a2 United States Patent

Ayars et al.

US009710620B2

10) Patent No.: US 9,710,620 B2

(54) DIGITAL RIGHTS MANAGEMENT
HANDLER AND RELATED METHODS

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Jeffrey M. Ayars, North Bend, WA
(US); Bradley D. Hefta-Gaub, Seattle,
WA (US); Daniel Sheeran, Medina,
WA (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

(21) Appl. No.: 15/077,666
(22) Filed: Mar. 22, 2016

(65) Prior Publication Data
US 2016/0203303 Al Jul. 14, 2016

Related U.S. Application Data

(63) Continuation of application No. 14/267,704, filed on
May 1, 2014, now Pat. No. 9,323,905, which is a

(Continued)
(51) Imt.CL
HO4L 29/06 (2006.01)
GO6F 21/10 (2013.01)
(Continued)
(52) US. CL
CPCcccee. GOG6F 21/10 (2013.01); GO6F 21/16

(2013.01); HO4L 63/10 (2013.01); HO4N
21/234336 (2013.01); HO4N 21/2541
(2013.01)

CREATE DRM
IDENTIFIERS

L

45) Date of Patent: *Jul. 18, 2017
(58) Field of Classification Search
CPC ittt GOG6F 21/10
(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

4,919,545 A 4/1990 Yu
5,023,907 A 6/1991 Johnson et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0367 700 A2 5/1990
EP 0 567 800 Al 11/1993
(Continued)

OTHER PUBLICATIONS

Non-Final Office Action Received for the U.S. Appl. No.
10/660,302, mailed on Jun. 4, 2007, 18 pages.

(Continued)

Primary Examiner — Longbit Chai
(74) Attorney, Agent, or Firm — Christopher K. Gagne

(57) ABSTRACT

A system and method of providing universal digital rights
management system protection is described. One feature of
the invention concerns systems and methods for repackaging
and securing data packaged under any file format type,
compression technique, or digital rights management sys-
tem. Another feature of the invention is directed to systems
and methods for securing data by providing scalability
through the use of modular data manipulation software
objects.

20 Claims, 5 Drawing Sheets

TRANSLATE DRM
IDENTIFIERS TO
CONFORM WITH RULES|
OF QUTPUT DRM

SEND ADDITIONAL
INFORMATION TO FILE
WRITER

US 9,710,620 B2
Page 2

Related U.S. Application Data

continuation of application No. 12/725,298, filed on
Mar. 16, 2010, now Pat. No. 8,751,798, which is a
continuation of application No. 10/660,302, filed on
Sep. 10, 2003, now Pat. No. 7,681,035.

(51) Imt.CL
HO4N 21/2343 (2011.01)
HO4N 21/254 (2011.01)
GO6F 21/16 (2013.01)
(58) Field of Classification Search
USPC ittt 713/165

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,103,476 A 4/1992 Waite et al.
5,222,134 A 6/1993 Waite et al.
5,235,642 A 8/1993 Wobber et al.
5,319,705 A 6/1994 Halter et al.
5,321,841 A 6/1994 East et al.
5,375,240 A 12/1994 Grundy
5,400,403 A 3/1995 Fahn et al.
5,530,235 A 6/1996 Stefik et al.
5,629,980 A 5/1997 Stefik et al.
5,634,012 A 5/1997 Stefik et al.
5,638,443 A 6/1997 Stefik et al.
5,844,575 A 12/1998 Reid
5,845,281 A 12/1998 Benson et al.
5,892,900 A 4/1999 Ginter et al.
5,910,987 A 6/1999 Ginter et al.
5,915,019 A 6/1999 Ginter et al.
5917912 A 6/1999 Ginter et al.
5,949,876 A 9/1999 Ginter et al.
5,982,891 A 11/1999 Ginter et al.
6,185,683 Bl 2/2001 Ginter et al.
6,237,786 Bl 5/2001 Ginter et al.
6,253,193 Bl 6/2001 Ginter et al.
6,363,488 Bl 3/2002 Ginter et al.
6,389,402 Bl 5/2002 Ginter et al.
6,427,140 Bl 7/2002 Ginter et al.
6,463,445 Bl 10/2002 Suzuki et al.
6,523,022 B1* 2/2003 Hobbs GO6F 17/30637
6,640,304 B2 10/2003 Ginter et al.
6,658,568 B1 12/2003 Ginter et al.
7,120,250 B2 10/2006 Candelore
7,281,273 B2 10/2007 Strom et al.
7,380,120 Bl 5/2008 Garcia
7,681,035 Bl 3/2010 Ayars et al.
8,751,798 B2 6/2014 Ayars et al.
9,323,905 B2 4/2016 Ayars
2003/0046274 Al 3/2003 Erickson et al.
2003/0126086 Al* 7/2003 Safadicoooe... GO6F 21/10
705/51
2003/0235341 Al* 12/2003 Goktwk GO6K 9/00228
382/243

2004/0230806 Al
2004/0237067 Al
2006/0062426 Al

11/2004 Lisanke
11/2004 Sun et al.
3/2006 Levy et al.

FOREIGN PATENT DOCUMENTS

EP 0 653 695 A2
WO 96/27155 A2

5/1995
9/1996

OTHER PUBLICATIONS

Response to Non-Final Office Action received for U.S. Appl. No.
10/660,302, filed on Sep. 4, 2007, 24 pages.

Non-Final Office Action Received for the U.S. Appl. No.
10/660,302, mailed on Dec. 27, 2007, 13 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
10/660,302, filed on Apr. 1, 2008, 18 pages.

Non-Final Office Action Received for the U.S. Appl. No.
10/660,302, mailed on Aug. 6, 2008, 14 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
10/660,302, filed on Dec. 8, 2008, 25 pages.

Final Office Action Received for the U.S. Appl. No. 10/660,302,
mailed on Jan. 12, 2009, 15 pages.

Response to Final Office Action received for U.S. Appl. No.
10/660,302, filed on Mar. 12, 2009, 22 pages.

Non-Final Office Action received for the U.S. Appl. No. 10/660,302,
mailed on Apr. 30, 2009, 12 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
10/660,302, filed on Jul. 30, 2009, 20 pages.

Notice of Allowance received for U.S. Appl. No. 10/660,302,
mailed on Nov. 2, 2009, 19 pages.

Non-Final Office Action received for U.S. Appl. No. 12/725,298,
mailed on Jul. 26, 2011, 6 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
12/725,298, filed on Jan. 13, 2012, 12 pages.

Final Office Action received for U.S. Appl. No. 12/725,298, mailed
on Jan. 26, 2012, 13 pages.

Response to Final Office Action received for U.S. Appl. No.
12/725,298, filed on May 10, 2012, 20 pages.

Advisory Action received for U.S. Appl. No. 12/725,298, mailed on
Jun. 7, 2012, 3 pages.

Response to Advisory Action received for U.S. Appl. No.
12/725,298, filed on Jul. 23, 2012, 20 pages.

Non-Final Office Action received for U.S. Appl. No. 12/725,298,
mailed on Sep. 19, 2013, 10 pages.

Response to Non-Final Office Action received for U.S. Appl. No.
12/725,298, filed on Dec. 19, 2013, 20 pages.

Notice of Allowance received for U.S. Appl. No. 12/725,298,
mailed on Jan. 30, 2014, 13 pages.

Notice of Allowance in U.S. Appl. No. 14/267,704, dated Dec. 30,
2015 (11 pages).

Amendment After Final Rejection in U.S. Appl. No. 14/267,704,
dated Nov. 18, 2015 (12 pages).

Amendment After Final Rejection in U.S. Appl. No. 14/267,704,
dated Nov. 17, 2015 (11 pages).

Office Action in U.S. Appl. No. 14/267,704, dated Sep. 28, 2015 (10
pages).

Amendment in U.S. Appl. No. 14/267,704, dated Sep. 9, 2015 (9
pages).

Office Action in U.S. Appl. No. 14/267,704, dated Jul. 20, 2015 (18

pages).

* cited by examiner

US 9,710,620 B2

Sheet 1 of 5

Jul. 18, 2017

U.S. Patent

Waa

ol
_—

III4

(EANOTVHY) (VIAM)
YAAVTd INTINOD NOILVINASTId //
GI1
YAWNSNOD INAINOD YAAIAOYd INILINOD
— aso1””
g0€1
WNIJIN
SNOILLVIINNNAOD nd //
(€anw)
| (€dW) NOLLY LNASTId ot
YAAVTd INLINOD
YHAIAOYd INFINOD
YANNSNOD INTINOD veo1—
e
IOV DIALINI YALNdNOD GOVAILLINI
FANNSNOD ANA TYSHTAINN YAAAOY
00z
MOINENYISIA INTINOD
\

01

US 9,710,620 B2

Sheet 2 of 5

Jul. 18, 2017

U.S. Patent

¢ Ol4

P S37NY YA
6vC
sez - _ NOILdAYONT | NOlLdA¥O3a
IAZA4 _ Gbz
\\l/ - = \\I\\Ilj
NOISSIHINOD h NOISSTHdNOD3A
gve R
NOILV.INISIHd * .) NOILVLINISTHd
INlgzz ¥3LIM 311 | Lvnyo4 3114 zzzl
EC N 652 < g7 EXE
1Ndlno ~NG2e JOVHOLS 022 1NdNI
A
J9VHOLS . I9VHOLS
viva) 103rgo s3Iy wea Y[viva
) 103190 NOILIANONS LO3rgo NOUdANOIA NI N
0Lz L2711 193rg0 NOISSTHANOD | |1O3rg0 NOISSINAW0D3d OQN#\F\\
597
§8¢ 103rgo ¥3aLim 311d 103rg0 LYWHO4 31714 |
ssz 1], 052
HINGTS |10y IHYMLH0S ¥IAINA
NOILVINIS3dd » JOV4YILNI NOILYOITddY
51z
00¢ \

U.S. Patent Jul. 18, 2017 Sheet 3 of 5 US 9,710,620 B2

300
(START) g
305
RECEIVE IDENTIFIER OF INPUT FILE
y 310
RECEIVE IDENTIFIER OF OUTPUT FILE |~

A
RECEIVE IDENTIFIER OF INPUT AND OUTPUT |~ 315
DRM SYSTEMS

4

320
DETERMINE FORMATS OF INPUT AND OUTPUT FILES /

NO CHANGE COMPRESSION

TECHNIQUE?

YES

CREATE COMPRESSION AND DECOMPRESSION 330
OBJECTS FROM COMPRESSION AND /
DECOMPRESSION LIBRARIES

L.

h 4

CREATE FILE FORMAT AND FILE WRITER OBJECTS |~ 340
FROM FORMAT LIBRARY

A

345
CREATE HEADERS FOR OUTPUT FILE
> 350
ENCRYPT PACKETS FOR OUTPUT FILE
A
355
ADD ADDITIONAL INFORMATION TO OUTPUT FILE

(o) FIG. 3

U.S. Patent Jul. 18, 2017 Sheet 4 of 5 US 9,710,620 B2

END
- 345
REQUEST HEADERS FROM FILE 405
FORMAT OBJECT

410

DO
HEADERS CONTAIN
DRM INFORMATION?

415 420
TRANSLATE DRM
CREATE DRM IDENTIFIERS TO
IDENTIFIERS CONFORM WITH RULES
OF OUTPUT DRM

|

.

SEND DRM IDENTIFIERS TO | ~ 425
FILE WRITER

430

ADD ADDITIONAL
INFORMATION TO CONTENT
DATA?

NO

SEND ADDITIONAL e 435
INFORMATION TO FILE
WRITER

(e) FIG. 4

U.S. Patent Jul. 18, 2017 Sheet 5 of 5 US 9,710,620 B2

o

¥ 502

CREATE ENCRYPTION AND
DECRYPTION OBJECTS
I 505 |l
REQUEST FIRST PACKET REQUEST NEXT PACKET
FROM FILE FORMAT FROM FILE FORMAT
i | 550
3507\ 510

IS PACKET
PROTECTED BY A DRM SYSTEM?

DECRYPT PACKET ACCORDING TO INPUT
DRM SYSTEM

»]

?,

520
CHANGE COMPRESSION TECHNIQUE?

YES

DECOMPRESS PACKET USING DECOMPRESSION
OBJECT FOR INPUT FILE
] 530

COMPRESS PACKET USING COMPRESSION OBJECT
FOR OUTPUT

N

ENCRYPT PACKET ACCORDING TO OUTPUT

DRM SYSTEM
'L 540

515

525

535

SEND PACKET TO FILE WRITER

545
ADDITIONAL PACKETS?

NO

FIG. 6

US 9,710,620 B2

1
DIGITAL RIGHTS MANAGEMENT
HANDLER AND RELATED METHODS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of prior U.S. patent
application Ser. No. 12/725,298 filed Mar. 16, 2010, which
is a continuation of prior U.S. patent application Ser. No.
10/660,302 filed Sep. 10, 2003, now U.S. Pat. No. 7,681,
035. Each of these prior applications is hereby incorporated
herein by reference in its entirety and for all purposes.

BACKGROUND OF THE INVENTION

Field of the Invention

The invention generally relates to systems and methods
for controlling the access to and the distribution of digital
data. More specifically, the invention relates to systems and
methods that provide interoperability across multiple
devices and techniques that manage authorization for
accessing or distributing digital content.

Description of the Related Technology

The distribution of digital content (“content™) continues to
expand as digital content providers (“providers”) utilize the
Internet as a vehicle for distributing content. Content may be
in the form of, for example, video, audio, text, or any
combination thereof, which may be accessed or distributed
as a single file or as a data stream. As used here, the term
“presentation” refers to digital content packaged as audio,
video, text, or any combination thereof, for consumption by
digital content consumers (“consumers”). For example, a
presentation can be digital content in the form of a musical
piece, a picture or image, a movie, a magazine article, an
excerpt from a text, etc. As used here, the terms “digital
content,” “content,” “data,” “presentation,” and “multi-me-
dia presentation” are synonymous unless the use of any one
of these terms is otherwise explicitly qualified.

To facilitate the distribution of content, providers often
rely on a digital content distributor (“distributor”) to host
and distribute the content. Typically, the distributor adver-
tises the content and provides access to it over the Internet.
Distributors allow providers to focus on producing content,
rather than spend their resources handling the technical
issues of distributing the content online. Distributors
increase consumers’ access to content because consumers
can obtain varied content from multiple providers merely by
accessing a single node on a network, e.g., a Web site.

Additionally, distributors can improve content security for
providers that desire to control the access or distribution of
their content. Content security refers to techniques for
ensuring that electronic data stored in computing devices or
transmitted between or among nodes of a network cannot be
read, copied, displayed, altered, etc., without proper autho-
rization. Most security measures involve data encryption
and passwords. A password is a secret word, key, or phrase
that must be used to access content or a system that handles
content.

Typically providers desire to control consumer access to
presentations. The term “access” refers to a privilege to use
presentations in some manner. The term “access control”
refers to mechanisms and policies that restrict access to
computing resources such as computing devices, digital
content, etc. For example, the provider might grant to a
consumer read-only access to presentations, meaning that
the consumer can view or read the presentation but cannot
modify, copy, or delete it.

2 <

15

25

40

45

55

2

It is common for providers to control access to presenta-
tions by using, for example, digital rights management
(“DRM”) systems. As used here a DRM system refers to
devices or techniques for controlling the access and/or the
distribution of data, e.g., data circulated via the Internet.
Typically, a DRM system protects presentations by either
encrypting the data so that only authorized consumers can
access it or by marking the presentation with a digital
watermark or similar method to prevent free distribution of
the presentation. Additionally, usually DRM technologies
impose constraints on the use of presentations that corre-
spond to the terms of the agreement between provider,
distributor, and consumer.

Because a distributor can centralize the purchasing and/or
licensing of content, the distributor simplifies and makes
more convenient the use of DRM systems. However, dif-
ferent providers may package their content using different
file format types, compression techniques, or DRM systems,
and consequently, the differently packaged content may
require separate and distinct software or hardware platforms
for use. When the distributor provides content as-is directly
to a consumer, the consumer may have to install and use
different platforms, thereby creating inconvenience for the
consumer. Moreover, the use of different DRM systems can
prevent consumers from easily purchasing access to content,
and can thwart the distributor’s effort to offer a consistent
consumer interface for content delivery.

What is needed in the industry is a flexible digital rights
management handler that allows the distributor to accept
content packaged in a variety of file format types compres-
sion techniques, and DRM systems. The handler can be
configured to allow the distributor to provide a consistent
consumer interface to consumers regardless of the original
packaging of the content.

BRIEF DESCRIPTION OF THE DRAWINGS

A digital content protection handling system and related
methods will now be described with reference to the fol-
lowing drawings:

FIG. 1 is a block diagram illustrating an exemplary
system, according to one embodiment of the invention, for
handling data in a content distribution system that employs
multiple DRM systems.

FIG. 2 is a block diagram illustrating one embodiment of
a system comprising modules for repackaging content with
a DRM system.

FIG. 3 is a flowchart illustrating an exemplary process of
protecting a content file using a DRM system.

FIG. 4 is a flowchart illustrating an exemplary process of
creating headers for content packaged according to a DRM
system.

FIG. 5 is a flowchart illustrating an exemplary process of
encoding content packets according to selected file type
format and DRM system.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

The aspects, features and advantages of the invention will
be better understood by referring to the following detailed
description in conjunction with the accompanying drawings.
These drawings and the associated description are provided
to illustrate embodiments of the invention, and not to limit
the scope of the invention.

The systems and methods described below provide a
DRM system handler. In one embodiment, the invention

US 9,710,620 B2

3

concerns a system and related methods that provide a
reconfigurable software module containing dynamically-
installable parsing software objects that allow the reading
and protection of data, which data uses a particular file
format type or compression technique, with a selected one of
a set of DRM systems. In another embodiment, the system
and methods employ dynamically-installable writing soft-
ware objects that allow modification of data packaged
according to a file format type or compression technique to
employ a different format type or compression technique. In
addition, in one instance the system and methods employ
dynamically-installable DRM system software objects that
allow modification of content using any DRM system. In yet
another embodiment, the invention concerns a system and
corresponding methods that allow, through the use of librar-
ies of dynamically-installable objects, addition of new com-
pression techniques, file format types, and DRM systems
with a minimum of system reconfiguration. As described
below, in one instance computer software performs these
tasks by receiving data associated with, for example, a
multi-media presentation (i.e., digital content) and modify-
ing and manipulating the data to create an output file
containing the same content but with a selected file format,
compression technique, and/or DRM system that can differ
from the file format, compression technique, and/or DRM
system associated with the received data.

FIG. 1 is a block diagram illustrating an exemplary
system 10 for distributing content using a DRM system
handler in accordance with one embodiment of the inven-
tion. The system 10 can include multiple providers 105A and
105B, multiple consumers 130A and 130B, and a distributor
100, all of which can be configured to communicate with
each other, singly or in combination, via a communications
medium 150. In one embodiment, the providers 105A and
105B can be computing devices that store presentations 110
and 115. Computing devices include desktop, server, por-
table, hand-held, set-top, or any other desired type of com-
puter configuration. Of course, in other embodiments, fewer
or greater numbers of providers 105A and 105B, consumers
130A-B, and distributors 100 can be included.

The communications medium 150 can be any type of
electronically connected group of computing devices includ-
ing, for instance, the following networks: Internet, Intranet,
Local Area Networks, or Wide Area Networks. In addition,
the connectivity to the communications medium 150 may
be, for example, remote modem, Ethernet, Token Ring,
Wireless Ethernet, Fiber Distributed Datalink Interface, or
Asynchronous Transfer Mode. The communications
medium 150 can include network variations such as the
public Internet, a private network within the Internet, a
secure network within the Internet, a private network, a
public network, a value-added network, an Intranet, etc.

The providers 105A-B can store presentations 110 and
115. In this example, presentation 110 is an audio file in
MPEG Audio Layer 3 (“MP3”) format type, and presenta-
tion 115 is a Windows Media Audio (“WMA”) format type;
however, in other embodiments the providers 105A-B can
store various combinations of audio, video, and other mul-
timedia presentations. As shown, in one embodiment, the
presentation 110 can include an MP3 presentation packaged
according to a DRM system. Of course, the system 10 can
be implemented to include various combinations of pro-
tected and unprotected presentations 110 and 115; the illus-
trated embodiment shows examples of the diversity of
presentation types contemplated by the invention.

In this embodiment, consumers 130A-B connect to the
distributor 100 through the communications medium 150.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Of course, in other embodiments fewer or greater numbers
of consumers 130A-B can be present. In the illustrated
embodiment, consumer 130A utilizes an MP3 player inter-
face to access audio files, and consumer 130B utilizes the
RealOne™ player by RealNetworks, Inc., of Seattle, Wash.,
U.S.A. Similarly to the providers 105A-B described above,
other embodiments can include various combinations of
applications that read the presentations 110 and 115, and the
illustrated embodiment merely serves to show the diversity
of reading/playing software platforms that consumers
130A-B can use to access presentations 110 and 115. In one
embodiment, using dynamically-installed repackaging
objects, a DRM computer 200 of the distributor 100 works
with numerous combinations of presentation packaging and
distribution technologies, including those received from
providers 105A-B and those output to consumers 130A-B.

FIG. 2 is a block diagram depicting a DRM handler
computer 200 containing modules to repackage, including
adding or changing DRM systems, presentations 110-115. In
effect, the computer 200 can provide interoperability of
content packaged in a file format, compression technique,
and/or DRM system that is different from the file format,
compression technique, and/or DRM system that the read-
ing/playing platforms consumers 130A-B use to access the
presentations 110-115.

The computer 200 can include a conventional general
purpose single- or multi-chip microprocessor, including but
not limited to, a Pentium® processor, Pentium II® proces-
sor, Pentium III® processor, Pentium IV processor, Pen-
tium® Pro processor, a 8051 processor, a MPS® processor,
a Power PC® processor, or an ALPHA® processor. In
addition, the microprocessor may be any conventional spe-
cial purpose microprocessor such as a digital signal proces-
sor. While in one embodiment computer 200 comprises a
traditional personal computer utilizing a screen and key-
board for interface with an operator, in another embodiment
the computer 200 can be a single-purpose device configured
specially for DRM system handling. In one embodiment, the
computer 200 is a special-purpose device operated remotely
over a network, e.g., the communications medium 150. In
another embodiment, the computer 200 is pre-configured to
perform the processes described here without operator inter-
vention.

Additionally, in one embodiment the computer 200 can
have data storage devices 205 and 210; however, in other
embodiments the computer 200 has local or remote access to
data storage devices 205 and 210, which can be located
locally or remotely from the computer 200 rather than being
part of the computer 200. For example, in one embodiment,
the data storage devices 205 and 210 are magnetic or optical
storage devices, e.g., a hard disk or a read-only memory
optical disc, incorporated into the computer 200. In yet
another embodiment, the data storage devices 205 and 210
are remote file servers accessed over a computer network. In
another embodiment the storage devices 205 and 210 com-
prise removable media, such as, but not limited to, floppy
disks, compact discs, DVDs, Zip® disks, external hard
drives, and USB or Firewire® removable storage. In yet
another embodiment there is only one data storage device
and devices 205 and 210 represent that same storage device.
In one embodiment, data storage device 205 stores an input
file 220 that contains an input presentation 222.

In one embodiment, the input file 220 comprises only the
input presentation 222, with no additional data. In another
embodiment, the input file 220 contains additional data.
Additional data in the input file 220 can vary and can
include, but is not limited to, artist, album, or film informa-

US 9,710,620 B2

5

tion, network addresses where more information can be
obtained, lyrics, purchasing information or network
addresses where a consumer 130A-B can purchase addi-
tional access rights. Data storage device 210 can store an
output file 225, which contains an output presentation 228.
In one embodiment, the output file 225 comprises only the
output media presentation 228, with no additional data. In
another embodiment, the output file 225 contains additional
data. In one embodiment, the media presentations 222 and
228 constitute the same presentation; however, in various
embodiments, the file type format, compression technique,
and DRM system for input files 220 and 225 can vary across
a wide variety of technologies, as will be described below.

Thus, the system 200 can take an input file 220 containing
a presentation 222 and create an output file 225 which
contains the same content, but which is protected with a
DRM system and is optionally in a different file format type
than the input file 220. Because the system 200 can be used
to distribute presentations via the Internet, in one embodi-
ment, the system 200 includes a presentation server 285,
which is in communication with data storage device 210. In
one embodiment, the server 285 is connected to the Internet
and provides content, such at the output file 225, to con-
sumers. In one embodiment, where there is only one storage
device representing both devices 205 and 210, the server 285
is in communication with that storage device. In yet another
embodiment, the server 285 communicates with computer
200, through which the server 285 is able to access presen-
tations for consumer access. In another embodiment, there is
no server 285 at all, and after processing, output file 225 is
stored on data storage device 210 for later use.

FIG. 2 also illustrates, in one embodiment, software
modules stored or executing on computer 200. The software
modules described here may be written in any programming
language such as C, C-H-, BASIC, Pascal, Java, and
Fortran and executed by any well-known operating system.
C, C++, BASIC, Pascal, Java, and Fortran are industry
standard programming languages for which commercial
compilers can be used to create executable code. In one
embodiment the computer 200 contains an application inter-
face 215 that allows configuration and execution of the
software modules by an operator. In one embodiment, the
application interface 215 provides a console interface to an
operator physically present with the computer 200. In
another embodiment the interface 215 allows an operator to
control the software modules of the computer 200 over a
network connection, e.g., remotely via the communications
medium 150 of FIG. 1.

In one embodiment, the driver module 230 performs the
methods described below with respect to FIGS. 3, 4, and 5.
In another embodiment, the driver module 230 may be
partitioned into multiple modules. In the illustrated embodi-
ment the computer 200 also contains storage 235 that stores
various software object class libraries 237-249. In another
embodiment, the storage 235 is external to computer 200; in
yet another embodiment, the storage 235 is one of data
storage devices 205 and 210. Storage 235 stores software
object class libraries 237-249, which the driver 230 reads
and uses to create particular instantiations of software
objects. In one embodiment, the various object class librar-
ies 237-249 provide a modular solution to the problems
created by multiple file format types, compression tech-
niques, and DRM systems. Because in one embodiment the
various classes can be installed and updated without requir-
ing complicated modifications to the driver 230, the use of
such object class libraries 237-249 provides flexibility as
new content packaging, including file format types, com-

10

15

20

25

30

35

40

45

50

55

60

6

pression techniques, and protection technologies, emerge.
While the illustrated embodiment shows the storage 235 as
storing the object class libraries 237-249, in another embodi-
ment the random-access memory of computer 200 stores the
libraries 237-249. In one embodiment, individual object
classes can be stored separately and are not associated with
each other as libraries.

In one embodiment the computer 200 stores a file format
type object library 237 (“format library 237”) and a file
writer object library 239 (“writer library 239”), each of
libraries 237 and 239 comprising at least one class from
which the driver 230 can instantiate a software object. In one
embodiment, the file format type classes 237 describe soft-
ware objects which can read and parse files of a particular
format or set of formats and output data. By contrast, in one
embodiment the writer classes 239 describe software objects
which take data as input and output files in particular file
format types. In one embodiment, particular file format type
objects described by classes from the library 237 are con-
figured to parse content files and output entire presentations;
in another embodiment, particular file format type objects
from the library 237 output multiple packets of data. Simi-
larly, in one embodiment, particular file writer objects
described by classes of the library 239 create files after
receiving entire presentations; in another embodiment, par-
ticular file writer objects output individual packets of data
into output files.

Generally, the term “format” refers to a specific arrange-
ment or organization of data. Typically, the application that
creates the data stores or distributes it in a format that the
application establishes; the data usually must be read by the
same or a similar program that can interpret the format. As
used here, a “file format type” refers to a file type such as
Audio Interchange File Format (ATP), AU sound file (AU),
Standard MIDI file (MIDI), Sound Blaster sound file (VOC),
WAVE audio file (WAV), bitmap files (BMP), Encapsulated
PostScript file (EPS, EPSF), Graphics Interchange Format
(GIF), PICT file (PIC), Tagged Image File Format (TIF,
T114-4), Audio Video Interleave move file (AVI), Apple
QuickTime movie file (MOV, MOOYV, QT), Motion Picture
Experts Group movie file (MPG), Microsoft Word file
(DOCQ), etc.

In one embodiment the computer 200 stores a decom-
pression object library 241 and a compression object library
243, each of libraries 241 and 243 comprising at least one
class from which the driver 230 can instantiate a software
object. In one embodiment the decompression classes 241
describe software objects which can decompress com-
pressed data. In another embodiment, the decompression
classes 241 describe software objects which can decompress
compressed digital content to create analog data. By con-
trast, in one embodiment the compression classes 243
describe software objects which can compress digital data so
that it may be compactly written to a file. In another
embodiment, the compression classes 243 describe software
objects which can compress analog data. Compression tech-
niques include, but are not limited to, those used for audio
and video compression in the RealMedia®, Windows
Media®, MPEG, or QuickTime® formats.

Similarly to the file format types above, in one embodi-
ment the classes in the compression library 243 and decom-
pression library 241 describe objects which manipulate data
at a packet level. As used here, a “packet” refers to a portion
of the whole of a data file. In one embodiment, the separa-
tion of file-based and compression-based objects is desirable
because some file format types support more than one
compression technique. For example, the AVI audio/video

US 9,710,620 B2

7

file format type supports a number of different video com-
pression techniques, including, for example MPEG-4 and
H.263. As described above, to support files using these
techniques, file classes supporting AVI can be created, along
with compression classes supporting both MPEG-4 and
H.263. In another embodiment, the file-based and compres-
sion-based objects are combined, and different classes are
made for combinations of file format types and compression
techniques. However the use of separate classes for file
format types and compression techniques increases the ease
of scalability of the system 10.

In one embodiment the computer 200 stores a DRM
decryption object library 245 and a DRM encryption object
library 247, each of libraries 245 and 247 comprising at least
one class from which the driver 230 can instantiate a
software object. In one embodiment the decryption classes
245 describe software objects that can decrypt data
encrypted according to a particular DRM system. By con-
trast, the encryption classes 247 describe software objects
which can encrypt data according to the techniques and rules
of a particular DRM system. In the illustrated embodiment,
these object classes are separated from the file format type
and compression objects because many DRM systems, such
as the system provided by RealNetworks, are configured to
encrypt content data packaged in different file formats and
compression techniques. For example, an object class in
library 247 can use the Data Encryption Standard (com-
monly known as ‘DES”), which is a 56-bit key, symmetric-
key encryption method standardized by ANSI as ANSI
X.3.92. Generally, encryption refers to the translation of data
to a format that is unintelligible without a deciphering
mechanism. Typically, to read encrypted data, the reading
device must have access to a key or password that enables
decryption of the data. Decryption refers to the process of
decoding encrypted data. Decryption requires a key or
password. The term “key” refers to a password or table
needed to decipher encoded data.

In one embodiment, the computer 200 includes a DRM
rules library 249, which comprises at least one class that
defines presentation access rules for a particular DRM
system. The objects created by the rules classes 249 can
provide a general access structure that may have to be
interpreted for an input presentation governed by a particular
DRM system, and they provide the rules that are applicable
to an output protected presentation.

As mentioned above, the use of libraries comprised of
classes allows the driver 230 to create software objects when
it determines that the system 200 needs the objects, and then
to create the specific objects needed. Thus, the driver 230
can include a file format object 250, a file writer object 255,
a decompression object 260, a compression object 265, a
decryption object 270, an encryption object 275, and a DRM
system rules object 280. In one embodiment, the driver 230
creates these objects during execution as it determines that
they are needed. In another embodiment, the driver 230 does
not instantiate every illustrated object. For example, if there
is no need to manipulate data with regard to its method of
compression, then the driver 230 does not create compres-
sion object 265 and decompression object 260. The objects
250-280 can be associated directly with the driver 230 and
distinct from each other in their instantiation. In another
embodiment, the objects 250-280 are separated entirely
from the driver 230. In yet another embodiment, the storage
235 stores the objects 250-280. In yet another embodiment,
the objects 250-280 are combined into fewer software
objects while retaining the functionality illustrated. In one
embodiment, the software objects 250-280 interface with the

20

35

40

45

55

8

driver 230 through pre-determined interfaces which remain
the same for every class in a library. As an example, in one
embodiment a FileFormat object implements at least the
following functions: Open() GetFileHeader() GetStream-
Header() GetPacket() Seek() and Close() For clarity, in the
following discussions each of the libraries 237-249 and each
of the software objects 250-280 are referred to individually.
The flowchart of FIG. 3 illustrates an exemplary process
that the system 200 can use to accept an input file 220
containing a presentation 222, process the presentation 222,
and output a file 225 containing a presentation 227 that is a
protected version of the presentation 222. Depending on the
embodiment, steps may be added, removed, or merged, and
the sequence of the steps rearranged. Starting at a step 305,
the driver 230 receives an identifier of the input file 220. In
one embodiment, the driver 230 receives an indicator of the
location of the input file 220 on the storage device 205. In
another embodiment, the driver 230 receives a network
address where it can access the input file 220. In yet another
embodiment, the driver 230 receives the entire input file
220. Continuing to a step 310, the driver 230 receives an
identifier of the output file 225. In one embodiment, this
identifier includes a description of the file format type of the
output file 225 to be written. In another embodiment, the
identifier includes the name of the output file 225. In yet
another embodiment, the output file 225 already exists, and
the identifier comprises the location of the output file 225.
Next, in a step 315 the driver 230 receives an identifier of
a DRM system used in the input file 220 and a DRM system
to be used in the output file 225. Of course, the identifier for
the DRM system used in the input file 220 may be different,
and may originate from a different source, from the identifier
for the DRM system to be used in the output file 225. In one
embodiment, the driver 230 queries the file format object
250 to parse the input file 220 and determine which DRM
system the input file 220 uses. In another embodiment, the
driver 230 queries an operator of the system 200 for an
identifier of the input DRM system. In yet another embodi-
ment, the driver 230 determines that the input file 220 does
not utilize a DRM system and indicates the lack of a DRM
system. In one embodiment, neither the operator nor the
consumer 130A-B selects a DRM system for the output file
225, and the computer 200 creates the output file 225
without DRM protection. In another embodiment, an opera-
tor of the driver 230 selects a DRM system from a set of
pre-determined supported DRM systems. In yet another
embodiment, the driver 230 is configured to always utilize
the same DRM system for the output file 225. In yet another
embodiment, step 315 includes importing classes into the
DRM related libraries 245, 247, and 249 so that a previ-
ously-unsupported DRM system can be selected.
Following the receipt of a DRM system identifier, at a step
320 the driver 230 determines the file format type of the
input file 220 and of the output file 225. In one embodiment
the driver 230 performs the step 320 by mapping the file
extensions (e.g., .wav, .au, .mov, .tiff, .doc, .rtf, etc.) of a file
to a lookup table or database. In another embodiment, the
driver 230 prompts the operator to select the format type
from a pre-determined list. In one embodiment, the driver
230 filters the pre-determined list to include only format
types that are compatible with the previously-received DRM
system identifier associated with the output file 225. In yet
another embodiment, the step 320 comprises importing
classes into format libraries 237 and 239 in order that the
driver 230 may support an additional format type. In one
embodiment, the determination of format types comprises

US 9,710,620 B2

9

parsing the input file 220 and the output file 225 (if it exists)
to determine the format types they utilize.

Next, at a decision step 325, the driver 230 determines
whether to change the compression technique. In one
embodiment, the driver 230 determines the compression
technique that the input file 220 utilizes. In another embodi-
ment, at the decision step 325 the driver 230 determines the
compression techniques supported by the format type, iden-
tified in step 310, of the output file 225. In yet another
embodiment, the application interface 215 presents to an
operator a choice of compression techniques that the format
type of the output file 225 supports, and the driver 230
determines whether the chosen output compression tech-
nique differs from the compression technique used in the
input file 220. If changing the compression technique is
required, at a step 330 the driver 230 creates compression
and decompression software objects 265 and 260 to allow
the change in compression technique. In one embodiment,
the driver 230 creates the objects 265 and 260 from classes
found in the compression library 243 and the decompression
library 241.

The process 300 continues to a step 340, where the driver
230 creates the format type 250 object and the file writer
object 255 from classes contained in libraries 237 and 239,
respectively. In one embodiment, the driver 230 chooses the
format type classes determined in step 320 from the libraries
237 and 239. Next, at a step 345, the driver 230 creates
headers for the output file 225. An exemplary process for
executing step 345 will described in greater detail below
with reference to FIG. 3. The process 300 continues to a step
350 where the software driver 230 encrypts content packets
from input file 220 according to a DRM system. An illus-
trative process for performing the step 350 will described in
greater detail below with reference to FIG. 5. Proceeding to
a step 355, the driver 230 includes any additional informa-
tion in the output file 225. In one embodiment, this addi-
tional information includes data received directly from the
input file 220. In yet another embodiment, an operator of the
application interface 215 inputs the additional information.

FIG. 4 depicts an exemplary process 345 which the
system 200 can use to create headers for an output file 225.
Depending on the embodiment, steps may be added,
removed, or merged, and/or the sequence of the steps
rearranged. Starting at a step 405 of the process 345, the
driver 230 requests DRM headers from the format object
250, which parses the input file 220 to determine the
information in the header. In another embodiment, the
header of the input file 220 contains encrypted information
relating to the DRM system used. In such an embodiment,
the driver 230 creates the decryption object 270 and requests
the DRM system information from the decryption object
270. Hence, the driver 230 obtains the header information
after the decryption object 270 decrypts and parses the
encrypted presentation 222. In one embodiment, the format
object 250 still parses some header information from the
input file 220; in another embodiment, the driver 230
acquires only the header information that the decryption
object 270 parses.

Proceeding to a decision step 410 of the process 345, the
driver 230 determines whether the parsed headers contain
the DRM system information. Examples of this information
include data describing encryption technique, types of
access allowed to the presentation 222, amount of access
(e.g., the number of times a file may be burned to a CD or
copied to a hard drive), and where and how a consumer can
purchase additional access. In one embodiment, these iden-
tifiers take the form of a DRM license. In one embodiment,

30

35

40

45

55

10

the operator of the driver 230 can create content that is
protected by a DRM system; hence, the decision step 410
and the following steps provide that the output file 225
contains the proper DRM system headers. In another
embodiment, the output file 225 is not governed by a DRM
system, and thus the driver 230 does not need to check the
headers for the DRM system information.

Ifthe driver 230 does not find the DRM system identifiers,
at a step 415 the driver 230 creates new DRM system
identifiers in compliance with the DRM system to be used in
the output file 225, which may have been identified in step
315 of FIG. 2. In one embodiment the driver 230 obtains the
parameters of the DRM identifiers by querying the consumer
130A-B for parameters. In another embodiment, the driver
230 retains default values such that every file the driver 230
processes can have a similar set of access rights associated
with it. If, at step 410, the driver 230 determines that the
headers of input file 220 contain the DRM system informa-
tion, then at a step 420, the driver 230 translates the DRM
system identifiers to conform to the rules of the DRM system
associated with the output file 225. In one embodiment, at
the step 420 the driver 230 access a matrix that provides a
mapping of the access rules of one DRM system to another
DRM system. In another embodiment, the driver 230 per-
forms the action of step 420 by mapping the rules and
allowed uses described in the input file 220 into a neutral
language and then translating the neutral rules and uses into
rules and a license that conforms to the DRM system to be
used in the output file 225. In one embodiment, the driver
230 generates DRM rules for the output file 225 by instan-
tiating a rules object 280. In yet another embodiment, the
encryption and decryption objects 275 and 270, rather than
the driver 230, perform the mapping. Next, at a step 425, the
driver 230 sends the created or mapped DRM system
identifiers to the file writer 255, which uses them to write the
output file 225. In one embodiment, if the output file 225 did
not previously exist and this is the first time it is being
written to, the file writer 255 creates the output file 225 at
this point. In another embodiment, the driver 230 creates the
output file 225 at the time the file writer 255 is instantiated.

The process continues to a decision step 430, where in one
embodiment the driver 230 determines whether an operator
of the application interface 215 will add additional data to
the output file 225. As mentioned above, such additional
data may include, but is not limited to, information about the
media content, purchasing information, network locations,
or other multimedia content. In one embodiment, at the step
430 the driver 230 queries the operator for additional
information. In another embodiment, the system 200 stores
and indicates any additional information before the start of
the process 345, and the driver 230 locates it at this time. In
yet another embodiment, the driver 230 does not add addi-
tional information to the output file 225 at this time, but
rather it adds the additional data after content is written to
the output file 225. If the operator does not add information,
the process ends. If, however, the operator adds information,
at a step 435, the driver 230 receives the information and
adds it to the output file 225 by sending it to the file writer
255.

FIG. 5 shows an exemplary process 350 that the system
200 can use to encrypt and send content to the output file
225. Depending on the embodiment, steps may be added,
removed, or merged, and the sequence of the steps rear-
ranged. Starting at a step 502, the driver 230 creates encryp-
tion and decryption objects 275 and 270. In one embodi-
ment, the decryption object 270 corresponds to the format of
the input DRM system determined in step 315, and the

US 9,710,620 B2

11

driver 230 creates the decryption object 270 from a class in
decryption library 245. In another embodiment, the input file
220 does not utilize a DRM system, and hence, the driver
230 does not create a decryption object 270. In one embodi-
ment, the encryption object 275 corresponds to the DRM
system to be used in the output file 225 and determined in
step 315, and the driver 230 creates the encryption object
275 from a class in the encryption library 247.

Next, at a step 505, the driver 230 requests and receives
a content packet from the format object 250. In one embodi-
ment, the driver 230 performs this action by requesting that
the format object 250 parse data from the input file 220. In
another embodiment, the format object 250 sends data to the
driver 230 in multiple-packet chunks; in another embodi-
ment, the format object 250 sends the entirety of the content.
The process 350 continues to a decision step 510 where the
driver 230 determines if a DRM system protects the packet.
In one embodiment, the driver 230 does this by checking the
identifier of the DRM system used in the input file 220,
which may have been received in step 315. In another
embodiment, the driver 230 determines this itself by parsing
the packet. If the packet is protected, at a step 515 the driver
230 decrypts the packet according to the DRM system used
in the input file 220. In one embodiment, the driver 230
performs this task by sending the packet to the decryption
object 270 created in step 502. At this point, whether
decryption of the packet is performed or not, a packet of
unprotected content exists.

The process 350 continues to a decision step 520, where
the driver 230 determines whether to change the compres-
sion technique between the input presentation 222 and the
output presentation 228. In one embodiment, the driver 230
bases this determination on the similar determination made
in step 325. In another embodiment, the driver 230 performs
the determination of step 325, or one similar, again. If the
driver 230 determines that the compression technique is to
change, at a step 525 the decompression object 214 decom-
presses the packet created in step 330, which packet is
associated with the compression technique used by the input
file 220. Proceeding to a step a 530, the compression object
243 recompresses the packet that was created in step 330,
which packet is now associated with the compression tech-
nique chosen for the output file 228. If the driver 230
determines at decision step 520 that no change in compres-
sion technique is necessary, the driver 230 omits the steps
525 and 530.

Next, with the packet having the appropriate compression
technique, the process continues to a step 535, where the
driver 230 encrypts the packet according to the chosen DRM
system. In one embodiment, the driver 230 performs the step
535 by sending the unencrypted packet to the encryption
object 275 and receiving an encrypted version of the packet
in return. The driver 230 sends the packet, in a step 540, to
the writer object 255 for writing to the output file 225. At a
decision step 545, the driver 230 determines whether there
are additional packets for encryption. If so, the process 350
proceeds to a step 550, where the driver 230 requests the
next packet from the format object 250, and the process 350
repeats from this point. If there are no additional packets, the
process 350 ends.

The systems and methods described above provide for a
robust and scalable system where any file, irrespective of
format type, compression technique, or DRM system used,
containing a presentation can be reformatted to have the
appropriate format type, compression technique, or DRM
system compatible with the hardware/software platform of a
consumer 130A-B. Moreover, the systems and methods

40

45

55

60

12

provide support for new format types, compression tech-
niques, and DRM systems to be added conveniently and
without requiring extensive software or hardware modifica-
tion.

While the above detailed description has shown,
described, and pointed out features of the invention as
applied to various embodiments, it should be understood
that various omissions, substitutions, and changes in the
form and details of the devices or processes described may
be made by those skilled in the art without departing from
the spirit of the invention. The scope of the invention is
indicated by the appended claims rather than by the fore-
going description. All changes which come within the mean-
ing and range of equivalency of the claims are to be
embraced within their scope.

The invention claimed is:

1. One or more non-transitory computer readable storage
media storing computer-executable instructions that when
executed by a hardware processor of a computer platform
result in the platform being capable of performing opera-
tions comprising:

receiving by the computer platform, from a remote server

of a content distributor via an Internet network, digital
rights management (DRM) controlled video content,
the DRM controlled video content being in accordance
with a DRM technique, the DRM controlled video
content being based, at least in part, upon certain video
content that has been transcoded by a remote computer
system via a selectable installable transcoding module,
the certain video content having been received by the
remote computer system, prior to being transcoded,
from a handheld computing device, wherein the
selected transcoding module is capable of generating
transcoded certain video content in accordance with
DRM rules determined, at least in part, by the remote
server, and wherein the transcoded certain video con-
tent comprises an output file containing encrypted
and/or compressed data.

2. The one or more computer readable storage media of
claim 1, wherein:

the DRM technique limits a number of times that the

DRM controlled video content can be copied.

3. The one or more computer readable storage media of
claim 1, wherein:

the certain video content is to be stored, at least in part, in

another remote server.

4. The one or more computer readable storage media of
claim 1, wherein:

the certain video content is to be transcoded from an

Apple QuickTime format.

5. The one or more computer readable storage media of
claim 1, wherein: as received by the remote computer
system, the certain video content also is compressed.

6. The one or more computer readable storage media of
claim 1, wherein:

the DRM technique comprises at least one of:

encryption; and
watermarking.

7. The one or more computer readable storage media of
claim 1, wherein:

the certain video content is to be received by the remote

computer system from the handheld computing device
via a communications medium.

8. The one or more computer readable storage media of
claim 1, wherein:

the certain video content, as the certain video content is to

be received by the remote computer system from the

US 9,710,620 B2

13

handheld computing device, has a certain format that
corresponds to a certain format type; and

the remote computer system is to transcode, at least in
part, the certain video content by processing the certain
video content to produce other video content having
another format that corresponds to another format type
that is different from the certain format type.

9. The one or more computer readable storage media of

claim 8, wherein:

the another format type supports multiple different video
compression techniques; and

the certain format type corresponds to an Apple Quick-
time movie format.

10. The one or more computer readable storage media of

claim 9, wherein:

the another format type comprises Audio Video Interleave
format type; and

the multiple different video compression techniques com-
prise MPEG-4 and H.263 techniques.

11. A computer-implemented system comprising:

a computer platform comprising a hardware processor and
software, the software when executed by the hardware
processor of the computer platform resulting in the
computer platform being capable of performing opera-
tions comprising:

receiving by the computer platform, from a remote server
of a content distributor via an Internet network, digital
rights management (DRM) controlled video content,
the DRM controlled video content being in accordance
with a DRM technique, the DRM controlled video
content being based, at least in part, upon certain video
content that has been transcoded by a remote computer
system via a selectable installable transcoding modules,
the certain video content having been received by the
remote computer system, prior to being transcoded,
from a handheld computing device, wherein the
selected transcoding module is capable of generating
transcoded certain video content in accordance with
DRM rules determined, at least in part, by the remote
server, and wherein the transcoded certain video con-
tent comprises an output file containing encrypted
and/or compressed data.

12. The computer-implemented system of claim 11,

wherein:

the DRM technique limits a number of times that the
DRM controlled video content can be copied.

5

30

35

40

45

14

13. The computer-implemented system of claim 11,
wherein:

the certain video content is to be stored, at least in part, in

another remote server.

14. The computer-implemented system of claim 11,
wherein:

the certain video content is to be transcoded from an

Apple QuickTime format.

15. The computer-implemented system of claim 11,
wherein: as received by the remmote computer system, the
certain video content also is compressed.

16. The computer-implemented system of claim 11,
wherein:

the DRM technique comprises at least one of:

encryption; and
watermarking.

17. The computer-implemented system of claim 11,
wherein:

the certain video content is to be received by the remote

computer system from the handheld computing device
via a communications medium.

18. The computer-implemented system of claim 11,
wherein:

the certain video content, as the certain video content is to

be received by the remote computer system from the
handheld computing device, has a certain format that
corresponds to a certain format type; and

the remote computer system is to transcode, at least in

part, the certain video content by processing the certain
video content to produce other video content having
another format that corresponds to another format type
that is different from the certain format type.

19. The computer-implemented system of claim 18,
wherein:

the another format type supports multiple different video

compression techniques; and

the certain format type corresponds to an Apple Quick-

time movie format.

20. The computer-implemented system of claim 19,
wherein:

the another format type comprises Audio Video Interleave

format type; and

the multiple different video compression techniques com-

prise MPEG-4 and H.263 techniques.

#* #* #* #* #*

