derivative of Zidovudine), Cytovene (ganciclovir) manufactured by Syntex Corporation; dextran sulfate; D-penicillamine (3-mercaptop-D-valine) manufactured by Carter-Wallace and Degussa Pharmaceutical; Foscarnet (trisodium phosphonoformate) manufactured by Astra AB;

5 fusidic acid manufactured by Leo Lovens; glycyrrhizin (a constituent of licorice root); HPA-23 (ammonium- 21-tungsto-9-antimonate) manufactured by Rhone-Poulenc Santé; human immune virus antiviral developed by Porton Products International; Ornidyl (eflornithine) manufactured by Merrell-Dow; nonoxinol; pentamidine isethionate (PENTAM-300) manufactured by Lypho Med; Peptide T (octapeptide sequence) manufactured by Peninsula Laboratories; Phenytoin (Warner-Lambert); Ribavirin; Rifabutin (ansamycin) manufactured by Adria Laboratories; CD4-IgG2 (Progenics Pharmaceuticals) or other CD4-containing or CD4-based molecules; T-20 (Trimeris); Trimetrexate manufactured by Warner-Lambert Company; SK-818 (germanium-derived antiviral) manufactured by Sanwa Kagaku; suramin and analogues thereof manufactured by Miles Pharmaceuticals; UA001 manufactured by Ueno Fine Chemicals Industry; and Wellferon (α -interferon) manufactured by Glaxo Wellcome.

10 Pharmaceutical compositions of the present invention can also further comprise immunomodulators. Suitable immunomodulators for optional use with a betulin derivative of the present invention in accordance with the present invention can include, but are not limited to: ABPP (Bropririmine); Ampligen (mismatched RNA) DuPont/HEM Research; anti-human interferon- α -antibody (Advance Biotherapy and Concepts); anti-AIDS antibody (Nisshon Food); AS-101 (heavy metal based immunostimulant; ascorbic acid and derivatives thereof; 15 interferon- β ; Carrosyn (polymannoacetate); Ciamexon (Boehringer-Mannheim); cyclosporin; cimetidine; CL-246,738 (American Cyanamid); colony stimulating factors, including GM-CSF (Sandoz, Genetics Institute); dinitrochlorobenzene; HE2000 (Hollis-Eden Pharmaceuticals); interferon- α ; interferon-gamma; glucan;

20

hyperimmune gamma-globulin (Bayer); IMREG-1 (leukocyte dialyzate) and IMREG-2 (IMREG Corp.); immuthiol (sodium diethylthiocarbamate) (Institut Merieux); interleukin-1 (Cetus Corporation; Hoffmann-LaRoche; Immunex); interleukin-2 (IL-2) (Chiron Corporation);

5 isoprinosine (inosine pranobex); Krestin (Sankyo); LC-9018 (Yakult); lentinan (Ajinomoto/Yamanouchi); LF-1695 (Fournier); methionine-enkephalin (TNI Pharmaceuticals; Sigma Chemicals); Minophagen C; muramyl tripeptide, MTP-PE (Ciba-Geigy); naltrexone ("Trexan" DuPont); Neutropin, RNA immunomodulator (Nippon Shingaku); Remune (Immune Response Corporation); Reticulose (Advanced Viral Research Corporation); shosaikoto and ginseng; thymic humoral factor; TP-05 (Thymopentin, Ortho Pharmaceuticals); Thymosin factor 5 and Thymosin 1; Thymostimulin; TNF (Tumor necrosis factor) manufactured by Genentech; and vitamin B preparations.

10 The preferred animal subject of the present invention is a mammal. By the term "mammal" is meant an individual belonging to the class Mammalia. The invention is particularly useful in the treatment of human patients.

15 The term "treating" means the administering to subjects a betulin or dihydروبetulin derivative for purposes which can include prevention, amelioration, or cure of a retroviral-related pathology.

20 Medicaments are considered to be provided "in combination" with one another if they are provided to the patient concurrently or if the time between the administration of each medicament is such as to permit an overlap of biological activity.

25 In one preferred embodiment, at least one betulin or dihydروبetulin derivative comprises a single pharmaceutical composition.

Pharmaceutical compositions for administration according to the present invention can comprise at least one betulin or dihydروبetulin

derivative according to the present invention in a pharmaceutically acceptable form optionally combined with a pharmaceutically acceptable carrier. These compositions can be administered by any means that achieve their intended purposes. Amounts and regimens for the administration of a betulin derivative according to the present invention can be determined readily by those with ordinary skill in the clinical art of treating a retroviral pathology.

For example, administration can be by parenteral, such as subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, or buccal routes. Alternatively, or concurrently, administration can be by the oral route. The dosage administered depends upon the age, health and weight of the recipient, type of previous or concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.

Compositions within the scope of this invention include all compositions comprising at least one betulin or dihydrotetulin derivative according to the present invention in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art. Typical dosages comprise about 0.1 to about 100 mg/kg body weight. The preferred dosages comprise about 1 to about 100 mg/kg body weight of the active ingredient. The most preferred dosages comprise about 10 to about 100 mg/kg body weight.

Therapeutic administration can also include prior, concurrent, subsequent or adjunctive administration of at least one additional betulin or dihydrotetulin derivative according to the present invention or other therapeutic agent, such as an anti-viral or immune stimulating agent. In such an approach, the dosage of the second

drug can preferably be the same as or different from the dosage of the first therapeutic agent. Preferably, the drugs are administered on alternate days in the recommended amounts of each drug.

5 Administration of a compound of the present invention can also optionally include previous, concurrent, subsequent or adjunctive therapy using immune system boosters or immunomodulators. In addition to the pharmacologically active compounds, a pharmaceutical composition of the present invention can also contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Preferably, the preparations, particularly those preparations which can be administered orally and which can be used for the preferred type of administration, such as tablets, dragees, and capsules, and also preparations which can be administered rectally, such as suppositories, as well as suitable solutions for administration by injection or orally, contain from about 0.01 to 99 percent, preferably from about 20 to 75 percent of active compound(s), together with the excipient.

10 20 Pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes. Thus, pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding the resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.

15 25 Suitable excipients are, e.g., fillers such as saccharide, for example, lactose or sucrose, mannitol or sorbitol; cellulose preparations and/or

calcium phosphates, such as tricalcium phosphate or calcium hydrogen phosphate; as well as binders such as starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose,

5 sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents can be added such as the above-mentioned starches and also carboxymethyl starch, cross-linked

10 polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings which, if desired, are resistant to gastric juices. For this purpose, concentrated saccharide solutions can be used, which can optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures. In order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl cellulose phthalate are used. Dyestuffs or pigments can be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses.

15 Other pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules which can be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active

20

25

compounds are preferably dissolved or suspended in suitable liquids, such as fatty oils or liquid paraffin. In addition, stabilizers can be added.

5 Possible pharmaceutical preparations which can be used rectally include, for example, suppositories which consist of a combination of the active compounds with a suppository base. Suitable suppository bases are, for example, natural or synthetic triglycerides, or paraffin hydrocarbons. In addition, it is also possible to use gelatin rectal capsules which consist of a combination of the active compounds with a base. Possible base materials include, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.

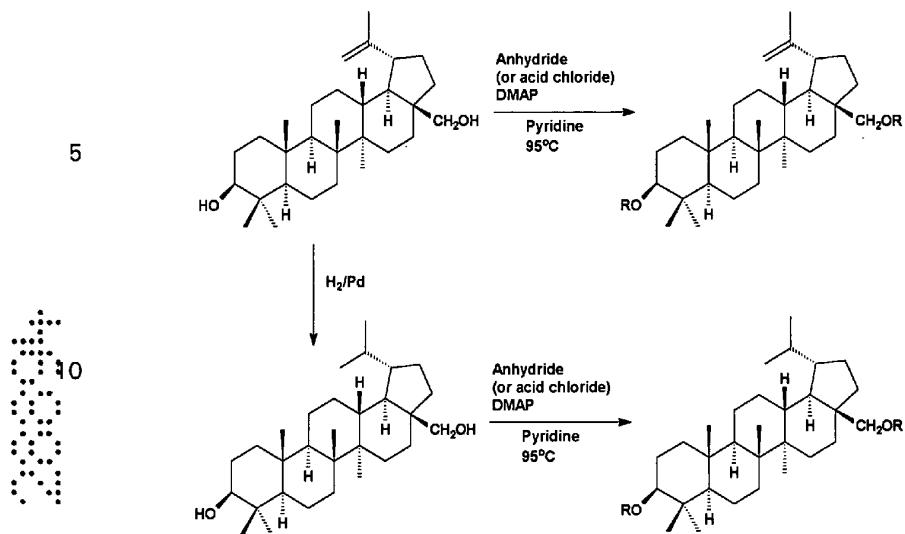
10 Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts. In addition, suspensions of the active compounds as appropriate oily injection suspensions can be administered. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides. Aqueous injection suspensions that can contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension can also contain stabilizers.

15 20 A pharmaceutical formulation for systemic administration according to the invention can be formulated for enteral, parenteral or topical administration. Indeed, all three types of formulation can be used simultaneously to achieve systemic administration of the active ingredient.

25 Suitable formulations for oral administration include hard or soft gelatin capsules, dragees, pills, tablets, including coated tablets,

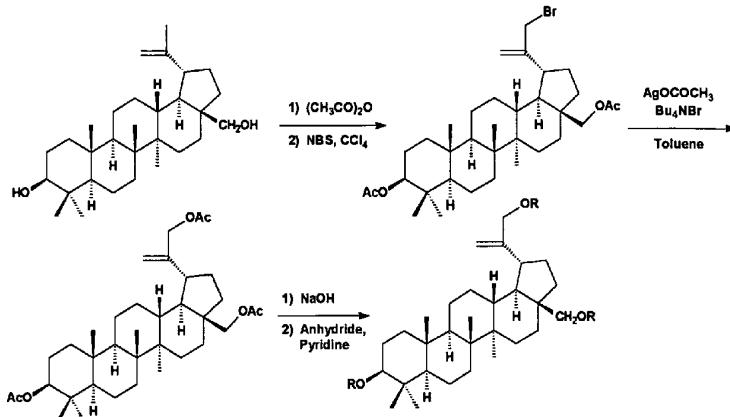
elixirs, suspensions, syrups or inhalations and controlled release forms thereof.

Solid dosage forms in addition to those formulated for oral administration include rectal suppositories.


5 The betulin or dihydروبetulin derivatives of the present invention can also be administered in the form of an implant when compounded with a biodegradable slow-release carrier. Alternatively, the betulin or dihydروبetulin derivatives of the present invention can be formulated as a transdermal patch for continuous release of the active ingredient.

10 Suitable formulations for topical administration include creams, gels, jellies, mucilages, pastes and ointments. Suitable injectable solutions include intravenous subcutaneous and intramuscular injectable solutions. Alternatively, the betulin or dihydروبetulin derivatives may be administered in the form of an infusion solution or as a nasal inhalation or spray.

15 The compounds of the present invention are synthesized by reacting betulin or dihydروبetulin with a suitable anhydride in anhydrous pyridine to esterify the betulin or dihydروبetulin. Betulin or dihydروبetulin was heated overnight at 95 °C with 6-fold of the appropriate anhydride in anhydrous pyridine in the presence of 4-(dimethylamino)pyridine. When TLC indicated complete consumption of starting material, the reaction solution was diluted with EtOAc and washed with 10% HCl solution. The EtOAc layer was then dried over MgSO₄ and subjected to column chromatography.


20 25 Scheme 1 depicts the synthesis route followed in Example 1, for compounds where R₁ and R₂ are C₂-C₂₀ substituted or unsubstituted carboxyacetyl, and R₃ is hydrogen.

Scheme 1

Scheme 2 depicts the synthesis route followed in Example 1, for compounds where R_1 and R_2 are each $\text{C}_2\text{-C}_{20}$ substituted or unsubstituted carboxyacyl and R_3 is $-\text{OR}_4$, where R_4 is hydrogen or acyl, including C_{2-20} substituted or unsubstituted carboxyacyl.

Scheme 2

Compounds **11** and **14** (structures appear following Example 1) were prepared by heating betulin and compound **13** overnight at 40°C with 2-fold of 3,3-dimethylglutaryl anhydride in anhydrous pyridine in the presence of 4-(dimethylamino)pyridine, followed by a similar workup as for compounds **4-6** and **8-10**. The residues were purified by column chromatography.

Compound **12** was synthesized by stirring compound **11** with 1.5 equivalent of pyridium chlorochromate in CH_2Cl_2 at room temperature. After 2 h, the black reaction mixture was diluted with Et_2O and filtered through a short pack column. The filtrate was concentrated and chromatographed [*n*-hexane:acetone (4:1)] to yield compound **12** in a 72% yield.

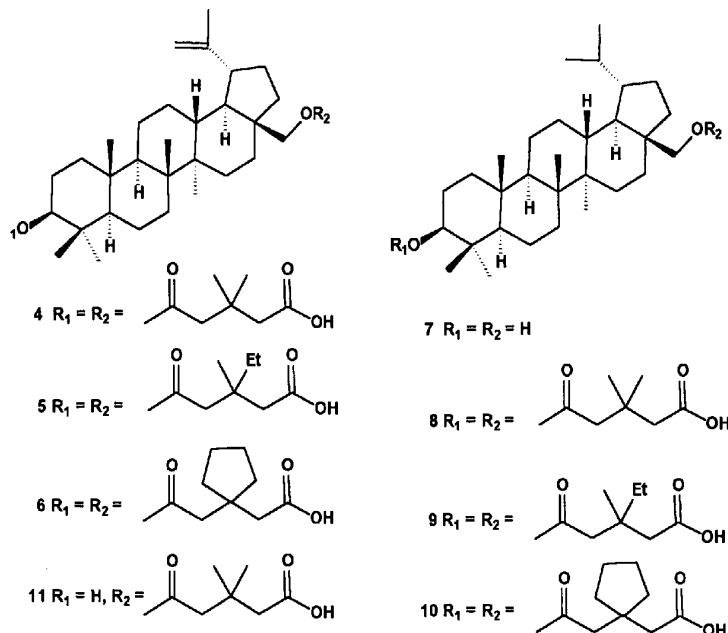
A solution of betulin and triphenyl phosphine (4 equiv) in dry THF was added dropwise to diethyl azodicarboxylate (4 equiv) in an ice bath. The reaction solution was stirred for 12 h. After removing THF in vacuum, the residue was chromatographed with *n*-hexane:EtOAc (15:1) as eluent to afford compound **13**.

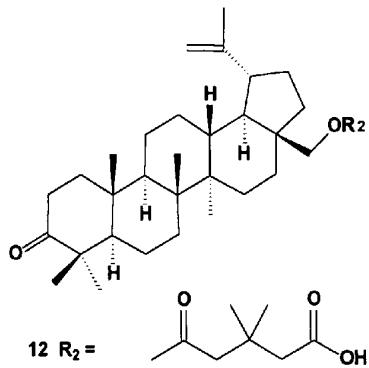
The biological evaluation of HIV-1 inhibition was carried out according to established protocols, (Kashiwada, Y., *et al.*, *J. Med. Chem.* 39:1016-1017 (1996); Hashimoto, F., *et al.*, *Bioorg. & Med. Chem.* 5:2133-2143 (1997)). The T cell line, H9, was maintained in continuous culture with complete medium (RPMI 1640 with 10% fetal calf serum supplemented with L-glutamine at 5% CO₂ and 37°C). Aliquot of this cell line were only used in experiments when in log-phase growth. Test samples were first dissolved in dimethyl sulfoxide. The following final drug concentrations were routinely used for screening: 100, 20, 4 and 0.8 µg/ml. For active agents, additional dilutions were prepared for subsequent testing so that an accurate EC₅₀ value (defined below) could be achieved. As the test samples were being prepared, an aliquot of the H9 cell line was infected with HIV-1 (IIIB isolate) while another aliquot was mock-infected with complete medium. The stock virus used for these studies typically had a TCID₅₀ value of 10⁴ Infectious Units/ml. The appropriate amount of virus for a multiplicity of infection (moi) between 0.1 and 0.01 Infectious Units/cell was added to the first aliquot of H9 cells. The other aliquot only received culture medium, and these mock-infected cells were used for toxicity determinations (IC₅₀, defined below). After a 4 h incubation at 37°C and 5% CO₂, both cell populations were washed three times with fresh medium and then added to the appropriate wells of a 24 well-plate containing the various concentrations of the test drug or culture medium (positive infected control/negative drug control). In addition, AZT was also assayed during each experiment as a positive drug control. The plates were incubated at 37°C and 5% CO₂ for 4 days. Cell-free supernatants were collected on Day 4 for use in a p24 antigen ELISA assay. P24 antigen is a core protein of HIV and therefore is an

indirect measure of virus present in the supernatants. Toxicity was determined by performing cell counts by a Coulter Counter on the mock-infected H9 cells which had either received culture medium (no toxicity), test sample, or AZT. If a test sample had suppressive capability and was not toxic, its effects were reported in the following terms: IC_{50} , the concentration of test sample which was toxic to 50% of the mock-infected H9 cells; EC_{50} , the concentration of the test sample which was able to suppress HIV replication by 50%; and Therapeutic Index (TI), the ratio of IC_{50} to EC_{50} .

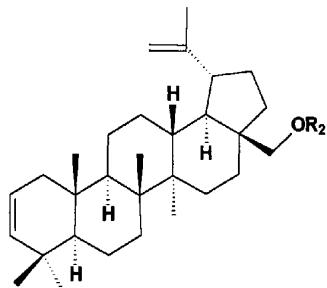
The following examples are illustrative, but not limiting, of the method and compositions of the present invention. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered and obvious to those skilled in the art are within the spirit and scope of the invention.

Example 1
Synthesis of Betulin and Dihydrobetulin Derivatives

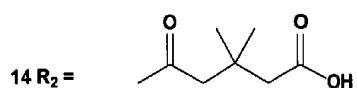

Betulin or dihydrobetulin was heated overnight at 95 °C with 6-fold of the appropriate anhydride in anhydrous pyridine in the presence of 4-(dimethylamino)pyridine. When TLC indicated complete consumption of starting material, the reaction solution was diluted with EtOAc and washed with 10% HCl solution. The EtOAc layer was then dried over $MgSO_4$ and subjected to column chromatography.


Compounds 11 and 14 were prepared by heating betulin and compound 13 overnight at 40°C with 2-fold of 3,3-dimethylglutaryl anhydride in anhydrous pyridine in the presence of 4-

(dimethylamino)pyridine, followed by a similar workup as for compounds **4-6** and **8-10**. The residues were purified by column chromatography.


Compound **12** was synthesized by stirring compound **11** with 1.5 equivalent of pyridium chlorochromate in CH_2Cl_2 at room temperature. After 2 h, the black reaction mixture was diluted with Et_2O and filtered through a short pack column. The filtrate was concentrated and chromatographed [*n*-hexane:acetone (4:1)] to yield compound **12** in a 72% yield.

A solution of betulin and triphenyl phosphine (4 equiv) in dry THF was added dropwise to diethyl azodicarboxylate (4 equiv) in an ice bath. The reaction solution was stirred for 12 h. After removing THF in vacuum, the residue was chromatographed with *n*-hexane:EtOAc (15:1) as eluent to afford compound **13**.



5
9
28
29
30
31
32
33
34

13 $R_2 = H$

3,28-Di-*O*-(3',3'-dimethylglutaryl)-betulin (4)

yield 75% (after chromatography from CHCl_3 -acetone[19:1]); an off-white amorphous powder; $[\alpha]^{25}_D + 21.9$ ($c = 0.2$, CHCl_3); $^1\text{H-NMR}$ (CDCl_3): 0.84, 0.85, 0.86, 0.97, 1.03 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.14 (12H, s; 3'-(CH_3)₂ and 3''-(CH_3)₂), 1.68 (3H, s; 20- CH_3), 2.42-2.50 (9H, m, $\text{H}_2\text{-}2'$, 2'', 4', 4'' and H-19), 3.86, 4.30 (each 1H, d, $J = 11.1$ Hz; $\text{H}_2\text{-}28$), 4.49 (1H, dd, $J = 5.2, 11.4$ Hz; H-3), 4.59, 4.69 (each 1H, br s; $\text{H}_2\text{-}29$).
Anal. Calcd for $\text{C}_{44}\text{H}_{70}\text{O}_8$. $\frac{1}{2}$ H_2O : C 71.80, H 9.72; found C 71.73, H 9.66.

5

3,28-Di-O-(3',3'-methylethylglutaryl)-betulin (5)

yield 94% (after chromatography from *n*-hexane:EtOAc[6:1]); an off-white amorphous powder; $[\alpha]^{26}_D + 13.2$ ($c = 0.5$, CHCl_3); $^1\text{H-NMR}$ (CDCl_3): 0.85, 0.86, 0.91, 0.98, 1.04 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.09 (6H, s; 3'- CH_3 and 3''- CH_3), 1.69 (3H, s; 20- CH_3), 2.41-2.57 (9H, m; $\text{H}_2\text{-}2'$, 2'', 4', 4'' and H-19), 3.87, 4.30 (each 1H, d, $J = 11.0$ Hz; $\text{H}_2\text{-}28$), 4.52 (1H, dd, $J = 4.6, 11.0$ Hz; H-3), 4.60, 4.70 (each 1H, br s; $\text{H}_2\text{-}29$).
Anal. Calcd for $\text{C}_{46}\text{H}_{74}\text{O}_8$. $\frac{1}{2}$ H_2O : C 72.31, H 9.89; found C 72.34, H 9.93.

10

3,28-Di-O-(3',3'-tetramethyleneglutaryl)-betulin (6)

15

yield 86% (after chromatography from *n*-hexane:EtOAc [8:1]); an off-white amorphous powder; $[\alpha]^{25}_D + 13.9$ ($c = 0.99$, CHCl_3); $^1\text{H-NMR}$ (CDCl_3): 0.85, 0.86, (x 2), 0.98, 1.04 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.69 (3H, s; 20- CH_3), 2.45 (1H, dt; $J = 5.8, 10.6$ Hz; H-19), 2.52-2.59 (8H, m, $\text{H}_2\text{-}2'$, 2'', 4', and 4''), 3.88, 4.29 (each 1H, d, $J = 11.1$ Hz; $\text{H}_2\text{-}28$), 4.51 (1H, dd, $J = 5.0, 10.8$ Hz; H-3), 4.60, 4.70 (each 1H, br s; $\text{H}_2\text{-}29$).

20

25

Anal. Calcd for $C_{48}H_{74}O_8$. H_2O : C 72.33, H 9.61; found C 72.43, H 9.51.

Dihydrobetulin (7)

5 yield 94%; a colorless powder; 1H -NMR ($CDCl_3$): 0.76, 0.77 (each 3H, d, J = 3.4 Hz; 20-(CH_3)₂), 0.83, 0.85, 0.96, 0.97, 1.03 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 3.20 (1H, dd, J = 5.3, 11.0 Hz; H-3), 3.30, 3.79 (each 1H, d, J = 11.0 Hz; H_2 -28). Anal. Calcd for $C_{30}H_{52}O_2$: C 81.02, H 11.78; found C 81.05, H 11.71.

3,28-Di-*O*-(3',3'-dimethylglutaryl)-dihydrobetulin (8)

yield 81% (after chromatography from $CHCl_3$ -acetone [19:1]); an amorphous powder; $[\alpha]_D^{25}$ -15.0 (c = 0.2, $CHCl_3$); 1H -NMR ($CDCl_3$): 0.77, 0.84, (each 3H, d, J = 6.7 Hz; 20-(CH_3)₂), 0.85, 0.86 (x 2), 0.95, 1.04 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.14 (12H, s; 3'-(CH_3)₂ and 3''-(CH_3)₂), 2.43-2.54 (8H, m, H_2 -2', 2'', 4', and 4''), 3.83, 4.29 (each 1H, d, J = 11.0 Hz; H_2 -28), 4.52 (1H, dd, J = 4.8, 11.0 Hz; H-3).

Anal. Calcd for $C_{44}H_{72}O_8$: C 72.49, H 9.95; found C 72.28, H 9.95.

3,28-Di-*O*-(3',3'-methylglutaryl)-dihydrobetulin (9)

yield 84% (after chromatography from *n*-hexane:EtOAc [6:1]); an off-white amorphous powder; $[\alpha]_D$ -17.6 (c = 0.49, $CHCl_3$); 1H -NMR ($CDCl_3$): 0.78, 0.85, (each 3H, d, J = 6.6 Hz; 20-(CH_3)₂), 0.86 x 2, 0.87, 0.91, 1.05 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.09 (6H, s; 3'- CH_3 and 3''- CH_3), 2.40-2.56 (8H, m, H_2 -2', 2'', 4', and 4''), 3.84, 4.30 (each 1H, d, J = 11.0 Hz; H_2 -28), 4.52 (1H, dd, J = 4.6, 11.0 Hz; H-3), 4.60, 4.70 (each 1H, br s; H_2 -29).

Anal. Calcd for $C_{46}H_{76}O_8$: C 72.98, H 10.12; found C 73.08, H 10.09.

3,28-Di-O-(3',3'-tetramethyleneglutaryl)-dihydrobetulin (10)

yield 89% (after chromatography from *n*-hexane:EtOAc [8:1]); an off-white amorphous powder; $[\alpha]^{25}_D$ -18.2 (c = 0.52, $CHCl_3$); 1H -NMR ($CDCl_3$): 0.78, 0.85, (each 3H, d, J = 6.6 Hz; 20-(CH_3)₂), 0.85, 0.87 (x 2), 0.96, 1.05 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 2.52-2.63 (8H, m, H_2 -2', 2", 4', and 4"), 3.84, 4.28 (each 1H, d, J = 11.1 Hz; H_2 -28), 4.51 (1H, dd, J = 5.4, 10.3 Hz; H-3).

Anal. Calcd for $C_{48}H_{76}O_8$. 3/2 H_2O : C 71.34, H 9.85; found C 71.57, H 9.53.

28-O-(3',3'-Dimethylglutaryl)-betulin (11)

yield 71% (after chromatography from *n*-hexane:acetone [9:1]); an off-white amorphous powder; $[\alpha]^{25}_D$ +12.3 (c = 0.49, $CHCl_3$); 1H -NMR ($CDCl_3$): 0.77, 0.83, 0.98 x 2, 1.04 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.15 (6H, s; 3'-(CH_3)₂), 1.69 (3H, s, 20- CH_3), 2.40, 2.48 (1H, m, H-19), 2.48 (4H, s; H_2 -2' and H_2 -4), 3.20 (1H, dd, J = 5.2, 10.9 Hz; H-3), 3.87, 4.29 (each 1H, d, J = 11.1 Hz; H_2 -28), 4.60, 4.70 (each 1H, br s; H_2 -29).

Anal. Calcd for $C_{38}H_{60}O_6$. 1/4 H_2O : C 74.89, H 10.59; found C 74.89, H 10.56.

3-Deoxy-3-oxo-28-O-(3',3'-dimethylglutaryl)-betulin (12)

yield 72% (after chromatography from *n*-hexane:acetone [4:1]); an off-white amorphous powder; $[\alpha]^{25}_D$ +32.4 (c = 0.33, $CHCl_3$); 1H -NMR ($CDCl_3$): 0.94, 1.00, 1.04, 1.08 x 2 (each 3H, s; 4-(CH_3)₂, 8- CH_3 , 10- CH_3 , 14- CH_3), 1.16 (6H, s; 3'-(CH_3)₂), 1.69 (3H, w; 20- CH_3),

2.41-2.54 (7H, m, H₂-2, 2', 4', and H-19), 3.87, 4.30 (each 1H, d, *J* = 11.1 Hz; H₂-28), 4.61, 4.70 (each 1H, br s; H₂-29).

Anal. Calcd for C₃₆H₅₈O₅: C 76.24, H 10.03; found C 76.47, H 10.31.

5

3-Deoxy-2,3-dihydro-betulin (13)

yield 74% (after chromatography from *n*-hexane:EtOAc [15:1]); [α]²⁵_D + 46.5 (c = 0.2, CHCl₃); ¹H-NMR (CDCl₃) 0.90, 0.93, 0.96, 0.99, 1.04 (each 3H, s; 4-(CH₃)₂, 8-CH₃, 10-CH₃, 14-CH₃), 1.68 (3H, s; 20-CH₃), 2.32-2.53 (2H, m, H-2a, and H-19), 2.85 (1H, ddd, *J* = 5.5, 11.1, 11.1 Hz; H-2e), 4.61, 4.74 (each 1H, br, s; H₂-29), 9.65 (1H, s; H-28).

Anal. Calcd for C₃₀H₄₈O. 1/4H₂O: C 83.95, H 11.39; found C 84.00, H 11.34.

15

3-Deoxy-2,3-dihydro-28-O-(3',3'-dimethylglutaryl)-betulin (14)

yield 83% (after chromatography from *n*-hexane: CHCl₃ [8:2:1]); an off-white amorphous powder; [α]²⁵_D + 26.37 (c = 0.49, CHCl₃); ¹H-NMR (CDCl₃): 0.84, 0.85, 0.92, 0.97, 1.04 (each 3H, s; 4-(CH₃)₂, 8-CH₃, 10-CH₃, 14-CH₃), 1.13 (6H, s, 3'-CH₃)₂, 1.67 (3H, s, 20-CH₃), 2.39-2.50 (1H, m, H-19), 2.45, 2.45 (each 2H, s; H₂-2' and H₂-4'), 3.86, 4.28 (each 1H, d, *J* = 11.1 Hz; H₂-28), 4.58, 4.67 (each 1H, br, s; H₂-29), 5.34-5.37 (2H, m; H-2 and H-3).

Anal. Calcd for C₃₇H₆₀O₄: C 78.12, H 10.63; found C 77.99, H 10.47.

25

Example 2

Pharmacological Activity

Compounds of the present invention were assayed for anti-HIV activity according to the following assay procedures. The T cell line, H9, and the promonocytic cell line, U937, were maintained separately in continuous culture with complete medium (RPMI 1640 with 10% fetal calf serum) at 5% CO₂ and 37°C. The cell lines were used in experiments only when in the logarithmic phase of growth, whereas uninfected peripheral blood mononuclear cells (PBMCs) were first stimulated with PHA (1 µg/mL) for three days. All cell targets were incubated with HIV-1 (IIIB isolate, TCID₅₀ 10⁴IU/ml, at a multiplicity of infection of 0.01-0.01 IU/cell) for one hour at 37°C and 5% CO₂. The cell lines and PBMCs were washed thoroughly to remove unadsorbed virions and resuspended at 4 x 10⁵ cells/ml in complete medium or complete medium with 10% v/v interleukin 2 (IL-2) , respectively. One ml. aliquots were placed into wells of 24-well culture plates containing an equal volume of test compounds (diluted in the appropriate culture medium). The toxicity of each compound was assessed by determining the number of compound-exposed uninfected cells that remained after four days at 37°C and 5% CO₂. A p24 antigen ELISA assay was used to determine the level of virus released in the medium of the HIV-infected cultures. The p24 antigen assay used a HIV-1 anti-p24 specific monoclonal antibody as the capture antibody coated onto 96-well plates. Following a sample incubation period, rabbit serum containing antibodies for HIV-1 p24 was used to tag any p24 captured onto the microtiter well surface. Peroxidase conjugated goat anti-rabbit serum was then used to tag HIV-1 p24 specific rabbit antibodies that had complexed with

5 captured p24. The presence of p24 in test samples was then revealed by addition of substrate. The cutoff for the p24 ELISA assay was 12.5 pg/ml. P24 in the culture medium was quantitated against a standard curve containing known amounts of p24. The effective (EC_{50}) and inhibitory (IC_{50}) concentrations for anti-HIV activity and cytotoxicity, respectively, were determined.

Table 1. Anti-HIV Activities of Betulin and Related Derivatives

Compound	Anti-HIV*		Therapeutic* ($TI = IC_{50}/EC_{50}$)
	Activity	IC_{50} (μM)	
	EC_{50} (μM)		
1	1.4	13.0	9.3
2	0.0023	4.5	1,974
3	23	43.7	1.9
4	0.00066	14.2	21,515
5	0.0053	18.4	3,476
6	0.077	20.5	267
7	NT	NT	NT
8	0.0047	10.6	2,253
9	0.075	18.7	248
10	0.58	21.6	37
11	3.6	28.2	7.8
12	10.0	29.2	2.9
13	11.9	31.9	2.7
14	5.4	28.3	5.2
AZT	0.015	500	33,333

NT: not tested

*all the data represented as an average of at least two experiments.

Compounds **3-6**, **8-14** and AZT were examined for anti-HIV activity in H-9 lymphocytes as shown in Table 1. Betulin (**3**) with a C-28 hydroxy group was less potent than betulinic acid (**1**) with a C-28 carboxylic acid. However, adding two 3', 3'-dimethyglutaryl esters to betulin (**3**) gave compound **4**, which showed significantly enhanced activity and a remarkably high therapeutic index (TI) with EC₅₀ and TI values of 0.00066 μM and 21,515, respectively. Because compound **4** was about 3-fold more potent and had a higher TI than compound **2**, the C-28 acyl side chain led to improved activity. When the 3' substitution was changed to 3'-ethyl-3'-methyl (**5**) or 3',3'-tetramethylene (**6**), the EC₅₀ values were still in the nanomolar range, but the compounds were less active compared with compound **4**. Saturation of the C20-C29 double bond in compound **4** gave compound **8** and led to about a 7- and 9-fold drop in activity and in TI, respectively. Similarly, the dihydro compounds **9** and **10** showed less inhibition than the unsaturated **5** and **6**. Because compounds **6** and **10**, which contain a 3',3'-tetramethylene glutaryl group exhibited the least activity and lowest TI values among the two series of compounds (**4-6** and **8-10**, respectively), additional bulk at the 3' position is not favored for anti-HIV activity.

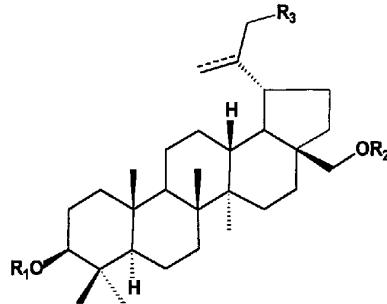
Compound **11** is esterified only at the C-28 position and is 6-fold more potent compared to **3**. However, **11** is much less potent than **4**, confirming the importance of the 3-acyl side chain for increased activity. Replacing the 3-hydroxy group of **11** with a ketone decreased activity further (compare **11** and **12**). Dehydration of betulin's "A" ring gave the unsaturated **13**, which had a slightly improved EC₅₀ compared with **3**. The acylated product, compound **14** displayed increased anti-HIV activity, but perhaps due to the lack of a 3-acyl moiety, the EC₅₀ of **14** was only 5.4 μM.

In conclusion, the diacylated betulin derivative **4** showed remarkable anti-HIV activity even greater than that of the betulinic acid derivative **2**. The C-28 acyl side chain could further increase anti-HIV activity as well as TI, but a C-3 acyl side chain was essential for optimal activity. The 3',3'-dimethyl glutaryl group gave the best activity among three different 3',3'-disubstituted esters. In addition, betulin derivatives (**4-6**) were more potent than their corresponding dihydrobetulin compounds (**8-10**).

Having now fully described this invention, it will be understood to those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations, and other parameters without affecting the scope of the invention or any embodiment thereof. All patents and publications cited herein are fully incorporated by reference herein in their entirety.

What Is Claimed Is:

1. A compound of Formula I:


5

10

15

20

25

or a pharmaceutically acceptable salt thereof; wherein

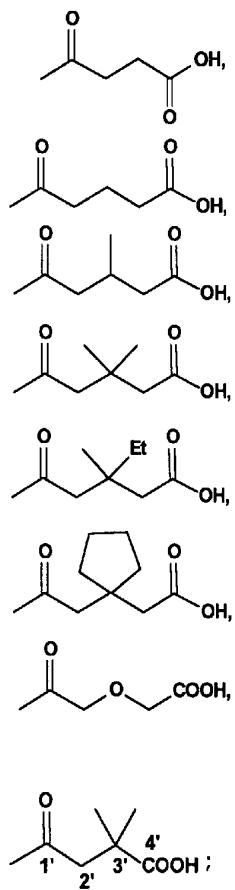
R₁ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl,

R₂ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl; and

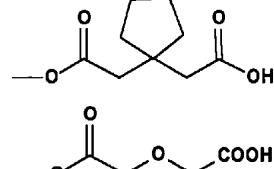
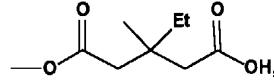
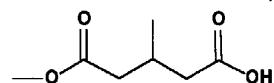
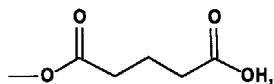
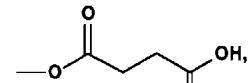
R₃ is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or -OR₄, where R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl, or C₂-C₂₀ substituted or unsubstituted carboxyacyl;

wherein the dashed line represents an optional double bond between C20 and C29; with the proviso that when R₃ is hydrogen, R₁ and R₂ are not both selected from the group consisting of succinyl, maleyl, fumaroyl and glutaryl.

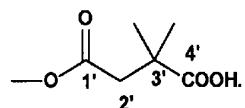
2. A compound according to claim 1, wherein R₁ and R₂ are each C₂-C₂₀ substituted or unsubstituted carboxyacyl, and R₃ is hydrogen.


3. A compound according to claim 1, wherein R₁ and R₂ are each C₂-C₂₀ substituted or unsubstituted carboxyacyl, and R₃ is halogen or

-OR₄, where R₄ is hydrogen or substituted or unsubstituted carboxyacyl.






5 4. A compound according to claim 1, wherein R₃ is one of:
i. hydrogen;
ii. -O-C(O)CH₂CR'R"(CH₂)_bCOOH, where R' and R" are each C₁₋₄ alkyl, or R' is hydrogen and R" is C₁₋₄ alkyl, or R' and R" are taken together to form a di-, tri, tetra- or pentamethylene linkage, and b is from zero to twelve;
iii. -O-C(O)CH₂O(CH₂)_aCOOH, where a is from zero to 12; or
iv. -OH.

10 5. A compound according to claim 1, wherein R₃ is:
-O-C(O)CH₂CR'R"(CH₂)_bCOOH,
where R' and R" are each methyl, and b is zero or one.

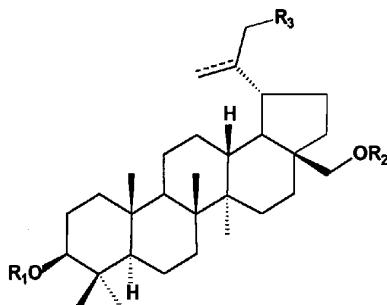

15 6. A compound according to claim 1, wherein:
R₁ and R₂ are each one of:

R₃ is hydrogen, hydroxy, or one of:

or

20

7. A pharmaceutical composition comprising one or more compounds according to claim 1, or a pharmaceutically acceptable ester, salt, ether, sulfate, or glucuronide thereof, and a pharmaceutically acceptable carrier.


8. A pharmaceutical composition according to claim 7, further comprising a drug selected from an anti-viral agent or an immunostimulating agent.

5 9. A pharmaceutical composition according to claim 8, wherein said antiviral agent is selected from the group consisting of nevirapine, delavirdine, efavirenz, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, hydroxyurea, interleukin-2, gamma globulin, amantadine, guanidine hydroxybenzimidazole, interferon- α , interferon- β , interferon- γ , a thiosemicarbazone, methisazone, rifampin, ribavirin, a pyrimidine analog, a purine analog, foscarnet, phosphonoacetic acid, acyclovir, a dideoxynucleoside, and gancyclovir.

10 10. A pharmaceutical composition according to claim 8, wherein said antiviral agent is a nucleoside analog.

11 11. A pharmaceutical composition according to claim 10, wherein said nucleoside analog is selected from the group consisting of AZT, 3TC, ddI, ddC, D4T, abacavir, and adefovir.

12. A compound of Formula I:

or a pharmaceutically acceptable salt thereof; wherein

R₁ and R₂ are independently selected from the group consisting of:

(a) -C(O)CH₂CR'R"(CH₂)_bCOOH, wherein R' and R" are each C₁₋₄ alkyl, or R' is hydrogen and R" is C₁₋₄ alkyl, or R' and R" are taken together to form a di-, tri-, tetra- or pentamethylene linkage, and b is from zero to twelve, and

(b) -C(O)CH₂O(CH₂)_aCOOH, wherein a is from zero to twelve; and

R₃ is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or -OR₄, wherein R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl, or C₂-C₂₀ substituted or unsubstituted carboxyacetyl;

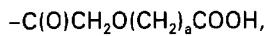
wherein the dashed line represents an optional double bond between C20 and C29.

15

13. The compound of claim 12, wherein R₁ and R₂ are each, independently:

wherein R' and R" are each C₁₋₄ alkyl, or R' is hydrogen and R" is C₁₋₄ alkyl, or R' and R" are taken together to form a di-, tri-, tetra- or pentamethylene linkage, and b is from zero to twelve.

5 14. The compound of claim 13, wherein b is zero to 4.


10 15. The compound of claim 14, selected from the group consisting of:
3,28-di-O-(3',3'-methylethylglutaryl)-betulin;
3,28-di-O-(3',3'-tetramethyleneglutaryl)-betulin;
3,28-di-O-(3',3'-methylethylglutaryl)-dihydrobetulin; and
3,28-di-O-(3',3'-tetramethyleneglutaryl)-dihydrobetulin.

15 16. The compound of claim 14, wherein R' and R" are each methyl, and b is zero or 1.

20 17. The compound of claim 16, wherein:
R₁ and R₂ are each

and
R₃ is hydrogen.

25 18. The compound of claim 17, selected from the group consisting of:
3,28-di-O-(3',3'-dimethylglutaryl)-betulin; and
3,28-di-O-(3',3'-dimethylglutaryl)-dihydrobetulin.

19. The compound of claim 12, wherein R_1 and R_2 are each, independently:

wherein a is from zero to twelve.

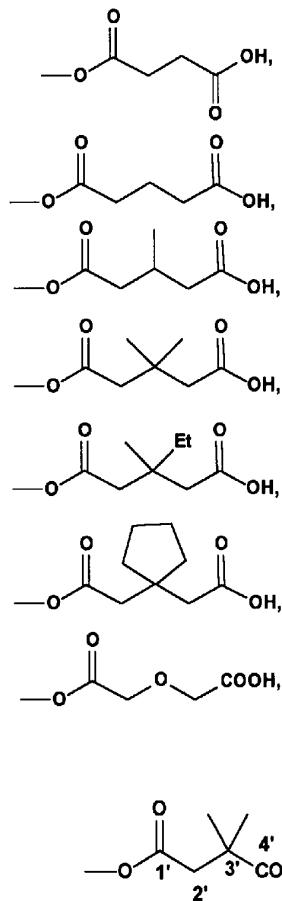
5

20. The compound of claim 12, wherein R_3 is one of:

i. hydrogen;

10 ii. $-O-C(O)CH_2CR'R''(CH_2)_bCOOH$, where R' and R'' are each C_{1-4} alkyl, or R' is hydrogen and R'' is C_{1-4} alkyl, or R' and R'' are taken together to form a di-, tri-, tetra- or pentamethylene linkage, and b is from zero to twelve;

15 iii. $-O-C(O)CH_2O(CH_2)_aCOOH$, where a is from zero to 12; or


iv. $-OH$.

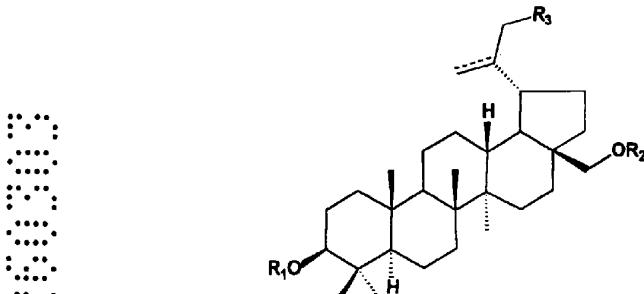
21. The compound of claim 12, wherein R_3 is:

20 where R' and R'' are each methyl, and b is zero or one.

22. The compound of claim 12, wherein R_3 is hydrogen, hydroxy,

25 A pharmaceutical composition comprising one or more compounds according to claim 12, or a pharmaceutically acceptable ester, salt, ether, sulfate, or glucuronide thereof, and a pharmaceutically acceptable carrier.

24. A pharmaceutical composition according to claim 23, further comprising a drug selected from an anti-viral agent or an immunostimulating agent.


25. A pharmaceutical composition according to claim 24, wherein said antiviral agent is selected from the group consisting of nevirapine, delavirdine, efavirenz, saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, hydroxyurea, interleukin-2, gamma globulin, 5 amantadine, guanidine hydroxybenzimidazole, interferon- α , interferon- β interferon- γ , a thiosemicarbazone, methisazone, rifampin, ribavirin, a pyrimidine analog, a purine analog, foscarnet, phosphonoacetic acid, acyclovir, a dideoxynucleoside, and gancyclovir.

26. A pharmaceutical composition according to claim 24, wherein said antiviral 10 agent is a nucleoside analog.

27. A pharmaceutical composition according to claim 26, wherein said nucleoside analog is selected from the group consisting of AZT, 3TC, ddI, ddC, D4T, abacavir, and adefovir.

15

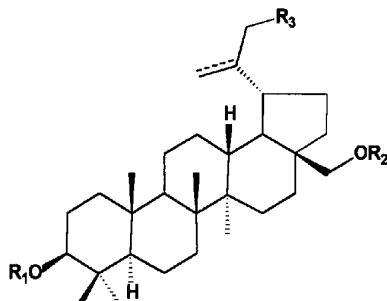
28. A method for inhibiting a retroviral infection in cells or tissue of an animal comprising administering an effective retroviral inhibiting amount of a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of Formula I:

20

or a pharmaceutically acceptable ester, salt, ether, sulfate, or glucuronide thereof; wherein

R_1 is a C_2 - C_{20} substituted or unsubstituted carboxyacyl,

R_2 is a C_2 - C_{20} substituted or unsubstituted carboxyacyl; and


5 R_3 is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or $-OR_4$, where R_4 is hydrogen, C_{1-4} alkanoyl, benzoyl, or C_2 - C_{20} substituted or unsubstituted carboxyacyl;
wherein the dashed line represents an optional double bond between C20 and C29.

10 29. The method of claim 28, wherein said composition is administered to provide said compound in an amount ranging from about 0.1 to about 100 mg/kg body weight.

15 30. The method of claim 29, wherein said composition is administered to provide said compound in an amount ranging from about 1 to about 10 mg/kg body weight.

20 31. The method of claim 30, wherein said animal is a human.

25 32. A method for treating a patient suffering from a retroviral related pathology, comprising administering to said subject a retroviral inhibiting effective amount of a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of Formula I:

or a pharmaceutically acceptable ester, salt, ether, sulfate, or glucuronide thereof; wherein

5 R₁ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl,

R₂ is a C₂-C₂₀ substituted or unsubstituted carboxyacyl; and

10 R₃ is hydrogen, halogen, amino, optionally substituted mono- or di-alkylamino, or -OR₄, where R₄ is hydrogen, C₁₋₄ alkanoyl, benzoyl, or C₂-C₂₀ substituted or unsubstituted carboxyacyl;

wherein the dashed line represents an optional double bond between C20 and C29.

33. The method of claim 32, wherein said retroviral related pathology is an HIV infection.

15 DATED this 27th day of June, 1998.

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL and
PANACOS PHARMACEUTICALS, INC..

By their Patent Attorneys:

20 CALLINAN LAWRIE