PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: A61B 3/02, 3/10, 3/00

A1 (1)

(11) International Publication Number:

WO 96/14793

(43) International Publication Date:

23 May 1996 (23.05.96)

(21) International Application Number:

PCT/US95/14771

(22) International Filing Date:

9 November 1995 (09.11.95)

(30) Priority Data:

08/337,624

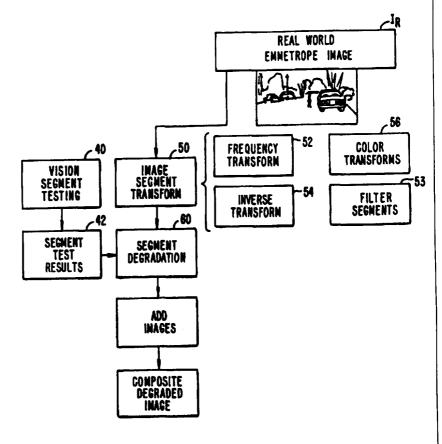
10 November 1994 (10.11.94) US

(71) Applicant: VISION SCIENCES RESEARCH CORPORA-TION [US/US]; Suite 105, 130 Ryan Industrial Court, San Ramon, CA 94583 (US).

(72) Inventors: GINSBURG, Arthur, P.; 3021 Live Oak Court, Danville, CA 94506 (US). TESSLER, Lawrence, Paul; 1722 South Grove Road C-304, Ypslanti, MI 48198 (US). FRIES, Craig; 491 Crescent Avenue, Oakland, CA 94602 (US). TIFFT, Jonathan; 282 1/2 Benvenue, Berkeley, CA 94705 (US).

(74) Agents: HYNES, William, M. et al.; Townsend and Townsend and Crew, Steuart Street Tower, One Market, San Francisco, CA 94105-1492 (US).

(81) Designated States: AL, AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TT, UA, UG, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, LS, MW, SD, SZ, UG).


Published

With international search report.

(54) Title: OBJECTIVE PATIENT VISION COMPARISON PROCESS AND APPARATUS

(57) Abstract

A segmented objective vision test (40) is administered to a patient for determining a quantitative measurement of vision capability in the test segments. Human vision can be tested in separate segments of total vision spectrum including contrast sensitivity (14), or color sensitivity testing. Thereafter, an emmetropic real world image (IR) is filtered into corresponding emmetropic segments. These corresponding emmetropic image segments are degraded into degraded image segments in correspondance with the separate test results for each corresponding separate segment of the total vision spectrum. The degraded image segments are then added to produce an objectively altered real world image. This objectively altered real world image can then be compared to the real world image of the emmetrope and a record preserved of the patient's actual vision condition as evidenced by the obective vision test and the subsequent image processing.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	\/D	• • •
AU	Australia	GE GE		MR	Mauritania
BB	Barbados	GN	Georgia	MW	Malawi
BE		-	Guinea	NE	Niger
	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Ital y	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
· CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		-	•••	

Objective Patient Vision Comparison Process & Apparatus

5

10

15

20

25

30

This disclosure relates to presenting an evaluation of and record of vision testing of an individual. More specifically, a method of construction of the actual view of a patient having normal, above normal or vision defects is disclosed.

BACKGROUND OF THE INVENTION

Vision acuity tests are known. The most common is the Snellen test -- the traditional array of letters, decreasing in size on subsequently read rows. Vision is rated as a result of the smallest line that the individual is able to read.

More recently, sine-wave contrast sensitivity tests have been developed. In such tests, human spatial frequency definition is broken into discrete bandwidths, typically in a chart format. For an example of such a test, see Ginsburg U.S. Patent 4,365,873 issued December 28, 1982 entitled Spatial Frequency and Contrast Sensitivity Test Chart for an example of a chart that utilizes such testing. The patient is subjectively tested in those discrete bandwidths. Thereafter, the sensitivity in the bandwidths is reported,

In analysis of various "targets" -- typically for military purposes -- it has been known to hypothetically degrade views of the targets with high, medium and low contrast sensitivity levels. Thereafter, the degraded views of the targets are provided indicating how vision changes with perception of specific high, medium and low contrast sensitivity or general age groups. The presentations have not been correlated with the testing of specific individuals.

Further, the resulting views have not been used as evaluation or records of objective vision tests of a specific patient.

10

15

35

SUMMARY OF THE INVENTION

2

A segmented objective vision test is administered to a patient for determining a quantitative measurement of vision function or capability in tested segments. Vision is tested in separate segments including acuity, contrast sensitivity, or color sensitivity testing. Thereafter, a real world image is filtered into corresponding image segments, the image utilized being usually - but not always - a clear, sharp. These corresponding image segments are changed (degraded or enhanced) into changed image segments in correspondence with the separate test results for each corresponding separate segment of the total vision spectrum of this vision test. image segments are then combined to produce an objectively altered image. This objectively altered image can then be compared to the image of an emmetrope (or any other person's image) by display or image processed or a record preserved of the patient's actual vision condition as evidenced by the objective vision test and the subsequent image processing.

It will be understood that the techniques here illustrated are not necessarily confined to human 20 observations. For example, the techniques presented here can be used to test and describe the performance of imaging systems.

In a preferred embodiment, the vision testing and image degradation occur in a frequency domain (space domains 25 or other transform domains are possible). Vision testing in spatial contrast is divided into approximately two octave bands having a median band width of 1.5, 3, 6, 12, and 18 cycle per degree. Vision testing with separate vision segment results occurs for each vision segment. 30 Image processing of a real world image includes first performing a Fourier transform and generating a frequency image segment for each corresponding band. Thereafter, an inverse Fourier transform is generated from each frequency image segment to produce a corresponding partial real image segment for each frequency During either the transform, the inverse transform, or before the addition of the image segments to produce a composite degraded image, degradation of the image segments

occurs corresponding to objective vision test results. Finally, addition of the degraded images produces an image emulating the patient's actual vision for comparison to the original image of the real world scene.

5

10

15

20

25

30

35

3

Other techniques of image filtering can be used. For example, image convolution can be utilized. Specifically, filter functions can be applied to an original image - these functions having size or frequency sensitivity. Testing of an individual's sensitivity in the specific frequencies can occur. Thereafter, the original image can be convolved with filters whose orientation, size, shape and amplitudes are determined by the results of the vision test creating filtered images. Once the segments are added, a modified image will result.

It will be understood that the particular testing protocol utilized can be varied. Vision test targets with periodic frequencies can be utilized. Alternately, tests can be constructed utilizing the filter functions themselves. For example, various Gaussian shapes can be used as vision test targets of amplitude and varied image convolution. The results from recognition of such shapes in the form of recognizable fields can then be applied to the convolution and reconstruction of the perceived image of the individual.

The reader will understand that the disclosed process can be repeated for various kinds of vision sensitivity. For example, and in addition to contrast sensitivity, vision segments of color (red, green, and blue) can be used against the results of vision color testing (i.e. so-called tests for "color blindness") or visual acuity can be used against the results of visual acuity testing.

An advantage of the disclosed image processing is that a physician or motor vehicle testers can be given a record -- for his own files and for display to others -- which documents the vision condition of a patient at the time of the examination. This record can be used to verify and document the need for or the lack of need for prescription and treatments.

A further advantage of the disclosed image processing is that by the comparison technique disclosed, even the patient (with the impaired vision) can understand the relative degree of degradation of his or her vision compared to the norm. Assuming that the patient has significant vision degradation, they will naturally view the original real world view with that degradation — the state to which the patient presumably has grown accustomed. However, the comparison of the degraded view generated by testing and the disclosed process to the real world image will be contrasted. Specifically, the degraded view when compared to the emmetropic view demonstrates even to the visually impaired the degree of relative vision degradation.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

20

25

30

35

Other objects, features and advantages of this invention will become more apparent after referring to the following specification and attached drawings in which:

Fig. 1 is a view of a contrast sensitivity eye chart with measurement of frequency contrast sensitivity occurring in 1.5, 3, 6, 12, and 18 cycles per degree;

Fig. 2 is a view of a typical real world scene, this scene being the view from a driver's seat through the windshield of an automobile with a child shown running into the street between parked cars;

Fig. 3 is a view of an altered real world scene of the view of Fig. 2, illustrating an objectively measured degradation of the original real world images side by side with the view of Fig. 2;

Fig. 4 is a flow diagram illustrating the general data processing required including objective measurement of the vision of the patient, corresponding segmentation of the real world emmetropic vision, degradation of the segmented images in accordance with the measured vision results and generation of the resultant composite view;

Fig. 5 is a flow diagram unique to vision contrast sensitivity testing illustrating vision testing in discrete two octave bands, fast Fourier transform of the original real

10

15

20

25

30

35

world image from the spatial domain to the frequency domain, filtering the frequency domain into discrete octave bands, inverse transform from the frequency domain to the spatial domain, modifying the segmented images from vision testing results, and the linear addition of images degraded in measured amount in accordance with the testing protocol to produce the comparison image illustrated in Fig. 3; and

Fig. 6 is a block diagram illustrating one type of convolution processing where an image is modified by space domain filtering with amplitude modification determined by vision test results.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Fig. 1, a prior art contrast sensitivity chart 14 is illustrated. This chart includes contrast sensitivity rows for measuring human vision contrast sensitivity with 1.5 cycles per degree row A, 3.0 cycles per degree row B, 6.0 cycles per degree row C, 12.0 cycles per degree row D, and 18 cycles per degree row E.

Columns 1-9 are columns of decreasing contrast with column 1 having the highest contrast and column 9 having the lowest contrast. The patient undergoing vision contrast sensitivity testing is asked to identify tilt of the respective images. Such tilt is illustrated in right box 16, up box 18, and left box 20. This test is more fully described in Ginsburg U.S. Patent 4,365,873 issued December 28, 1982 entitled Spatial Frequency and Contrast Sensitivity Test Chart.

The results of the vision contrast sensitivity test will be an objectively determined outcome that is unique to the individual patient tested.

Referring to Fig. 2, a real world original image I_R is illustrated. Real world image I_R illustrates child 25 walking from in front of parked car 30. The view is typical of that taken through the windshield of a car being driven by a driver. Fortunately, in this case the driver is an emmetrope.

5

10

15

20

30

Referring to Fig. 3, the view of a patient having impaired vision -- say cataract impaired vision -- is shown of the same scene. Parked car 30' is a blurred, low contrast mass while child 25' is barely visible. It will be observed that this latter picture is dramatic in at least two aspects.

First, an emmetrope viewing Fig. 3 immediately understands the peril of a patient with the observed vision driving. Second, even the patient with the impaired vision can understand the problem. Specifically, and observing Fig. 2 and 3 simultaneously, it will be understood that the patient will make the comparison through his degraded vision. The seriousness of the vision defect and possibly the need to undertake corrective surgery, for example the removal of the cataract obscured lens, is emphasized.

Having set forth the results of the test, attention may now be devoted to the process.

Referring to Fig. 4, the vision testing process can now be described. Specifically, vision segment testing 40 generates separate readings for separate segments tested. Such testing can result from contrast sensitivity chart 14 illustrated in Fig. 1. Test results are output to segment test results 42 and segment degradation 60.

Next, it is required that real world original image I_R be processed. Specifically, such transformation occurs in image segment transform 50.

Referring further to Fig. 4, it can be seen that two types of image processing are there referenced. The first of these is frequency transform 52 followed by filter segments 53 and then frequency inverse transform 54. The second is color transforms 56. In this specification, the preferred technique of frequency transform 52, filter segments and frequency inverse transform 54 will be set forth first.

The case of the contrast frequency transforms is set forth specifically with respect to Fig. 5. Simply stated, frequency transform 52 takes real world original image I_R from the spatial domain and places the image in the frequency domain. This transform, however, is filtered into segments 53

10

15

20

25

30

35

unique to the particular frequency segment being utilized. Thus, there will be a first filtered transform for 1.5 cycles per degree row A, a second filtered transform for 3.0 cycles per degree row B, etc. Thereafter, inverse transform 54 on each filter segment will occur. Thus, and again, there will be a first inverse transform for 1.5 cycles per degree row A, a second inverse transform for 3.0 cycles per degree row B, etc.

Presuming that the person who took the test was an emmetrope, there would be no degradation of real world emmetropic image I_R . However, in the usual case, less than perfect vision will be encountered. Thus modification of real world original image I_R on any image after the first transform can occur.

Referring to Fig. 4 and 5, this takes place in segment degradation step 60. Referring to Fig. 5, it will be understood that segment degradation step 60 is unique to each filter segment of the image. Assuming a less than perfect vision test in the 1.5 cycle per degree test, degradation or attenuation of the 1.5 cycle per degree image component will occur. Similarly, assuming a less than perfect vision test in the 3.0 cycle per degree test, degradation or attenuation of the 3.0 cycle per degree image component will occur. Corresponding image modification will occur for corresponding test segments and results.

This filtering occurs with the any process that is unique to a frequency or size such as filtering the transformation or convolution. In the case of a Fourier-like transform, degradation of an image segment can occur after the first transform and before the inverse transform, or more preferably after the inverse transform and before the image is added.

It will be understood that we prefer alteration of the images unique to a particular contrast sensitivity segment after frequency inverse transform 54. It turns out that taking any real world scene and performing first a Fourier transform from the spatial domain to the frequency domain, filtering into segments, and thereafter performing an inverse

5

10

25

30

Fourier transform for that same spatial frequency segment from the frequency domain to the spatial domain is computationally intense. Computer time ranging to 3 hours for the transform and inverse transform is not unknown (depending upon picture size and density of information). This being the case, a computer program utilizing an inverse transform segment image is preferred.

8

Referring again to Fig. 5, it can be seen vision segment testing 40 produces on frequency inverse transform 54 for each of the test segments degradation of the images at segment degradation step 60. Thereafter, addition of degraded images 65 occurs. This results in patient specific degraded image $I_{\rm G}$.

It goes without saying that the resultant patient specific degraded image $I_{\rm G}$ is a most convenient medical record. It is a record that displays objectively the sum total of the patient's extant vision at the time of testing. Further, by comparison of patient specific degraded image $I_{\rm G}$ with real world original image $I_{\rm R}$, a contrast of the patient's vision to that of an emmetrope can be made.

It will be understood that any vision test which divides and measures properties of human vision into discrete segments is suitable for use with this disclosed process. In the above explanation, it will be understood that a black and white image could be used. It is also possible and preferable to use this process with color.

For example, color images are especially suitable where the patient is tested for so-called "color blindness", that color blindness quantified, and a color image divided into its respective red, green, and blue segments and appropriate degraded in it respective red, green, and blue segments. This much is illustrated at the inverse transform with red R, green G and blue B.

Returning to Fig. 5, it can be seen that frequency
inverse transform 54 now includes 18 separate images.
Specifically, there is an inverse transform at each of the six frequency segments for each of the three colors; red R, green G, and blue U.

10

15

20

25

30

35

Referring to Fig. 6, the invention can be understood in terms of image convolution in the spatial domain. Specifically, image 70 is utilized. Pursuant to the disclosure herein, image 70 can be an original, color or a degraded image. Further, the disclosed procedure can be utilized to degrade or enhance the image.

Eye testing is not specifically illustrated. Eye testing can include frequency testing or testing for recognizable shapes utilizing, for example, convolution functions such as Gaussians. Such convolved images are known and techniques for applicable filter functions are set forth in at least <u>Visual Information Processing Based on Spatial Filters Constrained by Biological Data by Arthur P. Ginsburg, Ph.D. AMRL-TR-78-129, Volume 1, December 1978.</u>

Once eye testing occurs, eye test result can be utilized to modify filter function - preferably in bandwidth, shape, and amplitude. For each vision segment tested, a discrete filter function will be used for image modification. Here, we illustrate image modifications occurs with spatial convolutions 71-75 to image 70.

It will be understood that image convolution can occur with filter functions which correspond to measured size, shape or frequency sensitivity components of the eye.

Finally, each of the convolved images from spatial convolutions 71-75 is added to produce modified image 80. It will be understood that original image 70 may be enhanced instead of degraded by the illustrated process. For example, a pre-cataract image may be modified to illustrate post-cataract surgery vision or .

It will be understood that when computer processing according to this invention is utilized, real time image processing is in effect possible. For example, utilizing the disclosed frequency testing, records can effectively be produced on a real time basis.

Other modification can occur as limited only by the scope of the appended claims. For example, instead of processing images, a look up table of recorded images may be utilized. Thereafter, the most closely corresponding image

may be addressed in accordance with the teachings of this invention. Such addressing would utilize the vision test results to address that stored image which most closely corresponds to the particular control image modified in accordance with the vision test results. It is not required that the images be actively processed to practice this invention; locating images having close similarity to that called for by actual eye test results is sufficient.

5

10

WHAT IS CLAIMED IS:

1	 In a process for the measurement and 			
2	recordation of image recognition, the steps comprising:			
3	selecting an image;			
4	selecting a vision test having the capability of			
5	detecting vision sensitivity in at least one segment of the			
6	total vision spectrum;			
7	testing the vision of said patient in said segment			
8	of said total vision spectrum with separate test results for			
9	separate vision segments;			
10	filtering said image into image segments equivalent			
11	to said tested vision segments of the total vision spectrum;			
12	changing said image segments corresponding to said			
13	test results of said detected vision segments to generate			
14	modified image segments;			
15	combining said modified image segments to produce a			
16	composite modified image.			

- 2. The process for the measurement and recordation of image recognition in accordance with claim 1 and wherein: the selected image is an emmetropic image.
 - The process for the measurement and recordation of image recognition in accordance with claim 1 and wherein:
 the step of changing said image segments includes degrading the image segments.
 - 1 4. The process for the measurement and recordation 2 of image recognition in accordance with claim 1 and wherein: 3 the step of changing said image segments includes 4 enhancing the image segments.
 - 5. The process for the measurement and recordation of image recognition in accordance with claim 1 and wherein: comparing said composite modified image to a control image to provide an objective record of patient vision.

- 6. The process for the measurement and recordation of image recognition in accordance with claim 1 and wherein:

 said step of selecting a vision test having the capability of detecting vision sensitivity in segments of the total vision spectrum includes selecting segments of vision contrast sensitivity; and,
- said step of filtering said image into image
 segments equivalent to said tested vision segments of the
 total vision spectrum includes filtering said image in
 corresponding selected segments of said vision contrast
 sensitivity.
- 1 The process for the measurement and recordation 7. of image recognition in accordance with claim 6 and wherein: 2 said step of selecting segments of vision contrast 3 sensitivity includes selecting two octave bands centered on 4 1.5, 3, 6, 12, and 18 cycles per degree; and, 5 said step of filtering said emmetropic real world 6 image includes filtering in selected two octave bands centered 7 on 1.5, 3, 6, 12, 18 cycles per degree. 8
- 8. The process for the measurement and recordation of image recognition in accordance with claim 6 and wherein said filtering of said image includes:

 4 generating a Fourier transform of said image for each selected frequency band; and, generating from said Fourier transform an inverse Fourier transform for each

7 8 selected frequency band.

- 9. The process for the measurement and recordation of image recognition in accordance with claim 6 and wherein:

 said step of selecting segments of vision contrast sensitivity includes testing said vision of said patient in red, green, and blue; and,

 said step of filtering said image includes filtering
 - said step of filtering said image includes filtering said real world emmetropic image into red, green and blue segments.

- The process for the measurement and recordation 1 10. 2 of image recognition in accordance with claim 1 and wherein: said filtering said image step includes convolving 3 4 an image; and, said adding said modified image segments test 5 includes convolving the image segments with space domain 6 7 filters corresponding to the selected vision segments. 1 In a process for the measurement and recordation of image recognition , the steps comprising: 2 3 selecting an image; selecting a vision test having the capability of 4 detecting vision sensitivity in at least one segment of the 5 6 total vision spectrum; testing the vision of said patient in said segments 7 of said total vision spectrum with separate test results for 8 separate vision segments; 9 convolving said image into modified image segments 10 11 with filter functions corresponding to said tested vision segments of the total vision spectrum; and, 12 combining said modified image segments to produce a 13 14 composite modified image. In a process for the measurement and 1 recordation of image recognition according to claim 11, the steps further comprising: said testing of the vision spectrum step includes
 - 2 3 4 spatial frequency testing. 5
 - 1 In a process for the measurement and recordation of image recognition according to claim 11, the 2 steps further comprising: 3 4
 - said convolving step includes convolving said image 5 with filter functions having spatial frequency sensitivity.

1/4

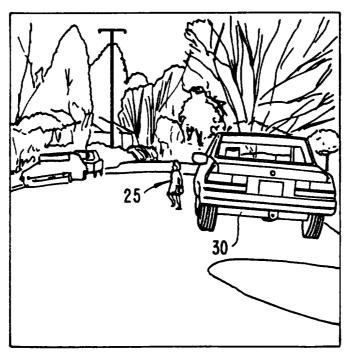
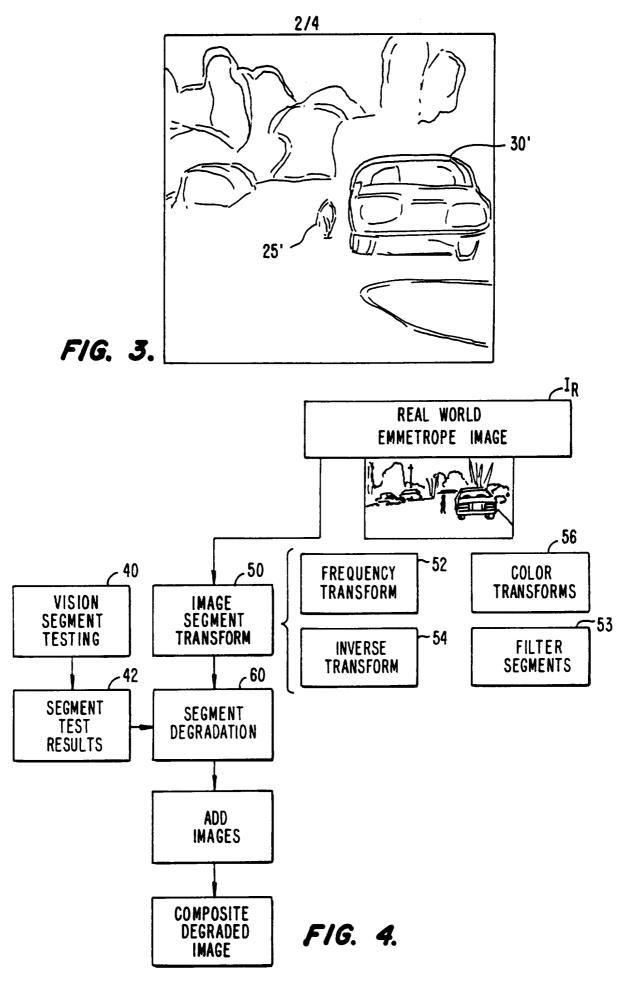
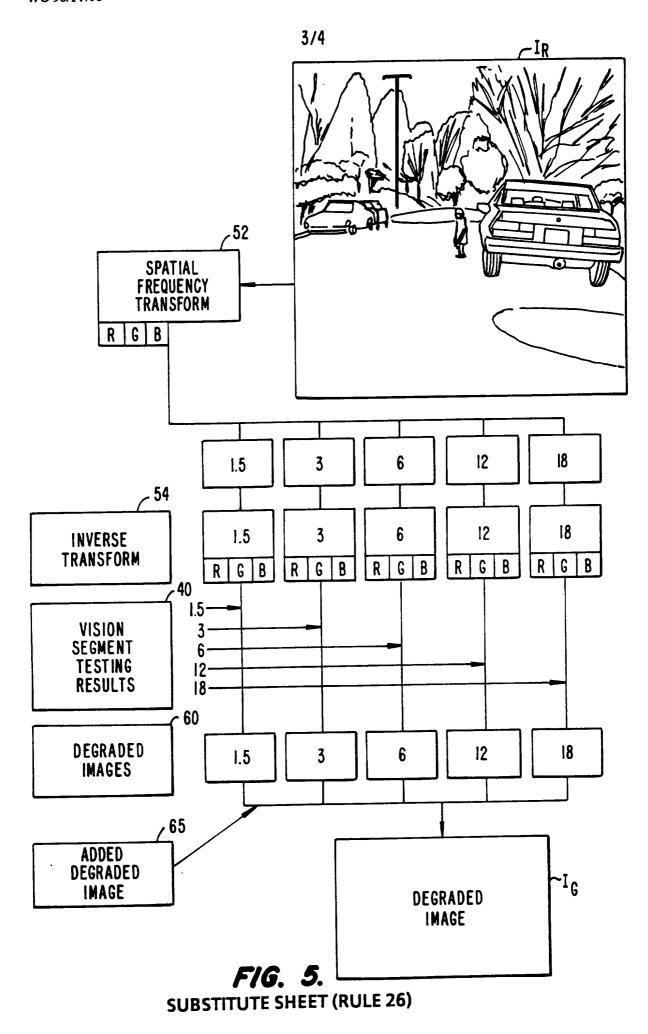
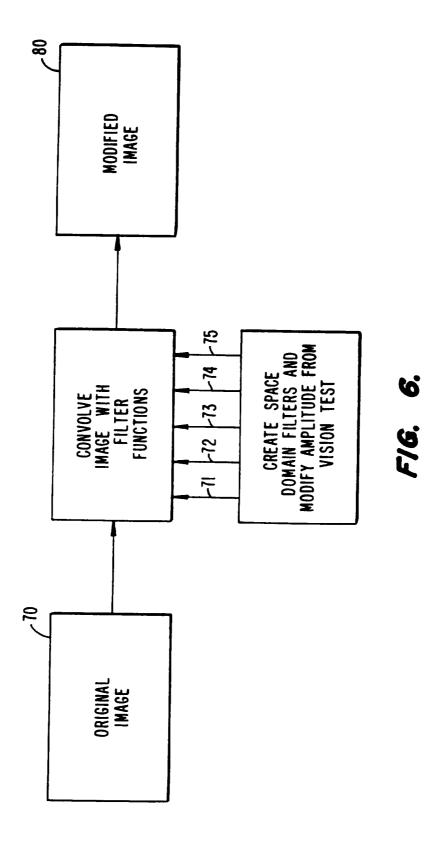





FIG. 2.
SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US95/14771

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): A61B 3/02, 3/10, 3/00, 3/02 US CL: 351/237, 239, 205, 200, 246, 222. According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbols)						
U.S. : 351/237, 239, 205, 200, 246, 222.						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) NONE						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where ap	propriate, of the relevant passages Relevant to claim No.					
X US, A 4,365,873 (GINSBURG) 2 entire reference.	8 DECEMBER 1982, See 1-13					
Further documents are listed in the continuation of Box (See patent family annex.					
	T later document published after the international filing date or priority					
Special categories of cited documents: A* document defining the general state of the art which is not considered.	date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
to be of particular relevance *E* earlier document published on or after the international filling date	*X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step					
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone					
special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination					
P document published prior to the international filing date but later than	being obvious to a person skilled in the art *&* document member of the same patent family					
Date of the actual completion of the international search	Date of mailing of the international search report					
04 JANUARY 1996	1 6 JAN 1996					
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks	Authorized officer					
Box PCT Washington, D.C. 20231	HUNG DANG A Majales, U					
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0550					