

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/092442 A1

(43) International Publication Date

27 June 2013 (27.06.2013)

(10) International Publication Number

WO 2013/092442 A1

(51) International Patent Classification:

C09D 167/06 (2006.01) *C08K 5/00* (2006.01)
C09D 7/04 (2006.01) *C08K 13/02* (2006.01)
C09D 7/12 (2006.01) *C08K 5/3467* (2006.01)
C08K 3/10 (2006.01)

(74) Agent: AKZO NOBEL IP DEPARTMENT; Velperweg 76, NL-6824 BM Arnhem (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2012/075682

(22) International Filing Date:

17 December 2012 (17.12.2012)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

11194692.7 20 December 2011 (20.12.2011) EP

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

WO 2013/092442 A1

(54) Title: DRIER FOR AUTO-OXIDISABLE COATING COMPOSITIONS

(57) Abstract: A drier for air-drying an auto-oxidizable resin composition, said drier comprising: 1,4,7-trialkyl-1,4,7-triazacyclicononane (L); a manganese salt having the general formula $Mn^{2+}[X]_n$, wherein anion X is selected from PF_6^- , SbF_6^- , AsF_6^- , BF_4^- , $B(C_6F_5)_4^-$, Cl^- , Br^- , Γ , NO_3^- , or R_2COO^- in which case n=2, or the anion X is SO_4^{2-} in which case n=1, and wherein R 2 is C1-C20 alkyl optionally substituted with heteroatoms, C6-C20 aryl optionally substituted with heteroatoms, or a polymeric residue; wherein the 1,4,7-trialkyl-1,4,7-triazacyclicononane (L) is present in the mixture in an amount such that the molar ratio of Mn:L is at least 1.25:1 and preferably at least 1.5:1.

DRIER FOR AUTO-OXIDISABLE COATING COMPOSITIONS

FIELD OF THE INVENTION

5

The present invention is directed to a process for producing a Mn-based drier for use in an auto-oxidisable coating composition. The present invention is further directed to an auto-oxidisable coating composition comprising such drier, to the use of said composition and also to a substrate coated with said composition.

10

BACKGROUND TO THE INVENTION

Many items in our everyday life are provided with coatings which have a protective, signal, or decorative function. In recent years, considerable effort has been expended to develop coating compositions with enhanced sustainability, that is coatings characterized by a low content of volatile organic compounds (VOC) - and which indeed may be solvent-free - and / or coatings which contain resins and additives that are based on renewable resources. In the latter regard, it is now well-known to employ unsaturated-fatty acid functionalized resins in coating compositions because such resins are largely derived from agricultural products and are also easily biodegraded.

The oxidative air drying of compositions containing fatty acid functionalized resins - such an alkyd resins - is due to autoxidation and cross-linking of the unsaturated oil/fatty acid component of the resin with simultaneous evaporation of the carrier solvent(s). Absorption of oxygen from the air causes peroxide formation and peroxide decomposition, which results in the generation of free radicals (Bieleman, J. et al. "Chapter 7: Catalytically Active Additives" in Additives for Coatings, J. Bieleman (ed.) Wiley-VCH (2000)). The free radicals initiate cross-linking and formation of higher molecular weight polymers, eventually leading to a solidified "air dried" film or coating.

30 The time for such a composition to dry depends on the concentration and type of unsaturated oil used to prepare the resin. Autoxidation and crosslinking of the unsaturated oil/fatty acid component can proceed unaided, but the time for drying is generally found to be unacceptably long for many practical purposes. The reactions are significantly accelerated by the presence of a metal-based drying catalyst, commonly referred to as a "drier". Whereas an alkyd coating may take 35 months to dry in the absence of a drying catalyst, in the presence of such a catalyst, drying can be accomplished within a few hours. The metal within the drying catalyst catalyzes autoxidation by forming a complex with both atmospheric oxygen and the double bonds of the unsaturated fatty acid groups within the composition.

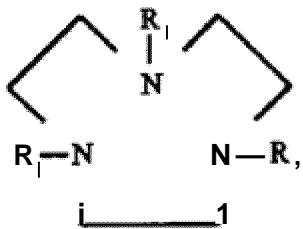
40 Examples of known drier salts include polyvalent salts containing cobalt, calcium, copper, zinc, iron, zirconium, manganese, barium, zinc, strontium, lithium and potassium as the cation; and halides, nitrates, sulphates, carboxylates, such as acetates, ethylhexanoates, octanoates and naphthenates, or acetoacetanates as the anion.

The catalytic activity of the metal during decomposition of the (hydro)peroxide relies on the repeated transition of the metal ion from the lower to the higher oxidation state and back again, leading to reduction and oxidation of the hydroperoxides to catalyze and accelerate oxidation of the unsaturated oil component of the composition. For this reason, transition metals have more been 5 commonly employed in such driers, as transition metals are capable of switching from a lower valence state to a higher valence state in a redox reaction with fatty acid peroxides present in the alkyd composition.

To date, driers based on cobalt have been most widely used because of their good performance at 10 ambient temperature. However, because the cobalt salts will most likely be restricted in the near future because of regulatory issues, it is now desired to find alternative drier compounds that show at least comparable drying performance to that of cobalt driers and which can replace cobalt based driers completely in oxidatively air-drying coatings.

15 Driers based on non-cobalt metal salts, and in particular on manganese (Mn), are known from *inter alia*: EP 1 382 648 A1 (Van Gorkum et al); WO 2003/093384 (Oostveen et al.); E. Bouwman, R. van Gorkum, J. Coat. Technol. Res., 4, 491-503 (2007); and, R. van Gorkum et al., Journal of Catalysis 252 1 10-1 18 (2007). It is however considered that these prior art Mn-based driers: may 20 not promote sufficient drying in a coating composition comprising an alkyd resin, especially in relation to tack free time; and, can yield coatings which suffers from severe dark yellowing.

25 Dinuclear manganese based complexes, $[\text{Mn}^{\text{IV}}_2\text{O}]_3\text{L}_2](\text{PF}_6)_2$ (or MnMeTACN) wherein L is 1,4,7-trimethyl-1,4,7-triazacyclononane have been disclosed as catalysts for the oxidative drying of alkyd 30 paints (Oyman et al., Surface Coatings International I Part B: Coatings Transactions, Vo. 88, B4, 231-315, December 2005). WO2011/098583, WO2011/098584 and WO2011/098587 (all DSM IP Assets B.V.) suggested that the alkyd coatings of Oyman did not dry with the desired efficiency and were prone to deleterious skin formation when stored inside a pot. Accordingly, these three 35 citations have proposed modifications to the MnMeTACN catalyst wherein: the bridging oxygen ($\mu\text{-O}$) is optionally replaced by organic residues; and / or one or more methyl of 1,4,7-trimethyl-1,4,7-triacylcyclononane is optionally replaced by substituted or un-substituted $\text{C}_2\text{-C}_2\text{o}$ alkyl groups or by substituted or un-substituted $\text{C}_6\text{-C}_2\text{o}$ aryl groups; and / or where the $(\text{PF}_6)_2$ anion is optionally replaced by a carboxylate anion.


40 The crystal structure of several binuclear manganese complexes have been resolved, see for example Wieghart et al. J.A.C.S. 110(22):7398-7411 (1988) and Romakh et al. Inorg. Chim. Acta 359(5):1619-1626 (2006).

45 Despite these developments, there still remains a strong need in the art for alternative or better non-cobalt catalysts which can provide for reduced yellowing of the coatings compositions which contain them, which concomitantly provide for fast drying coatings which are characterized by beneficial hardness and gloss properties. Preferably the coating composition has good storage stability without the need to provide for adjunct ingredients in larger amounts than commonly used, such as anti-skidding compounds, in the coating compositions.

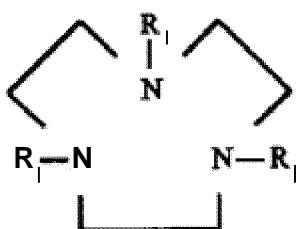
Statement of the Invention

In accordance with the present invention there is provided a drier for air-drying an auto-oxidizable resin composition, said drier comprising:

5 1,4,7-trialkyl-1,4,7-triazacyclononane (L) having the general structure

in which R_1 is C_1-C_{20} alkyl optionally substituted with heteroatoms, or C_6-C_{20} aryl optionally substituted with heteroatoms; and,

10 a manganese salt having the general formula $Mn^{2+}[X]_n$, wherein anion X is selected from PF_6^- , SbF_6^- , AsF_6^- , BF_4^- , $B(C_6F_5)_4^-$, Cl^- , Br^- , Γ^- , NO_3^- , or R_2COO^- in which case $n=2$, or the anion X is SO_4^{2-} in which case $n=1$, and wherein R_2 is C_1-C_{20} alkyl optionally substituted with heteroatoms, C_6-C_{20} aryl optionally substituted with heteroatoms, or a polymeric residue;


15 wherein the 1,4,7-trialkyl-1,4,7-triazacyclononane (L) is present in an amount such that the molar ratio of Mn:L is at least 1.25:1 and preferably at least 1.5:1. The Mn:L molar ratio generally will be at most 20:1, preferably at most 10:1, and more preferably be at most 5:1, preferably at most 4:1 and more preferably at most 3:1.

20 The mixture of the present invention may also be provided by a tri-carboxylate-bridged binuclear manganese compound having two 1,4,7-trialkyl-1,4,7-triazacyclononane (L) ligands, and providing furthermore an excess of manganese compound in appropriate amounts.

In accordance with a second aspect of the invention there is provided a mixture as drier, and a use therefor, for air-drying auto-oxidizable resin composition, said drier being obtainable by:

25 providing a manganese salt having the general formula $Mn^{2+}[X]_n$, wherein anion X is selected from PF_6^- , SbF_6^- , AsF_6^- , BF_4^- , $B(C_6F_5)_4^-$, Cl^- , Br^- , Γ^- , NO_3^- , or R_2COO^- in which case $n=2$, or the anion X is SO_4^{2-} in which case $n=1$, and wherein $R_2= C_1-C_{20}$ alkyl optionally substituted with heteroatoms, C_6-C_{20} aryl optionally substituted with heteroatoms, or a polymeric residue; and

30 providing 1,4,7-trialkyl-1,4,7-triazacyclononane (L) wherein said 1,4,7-trialkyl-1,4,7-triazacyclononane (L) has the general structure

in which R_i is C_1 - C_{20} alkyl optionally substituted with heteroatoms, or C_6 - C_{20} aryl optionally substituted with heteroatoms; and,

mixing said manganese salt with said 1,4,7-trialkyl-1,4,7-triazacyclononane;

wherein the 1,4,7-trialkyl-1,4,7-triazacyclononane (L) is provided in an amount such that 5 the molar ratio of Mn:L is at least 1.25:1 and preferably at least 1.5:1. The Mn:L molar ratio generally will be at most 20:1, preferably at most 10:1, and more preferably be at most 5:1, preferably at most 4:1 and more preferably at most 3:1.

10 In accordance with a third aspect of the present invention there is provided an air-drying auto-oxidisable resin composition comprising: a) a drier as defined above; and, b) a polymer comprising unsaturated aliphatic groups.

15 There is further provided a coating composition comprising the auto-oxidizable resin composition as defined above. That auto-oxidizable resin composition may be used in paints, lacquers, inks and varnishes.

20 The invention also relates to a method of coating a substrate comprising the steps of: applying the coating composition onto said substrate; and, drying the coating composition in the presence of air. The composition once applied may be allowed to dry naturally at ambient temperature, but the drying process may be accelerated by heat at a temperature above ambient temperature.

There is further provided according to the invention a substrate carrying a pigmented or non-pigmented coating derived from a coating composition of the invention.

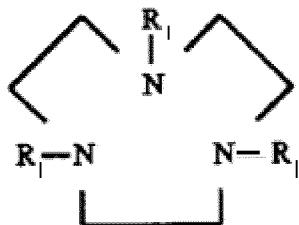
25 *Definitions*

Functionality is understood to be the average number of reactive groups of a certain type per molecule in the resin composition.

30 Polymer and resin are herein interchangeable terms.

As used herein, the term "oxidatively crosslinkable resin" includes any type of polymer which comprises unsaturated aliphatic groups, most typically unsaturated fatty acid residues. These unsaturated aliphatic groups or unsaturated fatty acid residues ensure the air drying properties but 35 do not preclude the resin from comprising either saturated fatty acid residues or other functional groups. Generally, the unsaturated fatty acid residue is a carboxylic acid with a C_{12} to C_{30} carbon atom chain.

40 By semi-drying and drying fatty acids is meant fatty acids that have the same fatty acid composition as the oils they are derived from. The classification of the oils is based on the iodine number; for drying oil the iodine number is >140 ; for semi-drying oil the iodine number is ranging between 125 and 140, and for non-drying oil the iodine number is <125 ("Surface Coatings", by Swaraj Paul, John Wiley and Sons; p.89).


Whilst the term "drier" is used herein for a metal salt which acts as a catalyst for the auto-oxidation reaction which is initiated on drying, it will be recognized that the terms "siccative", "desiccator" or "desiccative" are used as synonyms for drier in this art.

5

DETAILED DESCRIPTION OF THE INVENTION

The drier

10 I,4,7-trial kyl-1,4,7-triazacyclonona ne (L) is a polydentate ligand having following general structure:

15 By polydentate is meant that the ligand contains multiple donor atoms available for coordination with manganese. Herein R1 is Ci-C₂₀ alkyl optionally substituted with heteroatoms, or C₆-C₂₀ aryl optionally substituted with heteroatoms. Preferably R1 is a Ci-C₆ alkyl, and more preferably R1 is methyl such that specifically L is I,4,7-trimethyl-1,4,7-triazacyclononane (TMTACN).

20 As defined above, the manganese salt from which the drier is derived has the general formula Mn²⁺[X]_n, wherein anion X is selected from PF₆⁻, SbF₆⁻, AsF₆⁻, BF₄⁻, B(C₆F₅)₄⁻, Cl⁻, Br⁻, I⁻, NO₃⁻, or R₂COO⁻ in which case n=2, or the anion X is S0₄²⁻ in which case n=1, and wherein R₂ is Ci-C₂₀ alkyl optionally substituted with heteroatoms, C₆-C₂₀ aryl optionally substituted with heteroatoms, or a polymeric residue. In a preferred embodiment, the drier is derived from a manganese carboxylate starting material, that is the anion is R₂COO⁻. The preparation of transition metal salts of organic carboxylic acids is described *inter alia* in U.S. Pat. Nos. 4,633,001 (Cells) and 4,824,611 (Cells), the disclosures of which patents are herein incorporated by reference.

30 As described above R₂ may be Ci-C₂₀ alkyl optionally substituted with heteroatoms, C₆-C₂₀ aryl optionally substituted with heteroatoms, or a polymeric residue. Preferably R₂ is a Ci-C₂₀ alkyl group, wherein the alkyl group is straight or branched chain, saturated or unsaturated.

35 The aliphatic chain, including the branching group(s), in the acids of the manganese carboxylates may contain, or be substituted by, one or more atoms or groups which are inert under the conditions to which the carboxylates are subjected during processing and use. However, it is preferred that the aliphatic chain, including any branching group(s), is made up of carbon and hydrogen atoms only. Furthermore, the aliphatic chain, including any branching group(s), is preferably saturated.

Most preferably R_2 is a $C_{4-C_{12}}$, branched or straight chain, saturated aliphatic group. Specific examples of such carboxylate anions include: 4-methylpentanoate; 5-methylhexanoate; 2-ethylhexanoate; 3-ethylhexanoate; 3,5-di methylhexanoate; 4,5-di methylhexanoate; 3,4-dimethylhexanoate; 3,5,5-trimethylhexanoate; 4-methylheptanoate; 5-methylhepta noate; 6-methylhepta noate; 4,6-di methylhepta noate; 7-methylocta noate; 8-methylnona noate; and, 9-methyldeca noate.

5 The drier may be prepared by mixing together the manganese salt and the ligand (L), one or both components being dispersed in an appropriate liquid medium. The ligand (L) may, for example, be dispersed in an organic solvent or a mixture thereof such as a 10% solution of trimethyl triazacyclonane in methoxy propanol (25%) and Shellsol D40 (65%). The ligand can be bought e.g. at Sigma-Aldrich. The ligand can be used as such.

10 15 It is also envisaged that the drier may be formed *in situ* within the auto-oxidizable resin composition: a resin composition may be provided in which the manganese salt has been premixed; the ligand (L) is then mixed into the resin composition in an amount such that the molar ratio of Mn:L is at least 1.25:1 for example 1.5:1.

20 25 It is furthermore envisaged that the drier is prepared by mixing a binuclear tricarboxy-bridged manganese-L complex and an additional amount of manganese compound in a coating composition.

30 These mixing processes involve physical mixing only. This physical process can thereby be distinguished from the chemical reaction conditions employed in K. Wieghardt et al. J. Am. Chem. Soc. 110, 7398-7411 (1998) which necessarily entail the use of perchloric acid and sodium hyperchlorate as reactants. Equally, a reaction with hydrogen peroxide as described in WO2011/106906 is not necessary. The present invention thereby provides for a simpler and more economical preparation of the drier. The drier may of course be manufactured by more elaborate methods, including for example chemical reactions.

Auto-oxidizable Drying Resin Composition

35 In general, the oxidatively drying resin may be selected from alkyds, vinyl polymers, polyurethane resins, hyperbranched resins and mixtures thereof. The driers of the present invention are however considered to have particular utility for alkyd resins.

40 The number average molecular weight (Mn) of the oxidatively drying resin will generally be above 150, more usually higher than 1,000 and most typically higher than 5,000. For reasons of viscosity, the number average molecular weight (Mn) should generally be below 120,000, and more usually below 80,000.

The amount of unsaturated fatty acid residues in the oxidatively drying resin will depend on the polymer type. However, preferably the resin will comprise ≥ 20 wt%, more preferably ≥ 50 wt%, and most preferably ≥ 75 wt% of unsaturated fatty acid residues based on the total solids content of the resin.

5

Suitable drying unsaturated fatty acids, semi-drying fatty acids or mixture thereof, useful herein for providing the fatty acid groups in the resin include ethylenically unsaturated conjugated or non-conjugated C2-C24 carboxylic acids, such as myristoleic, palmitoleic, arachidonic, erucic, gadoleic, clupanadonic, oleic, ricinoleic, linoleic, linolenic, licanic, nisinic acid and eleostearic acids or mixture thereof, typically used in the form of mixtures of fatty acids derived from natural or synthetic oils.

10 Suitable unsaturated fatty acids for providing fatty acid groups in the resin also include fatty acids derived from soybean oil, conjugated soybean oil, palm oil, linseed oil, tung oil, rapeseed oil, sunflower oil, conjugated sunflower oil, calendula oil, wood oil, tallow oil, (dehydrated) castor oil, safflower oil, tuna fish oil, coconut oil and dehydrated coconut oil, and combinations thereof.

15 Whilst the main crosslinking mechanism of the composition of the present invention is by auto-oxidation, other crosslinking mechanisms may supplement this to give dual (or multiple) curing. Such secondary curing mechanisms may result from providing the unsaturated fatty acid functionalized polymer with additional functional groups - such as vinyl and carbonyl groups - that may provide further crosslinking, resulting in an even faster drying process of the coating

20 composition. A person of ordinary skill in the art would be aware of a number of suitable, secondary crosslinking groups, which may of course be blocked or unblocked.

Such functional groups may be introduced into the auto-oxidisable resin using two general methods : i) by utilising monomers carrying the functional group in the polymerisation process used to form the auto-oxidisable resin; or ii) utilising monomers bearing selected reactive groups and which monomer is subsequently reacted with a compound carrying the functional group and also a reactive group of the type which will react with the selected reactive groups on the monomer to provide attachment of the functional group to the auto-oxidisable resin via covalent bonding.

30 However, the presence of such groups should be selected such that the most significant part of any crosslinking reaction(s) only takes place after application of the resin to a substrate. This will avoid an "in-can" build-up of the molecular weight of the resins which may be problematic where the viscosity of the resin composition either becomes too high for application or becomes too high for effective leveling of the composition upon its application to a substrate or in the early stages of drying.

35 The auto-oxidative curing of the composition preferably takes place at ambient temperature, said temperature being herein from 0 to 40°C, preferably from 5 to 30°C and most preferably from 10 to 25°C.

40

It is envisaged that the oxidatively drying resin may be used in combination with other resins, for example acrylic resins or polyurethanes. Any such mixed binder system should preferably comprise at least 60 wt. % of oxidatively drying resin, based on total resin.

Vinyl Polymers

By vinyl polymer herein is meant a polymer derived from ethylenically unsaturated monomers.

5 (Poly)acrylates, also known as acrylics, are polymers derived from monomers which comprise alkyl esters of (meth) acrylic acid. The vinyl auto-oxidisable polymer is preferably prepared by free radical polymerization of vinyl monomers using a suitable initiator. Examples of vinyl monomers include: 1,3-butadiene, isoprene, styrene, α -methyl styrene, divinyl benzene, (meth)acrylonitrile, vinyl halides, vinylidene halides, vinyl ethers, vinyl esters, heterocyclic vinyl compounds, alkyl 10 esters of mono-olefinically unsaturated dicarboxylic acids, and, in particular, C_1 to C_{20} alkyl esters of (meth)acrylic acid. Of these, particularly preferred monomers include butyl (meth)acrylate, methyl (meth)acrylate, methyl methacrylate, ethyl hexyl methacrylate, acrylonitrile, vinyl acetate and styrene.

15 Monomers which are useful for grafting the fatty acid onto the vinyl polymer to give fatty acid residues include hydroxylalkyl(meth)acrylates, such as hydroxyethyl(meth)acrylate, hydroxypropyl(meth)acrylate and epoxy functional vinyl monomers like glycidyl(meth)acrylate (GMA) or 3,4-epoxy-cyclohexylmethyl-acrylate. The incorporation of unsaturated fatty acid groups into vinyl polymers is also described *inter alia* in: US Patent No. 7,235,603; US Patent No. 20 6,599,972; US Patent No. 6,624,223; US Patent No. 3,988,273; and, WO2007/042684. The vinyl monomers may optionally contain functional groups which can contribute to the crosslinking of the vinyl polymer(s) in the coating. Examples of such groups include maleic, epoxy, fumaric, acetoacetoxy, β -di ketone, unsaturated fatty acid, acryloyl, methacryloyl, styrenic, (meth)allyl groups, mercapto groups, keto or aldehyde groups (such as methylvinylketone, 25 diacetoneacrylamide and (meth)acrolein) .

Preferably the acid value of the vinyl polymer is from 0 to 60 mg KOH/g polymer, more preferably from 10 to 45 mg KOH/g and most preferably from 15 to 35 mg KOH/g polymer.

30 **Hyperbranched Resins**

WO 2007/147559, herein incorporated by reference, describes water soluble unsaturated fatty acid functional hyperbranched polyamides suitable for use in the present invention. The hyperbranched polyamide resin preferably has an amide ($\text{NH}-\text{C}=\text{O}$ or $\text{N}-\text{C}=\text{O}$) group content of < 500 35 mmoles/100g solid amide group containing resin, more preferably <400 mmoles/100g and most preferably < 300 mmoles/100g solid amide group containing resin.

Hyperbranched polyesteramide resins, which may also find utility in the present invention, are polymers having branched structure with a high functionality obtained by the polycondensation of, 40 for example, an anhydride with an alkanol-amine. Such resins and their methods of production are described in WO 99/16810, the disclosure of which is herein incorporated by reference. Broadly, the polyesteramide is prepared from three components, at least one anhydride, at least one alkanol-amine and at least one unsaturated fatty acid to impart the air-drying property. The

alkanolamine may be a monoalkanolamine, a dialkanolamine, a trialkanolamine or a mixture thereof: to form highly branched structures, di- and trialkanolamines should be used, in which regard diisopropanolamine (DIPA) may be mentioned as a preferred example.

5 Further hyperbranched polymers are described in: US Patent Application Publication No. 20090191412 (Van Benthem et al.); US Patent No. 5,731,095; EP 1440107 A1; Tomalia et al. Angewandte Chemie International (Edition English) 1990, Vol. 29, pp. 138-175; and, Encyclopaedia of Polymer Science and Engineering, Volume Index 1990, pp. 46-92.

10 **Polyurethane Resins**

Polyurethane polymers generally contain urethane groups (-NHCOO-) or urea groups (CO(NH)₂) in their backbone structure. They are typically formed by the reaction of a polyisocyanate with a polyol and polyamines. Auto-oxidisable aqueous polyurethane dispersions are obtainable by reacting drying and/or semidrying oils with low molecular weight polyhydroxy compounds to yield compounds which contain on average at least one hydroxyl group and at least one residue of a fatty acid having at least one C=C double bond; these compounds are then reacted together with polyols, with compounds which have at least two isocyanate-reactive groups and at least one acid group or at least one group which, after neutralisation, forms a cationic group, like, for example, 20 an ammonium group, with polyfunctional isocyanates. If desired, the prepolymer is then reacted with a compound which has an isocyanate-reactive group, followed by neutralizing the product formed with tertiary amines or mono-functional acids and transferring the utilized product to the aqueous phase, and subsequently, if desired, reacting any excess isocyanate groups still present by adding chain extenders, which have at least two primary or secondary amino groups or hydrazine groups per molecule.

25 Suitable isocyanates used as building blocks for the auto-oxidisable polyurethane resin are for example diisocyanates, such as 1,6-hexane diisocyanate, isophorone diisocyanate, toluene diisocyanate, diphenyl diisocyanate, and dicyclohexylmethane diisocyanate. Triisocyanates can also be used.

30 **Alkyds**

By alkyd resin herein is meant a resin prepared from the reaction of a polyhydric alcohol, a 35 polybasic acid and an unsaturated oil or fatty acid to give an unsaturated fatty acid residue containing ester. The unsaturation in the ester polyol imparts latent cross-linkability upon auto-oxidation so that when a coating composition thereof is dried in the air, in conjunction with the drier salt, the coating material undergoes cross-linking (by auto-oxidation) and thereby improving its properties, for example its chemical resistance, hardness and/or durability.

40 The term alkyd resin is also meant to include such modified alkyds for specific applications, such as silicon-based alkyds, thixotropic alkyds and, most importantly, urethane-modified alkyds. As such, the alkyd resin may be based on pure polyester resin (not having urethane and/or amide groups),

polyester amide resin, urethane modified polyester resin, urethane modified polyesteramide resin and mixtures thereof.

Examples of suitable divalent polyol compounds are ethylene glycol, 1,3-propylene diol, 1,6-hexane diol, 1,12-dodecane diol, 3-methyl-1,5-pentane diol, 2,2,4-trimethyl-1,6-hexane diol, 2,2-dimethyl-1,3-propane diol, and 2-methyl-2-cyclohexyl-1,3-propylene diol. Examples of suitable triols are glycerol, trimethylol ethane, and trimethylol propane. Suitable polyols having more than 3 hydroxyl groups are pentaerythritol, sorbitol, and etherification products of the compounds in question, such as ditri methylol propane and di-, tri-, and tetrapentaerythritol. Optionally, use is made of compounds having 3-12 carbon atoms, e.g., glycerol, pentaerythritol and/or dipentaerythritol.

Alternatively or additionally, polycarboxylic acids can be used as building blocks for the oxidatively drying polyunsaturated condensation products. Examples of suitable polycarboxylic acids include phthalic acid, citric acid, fumaric acid, mesaconic acid, maleic acid, citraconic acid, isophthalic acid, terephthalic acid, 5-tert. butyl isophthalic acid, trimellitic acid, pyromellitic acid, succinic acid, adipic acid, 2,2,4-trimethyl adipic acid, azelaic acid, sebacic acid, dimerized fatty acids, cyclopentane-1,2-dicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, 4-methylcyclohexane-1,2-dicarboxylic acid, tetrahydrophthalic acid, endomethylene-cyclohexane-1,2-dicarboxylic acid, butane-1,2,3,4-tetracarboxylic acid, endoisopropylidene-cyclohexane-1,2-dicarboxylic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid. If so desired, the carboxylic acids in question may be used as anhydrides or in the form of an ester, e.g., an ester of an alcohol having 1-4 carbon atoms.

At least a part of the alkyd resin is oxidatively crosslinkable as a result of the incorporation of unsaturated, aliphatic compounds as described above. Fatty acids containing conjugated double bonds, such as dehydrated castor oil fatty acid, wood oil fatty acid and/or calendula oil fatty acid, may be mentioned specifically. Fatty acids derived from soya oil are especially suitable. The unsaturated groups in the oxidatively drying polyunsaturated condensation product can be introduced by the fatty acids, but may, alternatively or additionally, be introduced by one or more of the polyols, carboxylic acids or anhydrides or other building blocks used, such as fatty mono-alcohols. The oxidatively drying polyunsaturated condensation product can for instance have pendant groups in an amount of more than 20%, e.g., more than 50%, or more than 65% by weight of the condensation product.

A specific example of a suitable alkyd is the condensation product of soya oil, phthalic anhydride, and pentaerythritol.

Optionally, the oxidatively drying polyunsaturated condensation product may comprise other building blocks, which can for example be derived from monocarboxylic acids such as pivalic acid, 2-ethylhexanoic acid, lauric acid, palmitic acid, stearic acid, 4-tert. butyl-benzoic acid, cyclopentane carboxylic acid, naphthenic acid, cyclohexane carboxylic acid, 2,4-dimethyl benzoic acid, 2-methyl benzoic acid, benzoic acid, 2,2-dimethylol propionic acid, tetrahydrobenzoic acid,

and hydrogenated or non-hydrogenated abietic acid or its isomer. If so desired, the monocarboxylic acids in question may be used wholly or in part as triglyceride, e.g., as vegetable oil, in the preparation of the alkyd resin. If so desired, mixtures of two or more of such monocarboxylic acids or triglycerides may be employed.

5

Optionally, isocyanates may also be used as building blocks for the oxidatively drying polyunsaturated condensation product. Suitable isocyanates include diisocyanates, such as 1,6-hexane diisocyanate, isophorone diisocyanate, toluene diisocyanate, diphenyl diisocyanate, and dicyclohexylmethane diisocyanate, and triisocyanates.

10

The alkyd resins can be obtained by direct esterification of the constituent components, with the option of a portion of these components having been converted already into ester diols or polyester diols. Alternatively, the unsaturated fatty acids can be added in the form of a drying oil, such as sunflower oil, linseed oil, tuna fish oil, dehydrated castor oil, coconut oil, and dehydrated coconut oil. Transesterification with the polyols and, optionally, other building blocks will then give the final alkyd resin. This transesterification generally takes place at a temperature of from 115 to 250°C, optionally with solvents such as toluene and/or xylene also present. The reaction generally is carried out in the presence of a catalytic amount of a transesterification catalyst. Examples of suitable transesterification catalysts include acids, such as p-toluene sulphonic acid, a basic compound such as an amine, or compounds such as calcium oxide, zinc oxide, tetraisopropyl orthotitanate, dibutyl tin oxide, and triphenyl benzyl phosphonium chloride.

General processes for the preparation of alkyd polyesters are described in "Alkyd Resin Technology" by T.C. Patton, Publisher John Wiley & Sons Inc. (1962), the disclosure of which is incorporated herein by reference.

Alkyds are often characterized by their oil length. Oil length is defined as the weight percentage of fatty acid building blocks (calculated as their triglycerides) in the alkyd resin. Long oil lengths (55% or higher) result in improved oxidative drying, good substrate adhesion, excellent flow properties, 30 good solubility in aliphatic solvents, and low viscosity, even with low solvent content. However, these alkyds show strong yellowing. Medium oil length alkyds (40-55%) also have good solubility but show a higher viscosity. Paint films made of medium oil length alkyds have better mechanical properties such as hardness and durability. Short oil length alkyds (less than 40%) require additional measures, such as the use of additional siccatives or amino resins, to obtain acceptable 35 drying times. The catalyst according to the present invention can be used with alkyds of any oil length.

Preferably the alkyds described herein have a final polymer acid value of from 1 to 20 mg KOH/g resin, thereby making them suitable for the preparation of the Mn complex drier *in situ* with the 40 alkyd resin.

The auto-oxidisable coating composition of the invention may comprise a liquid medium, that is a low viscosity solvent such as water, organic (co-)solvents and mixtures thereof.

The composition of the present invention may be formulated as a solvent-borne coating composition. In this embodiment reactive diluents may be used to reduce the volatile organic

5 content (VOC) below 300 g/l, a so-called high solids composition (solids content more than about 60%). However, it is also suitable for conventional coating compositions with a higher solvent content. In this context, VOC is determined in accordance with US standard ASTM D2369 (1 hr, 110°C). Suitable solvents are, for instance, aromatic solvents such as toluene or xylene, as well as aliphatic solvents such as ethyl diglycol, ethyl glycol acetate, butyl glycol, butyl glycol acetate,

10 butyl diglycol, butyl diglycol acetate, and methoxypropylene glycol acetate. Commercially available solvents are for instance Shellsol^(R) D40, an aliphatic hydrocarbon solvent available from Shell, Dowanol^(R) PMA from Dow, and Solvesso^(R)-150, available from ExxonMobil.

Alternatively, the compositions according to the invention may be water-borne, can be used in an

15 oxidatively drying water borne composition, optionally comprising co-solvents or humectants, such as glycols. Particularly useful for water borne compositions are reactive diluents with ionic or non-ionic stabilizing groups. These groups can, for example, be obtained by using diols or diesters containing carboxyl, sulfosuccinate or polyethylene glycol side groups.

20 As is known in the art, surfactants may be utilized to assist in the dispersion of the auto-oxidisable (alkyd) resin in water. Suitable surfactants include, but are not limited to, conventional anionic, cationic and/or non-ionic surfactants.

The liquid medium can also comprise reactive diluents, i.e. solvents which comprise functionalities

25 which are able to react in the drying process with the unsaturated fatty acid residue comprising polymer. Thus, the reactive diluent is not co-reacted directly with the polymer, but participates to the drying process. Examples of such reactive diluents are the vinyl monomers described hereinabove.

30 In a preferred embodiment of the invention, the composition of the present invention is used in solvent borne coating compositions, and in particular those which have dark colors, like Hammerite[®] type of paints.

The composition according to the invention can be used as a clear varnish or may contain

35 pigments. Pigments can ordinarily include opacifying pigments, such as titanium dioxide, zinc oxide, leaded zinc oxide, or tinting pigments, such as carbon black, yellow oxides, brown oxides, tan oxides, raw and burnt sienna or umber, chromium oxide green, phthalocyanine green, phthalonitrile blue, ultra marine blue, cadmium pigments or chromium pigments. Fillers can also be added, such as clay, silica, talc, or mica.

40 The coating composition can furthermore contain one or more additives such as secondary driers, UV stabilizers, co-solvents, dispersants, surfactants, inhibitors, fillers, anti-static agents, flame-

retardant agents, lubricants, anti-foaming agents, extenders, plasticizers, anti-freezing agents, waxes, thickeners, or thixotropic agents.

Furthermore, the coating composition according to the invention may optionally comprise various

5 anti-oxidants and anti-skinning agents such as methylethylketoxime, acetonoxime, butyraldoxime, dialkylhydroxylamine, cyclohexanoneoxime or mixtures thereof. Where present, the concentration of antioxidant or anti-skimming compound applied is preferably in a range of from 0.001 to 2 wt. %, by weight of the composition.

10 The total amount of primary manganese drier responsible for catalytic activity in the coating composition should not typically exceed 10 wt. %, based on the total resin weight, by weight of the composition, and preferably should be in the range from 0.01 to 3 wt. %, based on total resin weight. The amount of primary manganese drier is calculated on manganese plus multidentate ligand.

15 The primary manganese drier may be used together with one or more auxiliary driers and/or coordination driers in order to enhance the activity of the primary drier and / or the final characteristics of the dried coating, such as hardness and glossiness. Auxiliary driers interact with the primary drier. Coordination driers form coordination complexes with hydroxyl groups within the 20 alkyd composition and thus help to stabilize the polymer network of the alkyd composition. The total amount of the auxiliary and / or co-ordination driers in the coating composition should not typically exceed 10 wt. %, based on the total resin weight, by weight of the composition, and preferably should be in the range from 0.01 to 3 wt. %, based on total resin weight.

25 Such auxiliary and/or coordination driers are typically polyvalent salts containing : barium, zirconium, calcium, bismuth, copper, zinc, iron, potassium, strontium, sodium, neodymium or lithium as the cation; and, halides, nitrates, sulphates, carboxylates like acetates, ethylhexanoates, octanoates and naphthenates or acetoacetates as the anion. Metallic soaps, which are soluble in the binder of the coating composition, may in particular be mentioned in this regard; examples of 30 such soaps, which may be used individually or in combination, include strontium octoate, copper octoate, zirconium octoate, zinc octoate and calcium octoate.

Besides these driers, the coating composition may optionally comprise drying-accelerating 35 complexing agents, for example, 2,2'-bipyridyl and 1,10-phenanthroline. The complexing agents can be added in an amount of from 0 to 3 wt. %, preferably from 0.1 to 1.5 wt. %, based on the weight of the total resin.

Other ingredients that may be present in the coating composition depend on the envisaged 40 application of the composition. Examples are antisettling agents, anti-sagging agents, de-airing agents, and the like. The sum of the amounts of the various additives will usually not exceed 5 wt. %, based on the total weight of the coating composition.

The coating compositions of the present invention can be pigmented or un-pigmented and may find utility as an adhesive, as primer, as a topcoat, as a high-gloss or matt coating, as a stain-resistant coating, a wood oil, a wall paint or a flooring paint. The term "paint" is not intended to be limited in this context and incorporates varnishes, enamels and lacquers for architectural or industrial use, 5 indoors or outdoors.

Suitable substrates which may be coated with the auto-oxidisable coating composition of the invention include wood, wooden based substrates (e.g. MDF, chipboard), metal, stone, plastics and plastic films, natural and synthetic fibers, glass, ceramics, plaster, asphalt, concrete, leather, 10 paper, foam, masonry and/or board. The application to such substrates may be effected by any conventional method, including brushing, dipping, flow coating, spraying, roller coating, pad coating, flexo printing, gravure printing, and ink-jet printing. For spraying, further dilution of the composition with a suitable solvent (for example acetone) may be required.

15 The present invention will now be further illustrated - but in no way limited - by reference to the following examples.

Experimental

Drying time were assessed by one of two methods

20 Dust-free and tack-free times

To test the dust-free and tack-free drying stages of the coating compositions prepared in the Examples as described below, the composition was applied to a glass plate at a wet film thickness of 80 µm. Drying time tests were performed at regular time intervals at relative humidity (RH) 25 levels of 50 (± 5) %, temperatures of 23 (± 2) °C. and an air flow ≤ 0.1 m/s. Dust-Free Time: the dust-free time was determined by dropping a piece of cotton wool (about 1 cm³ i.e. 0.1 g) onto the drying film from a distance of 25 cm. If the piece of cotton wool could be immediately blown from the substrate by a person without leaving any wool or marks in or on the film, the film was considered to be dust-free. Tack-Free Time: the tack-free time was determined by placing a piece 30 of cotton wool (about 1 cm³, 0.1 g) on the drying film and placing a metal plate (with a diameter of 2 cm) and then a weight of 1 kg onto the piece of cotton wool (for 10 seconds). If the piece of cotton wool could be removed from the substrate by hand without leaving any wool or marks in or on the film, the film was considered to be tack-free.

35 BK drying times

Drying times were determined by BK drying on a BK or Braive recorder (wet film thickness, 90 µm; ASTM D5895-96). After the application of the film on a glass strip (B.K. recorder: 69 x 2.5 cm; Braive recorder: 30.5 x 2.5 cm) a vertical blunt needle, pressed upon by a 5g load, is placed into the freshly applied film and then dragged through the drying paint in a direction parallel to the 40 edges of the strip.

The three stages of BK drying in the experiment were as follows : a) the (wet) paint flows together (levelling); b) the paint has begun to polymerize but a line left by the needle is visible or traceable (basis trace); and, c) drying has proceeded sufficiently that the film of paint is not displaced by the needle (the so-called "surface dry time") . In Table 6 and onwards, the drying time of steps a, b 5 and c is given, at either 10 or 23 °C.

The Konig hardness of the films was assessed using the pendulum damping test according to DIN53157. A glass panel was coated with a 60 µm wet film, held at 23°C and 50% RH and the hardness development in time was monitored with a Konig pendulum. The time (s) for the 10 oscillation to reduce from an initial deflection 6° to a deflection of 3° was measured.

A 60-degree (60°) Novogloss gloss meter (available from Rhopoint Instrumentation) was used to measure the gloss of the coating formulation and of the coat formed in the Examples. With respect to measurement, an internal test method based on ASTM D2457 was used.

15 As used herein: "Mekoxime" is methyl ethyl ketoxime (available from Rockwood); TMTACN is used as such, the liquid contains about 95% TMTACN; Sr-Drier is a strontium drier (18%, commercially available from Rockwood); and, Mn-Drier is a manganese octoate drier (10%, commercially available from Rockwood).

20

Example 1

A first, base formulation was prepared in accordance with the ingredients and proportions (parts by weight) shown in Table 1 below.

25

Table 1

Formulation A	
Parts By Weight	Ingredient
630.0	Long oil alkyd (65% oil length)
542.9	Phenolic resin (Setal 538)
13.0	Bentonite
30.0	Castor oil
192.0	Talcum
1074.8	Micaceous iron oxide (Portafer AP 75)
13.5	Aluminium paste (Stapa 88)
391.3	Aliphatic solvent (Shellsol D40)
37.8	Aromatic solvent (Shellsol A100)

30 Into this base formulation was mixed Mekoxime and the Mn and Sr commercial driers. The TMTACN liquid was then added thereto, under stirring, to form the coating compositions as defined in Table 2 below.

Table 2

Coating Formulation	Formulation A (Parts by weight)	Mekoxime (Parts by weight)	Sr-Drier (Parts by weight)	Mn-Drier (Parts by weight)	TMTACN (Parts by weight)	Mn: TMTACN (Molar Ratio)
*1	97.72	0.4	1	0.66	0.22	1:1
2	97.56	0.4	1	0.825	0.22	1,25:1
3	97.39	0.4	1	0.99	0.22	1,5:1
4	97.06	0.4	1	1.32	0.22	2:1

[^]Comparative example

The hardness and drying performance of these coatings is shown in Table 3.

5

Table 3

Coating Formulation	Dust-free Drying time (minutes)	Tack-free Drying time (minutes)	König Hardness (s)		
			1 Day	7 Days	28 Days
1	130	315	11	26	37
2	110	290	11	28	40
3	110	165	13	30	44
4	150	340	13	33	50

Example 2

A further base Formulation B was prepared in accordance with the ingredients and proportions shown in Table 4.

Table 4

Formulation B	
Parts By Weight	Ingredient
624.0	Long oil alkyd (67% oil length)
60.0	Dispersing Agent
243.0	Sodium Potassium Alumina Silicate
297.0	Aliphatic solvent (Shellsol D40)
990.0	TiO ₂
205.5	Urethane alkyd

15 Into this base formulation was mixed Mekoxime and the Mn and Sr commercial driers. The TMTACN liquid was then added thereto, under stirring, to form the coating compositions as defined in Table 5 below (amounts in parts by weight; Mn:TMTACN ratio as molar ratio).

Table 5

Coating Formulation	Formulation B	Mekoxime	Sr-Drier	Mn-Drier	TMTACN	Mn: TMTACN
*5	96.72	0.4	2	0.66	0.22	1:1
6	96.39	0.4	2	0.99	0.22	1.5:1
7	96.06	0.4	2	1.32	0.22	2:1

⁵ ^Comparative example

The hardness and drying performance of these coatings is shown in Table 6.

Table 6

Coating Formulation	Gloss > 60° (1 day)	Dust-free Drying time (minutes)	Tack-free Drying time (minutes)	König Hardness (s)		
				1 Day	7 Days	28 Days
5	41.9	50	230	16	31	48
6	78.9	90	400	15	32	49
7	80.8	130	795	15	32	51

Example 3

¹⁰

A further base Formulation C was prepared in accordance with the ingredients and proportions shown in Table 7.

Table 7

Formulation C		
	Ingredient	
Parts By Weight	Name	Description
57.3	Setal 270 SM-70	long oil alkyd resin soyabean oil based
2	Nuodex Ca 5	Ca carboxylate in organic solvent (5 wt% Ca)
2	Nuodex Zr 18	Zr carboxylate in organic solvent (18 wt% Zr)
0.5	Exkin 2	methyl ethyl ketoximine
3.8	Shellsol D40	hydrotreated heavy naphtha petroleum
0.09	Borchigen 911	Amphoteric surfactants blend
0.2	Bentone SD-1	organic derivative of a bentonite clay
23.7	Tioxide tr 92	titanium dioxide, rutile

5 Into this base formulation was mixed solvent (hydrotreated heavy naphtha petroleum), stock solution of the Mn commercial drier in the same solvent and stock solution of the TMTACN liquid in the same solvent, to form the coating compositions as defined in Table 8 below (amounts in parts by weight; Mn:TMTACN ratio as molar ratio).

Table 8

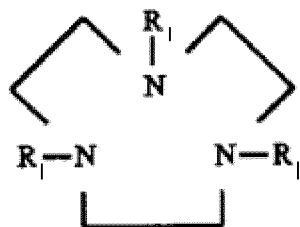
Coating Formulation	Formulation C	Solvent	Mn-Drier	TMTACN	Mn: TMTACN
8	89.5	10.4	0.05	0.0078	2:1
*9	89.5	10.4	0.05	0.016	1:1
10	89.5	10.5	0.025	0.004	2:1
*11	89.5	10.5	0.015	0.005	1:1

"Comparative example

10 The hardness and drying performance of these coatings is shown in Table 9.

Table 9

Coating Formulation	BK drying 10°C (hours)	BK drying 23°C (hours)	König Hardness (s)		
			1 Day	7 Days	14 Days
8	8,5	5,5	12	17	15
9	8,5	5	9	12	13
10	14,5	9,75	12	18	17
11	12,5	8,25	10	15	16


15 Various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the scope of the present invention and without diminishing its attendant advantages. It is therefore intended that such changes and modifications are covered by the appended claims.

Claims

1. A drier for air-drying auto-oxidizable resin composition, said drier being obtainable by:

5 providing a manganese salt having the general formula $Mn^{2+}[X]_n$, wherein anion X is selected from PF_6^- , SbF_6^- , AsF_6^- , BF_4^- , $B(C_6F_5)_4^-$, Cl^- , Br^- , I^- , NO_3^- , or R_2COO^- in which case $n=2$, or the anion X is SO_4^{2-} in which case $n=1$, and wherein R_2 is C_1-C_{20} alkyl optionally substituted with heteroatoms, C_6-C_{20} aryl optionally substituted with heteroatoms, or a polymeric residue; and

10 providing 1,4,7-trial kyl-1,4,7-triazacyclononane (L) wherein said 1,4,7-trial kyl-1,4,7-triazacyclononane (L) has the general structure

in which R_1 is C_1-C_{20} alkyl optionally substituted with heteroatoms, or C_6-C_{20} aryl optionally substituted with heteroatoms; and,

mixing said manganese salt with said 1,4,7-trial kyl-1,4,7-triazacyclononane;

15 wherein the 1,4,7-trial kyl-1,4,7-triazacyclononane (L) is provided in an amount such that the molar ratio of $Mn:L$ is at least 1.25:1 and preferably at least 1.5:1.

2. The drier according to claim 1, wherein R_1 is a C_1-C_6 alkyl, preferably methyl.

3. The drier according to any one of claims 1 to 2, wherein $n=2$ and anion X is R_2COO^- .

4. The drier according to claim 3, wherein R_2 is a C_1-C_{20} , preferably C_4-C_{12} , alkyl group, wherein the alkyl group is straight or branched chain, saturated or unsaturated.

20 5. The drier according to any one of claims 1-5 wherein the molar ratio of $Mn:L$ is lower than 20:1, preferably lower than 10:1.

6. An air-drying auto-oxidizable resin composition comprising:

25 a) a drier as defined in any one of claims 1 to 5; and,

b) a polymer comprising unsaturated aliphatic groups.

7. The resin composition according to claim 6, wherein the drying resin is selected from alkyds, vinyl polymers, polyurethane resins, hyperbranched resins and mixtures thereof.

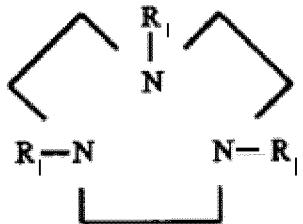
8. The resin composition according to claim 7, wherein the drying resin comprises an alkyd.

9. A coating composition comprising the resin composition as defined in any one of claims 6 to 8.

30 10. The coating composition according to claim 9, wherein the composition contains one or more auxiliary and/or coordination driers in an amount not exceeding 10 wt%.

11. A method of coating a substrate comprising the steps of:

35 applying the coating composition as defined in any one of claims 10-11 onto said substrate; and, drying the coating composition in the presence of air.


12. The method according to claim 11, wherein the drying occurs at ambient temperature.

13. A substrate provided with a coating composition as defined in any of claims 9 to 10.

14. Use of a composition as defined in any one of claims 6 to 10 in paints, adhesives, lacquers, inks and varnishes.

15. Use of a mixture as a drier for air-drying an auto-oxidizable resin composition, said mixture comprising:

5 1,4,7-trialkyl-1,4,7-triazacyclonane (L) having the general structure

in which R_1 is C_1-C_{20} alkyl optionally substituted with heteroatoms, or C_6-C_{20} aryl optionally substituted with heteroatoms; and,

a manganese salt having the general formula $Mn^{2+}[X]_n$, wherein anion X is selected from PF_6^- ,

10 SbF_6^- , AsF_6^- , BF_4^- , $B(C_6F_5)_4^-$, Cl^- , Br^- , Γ , $N0_3^-$, or R_2COO^- in which case $n=2$, or the anion X is $S0_4^{2-}$ in which case $n=1$, and wherein R_2 is C_1-C_{20} alkyl optionally substituted with heteroatoms, C_6-C_{20} aryl optionally substituted with heteroatoms, or a polymeric residue;

wherein the 1,4,7-trialkyl-1,4,7-triazacyclonane (L) is present in an amount such that the molar ratio of $Mn:L$ is at least 1.25:1 and preferably at least 1.5:1.

15

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2012/075682

A. CLASSIFICATION OF SUBJECT MATTER	
INV. C09D167/06	C09D7/04
ADD. C08K5/00	C08K13/02
	C09D7/12
	C08K5/3467
	C08K3/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09D C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2011/098583 A1 (DSM IP ASSETS BV [NL] ; JANSEN JOHAN FRANZ GRADUS ANTONIUS [NL] ; KLEUSK) 18 August 2011 (2011-08-18) examples 1,2; table 1 claims ----- US 2009/253833 A1 (HAGE RONALD [NL] ET AL) 8 October 2009 (2009-10-08) cited in the application paragraph [0046] - paragraph [0047] paragraphs [0075] , [0085] ; table 3 claims 1,7,8 ----- -/- -	1-15
X		1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
24 January 2013	01/02/2013
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Russel 1, Graham

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2012/075682

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>OYMAN Z O ET AL: "Oxi dati ve dryi ng of al kyd pai nts catalysed by a di nucl ear manganese compl ex (MnMeTACN)" , SURFACE COATINGS INTERNATIONAL. PART B: COATINGS TRANSACTIONS, SPRINGER, BOSTON , US, vol . 88, no. 4, 1 December 2005 (2005-12-01) , pages 269-275 , XP008138185 , ISSN: 1476-4865 , DOI : 10.1007/BF02699583 cited in the applicati on the whol e document</p> <p>-----</p>	1-15
A	<p>WIEGHART K ET AL: "Synthesi s, Crystal Structures , Reacti vity, and Magnetochemi stry of a Seri es of Bi nucl ear Compl exes of Manganese(II) , - (III) , and - (IV) of Bi ologi cal Rel evance. The Crystal Structure of [L'Mn (IV) (mu-0)3Mn (IV) 'L] (PF6)2 .H2O Contai ning an Unprecedented Short Mn . , . Mn Di stance of 2.296 A" , JOURNAL OF THE AMERICAN CHEMICAL SOCI ETY, AMERICAN CHEMICAL SOCI ETY, WASHINGTON , DC; US, vol . 110, no. 22, 1988, pages 7398-7411 , XP002588921 , ISSN: 0002-7863 page 7399 , right-hand col umn ; compounds (4) , (6)</p> <p>-----</p>	1-5
A	<p>ROMAKH V B ET AL: "Di nucl ear manganese compl exes contai ning 1,4-di methyl -1,4,7 -tri azacycl ononane Ligands as wel l as carboxyl ato and oxo bri dges" , INORGANICA CHIMICA ACTA, ELSEVIER BV, NL, vol . 359 , no. 5, 20 March 2006 (2006-03-20) , pages 1619-1626, XP028068893 , ISSN: 0020-1693 , DOI : 10.1016/J . ICA. 2005 . 11.034 [retri eved on 2006-03-20] Scheme 1; page 1620</p> <p>-----</p> <p>-/-</p>	1-5

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2012/075682

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>OYMAN Z O ET AL: "A promising environmental friendly manganese-based catalyst for alkyl emulsion coatings", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 45, no. 22, 13 October 2004 (2004-10-13), pages 7431-7436, XP002588920, ISSN: 0032-3861, DOI: 10.1016/J.POLYMER.2004.08.052 [retrieved on 2004-09-11]</p> <p>figures 1,2</p> <p>-----</p>	1-5
1		

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2012/075682

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
wo 2011098583	AI 18-08-2011	CN	102834473 A		19-12-2012
		CN	102844390 A		26-12-2012
		CN	102858892 A		02-01-2013
		EP	2534215 A1		19-12-2012
		EP	2534216 A1		19-12-2012
		EP	2534217 A1		19-12-2012
		Wo	2011098583 A1		18-08-2011
		wo	2011098584 A1		18-08-2011
		wo	2011098587 A1		18-08-2011
<hr style="border-top: 1px dashed black;"/>					
us 2009253833	AI 08-10-2009	AT	477312 T		15-08-2010
		AU	2007271228 A1		10-01-2008
		CA	2656049 A1		10-01-2008
		CN	101484544 A		15-07-2009
		DK	2038356 T3		08-11-2010
		EP	2038356 A1		25-03-2009
		ES	2349082 T3		27-12-2010
		JP	2009542829 A		03-12-2009
		KR	20090031404 A		25-03-2009
		RU	2009104041 A		20-08-2010
		US	2009253833 A1		08-10-2009
		US	2011277665 A1		17-11-2011
		wo	2008003652 A1		10-01-2008
		ZA	200900038 A		28-04-2010
<hr style="border-top: 1px dashed black;"/>					