US007400578B2

a2 United States Patent 10) Patent No.: US 7,400,578 B2
Guthrie et al. 45) Date of Patent: Jul. 15, 2008
(54) METHOD AND SYSTEM FOR THROTTLING (58) Field of Classification Search 370/229,
NETWORK TRANSMISSIONS USING 3707230, 230.1, 231, 232, 234, 235, 468;
PER-RECEIVER BANDWIDTH CONTROL AT o 709/230, 232, 234, 235
THE APPLICATION LAYER OF THE See application file for complete search history.
TRANSMITTING SERVER (56) References Cited
U.S. PATENT DOCUMENTS
75 2004/0103193 Al* 5/2004 Pandyaetal. 709/224
(7%) " Inventors: Robert Earl Guthrie, Austin, X (US); 2005/0152330 AL* 7/2005 Stephensetal. 370/350
Jeffrey Mark Achtermann, Austin, TX 2007/0025255 AL* 2/2007 Noble ...ovvvrvrrrrrrrereen 3701235
(US) * cited by examiner
Primary Examiner—Ajit Patel
(73) Assignee: International Business Machines (74) Attorney, Agent, or Firm—Duke W. Yee; Jeffrey S.
Corporation, Armonk, NY (US) LaBaw; Wayne P. Bailey
57 ABSTRACT
(*) Notice: Subject to any disclaimer, the term of this A method is presented for throttling data transmissions within
patent is extended or adjusted under 35 a data processing system. Information about a data transfer
U.S.C. 154(b) by 559 days. from a server to a client is received within the application
layer of a server, which stores the information about the data
(21) Appl. No.: 11/014,066 transfer along with information about a number of recent data
transfers from the server to the client to create a sliding
(22) Filed: Dec. 16, 2004 window of historical information about data transfers. The
data transfer from the application layer of the server is
(65) Prior Publication Data delayed within the application layer of the server for an

amount of time that is approximately equal to a computed
delay time value in response to a determination that an aver-
age data transfer rate over the number of recent data transfers

US 2006/0133428 Al Jun. 22, 2006

(51) Int.CL from the server to the client may exceed a data transfer rate
Ho4J /16 (2006.01) threshold parameter.
Ho04J 3/14 (2006.01)

(52) US.CL .o 370/229; 370/232 8 Claims, 7 Drawing Sheets

RECEIVE DATA PACKET
402

!

DETERMINE TARGET RECEIVER
404

!

COMPUTE CURRENTLY
REQUIRED DELAY PERIOD
FOR DATA PACKET
406

DELAY TRANSFER OF
DATA PACKET FROM APPLICATION LAYER
FOR COMPUTED DELAY PERIOD
410

DELAY PERIOD > 07
408

TRANSFER DATA PACKET
FROM APPLICATION LAYER
412

U.S. Patent Jul. 15, 2008 Sheet 1 of 7 US 7,400,578 B2

105
CLIENT
l’v 106
CLIENT
07
ERSONAL

DIGITAL ASSISTANT

H\
) pERSONAL FiG. 14

DIGITAL ASSISTANT (PR[OR ARD

WIRELESS
PHONE
120 122
DISPLAY
\ CPU ADAPTER [| [146
8 DISPLAY
144
124 ~ RAM —
USER INTERFACE | 0
ADAPTER
ROM -
142
MOUSE
I/O ADAPTER |
IEEK’\’ 140
KEYBOARD 136
COMMUNICATION | | 2
ADAPTER < COMMUNICATION -
LINK

FIG. IB

(PRIOR ART)

U.S. Patent

Jul. 15, 2008 Sheet 2 of 7

US 7,400,578 B2

SERVER 20

OSI APPLICATION LAYER 216

OUTGOING DATA PACKETS

218

v

| BANDWIDTH CONTROL MODULE 220]

|

BANDWIDTH-REGULATED OUTGOING DATA PACKETS 222 l

OTHER OSI LAYERS 214

OSI TRANSPORT LAYER

210

LOWER OSI LAYERS 21

NETWORK F[G 2
202
l 4 l
RECEIVER RECEIVER RECEIVER
204 206 208

BANDWIDTH CONTROL MODULE

PER-RECEIVER

PACKET DELAY

COMPUTATION

(RECEIVER #1)
304

PER-RECEIVER

PACKET DELAY

COMPUTATION

(RECEIVER #2)
306

PER-RECEIVER
PACKET DELAY
INSERTION
(RECEIVER #1)
310

PER-RECEIVER
PACKET DELAY
INSERTION
(RECEIVER #2)
312

30

e T

PER-RECEIVER

PACKET DELAY

COMPUTATION

(RECEIVER #N)
308

PER-RECEIVER
PACKET DELAY
INSERTION
(RECEIVER #N)
314

FIG.

U.S. Patent Jul. 15, 2008 Sheet 3 of 7 US 7,400,578 B2

RECEIVE DATA PACKET
402

|

DETERMINE TARGET RECEIVER
404

!

COMPUTE CURRENTLY
REQUIRED DELAY PERIOD
FOR DATA PACKET
406

DELAY TRANSFER OF

DELAY PERIOD > 07 DATA PACKET FROM APPLICATION LAYER

408 YES FOR COMPUTED DELAY PERIOD
— 410
NO
TRANSFER DATA PACKET
FROM APPLICATION LAYER
412
ﬂﬂﬂ HJN
oarn |1 o] e 1h L
RECEIVER | E
RECEIVER-SPECIFIC DATA TRANSFER HISTORYe
502
pla
AGGREGATE| Illll_h_lrl(Tlll —’_‘ .
| AGGREGATE DATA TRANSFER HISTORY e TIME
504

FiG. 5

U.S. Patent Jul. 15, 2008 Sheet 4 of 7 US 7,400,578 B2

]

RECORD INFORMATION ABOUT CURRENT COMPARE AGGREGATE AVERAGE DATA
DATA PACKET IN RECEIVER-SPECIFIC TRANSFER RATE WITH AGGREGATE
DATA TRANSFER HISTORY MAXIMUM DATA TRANSFER RATE
602 616

!

COMPUTE RECEIVER-SPECIFIC AVERAGE
DATA TRANSFER RATE OVER RECEIVER-
SPECIFIC DATA TRANSFER HISTORY
604

I}

COMPARE RECEIVER-SPECIFIC AVERAGE

AVERAGE
DATA TRANSFER RATE
IS TOO LARGE?
618

YES

CALCULATE AGGREGATE DELAY TIME

DATA TRANSFER RATE WITH RECEIVER- 620
SPECIFIC MAXIMUM DATA TRANSFER RATE
606 <

SELECT LARGER OF RECEIVER-SPECIFIC
DELAY TIME AND AGGREGATE DELAY TIME
622

l

UPDATE DATA TRANSFER HISTORIES WITH
CALCULATE NEW EXPECTED TRANSMITTAL TIME

RECEIVER-SPECIFIC DELAY TIME 624

610 |

RECORD INFORMATION ABOUT CURRENT
DATA PACKET IN AGGREGATE
DATA TRANSFER HISTORY
612

b

COMPUTE AGGREGATE AVERAGE DATA
TRANSFER RATE OVER
AGGREGATE DATA TRANSFER HISTORY
614

L

AVERAGE
DATA TRANSFER RATE
IS TOO LARGE?
608

YES

FIG. 6

U.S. Patent

Jul. 15, 2008

Sheet S of 7

GET ARRIVAL_TIME VALUE OF CURRENT
DATA PACKET AS CURRENT TIMESTAMP
702

'

!

GET LAST_SEND VALUE AS TRANSMITTAL
TIME OF PREVIOUS DATA PACKET
704

COMPUTE PROJECTED_SEND_TIME AS
((# BYTES IN DATA TRANSFER HISTORY)/
(DATA TRANSFER RATE) +
START_OF_WINDOW)

71

|

.

COMPUTE
INACTIVITY THRESHOLD TIME VALUE
BASED ON PACKET SIZE AND
DATA TRANSFER RATE
706

COMPUTE DELAY TIME AS
(PROJECTED_SEND_TIME - ARRIVAL_TIME)
716

(ARRIVAL_TIME
-LAST_SEND) >
INACTIVITY TIME?
708

YES

CLEAR DATA TRANSFER HISTORY
EXCEPT FOR CURRENT DATA TRANSFER
710

DELAY TIME < 0?
718

YES

SET DELAY TIME TO 0
720

L

SET PROJECTED_SEND_TIME =
ARRIVAL_TIME
722

US 7,400,578 B2

A

Y

GET START_OF_WINDOW AS
TRANSMITTAL TIME OF OLDEST ENTRY IN
DATA TRANSFER HISTORY
2

STORE PROJECTED_SEND_TIME FOR
CURRENT DATA PACKET IN DATA
TRANSFER HISTORY
724

FiG. 7

— 810 LONG INACTIVITY SPAN

~

— 808 SHORT INACTIVITY SPAN

| r N
| T - v / T TII:/IE
PREVIOUS ELAPSED TIME CURRENT
DATA TRANSFER 806 DATA TRANSFER F I G 8
802 804

U.S. Patent Jul. 15, 2008 Sheet 6 of 7 US 7,400,578 B2

| ‘
1 1 1 f TIvE

START-OF- PROJECTED ARRIVAL PROJECTED
WINDOW SEND-TIME TIME SEND-TIME
902 906 904 908
— ~ J v J
DELAY TIME DELAY TIME
910 912

FIG. 9

BANDWIDTH CONTROL MODULE 1202
RECEIVER-SPECIFIC RECEIVER-SPECIFIC
DATA TRANSFER RATE DATA TRANSFER RATE DAT AAfRi'?\JES?:g;ER ATE
(RECEIVER #1) (RECEIVER #N) 1208
1204 1206 ==
RECEIVER-SPECIFIC RECEIVER-SPECIFIC
DATA TRANSFER HISTORY DATA TRANSFER HISTORY ~ AGGREGATE
DATA STRUCTURE DATA STRUCTURE DATA TRANSFER HISTORY
(RECEIVER #1) (RECEIVER #N) DATA STRUCTURE
1210 1212 1214
TRANSMITTAL TRANSMITTAL TRANSMITTAL
TIMESTAMPS TIMESTAMPS TIMESTAMPS
PER TRANSFER PER TRANSFER PER TRANSFER
1216 1218 1220
DELAY TIMES DELAY TIMES DELAY TIMES
PER TRANSFER PER TRANSFER PER TRANSFER
1222 1224 1226
BYTE COUNT BYTE COUNT BYTE COUNT
PER TRANSFER PER TRANSFER PER TRANSFER
1228 1230 1232
TOTAL BYTES FOR TOTAL BYTES FOR TOTAL BYTES FOR
DATA TRANSFER DATA TRANSFER DATA TRANSFER
HISTORY HISTORY HISTORY
1234 1236 1238

FIG. 12

U.S. Patent

Jul. 15, 2008

Sheet 7 of 7

US 7,400,578 B2

BANDWIDTH CONTROL MODULE 1002

DATA PACKET RECEIVING MODULE 1004

—

[

PER-RECEIVER

PACKET DELAYING

THREAD
(RECEIVER #1)
1008 v
DELAY CENTRALIZED
COMPUTATION PACKET BUFFER
1006

MODULE 1012

DELAY
INSERTION
MODULE 1016

PER-RECEIVER
PACKET DELAYING
THREAD
(RECEIVER #N)
1010

DELAY
COMPUTATION
MODULE 1014

DELAY
INSERTION
MODULE 1018

Y

|—blBANDWIDTH-REGULATED DATA PACKET TRANSFERRING MODULE

1020]1J

FIG. 10

BANDWIDTH CONTROL MODULE 1102

I—-L DATA PACKET RECEIVING INTERFACE 1104]_l

PER-RECEIVER
PACKET DELAYING THREAD

(RECEIVER #1)
1106
DELAY PACKET
COMPUTATION PROCESSING
MODULE MODULE
1118 1110
DELAY
INSERTION PACKET BUFFER
MODULE 1114
122

PER-RECEIVER
PACKET DELAYING THREAD
(RECEIVER #N)
1108
DELAY PACKET
COMPUTATION PROCESSING
MODULE MODULE
1120 1112
DELAY
INSERTION PACKET BUFFER
MODULE 1116
1124

I—DI BANDWIDTH-REGULATED DATA PACKET TRANSFERRING INTERFACE 1126 }d—l

FIG. 11

US 7,400,578 B2

1

METHOD AND SYSTEM FOR THROTTLING
NETWORK TRANSMISSIONS USING
PER-RECEIVER BANDWIDTH CONTROL AT
THE APPLICATION LAYER OF THE
TRANSMITTING SERVER

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an improved data process-
ing system and, in particular, to a method and apparatus for
multicomputer data transferring. Still more particularly, the
present invention provides a method and apparatus for com-
puter-to-computer data transfer regulating.

2. Description of Related Art

The bandwidth of a network is a resource that needs to be
carefully managed. When a number of data transmissions are
multiplexed together over a network, the network must effi-
ciently deliver these datastreams and retain the best possible
delivered quality even when a transmitting entity attempts to
exceed the bandwidth of the intervening network links.
Hence, in transferring data within a distributed data process-
ing system between a sending entity, such as a server, and
multiple target receiving entities, such as a set of clients, one
problem that needs to be addressed is the manner in which
data is transmitted from a server to the receivers while man-
aging network bandwidth. More specifically, this problem
may include controlling the ability of the server to send an
appropriate amount of data to the receivers within an appro-
priate period of time.

It is often the case that the network bandwidth capacity
varies from receiver to receiver. Hence, a simple network
management solution that divides network bandwidth
equally among the receivers and that transmits data to all
receivers at the same rate will result in the bandwidth capacity
of one or more receivers being underutilized or overutilized.
Although the transmission of data can be managed in a static
manner using various threshold limits, the network band-
width is not utilized efficiently.

Other solutions throttle the transmission of data at the
source entity in a dynamic manner by monitoring bandwidth
utilization at the OSItransport layer. The Open Systems Inter-
connection (OSI) Reference Model is a seven-layer abstract
description for communications and computer network pro-
tocol design which divides the functions of network commu-
nication into a stack or a series of layers. The purpose of the
transport layer is to provide transparent transfer of data
between end users, thus relieving the upper layers from any
concern with providing reliable and cost-eftective data trans-
fer; TCP/IP (Transport Control Protocol/Internet Protocol) is
a commonly used OSI Layer 4 protocol. Although applying
bandwidth control at the OSI transport layer can yield effi-
cient bandwidth utilization, these approaches have a signifi-
cant drawback in that they require replacement of standard
TCP/IP software that is commonly bundled within most oper-
ating systems. However, it is not an option for many software
products to require a significant modification to an operating
system with a special TCP/IP implementation that may
impact numerous software applications in order to achieve a
single software product’s goal of efficient bandwidth utiliza-
tion.

Therefore, it would be advantageous to provide a band-
width control mechanism within a server that is transmitting
data to multiple receivers with different network bandwidth
capacities such that the bandwidth control mechanism is
wholly contained within a single application.

20

25

30

35

40

45

50

55

60

2
SUMMARY OF THE INVENTION

A method, an apparatus, a system, and a computer program
product are presented for throttling data transmissions within
a data processing system. Information about a data transfer
from a server to a client is received within the application
layer of a server, which stores the information about the data
transfer along with information about a number of recent data
transfers from the server to the client to create a sliding
window of historical information about data transfers. Infor-
mation about the data transfer may include a byte count for a
number of bytes in the data transfer and an approximate
transferal time for the data transfer from the application layer
of the server. The data transfer from the application layer of
the server is delayed within the application layer of the server
for an amount of time that is approximately equal to a com-
puted delay time value in response to a determination that an
average data transfer rate over the number of recent data
transfers from the server to the client may exceed a data
transfer rate threshold parameter. The data transfer is released
to be performed without delaying the data transfer from the
application layer of the server for an amount of time that is
approximately equal to a computed delay time value in
response to a determination that the average data transfer rate
over the number of recent data transfers from the server to the
client does not exceed a data transfer rate threshold param-
eter.

Information about the data transfer may also be stored
within the application layer of a server along with information
about a number of recent data transfers from the server to a
plurality of clients. Even if the data transfer is not delayed for
an amount of time that is approximately equal to a computed
delay time value in response to a determination that an aver-
age data transfer rate over the number of recent data transfers
from the server to the client may exceed a data transfer rate
threshold parameter, the data transfer from the application
layer of the server may be delayed, within the application
layer ofthe server, for an amount of time that is approximately
equal to a computed delay time value in response to a deter-
mination that an average aggregate data transfer rate over the
number of recent data transfers from the server to the plurality
of clients may exceed an aggregate data transfer rate thresh-
old parameter.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
further objectives, and advantages thereof, will be best under-
stood by reference to the following detailed description when
read in conjunction with the accompanying drawings,
wherein:

FIG. 1A depicts a typical network of data processing sys-
tems, each of which may implement the present invention;

FIG. 1B depicts a typical computer architecture that may
be used within a data processing system in which the present
invention may be implemented;

FIG. 2 illustrates a block diagram that shows a central
server supporting the transmission of data packets to multiple
receivers within a data processing system using bandwidth
control that is contained within the application layer of the
central server in accordance with the present invention;

FIG. 3 illustrates a block diagram that shows a bandwidth
control module that regulates the bandwidth of outgoing data
packets on a per-receiver basis in accordance with the present
invention;

US 7,400,578 B2

3

FIG. 4 illustrates a flowchart that shows a generalized
process for controlling the data transfer rate with respect to
individual data packets in a bandwidth control module within
the application layer in accordance with an embodiment of
the present invention;

FIG. 5 illustrates a pair of bar graphs that graphically depict
data transfer histories over a timeline in which the data trans-
fer histories reflect the bandwidth control that is asserted over
receiver-specific datastreams and an aggregate datastream
that represents a combination of the receiver-specific datas-
treams as sent from a server to the multiple data receivers in
accordance with the present invention;

FIG. 6 illustrates a flowchart that shows a process for
computing a delay time to be applied to a received data packet
in order to decrease an average data transfer rate over a
current data transfer history;

FIG. 7 illustrates a flowchart that shows a process for
computing a delay time to be applied against a current data
packet in order to delay the current data transfer;

FIG. 8 illustrates a set of time points along a timeline that
shows the relationships between an inactivity threshold time
value and various data transfers;

FIG. 9 illustrates a set of time points along a timeline that
shows the relationships between a projected send-time value
and the delay time;

FIG. 10 illustrates a block diagram that shows a multi-
threaded mechanism for throttling datastreams using a cen-
tralized data buffer in a bandwidth control module within the
application layer of a server in accordance with an embodi-
ment of the present invention;

FIG. 11 illustrates a block diagram that shows a multi-
threaded mechanism for throttling datastreams using mul-
tiple packet buffers associated with per-receiver packet delay-
ing threads in a bandwidth control module within the
application layer of a server in accordance with an embodi-
ment of the present invention; and

FIG. 12 illustrates a block diagram that shows some of the
parameters and data structures that are used by the bandwidth
control module to monitor the data transfer histories in accor-
dance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

In general, the devices that may comprise or relate to the
present invention include a wide variety of data processing
technology. Therefore, as background, a typical organization
of hardware and software components within a distributed
data processing system is described prior to describing the
present invention in more detail.

With reference now to the figures, FIG. 1A depicts atypical
network of data processing systems, each of which may
implement a portion of the present invention. Distributed data
processing system 100 contains network 101, which is a
medium that may be used to provide communications links
between various devices and computers connected together
within distributed data processing system 100. Network 101
may include permanent connections, such as wire or fiber
optic cables, or temporary connections made through tele-
phone or wireless communications. In the depicted example,
server 102 and server 103 are connected to network 101 along
with storage unit 104. In addition, clients 105-107 also are
connected to network 101. Clients 105-107 and servers 102-
103 may be represented by a variety of computing devices,
such as mainframes, personal computers, personal digital
assistants (PDAs), etc. Distributed data processing system
100 may include additional servers, clients, routers, other
devices, and peer-to-peer architectures that are not shown.

20

25

30

35

40

45

50

55

60

65

4

In the depicted example, distributed data processing sys-
tem 100 may include the Internet with network 101 represent-
ing a worldwide collection of networks and gateways that use
various protocols to communicate with one another, such as
Lightweight Directory Access Protocol (LDAP), Transport
Control Protocol/Internet Protocol (TCP/IP), Hypertext
Transport Protocol (HTTP), Wireless Application Protocol
(WAP), etc. Of course, distributed data processing system
100 may also include a number of different types of networks,
such as, for example, an intranet, a local area network (LAN),
or a wide area network (WAN). For example, server 102
directly supports network 109 and client 110; network 109
incorporates wireless communication links. Network-en-
abled phone 111 and PDA 112 can directly transfer data
between themselves across wireless link 113 using an appro-
priate technology, e.g., via Bluetooth™ wireless technology
or Wi-Fitechnology (IEEE 802.11) that allows the creation of
so-called personal area networks (PAN) or personal ad-hoc
networks. Phone 111 connects to network 109 through wire-
less link 114, and PDA 113 connects to network 109 through
wireless link 115. In a similar manner, PDA 113 can transfer
data to PDA 107 via wireless link 116.

The present invention could be implemented on a variety of
hardware platforms; FIG. 1A is intended as an example of a
heterogeneous computing environment and not as an archi-
tectural limitation for the present invention.

With reference now to FIG. 1B, a diagram depicts a typical
computer architecture of a data processing system, such as
those shown in FIG. 1A, in which the present invention may
be implemented. Data processing system 120 contains one or
more central processing units (CPUs) 122 connected to inter-
nal system bus 123, which interconnects random access
memory (RAM) 124, read-only memory 126, and input/out-
put adapter 128, which supports various I/O devices, such as
printer 130, disk units 132, or other devices not shown, such
as an audio output system, etc.

System bus 123 also connects communication adapter 134
that provides access to communication link 136. User inter-
face adapter 148 connects various user devices, such as key-
board 140 and mouse 142, or other devices not shown, such as
a touch screen, stylus, microphone, etc. Display adapter 144
connects system bus 123 to display device 146.

Those of ordinary skill in the art will appreciate that the
hardware in FIG. 1B may vary depending on the system
implementation. For example, the system may have one or
more processors, such as an Intel® Pentium®-based proces-
sor and a digital signal processor (DSP), and one or more
types of volatile and non-volatile memory. Other peripheral
devices may be used in addition to or in place of the hardware
depicted in FIG. 1B. The depicted examples are not meant to
imply architectural limitations with respect to the present
invention.

In addition to being able to be implemented on a variety of
hardware platforms, the present invention may be imple-
mented in a variety of software environments. A typical oper-
ating system may be used to control program execution
within each data processing system. For example, one device
may run a Unix® operating system, while another device
contains a simple Java® runtime environment. A representa-
tive computer platform may include a browser, which is a well
known software application for accessing hypertext docu-
ments in a variety of formats, such as graphic files, word
processing files, Extensible Markup Language (XML),
Hypertext Markup Language (HTML), Handheld Device
Markup Language (HDML), Wireless Markup Language
(WML), and various other formats and types of files.

US 7,400,578 B2

5

The present invention may be implemented on a variety of
hardware and software platforms, as described above with
respect to FIG. 1A and FIG. 1B. More specifically, though,
the present invention is directed to an improved data process-
ing environment for throttling the frequency of unicast trans-
missions from a central server or a first system, device, or
apparatus, e.g., such as server 103 that is shown in FIG. 1A, to
a plurality of receivers or a set of systems, devices, or appa-
ratuses, e.g., such as clients 105-107 and clients 110-112,
without overloading or underutilizing the network bandwidth
capacity of any individual receiver nor the aggregate network
bandwidth capacity of the central server even though the
network bandwidth capacity of the individual receivers may
vary. Various embodiments of the present invention are
explained in more detail hereinbelow with respect to the
remaining figures.

With reference now to FIG. 2, a block diagram depicts a
central server supporting the transmission of data packets to
multiple receivers within a data processing system using
bandwidth control that is contained within the application
layer of the central server in accordance with the present
invention. Server 200 sends data packets via network 202 to
data receivers 204-208, which represent various types of cli-
ent devices, such as those shown in FIG. 1A.

FIG. 2 illustrates that the present invention operates within
the Open Systems Interconnection (OSI) network communi-
cation model. The OSI Reference Model is a layered abstract
description for communications and computer network pro-
tocol design which divides the functions of network commu-
nication into a series of layers. Each layer has the property
that it only uses the functions of the layer below and only
exports functionality to the layer above. A system that imple-
ments protocol behavior consisting of a series of these layers
is known as a protocol stack. This OSI model is widely
implemented within the computing, networking, and commu-
nication industries; its main feature is in the junction between
layers as dictated by specifications on how one layer interacts
with another such that a layer written by one manufacturer
can interoperate with a layer from another. This logical sepa-
ration of layers makes reasoning about the behavior of pro-
tocol stacks much easier, allowing the design of elaborate but
highly reliable protocol stacks. Each layer performs services
for the next higher layer, and makes requests of the next lower
layer. An implementation of several OSI layers is often
referred to as a stack, e.g., TCP/IP stack.

Transport layer 210 is supported by lower OSI layers 212
and supports other OSI layers 214. The transport layer (Layer
4) provides transparent transfer of data between end-users,
thus relieving the upper layers from any concern with provid-
ing reliable and cost-eftective data transfer. Routing and for-
warding are functions of this layer, as well as addressing,
internetworking, error handling, congestion control, and
packet sequencing.

Application layer 216 (Layer 7) is the highest layer, which
interfaces directly to and performs common application ser-
vices for the application processes. The common application
services provide semantic conversion between associated
application processes. Examples of common application ser-
vices include virtual file, virtual terminal, and job transfer and
manipulation protocols.

Prior art solutions to bandwidth control are typically incor-
porated within the OSI transport layer; these solutions yield
accurate bandwidth control rates but have a significant draw-
back in that they require the replacement of standardized
TCP/IP software that is bundled within common operating
systems, which introduces the ability to potentially adversely
affect the execution of many applications.

20

25

30

35

40

45

50

55

60

65

6

In contrast, the present invention incorporates bandwidth
control solely within the application layer. Application layer
216 accepts outgoing data packets-218 and subjects them to
processing by bandwidth control module 220 before transfer-
ring them as bandwidth-regulated outgoing data packets 222
to lower OSI layers, such as transport layer 210.

The description of the exemplary embodiments of the
present invention hereinbelow describe a bandwidth control
module as performing various operations. A module repre-
sents a software or firmware routine, subroutine, interface,
task, process, procedure, function, object-oriented method or
object, program, or subprogram that accomplishes a config-
urable set of computational operations. Thus, it should be
noted that the bandwidth control module may comprise mul-
tiple interoperating modules.

In addition, the description of the exemplary embodiments
of the present invention hereinbelow describe a bandwidth
control module as performing the transfer or the transmittal of
a given data packet from the application layer in which the
bandwidth control module is contained. However, it should
be noted that other application processes may perform the
actual transfer of a given data packet from the application
layer while relying on the bandwidth control solely for its
ability to determine an appropriate delay time and/or to intro-
duce a processing delay of an appropriate delay time.

Additionally, the description of the exemplary embodi-
ments of the present invention hereinbelow describe a band-
width control module as introducing the delay in the transfer
or the transmittal of a given data packet from the application
layer in which the bandwidth control module is contained.
However, it should be noted that other application processes
may perform the actual delay of a given data packet from the
application layer while relying on the bandwidth control
solely for its ability to determine an appropriate delay time.

With reference now to FIG. 3, a block diagram depicts a
bandwidth control module that regulates the bandwidth of
outgoing data packets on a per-receiver basis in accordance
with the present invention. Bandwidth control module 302
receives a data packet, and depending on the target receiver of
the received data packet, bandwidth control module 302 com-
putes a required delay time value for the data packet and then
delays any further transference, processing, or transmission
of the data packet in accordance-with the computed delay
time value. Bandwidth control module 302 may immediately
transfer some of outgoing data packets without delaying the
data packets while other outgoing data packets may be sub-
jected to a computed delay time period. In this manner, band-
width control module 302 interjects delay periods into the
datastreams that are being transmitted to the receivers. Band-
width control module 302 computes delay periods, e.g., per-
receiver packet delay computations 304-308, and interjects
delay periods, e.g., per-receiver packet delay insertions 310-
314, on a per-receiver basis that depends on configurable
bandwidth capacity parameters that reflect the maximum
communication bandwidth capacities of the individual
receivers and/or the maximum communication bandwidth
capacity of the server, as explained in more detail hereinbe-
low.

With reference now to FIG. 4, a flowchart depicts a gener-
alized process for controlling the data transfer rate with
respect to individual data packets in a bandwidth control
module within the application layer in accordance with an
embodiment of the present invention. The process com-
mences with the receipt of a data packet (step 402), e.g., at the
bandwidth receiving module from an application process.
The target receiver for the received data packet is determined
(step 404), and the currently required delay period for the data

US 7,400,578 B2

7

packet is computed (step 406). If the computed delay period
is greater than zero (step 408), then the transfer of the data
packet is delayed for an amount of time that is approximately
equal to the computed delay period (step 410). If it was
determined at step 408 that a delay period was not required,
then the data packet is released without being specifically
delayed in accordance with a computed time delay period.
After further processing of the data packet has been delayed
or after the data packet has been released without further
delay, then the data packet is transferred from the application
layer (step 412), e.g., to the transport layer, thereby conclud-
ing the process.

With reference now to FIG. 5, a pair of bar graphs graphi-
cally depict data transfer histories over a timeline in which the
data transfer histories reflect the bandwidth control that is
asserted over receiver-specific datastreams and an aggregate
datastream that represents a combination of the receiver-
specific datastreams as sent from a server to the multiple data
receivers in accordance with the present invention. As men-
tioned previously, a bandwidth control module within the
application layer of a server computes delay periods and
interjects delay periods on a per-receiver basis that depends
on configurable bandwidth capacity parameters that reflect
the maximum communication bandwidth capacities of the
individual receivers and/or the maximum communication
bandwidth capacity of the server. The bandwidth control is
accomplished by recording a receiver-specific data transfer
history for each receiver while also recording an aggregate
data transfer history for all data transfers over all receivers;
the recordations of these data transfer histories can be repre-
sented as a set of sliding windows of data transfers.

For example, receiver-specific data transfer history 502
represents a sliding window of the data transfers that have
been performed on behalf of a single data receiver; each data
receiver has a corresponding data transfer history. Aggregate
data transfer history 504 represents a sliding window of the
data transfers that have been performed on behalf of all data
receivers, i.e. all data transmissions from a server to multiple
data receivers.

Each entry in receiver-specific data transfer history 502
represents a single data transfer to one data receiver within a
particular time period; in other words, each bar within the bar
graph 502 represents a single data transfer to a single data
receiver. Each entry in aggregate data transfer history 504
represents a data transfer for any data receivers within a
particular time period; thus, successive entries in aggregate
data transfer history 504 may represent data transfers to dif-
ferent data receivers.

When a data packet is received by the bandwidth control
module within the application layer, information about the
processing of the data packet is entered into the appropriate
receiver-specific data transfer history and also into the aggre-
gate data transfer history. For example, bar 506 represents the
most recent data transfer for a particular data receiver within
the appropriate receiver-specific data transfer history, and bar
508 represents this data transfer within the aggregate data
transfer history. Initially, entries are made into a data transfer
history until it is filled with entries; once a data transfer
history is filled, then an entry is overwritten to make room for
a new entry. However, a data transfer history is sometimes
cleared based on inactivity, as explained in more detail further
below. In this manner, a data transfer history represents a
sliding temporal window for data transfer activity that con-
tinually moves forward with new entries.

It should be noted that the vertical axis of the bar graphs is
shown as being undefined; e.g., each bar in the bar graphs may
represent a number of bytes for a data transfer within a given

20

25

30

35

40

45

50

55

60

65

8

time period, and the vertical axis of each bar graph may be
assumed to be scaled differently. It should also be noted that
each bar in the bar graphs represents an entry within a-history
data structure for a given data transfer; the bar graphs are
intended to depict activity over a time period, but the width of
the individual bars within the bar graphs do not depict specific
time intervals over which a given data transfer occurs. Hence,
it should be expected that data packets may be processed in a
manner that is temporally random and not spaced in regular
intervals as depicted in FIG. 5.

Each entry in a data transfer history has information about
the time at which an associated data transfer occurred, e.g., by
obtaining a timestamp from a system call to the operation
system to obtain so-called wall-clock time. Each entry in a
data transfer history also has information about the amount of
delay time that has been applied against an associated data
transfer to ensure that the attempted data transfer did not
exceed a bandwidth capacity parameter. In addition, each
entry in a data transfer history has information about the
number of bytes that were transmitted for an associated data
transfer. Thus, a data transfer history contains information
that allows for the computation of an approximate data trans-
fer rate for the set of data transfers that have been recorded
within the entries in the data transfer history.

A receiver-specific data transfer history contains informa-
tion about the times at which data transfers were made from
the application layer of the server to a given data receiver and
also contains information about the amount of data that was
transmitted during those recorded data transfers. An average
data transfer rate for a particular data receiver can be com-
puted over a receiver-specific data transfer history by consid-
ering the number of bytes that have been transferred over the
time period that is represented by the data transfer history, i.e.
((number of bytes)/(amount of time)).

Likewise, the aggregate data transfer history contains
information about the times at which data transfers were
made from the application layer of the server to any data
receivers and also contains information about the amount of
data that was transmitted during those recorded data transfers.
An average aggregate data transfer rate across the datas-
treams for all data receivers can be computed over the aggre-
gate data transfer history by considering the number of bytes
that have been transtferred over the time period that is repre-
sented by the data transfer history.

With reference now to FIG. 6, a flowchart depicts a process
for computing a delay time to be applied to a received data
packet in order to decrease an average data transfer rate over
a current data transfer history. Given the overview of the
present invention that is presented within FIGS. 2-5, the data
transfer throttling mechanism of the present invention may be
described in more detail; in particular, the process that is
shown in FIG. 6 provides more detail for step 406 that is
shown in FIG. 4. In general, the bandwidth control module
throttles the data transfers to the individual data receivers
through the use of a receiver-specific data transfer history and
the aggregate data transfer history, which are briefly
described above with respect to FIG. 5; detailed data struc-
tures for a data transfer history are described in more detail
hereinbelow.

When a data packet is received by the bandwidth control
module, e.g., as shown at step 402 in FIG. 4, information
about the current data packet or the current data transfer, such
as the number of bytes in the current data packet and the
timestamp for the expected time at which the data packet will
be transferred to a data receiver, is recorded in an entry within
the receiver-specific data transfer history that is associated
with the data receiver to which the current data packet is to be

US 7,400,578 B2

9

transmitted (step 602). The received data packet is the data
packet that is currently being processed; this data packet can
be described as the current data packet, and its potential
transfer to the appropriate data receiver can be described as
the current data transfer. At this point in time, it may be
assumed that the current data packet will be transmitted
immediately without delay, so the recorded timestamp may
simply contain the current system time.

An average data transfer rate for the appropriate data
receiver, i.e. the data receiver to which the current data packet
will subsequently be transmitted, is computed over the appro-
priate data receiver’s receiver-specific data transfer history,
including the current data packet (step 604). If the current
data packet contains a sufficient amount of data, then it is
possible that the immediate transfer of the data packet would
cause the appropriate data receiver’s maximum bandwidth
capacity to be exceeded; in other words, the number of trans-
ferred bytes would be too large for the time period that is
represented within the data transfer history.

Hence, the computed data transfer rate is compared with
the receiver-specific data transfer rate parameter that is asso-
ciated with the appropriate data receiver (step 606). If the
computed data transfer rate exceeds the maximum threshold
as represented by the receiver-specific data transfer rate
parameter (step 608), then a receiver-specific delay time is
computed (step 610). The computed delay time is an amount
oftime that the bandwidth control module should wait before
transferring the data packet. By delaying the transfer of the
current data packet, the amount of time that is represented
within the appropriate data receiver’s receiver-specific data
transfer history would be increased or lengthened, thereby
decreasing the average data transfer rate of the appropriate
data receiver.

However, the present invention manages the data transfer
rates with respect to the bandwidth capacity of the server in
addition to the bandwidth capacity of any data receiver.
Hence, the bandwidth control module needs to ensure that the
aggregate average data transfer rate does not exceed the maxi-
mum communication bandwidth capacity of the server in
addition to ensuring that the receiver-specific average data
transfer rate does not exceed the maximum communication
bandwidth capacity of the appropriate data receiver. If the
current data packet was delayed in-accordance with the
receiver-specific delay time that is computed at step 610 and
then transferred to the appropriate data receiver, it is possible
that the maximum communication bandwidth capacity of the
server might be exceeded even though the maximum com-
munication bandwidth capacity of the appropriate data
receiver would not be exceeded. Thus, the current data packet
must be processed with respect to the aggregate average data
transfer rate to check whether the current data packet must be
delayed by a greater delay time in order to ensure that the
maximum communication bandwidth capacity of the server
is not exceeded; the set of steps for processing the current data
packet withrespectto the aggregate average data transfer rate,
i.e. as described below, may be performed in parallel or before
steps 602-610 in which the current data packet is processed
with respect to a receiver-specific average data transfer rate.

Information about the current data packet of the current
data transfer, such as the number of bytes in the current data
packet and the timestamp for the expected time at which the
data packet will be transferred to a data receiver, is recorded
in an entry within the aggregate data transfer history (step
612); the timestamp at step 612 is intended to be the same
timestamp that was recorded at step 602.

An average data transfer rate for the server is computed
over the aggregate data transfer history, including the current

20

25

30

35

40

45

50

55

60

65

10

data packet (step 614). If the current data packet contains a
sufficient amount of data, then it is possible that the immedi-
ate transtfer of the data packet would cause the server’s maxi-
mum bandwidth capacity to be exceeded; in other words, the
number of transferred bytes would be too large for the time
period that is represented within the data transfer history.
Hence, the computed data transfer rate is compared with the
aggregate data transfer rate parameter that represents the
maximum aggregate data transfer rate of the server (step 616).
If the computed data transfer rate exceeds the maximum
threshold as represented by the aggregate data transfer rate
parameter (step 618), then an aggregate delay time is com-
puted (step 620). The computed delay time is an amount of
time that the bandwidth control module should wait before
transferring the data packet such that by delaying the transfer
of the current data packet, the amount of time that is repre-
sented within the aggregate data transfer history would be
increased or lengthened, thereby decreasing the average data
transfer rate of the server.

It is highly likely that the computed aggregate delay time
and the computed receiver-specific delay time are not identi-
cal. In order to ensure that the maximum communication
bandwidth capacity of the server is not exceeded while also
ensuring that the maximum communication bandwidth
capacity of the appropriate data receiver is not exceeded, the
current data packet must be delayed by whichever computed
delay time is greater. Thus, the larger computed delay time is
selected (step 622), and the data transfer histories are adjusted
as necessary to reflect the expected time at which the current
data packet will be transmitted after waiting the selected
delay time (step 624); since the expected time for the trans-
mittal of the current data packet was previously recorded as
occurring immediately, if the current data packet is to be
delayed by the selected delay time, then the expected time for
the transmittal of the current data packet must be updated
within the data transfer histories accordingly. The selected
delay time is the computed delay period that is used within
steps 406-410 of FIG. 4, and the process of computing the
appropriate delay time is concluded.

With reference now to FIG. 7, a flowchart depicts a process
for computing a delay time to be applied against a current data
packet in order to delay the current data transfer. The process
that is shown in FIG. 7 may be employed with either the
receiver-specific data transfer history or the aggregate data
transfer history, depending on which data transfer history is
used to extract-information. Thus, the process that is shown in
FIG. 7 provides further detail for both step 610 and step 620
in FIG. 6.

The process commences by getting the arrival-time value
of'the current data packet as a timestamp value that represents
the current system time (step 702), e.g., through a system call
to the operating system. The transmittal time of the previous
data packet is then retrieved from the data transfer history as
a last-send value (step 704).

An inactivity threshold time value is then computed based
on the maximum packet size of any data packet that is sent by
the server and based on the maximum data transfer rate that is
associated with the data transfer history (step 706). The inac-
tivity threshold time value is explained in more detail here-
inbelow with respect to FIG. 8. If the difference between the
arrival-time value and the last-send value is greater than the
inactivity threshold time value (step 708), then the data trans-
fer history is cleared (step 710), except for the current data
transfer that has already been recorded within the data trans-
fer history; otherwise, if the difference is less than the inac-
tivity threshold time value at step 708, then the current data
transfer history is not cleared.

US 7,400,578 B2

11

A start-of-window time value is obtained by retrieving the
transmittal time of the oldest entry in the data transfer history
(step 712); the oldest entry represents the oldest data transfer
within the sliding window of the data transfer history.

A projected send-time value is then computed by dividing
the total number of bytes within the data transfer history by
the data transfer rate and adding the resulting value to the
start-of-window time value (step 714). The projected send-
time value represents a hypothetical point in time at which all
bytes within all data packets that are recorded within the data
transfer history could have been transferred from the server at
the appropriate data transfer rate. With respect to the appro-
priate data transfer rate, if the process in FIG. 7 is computing
a possible delay time with respect to a specific data receiver,
then the receiver-specific maximum data transfer rate is
employed as the appropriate data transfer rate at step 714; if
the process in FIG. 7 is computing a possible delay time with
respect to the aggregate data transfers by the server, then the
aggregate maximum data transfer rate is employed as the
appropriate data transfer rate at step 714. The relationship
between the projected send-time value and the delay time is
explained in more detail hereinbelow with respect to FIG. 9.

The delay time value is then computed as the difference
between the projected send-time value and the arrival-time
value (step 716). A determination is made as to whether the
delay time value is less than zero (step 718); if so, then the
arrival-time of the current data packet is after the projected
send-time value, and the current data packet can be trans-
ferred immediately without any further delay. The delay time
is reset to zero (step 720) to signify that no delay is necessary.
The projected send-time value is set equal to the arrival-time
(step 722), which is approximately the time at which the
current data packet would be transmitted without further
delay. The projected send-time value is then stored in the
appropriate entry for the current data packet within the data
transfer history (step 724), and the process is concluded. If the
delay time value is not less than zero, then the projected
send-time value is after the arrival-time of the current data
packet; the current data packet cannot be transferred imme-
diately and needs to be delayed for an amount of time repre-
sented by the delay time value; the process branches to step
724 to store the projected sent-time value, and the process is
concluded. The calculated delay time is then used as the
receiver-specific delay time at step 610 in FIG. 6 or as the
aggregate delay time at step 620 in FIG. 6.

With reference now to FIG. 8, a set of time points along a
timeline depict the relationships between an inactivity thresh-
old time value and various data transfers. FIG. 8 illustrates the
significance of the inactivity threshold time value as men-
tioned above with respect to step 706 in FIG. 7. An inactivity
threshold time value is computed based on the maximum
packet size of any data packet that is sent by the server and
based on the maximum data transfer rate that is associated
with the data transfer history. With respect to the appropriate
data transfer rate, if the process in FIG. 7 is computing a
possible delay time with respect to a specific data receiver,
then the appropriate receiver-specific maximum data transfer
rate is employed as the maximum data transfer rate at step
706; if the process in FIG. 7 is computing a possible delay
time with respect to the aggregate data transfers by the server,
then the aggregate maximum data transfer rate is employed as
the maximum data transfer rate at step 706. The computation
of the inactivity threshold time value may have a multiplica-
tive scaling factor, or alternatively, the computation may
incorporate other parameters.

The inactivity threshold time value represents the mini-
mum time span between data transfers within the data transfer

20

25

30

35

40

45

50

55

60

65

12

history such that the bandwidth control module does not need
to worry about the transmittal time of a subsequent data
transfer. In other words, if the time span between the current
data transfer and the previous data transfer exceeds the inac-
tivity threshold time value, then it is probable that the trans-
mittal of the current data transfer would not cause the average
data transfer rate to exceed the maximum data transfer rate.

Referring to FIG. 8, time point 802 for a previous data
transfer is indicated as occurring before time point 804 for the
current data transfer; the time difference between the two
time points may be considered as elapsed time 806. Relatively
long inactivity threshold time value 808 is greater than the
elapsed time; in this case, the immediate transfer of the cur-
rent data packet is considered as having the possibility of
increasing the average data transfer rate of the data transfer
history past the maximum data transfer rate, depending upon
the temporal spacing of the data transfers within the data
transfer history and the amount of data in those data transfers,
because an insufficient amount of time has passed for the
average data transfer rate to be considered as having become
quiescent. Relatively short inactivity threshold time value
810 is less than the elapsed time; in this case, the immediate
transfer of the current data packet is considered as not having
the possibility of increasing the average data transfer rate of
the data transfer history past the maximum data transfer rate,
no matter what the temporal spacing of the data transfers
within the data transfer history and the amount of data in those
data transfers, because a sufficient amount of time has passed
for the average data transfer rate to be considered as having
become quiescent.

With reference now to FIG. 9, a set of time points along a
timeline depict the relationships between a projected send-
time value and the delay time. FIG. 9 illustrates the signifi-
cance of the projected send-time value as mentioned above
with respect to step 714 in FIG. 7.

Start-of-window time value 902 is obtained by retrieving
the transmittal time of the oldest entry in the data transfer
history; the oldest entry represents the oldest data transfer
within the sliding window of'the data transfer history. Arrival-
time value 904 for the current data packet is obtained as a
timestamp value that represents the system time at which the
current data packet arrived for processing by the bandwidth
control module.

A projected send-time value is computed by dividing the
total number of bytes within the data transfer history by the
data transfer rate and adding the resulting value to start-of-
window time value 902. The projected send-time value rep-
resents a hypothetical point in time at which all bytes within
all data packets that are recorded within the data transfer
history could have been transferred from the server at the
appropriate data transfer rate. FIG. 9 shows two possible time
points: time point 906 represents a hypothetical point in time
that is earlier than the arrival time, and time point 908 repre-
sents a hypothetical point in time that is later than the arrival
time.

The delay time is computed as the difference between the
projected send-time value and the arrival-time value. The
example in FIG. 9 shows two possible delay times for the two
possible projected send-time values: delay time 910 is a nega-
tive value because the projected send-time value is earlier
than the arrival time, and delay time 912 is a positive value
because the projected send-time value is later than the arrival
time.

Delay time 910 represents a situation in which all previous
data transfers have hypothetically been completed before the
arrival time; hence, the current data packet does notneed to be
delayed before immediately transferring the current data

US 7,400,578 B2

13

packet because the transmittal of the current data packet
cannot cause the average data transfer rate to overutilize the
available bandwidth, i.e. cannot cause the maximum thresh-
old limit on the bandwidth to be surpassed in either case of the
aggregate bandwidth of the server or a receiver-specific band-
width, depending on which delay time value is being calcu-
lated or considered.

Delay time 912 represents a situation in which all previous
data transfers hypothetically have not been completed before
the arrival time; hence, the current data packet needs to be
delayed before transferring the current data packet because
the transmittal of the current data packet may cause the aver-
age data transfer rate to overutilize the available bandwidth,
i.e. may cause the maximum threshold limit on the bandwidth
to be surpassed in either case of the aggregate bandwidth of
the server or a receiver-specific bandwidth, depending on
which delay-time value is being calculated or considered. In
this scenario, the current data packet is eventually delayed in
accordance with the calculated delay time, e.g., at step 410 in
FIG. 4.

A variety of mechanisms may be implemented within the
bandwidth control module for processing the per-receiver
datastreams in different implementations of the present
invention; for example, FIG. 10 and FIG. 11 depict different
multi-threaded mechanisms for handling the processing of
the data packets according to computed time delay values.
However, these figures show alternative embodiments of the
present invention in order to illustrate that the present inven-
tion is directed to computing and inserting time delays on a
per-receiver basis that is not dependent on the manner in
which the individual data packets are handled; different
embodiments of the present invention may be implemented in
conjunction with a variety of mechanisms for storing and
handling outgoing data packets without affecting the present
invention.

With reference now to FIG. 10, a block diagram depicts a
multi-threaded mechanism for throttling datastreams using a
centralized data buffer in a bandwidth control module within
the application layer of a server in accordance with an
embodiment of the present invention. Bandwidth control
module 1002 contains data packet receiving module 1004,
which stores data packets into centralized data buffer 1006 as
they are received from other application processes. In the
exemplary embodiment that is shown in FIG. 10, each data
receiver has an associated thread such that there is a one-to-
one correspondence between data receivers and packet delay-
ing threads. After determining the target receiver for a
received data packet, data packet receiving module 1004 noti-
fies the appropriate per-receiver packet delaying thread, such
as thread 1008 or thread 1010, of the storage location of the
received data packet, e.g., by calling a routine within the
appropriate per-receiver packet delaying thread using an
input variable that contains a pointer to the received data
packet.

The appropriate thread then ensures that the data packet is
delayed as necessary using its delay computation module and
its delay insertion module, e.g., delay computation modules
1012 and 1014 and delay insertion modules 1016 and 1018
within respective threads 1008 and 1010. After a given data
packet has been delayed as necessary, then the appropriate
per-receiver packet delaying thread notifies bandwidth-regu-
lated data packet transferring module 1020 that the given data
packet is ready to be transmitted, e.g., by having the appro-
priate-per-receiver packet delaying thread call a routine
within bandwidth-regulated data packet transferring module
1020 using an input variable that contains a pointer to the
given data packet. Bandwidth-regulated data packet transfer-

20

25

30

35

40

45

50

55

60

65

14

ring module 1020 transfers data packets from the application
layer to lower OSI layers, such the transport layer.

With reference now to FIG. 11, a block diagram depicts a
multi-threaded mechanism for throttling datastreams using
multiple packet buffers associated with per-receiver packet
delaying threads in a bandwidth control module within the
application layer of a server in accordance with an embodi-
ment of the present invention. Bandwidth control module
1102 contains data packet receiving interface 1104. As data
packets are received from other application processes, data
packet receiving interface 1104 transfers data packets to an
appropriate per-receiver packet delaying thread, such as
thread 1106 or thread 1108, after determining the target
receiver for a received data packet; in the exemplary embodi-
ment that is shown in FIG. 11, each data receiver has an
associated thread such that there is a one-to-one correspon-
dence between data receivers and packet delaying threads.
Data packet receiving interface 1104 passes the received data
packet to the appropriate per-receiver packet delaying thread,
e.g., by calling a routine within its packet processing module,
e.g., packet processing module 1110 or 1112, which stores the
received data packet into its respective packet buffer, e.g.,
packet buffer 1114 or 1116.

The appropriate thread then ensures that the data packet is
delayed as necessary using its delay computation module and
its delay insertion module, e.g., delay computation modules
1118 and 1120 and delay insertion modules 1122 and 1124
within respective threads 1106 and 1108. After a given data
packet has been delayed as necessary, then the appropriate
per-receiver packet delaying thread transfers the given data
packet to bandwidth-regulated data packet transferring inter-
face 1126. Bandwidth-regulated data packet transferring
interface 1126 transfers data packets from the application
layer to lower OSI layers, such the transport layer.

With reference now to FIG. 12, a block diagram depicts
some of the parameters and data structures that are used by the
bandwidth control module to monitor the data transfer histo-
ries in accordance with the present invention. Bandwidth
control module 1202 maintains receiver-specific data transfer
rate parameters 1204-1206 for each data receiver; in other
words, aunique data transfer rate parameter is associated with
each data receiver. A particular data transfer rate parameter
represents a maximum bandwidth capacity that is available
for use by the server when sending data to a given data
receiver; in an alternative but similar interpretation, a data
transfer rate parameter represents the maximum data rate that
can be consumed by a given data receiver with respect to a
datastream from the server to the given data receiver. Band-
width control module 1202 also maintains aggregate data
transfer rate parameter 1208, which represents a maximum
bandwidth capacity that is available for use by the server for
data transfers to all data receivers in total; in an alternative
interpretation, the aggregate data transfer rate parameter rep-
resents the maximum data rate that can be consumed by all
data receivers across all datastreams from the server to the
data receivers. The data transfer rate parameters may be con-
figurable through a customized administrative utility appli-
cation under the control of an authorized system administra-
tor.

Bandwidth control module 1202 manages receiver-spe-
cific data transfer history data structures 1210-1212 for each
data receiver; in other words, a unique data transfer history
data structure is associated with each data receiver. A particu-
lar data transfer history data structure stores information
about the individual data transfers that have been performed,
including a current data transfer that may be in the process of
being performed. Thus, a receiver-specific data transfer his-

US 7,400,578 B2

15

tory data structure contains information about the data trans-
fers for a given data receiver. Bandwidth control module 1202
also manages aggregate data transfer history data structure
1214, which contains information about the data transfers for
all data receivers. The size of the data transfer history data
structures, i.e. the storage capacity or the number of entries,
may be configurable through a customized administrative
utility application under the control of an authorized system
administrator.

Each receiver-specific data transfer history data structure
contains temporal information about the approximate time at
which a given data transfer occurred for a given data receiver;
in other words, each receiver-specific data transfer history
data structure contains a set of time values within a time
period covered by the data transfer history for the set of data
transfers that have occurred within the data transfer history
for a given data receiver, e.g., transmittal timestamps 1216 for
one data receiver and transmittal timestamps 1218 for a dif-
ferent data receiver. Likewise, aggregate data transfer history
data structure 1214 contains temporal information about the
approximate times at which any data transfers occurred from
the server to any data receivers; in other words, aggregate data
transfer history data structure 1214 contains a set of time
values within a time period covered by the data transfer his-
tory for all data transfers that have occurred from the server to
all data receivers, e.g., as represented by transmittal times-
tamps 1220. The transmittal timestamps may be stored in any
appropriate data structure, such as a circular queue with asso-
ciated head and tail index pointers.

Each receiver-specific data transfer history data structure
contains temporal information about the approximate delay
time that was applied against a given data transfer for a given
data receiver; in other words, each receiver-specific data
transfer history data structure contains a set of delay time
values within a time period covered by the data transfer his-
tory for the set of data transfers that have occurred within the
data transfer history for a given data receiver, wherein each
delay time value represents an amount of time that a given
data transfer was held within the application layer before
being released for transfer from the application layer, e.g.,
delay times 1222 for one data receiver and delay times 1224
for a different data receiver. Likewise, aggregate data transfer
history data structure 1214 contains temporal information
about the approximate delay times that were applied against
any data transfers from the server to any data receivers; in
other words, aggregate data transfer history data structure
1214 contains a set of delay time values within a time period
covered by the data transfer history for all data transfers that
have occurred from the server to all data receivers, wherein
each delay time value represents an amount of time that a
given data transfer was held within the application layer
before being released for transfer from the application layer,
e.g., as represented by delay times 1226. The delay time
values may be stored in any appropriate data structure, such as
a circular queue with associated head and tail index pointers.

Each receiver-specific data transfer history data structure
contains information about the number of bytes that were
transferred within a given data transfer for a given data
receiver; in other words, each receiver-specific data transfer
history data structure contains a set of byte count values
within a time period covered by the data transfer history for
the set of data transfers that have occurred within the data
transfer history for a given data receiver, wherein each byte
count value represents the number of bytes in a given data
transfer from the application layer, e.g., byte counts 1228 for
one data receiver and byte counts 1230 for a different data
receiver. Likewise, aggregate data transfer history data struc-

20

25

30

35

40

45

50

55

60

65

16

ture 1214 contains information about the number of bytes that
were transferred within any data transfers from the server to
any data receivers; in other words, aggregate data transfer
history data structure 1214 contains a set of byte count values
within a time period covered by the data transfer history forall
data transfers that have occurred from the server to all data
receivers, wherein each byte count value represents the num-
ber ofbytes in a given data transfer from the application layer,
e.g., as represented by byte counts 1232. The byte count
values may be stored in any appropriate data structure, such as
a circular queue with associated head and tail index pointers.

Each receiver-specific data transfer history data structure
contains a data value that represents the total number of bytes
that were transferred for a given data receiver within the
current data transfer history, e.g., byte count 1234 for one data
receiver and byte count 1236 for a different data receiver.
Likewise, aggregate data transfer history data structure 1214
contains a data value that represents the total number of bytes
that were transferred within any data transfers from the server
to any data receivers within the current data transfer history,
e.g., as represented by byte count 1238.

Table 1 contains pseudo-code statements for a top-level
function that employs thread sleeping as a mechanism for
injecting delays into the transferring of data packets from the
application layer of a server in accordance with an embodi-
ment of the present invention. Prior to the bandwidth control
module transferring the current data packet from the OSI
application layer to the OSI transport layer, higher-level
application functions call the “do_sendPacket_delay” func-
tion in order to inject a delay into the processing of a data
packet if necessary.

The variable “aggregate_senddelay” is the data transfer
history data structure that contains the last “N” data transfers
from the server to any data receiver; this data transfer history
is used to control the aggregate average data transfer rate from
the server to the data receivers. The “aggregate_rate” variable
is the aggregate maximum transfer rate or bandwidth capacity
from the server to the data receivers. The “packet_size” vari-
able is the number of bytes that is passed at a time from the
application layer to the transport layer, e.g., the number of
bytes that are passed in a single call to a TCP API. The
variable “receiver_senddelay” is the receiver-specific data
transfer history data structure that contains the last “N” data
transfers from the server to a specific data receiver; this data
transfer history is used to control the receiver-specific average
data transfer rate from the server to the specific data receiver
that will receive the current data packet.

TABLE 1

void do__sendPacket_delay(
sendDelay_ t **aggregate_ senddelay,
sendDelay_ t **receiver__senddelay,
long aggregate_ rate,
long receiver_ rate,
long packet_size,
short slow__link)

struct timeval *aggregate stime;
struct timeval *receiver__stime;
struct timeval *final__stime;
aggregate_ stime = sendDelay(
aggregate rate,
packet_ size,
aggregate_ senddelay,
slow__link);
receiver_ stime = sendDelay(
receiver_rate,
packet_ size,
receiver__senddelay,

US 7,400,578 B2

17

TABLE 1-continued

18

TABLE 3

slow__link);
final_ stime =
((receiver__stime->tv__sec > aggregate stime->tv__sec) ||
((receiver_ stime->tv_sec == aggregate_ stime->tv__sec) &&
(receiver__stime->tv__usec > aggregate_ stime->tv__usec))) ?
receiver_stime : aggregate_ stime;
adjustWindow(*aggregate senddelay, *receiver_senddelay);
if ((final_stime->tv__usec > 0) ||
(final__stime->tv__sec > 0)) {
do__thread_ sleep(final__stime)
}
free(aggregate__stime);
free(receiver__stime);

}

In the “do_sendPacket_delay” function that-is shown in
Table 1, the aggregate delay time that is calculated to ensure
that aggregate data transfers use less bandwidth than is speci-
fied by the aggregate maximum data transfer rate, and the
receiver-specific delay time is calculated to ensure that the
data transfers, including the current data packet, to a particu-
lar data receiver employ less bandwidth than is specified by
the receiver-specific maximum data transfer rate. The larger
of the aggregate delay time and the receiver-specific delay
time is used to delay the transfer of the current data packet
from the OSI application layer to the OSI transport layer.

Table 2 contains pseudo-code statements for defining or
declaring a data transfer history or a data transfer sliding
window.

TABLE 2

#define MAX_ HISTORY__SIZE 128
typedef struct _sendDelay

{
long rate;
long newestEntryIndex; /* index of newest history entry*/
long oldestEntryIndex; /* index of oldest history entry*/
long bytesInWindow; /* total count of number of bytes

sent within history array */
/* History Information */

double timeSent[MAX__HISTORY_SIZE];
long bytesSent{MAX__HISTORY_ SIZE];
double delayTime[MAX_ HISTORY_ SIZE];

} sendDelay_ t;

Table 3 contains pseudo-code statements for a “sendDe-
lay” function, which calculates the delay time based on the
data in a data transfer history. The “sendDelay” function is
called twice from the “do_sendPacket_delay” function: once
to calculate the aggregate delay time, and another time to
calculate the receiver-specific delay time.

Under certain conditions, the data within the data transfer
history is deleted or erased. One of these conditions occurs
when there is a long time gap between data transfers. Since
the algorithm uses data from the previous “N” data transfers,
a long time gap between data transfers may be followed by a
long interval of data transfers separated by no delay. Thus, the
“slow_link” parameter controls the amount of remedial trans-
ferring that the algorithm will perform. Depending on the
network traffic when the “slow_link” parameter is TRUE,
then the long-term average data transfer rate will be less than
the specified maximum data transfer rate. However, when the
“slow_link” parameter is FALSE, the long-term average data
transfer rate will be much closer to the specified maximum
data transfer rate. In this manner, the approximation of the
long-term average data transfer rate is balanced with the
potential for short-term saturation of the datastream(s).

5

—_
<

45

50

55

60

65

struct timeval *
sendDelay(long rate, long packetSize, sendDelay_ t **tokenPtr, bool_t
slow__link)

sendDelay_ t *sendDelayPtr;

struct timeval *sleepTime;

unsigned long seconds,microSeconds;

double arrivalTime;

double delayTime;

double projectedSendTime;

double windowDelayTime;

double startOfWindow;

double endOfWindow, lastSend;

double elapsedTime; /* the amount of time from start of
window to current time */

double threshold;

/* Log data on entry and convert pointer. */
sendDelayPtr = (sendDelay_ t *) *tokenPtr;
delayTime =0.0;
sleepTime = mg_ calloc(1, sizeof(struct timeval));
/* Do we need to allocate the structure used to store information. */
if (sendDelayPtr == NULL)

sendDelayPtr = (sendDelay_ t *) mg_ calloc(1, sizeof(sendDelay_ t));
*tokenPtr = sendDelayPtr;

lastSend = sendDelayPtr->timeSent[send DelayPtr->newestEntryIndex];
currentTime(&seconds, µSeconds);
arrival Time = seconds + microSeconds/1000000.00;
if (slow__link)
threshold = 2*packetSize/rate;
else
threshold = 200*packetSize/rate;
/* Has the caller requested a data transfer rate change or */
/* has the elapsed time since the last data transfer exceeded the */
/* threshold? The second scenario may occur when data distribution */
/* resumes after being paused for some period of time. */
if ((rate != sendDelayPtr->rate) ||
(arrival Time-lastSend > threshold))
{ /* Yes, so clear all information */
memset(sendDelayPtr, 0, sizeof(sendDelay__t));
sendDelayPtr->newestEntryIndex = MAX_ HISTORY__SIZE-1;
sendDelayPtr->oldestEntryIndex =0;
sendDelayPtr->rate = rate;

startOfWindow =sendDelayPtr->timeSent[sendDelayPtr->
oldestEntryIndex];
endOfWindow = sendDelayPtr->timeSent[sendDelayPtr->
newestEntryIndex];
elapsedTime = arrival Time-startOfWindow;
/* Do we have any history information? */
if (sendDelayPtr->bytesInWindow == 0) {
/* This is the first entry so no delay is necessary. */

elapsedTime =0.0;
projectedSendTime = arrivalTime;
sleepTime->tv_sec =0;
sleepTime->tv_usec =0; }

else

{

/* History information exists, so calculate the delay time */
/* based on the past information and the net spacing value. */
windowDelayTime = sendDelayPtr->bytesInWindow/rate;
projectedSendTime = windowDelayTime + startOfWindow;
delayTime = projectedSend Time—arrivalTime;
/* Are we behind the current average data transfer rate? */
if (delayTime <= 0.00) {
/* Yes, so no delay is necessary based on rate values */
projectedSendTime = arrivalTime;

delayTime =0.0;
sleepTime->tv__sec =0;
sleepTime->tv_usec =0;

¥

else

{ /* No, so delay is necessary. */
sleepTime->tv__sec = delayTime;
sleepTime->tv__usec = (delayTime — sleepTime->tv__sec)*
1000000.00);

} /* end of History information exists */

US 7,400,578 B2

19

TABLE 3-continued

20

TABLE 5-continued

/* Update the history prior to sleep to allow other threads to see it.*/
updateHistory(sendDelayPtr,
packetSize,
projectedSendTime,
delayTime);
return sleepTime;

TABLE 4
void updateHistory(sendDelay_ t *sendDelayPtr,
long packetSize,
double sendTime,
double delayTime)

{

long saveBytesSent;

/* This routine will manage the updating of information into the */

/* history array. Initially the first index is assigned to the */

/* last entry and the last index is set to zero. It uses a circular */

/* buffer to save the historical information. */

/* Adjust the first index to the next logical position. This works */

/* because it initially sets the first index to the last position. */

sendDelayPtr->newestEntryIndex = (sendDelayPtr->newestEntryIndex +

1) %

MAX__HISTORY__SIZE;

/* Remove the bytes from the entry that will become the new first. */

saveBytesSent = sendDelayPtr->bytesSent[sendDelayPtr->

newestEntryIndex];

sendDelayPtr->bytesInWindow —=

sendDelayPtr->bytesSent[sendDelayPtr->newestEntryIndex];

/* Now save the current bytes to be sent and the time at when */

/* the data transfer is expected to occur. */

/* Also, increment the total number of bytes within the window. */
sendDelayPtr->bytesSent[sendDelayPtr->newestEntryIndex] =
packetSize;
sendDelayPtr-> timeSent[send DelayPtr->newestEntryIndex] =
sendTime;
sendDelayPtr-> delayTime[sendDelayPtr->newestEntryIndex] =
delayTime;
sendDelayPtr->bytesInWindow += packetSize;

/* The following check is needed to allow the array to fill up before */

/* the last index is adjusted. When the array containing the data is */

/* created or reset the values for bytesSent are set to zero. Since */

/* zero is an invalid number, it is used to represent an unused entry.*/

if (saveBytesSent != 0)

{ /* Adjust the last index */
sendDelayPtr->oldestEntryIndex =
(sendDelayPtr->newestEntryIndex+1) %

MAX__HISTORY__SIZE;

¥

return;

Table 5 contains pseudo-code statements for adjusting the
data transfer histories. Since there are two competing sliding
windows that are represented by the data transfer histories,
i.e. the aggregate data transfer history and the receiver-spe-
cific data transfer history, the sliding windows need to be
adjusted such that the selected delay time, i.e. the choice of
the larger of the computed aggregate delay time and the
computed receiver-specific delay time, is reflected within
both sliding windows.

TABLE §

void
adjustWindow(sendDelay_ t *aggregate_ delay, sendDelay_ t
*receiver_delay)

/*
* Adjust the historic information in the aggregate delay window to
* reflect the possible extra delay in the receiver window.
* Adjust the historic information in the receiver delay window to

20

25

30

35

40

45

50

55

60

65

* reflect the possible extra delay in the aggregate window.
*/
receiver_delay_ time =
receiver_delay->delayTime[receiver_ delay->newestEntryIndex];
aggregate delay_ time =
aggregate_ delay->delayTime[aggregate_ delay->newestEntryIndex];
if (receiver__delay_ time > aggregate_delay_ time) {
aggregate_ delay->timeSent[aggregate_ delay->newestEntryIndex] +=
(receiver_delay_ time-aggregate delay_ time);
aggregate_ delay->delayTime[aggregate_ delay->newestEntryIndex] =
receiver_ delay_ time;

if (aggregate_ delay_ time > receiver__delay_ time) {
receiver_delay->timeSent[receiver__delay->newestEntryIndex] +=
(aggregate_ delay_ time-receiver_delay_ time);
receiver_ delay->delayTime[receiver_ delay->newestEntrylndex] =
aggregate_ delay_ time;

return;

}

The advantages of the present invention should be apparent
in view of the detailed description of the invention that is
provided above. Prior art solutions to bandwidth control are
typically incorporated within the OSI transport layer; these
solutions yield accurate bandwidth control rates but have a
significant drawback in that they require the replacement of
standardized TCP/IP software that is bundled within common
operating systems, which introduces the ability to potentially
adversely affect the execution of many applications.

In contrast, the present invention incorporates bandwidth
control within the application layer, and the bandwidth con-
trol module is able to control bandwidth utilization solely
from the application layer. A bandwidth control module
throttles the data transfers to the individual data receivers
through the use of a receiver-specific data transfer history and
the aggregate data transfer history in which the historical
information about previous data transfers is maintained as a
temporal sliding window of information. The information in
the data transfer histories is reviewed to ensure that a current
data transfer does not cause a maximum bandwidth parameter
to be exceeded. If the average data transfer rate would be
increased above the threshold specified by the maximum
bandwidth parameter, then the data transfer for the current
data packet is delayed for enough time to ensure that the
average data transfer rate would not be increased above the
threshold specified by the maximum bandwidth parameter.
The bandwidth control module computes delay periods and
interjects delay periods on a per-receiver basis and on an
aggregate basis. The per-receiver basis depends on config-
urable bandwidth capacity parameters that reflect the maxi-
mum communication bandwidth capacities of the individual
receivers, and the aggregate basis depends on the maximum
communication bandwidth capacity of the server, thereby
allowing for bandwidth control over datastreams to indi-
vidual data receivers and over an aggregation of the datas-
treams to all data receivers. After a data packet has been
sufficiently delayed, if necessary, then the bandwidth control
module transfers the current data packet from the application
layer to the transport layer for transmittal to a data receiver.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of instructions in a
computer readable medium and a variety of other forms,
regardless of the particular type of signal bearing media actu-

US 7,400,578 B2

21

ally used to carry out the distribution. Examples of computer
readable media include media such as EPROM, ROM, tape,
paper, floppy disc, hard disk drive, RAM, and CD-ROMs and
transmission-type media, such as digital and analog commu-
nications links.

A method is generally conceived to be a self-consistent
sequence of steps leading to a desired result. These steps
require physical manipulations of physical quantities. Usu-
ally, though not necessarily, these quantities take the form of
electrical or magnetic signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated. Itis
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, parameters,
items, elements, objects, symbols, characters, terms, num-
bers, or the like. It should be noted, however, that all of these
terms and similar terms are to be associated with the appro-
priate physical quantities and are merely convenient labels
applied to these quantities.

The description of the present invention has been presented
for purposes of illustration but is not intended to be exhaustive
or limited to the disclosed embodiments. Many modifications
and variations will be apparent to those of ordinary skill in the
art. The embodiments were chosen to explain the principles of
the invention and its practical applications and to enable
others of ordinary skill in the art to understand the invention
in order to implement various embodiments with various
modifications as might be suited to other contemplated uses.

What is claimed is:
1. A method of throttling data transmissions within a data
processing system, the method comprising:

receiving, within the application layer of a server, informa-
tion about a data transfer from a server to a client;

storing, within the application layer of a server, informa-
tion about the data transfer along with information about
a number of recent data transfers from the server to the
client; and

delaying, within the application layer of the server, the data
transfer from the application layer of the server for an
amount of time that is approximately equal to a com-
puted delay time value in response to a determination
that an average data transfer rate over the number of
recent data transfers from the server to the client may
exceed a data transfer rate threshold parameter.

2. The method of claim 1 further comprising:

releasing the data transfer to be performed without delay-
ing the data transfer from the application layer of the
server for an amount of time that is approximately equal
to a computed delay time value in response to a deter-
mination that the average data transfer rate over the

20

25

30

35

40

22

number of recent data transfers from the server to the
client does not exceed a data transfer rate threshold
parameter.

3. The method of claim 1 further comprising:

obtaining information about the data transfer that includes
abyte count for a number of bytes in the data transfer and
an approximate transferal time for the data transfer from
the application layer of the server.

4. The method of claim 1 further comprising:

storing, within the application layer of a server, informa-
tion about the data transfer along with information about
a number of recent data transfers from the server to a
plurality of clients; and

delaying, within the application layer of the server, the data
transfer from the application layer of the server for an
amount of time that is approximately equal to a com-
puted delay time value in response to a determination
that an average aggregate data transfer rate over the
number of recent data transfers from the server to the
plurality of clients may exceed an aggregate data trans-
fer rate threshold parameter.

5. The method of claim 4 further comprising:

releasing the data transfer to be performed without delay-
ing the data transfer from the application layer of the
server for an amount of time that is approximately equal
to a computed delay time value in response to a deter-
mination that an average aggregate data transfer rate
over the number of recent data transfers from the server
to the plurality of clients does not exceed an aggregate
data transfer rate threshold parameter.

6. The method of claim 4 further comprising:

computing a first delay time value using information about
the number of recent data transfers from the server to the
client;

computing a second delay time value using information
about the number of recent data transfers from the server
to the plurality of clients; and

selecting, as the computed delay time value for delaying
the data transfer from the application layer of the server,
the first delay time value or the second delay time value
based on which delay time value is larger.

7. The method of claim 4 further comprising:

performing additional processing for the data transfer by a
specific thread in a multi-threaded process that contains
aunique thread for each client in the plurality of clients.

8. The method of claim 1 wherein the step of delaying

further comprises:

performing a thread sleep for an amount of time that is

approximately equal to a computed delay time value.

#* #* #* #* #*

