(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 102362601 A
(43) 申请公布日 2012.02.29

(21) 申请号 201110358321.5
(22) 申请日 2011.11.12
(71) 申请人 青岛凯源祥化工有限公司
地址 266600 山东省青岛市莱西市龙口西路128号
(72) 发明人 葛大鹏 杨波涛 杜秀斌
(51) Int.Cl.
A01N 57/32(2006.01)
A01N 43/22(2006.01)
A01P 7/04(2006.01)
A01P 7/02(2006.01)
A01P 5/00(2006.01)
A01P 7/00(2006.01)

(54) 发明名称
一种含有乙基多杀菌素与噻唑磷的杀虫组合物

(57) 摘要
本发明涉及农药复配领域杀虫组合物，其有效成分为乙基多杀菌素与噻唑磷，其中乙基多杀菌素与噻唑磷的质量百分比为1～80：80～1，可进一步优选为5～45：40～1。制剂中有效成分乙基多杀菌素与噻唑磷的总质量占整个制剂总质量的1%～90%，可进一步优选为5%～55%。本发明采用本技术领域的方法可以制成水剂、悬浮剂、可溶性粉剂、水乳剂、水分散粒剂、颗粒剂；本发明对鳞翅目、双翅目、鞘翅目、缨翅目和同翅目等水果、蔬菜害虫有效，而且对防治乔木、果树以及坚果等的害虫有效。
1. 一种杀虫组合物制剂，其特征在于：该组合物制剂是以乙基多杀菌素与噻唑磷为有效成分进行的两元混配，其余为制剂制备所需助剂和补足成分，其中有效成分乙基多杀菌素与噻唑磷的质量百分比为 1～80：80～1。

2. 根据权利要求 1 所述的杀虫组合物制剂，其特征在于：在针对性配方筛选试验验证的基础上，有效成分乙基多杀菌素与噻唑磷的质量百分比可进一步优选为 5～45：40～1。

3. 根据权利要求 1 和 2 所述的杀虫组合物制剂，其特征在于：制剂中有效成分乙基多杀菌素与噻唑磷的总质量占整个制剂总质量的 1%～90%。

4. 根据权利要求 3 所述的杀虫组合物制剂，其特征在于：制剂中有效成分乙基多杀菌素与噻唑磷的总质量占整个制剂总质量的百分比可进一步优选为 5%～55%。

5. 根据权利要求 1 至 4 所述的杀虫组合物制剂，其特征在于：本发明杀虫组合物制剂按照本技术领域的技术方法可以配制的制剂剂型是水剂、悬浮剂、可溶液剂、可湿性粉剂、水乳剂、水分散剂、颗粒剂。
一种含有乙基多杀菌素与噻唑磷的杀虫组合物

技术领域

一种发明涉及农药复配技术领域，具体涉及一种以噻唑磷与乙基多杀菌素为有效成分进行的两元复配的杀虫组合物。

背景技术

乙基多杀菌素，Spinetoram (XDE-175) 是由陶氏益农公司开发的一种新颖的多杀菌素类杀虫剂，为多杀菌素的第二代产品。多杀菌素是由放线菌菌刺糖多孢菌发酵产生的抗生素杀虫剂，由 spinosyn A 和 spinosyn D 组成，因具有生物农药的安全性和化学合成农药的速效性，在 1999 年获得美国“总统绿色化学品挑战奖”，并于该年开始在 24 个国家超过 100 种作物上登记注册。该药剂虽然对蔬菜作物的杀虫效果好，但对水稻和坚果等作物的虫害控制并不理想。而乙基多杀菌素成功解决了这一问题，尤其对多杀菌素不能防治的仁果类食心虫、苹果小卷叶蛾有特效，同时其杀虫谱比多杀菌素更广。此外，它还有对主要黑藻昆虫影响更小，单位面积用量更低，在环境污染程度低等优点，荣获 2008 年“美国总统绿色化学品挑战奖”。

乙基多杀菌素是源自乙酸产生的 spinosyn J 和 spinosyn L 两种多杀菌素类化合物，在催化剂、反应物及溶剂存在下，经过化学修饰最终得到的新型杀虫剂。其作用机制不同于传统的有机磷和拟除虫菊酯类杀虫剂，作用于乙酰胆碱酯酶和 Na⁺ 通道，它是作用于烟碱型乙酰胆碱受体，与拟虫啉等烟碱类杀虫剂也有差异。目前可以应用于水果、坚果、葡萄、谷物作物、马铃薯和蔬菜类作物。不仅对鳞翅目、双翅目、鞘翅目、缨翅目和同翅目等水稻、蔬菜害虫有效，而且对防治瓜面条以及坚果等的害虫高效，在杀虫活性方面，乙基多杀菌素对烟草夜蛾幼虫、棉蚜、三叶蝉、甜菜夜蛾、甘蓝根线虫及蔗虫、棉铃虫等常见害的经济作物害虫的杀虫活性远远高于多杀菌素。

噻唑磷化学名称为 (RS) -S- 仲丁基 -0- 乙基 -2- 氧代 -1,3- 噻唑烷 -3- 基硫代磺酸酯，是日本石原公司开发的新颖、高效、广谱性的非熏蒸型有机磷杀虫杀线虫剂，初步研究表明，噻唑磷于植物体内有很好的内吸传导作用，对植物寄生线虫和害虫有广谱活性，不仅能用于防治线虫和土表害鼠，也可用于土表施药防治叶螨、蓟马和叶面害虫。

发明内容

基于以上技术背景，本发明的目的在于提供一种新型、高效、杀虫谱广、毒性较低的农药杀虫组合物，该杀虫组合物满足环保型杀虫组合物制剂的要求。我公司研究人员长期致力于农药复配领域的研究，在我公司研究人员大量的实验验证下，发现以噻唑磷和乙基多杀菌素能够进行较好的复配，相容性较好，具有很好的增效作用，以此两种有效成分进
行复配的杀虫组合物制剂，具备以上所说的优异特点，能够满足农业生产要求，随即完成了本发明。

[0007] 本发明组合物制剂中的有效成分乙基多杀菌素与噻唑磷为本发明的重要技术特点之一。除此之外，本发明所述的杀虫组合物制剂中有效成分噻唑磷与乙基多杀菌素的质量百分比为 1 ～ 80：80 ～ 1，在以上具有增效作用的配比范围内，我们筛选了一些经过针对性的配比筛选试验，有效成分噻唑磷与乙基多杀菌素的质量百分比可进一步优选为 5～45：40～1。需进一步说明的是，但并不能等同于其他复配比例没有增效作用，没有做过多配比筛选试验，只是在此优选范围内在增效作用更加明显，重点添加了一些详细的探究性试验。有效成分的配比也同样为本发明的显著技术特点之一。

[0008] 本发明的另一重要技术特征是所述的以噻唑磷和乙基多杀菌素为有效成分两元复配的杀虫组合物可制成的农药制剂剂型为水剂、悬浮剂、可溶性剂、可湿性粉剂、水乳剂、水分散粒剂、乳剂。其中在上述提到的任意一种制剂中两种有效成分噻唑磷、乙基多杀菌素的总质量占整个制剂总质量的 1％～90％，可优选为 5％～55％；其余成分为农药中常用助剂或添料或制剂制备的助剂成分。

[0009] 本发明所述的复配的杀虫组合物通过对乳动物的口服毒性实验发现，比传统的有机磷农药保棉磷毒性低近 1000 倍，比亚胺硫磷低 40 倍，该杀虫组合物的毒性低，减少了制造、运输到销售等环节中由于供应链泄露而造成对自然界的危害。用量和毒性都很低，所以对环境的影响远低于共有的杀虫剂，具有明显的社会效益和环境效益。

[0010] 本发明所述的杀虫组合物制剂除了对各种线虫具有卓越的杀虫活性外，在防治一些其他昆虫如镰虫卵幼虫、棉蚜、二点叶斑、甜菜蚜虫、甘蓝夜蛾、甜菜夜蛾和棉铃虫等各种常见的经济作物害虫，及一些地上植物茎叶害虫，如蚜虫目中的黄蚜马、烟蚜马、花蓟马等，半翅目的桃蚜、棉蚜、黑尾叶蝉、稻灰飞虱、温室粉虱；鳞翅目中的小菜蛾、甘蓝夜蛾、甜菜夜蛾、二化螟、玉米螟、棉铃虫、棉大卷叶蛾；鞘翅目的马铃薯瓢虫、美洲稻蝗；双翅目的豆潜蝇；地下植物根部害虫，直翅目的澳洲蝼蛄，半翅目的草蝉根虫，鳞翅目的小地虎、黄地虎，鞘翅目的大绿丽金龟幼虫、黄曲跳甲幼虫、美洲稻蝗、长角叶甲、小茶甲；双翅目有多种蝇幼虫。鳞翅目的棉红蜘蛛、橘全爪螨、橘锈螨等，杀虫活性均较高。

[0011] 农药制剂剂型基本组成组成及简单实施方案如下：

[0012] 所述的杀虫组合物为悬浮剂，组分的质量百分比为：

[0013]
嘧啶磷 1～80%
乙基多杀菌素 1～80%
分散剂 5～20%
防冻剂 1～5%
增稠剂 0.1～2%
消泡剂 0.1～0.8%
促渗剂 0～10%
pH 值调节剂 0.1～5%
水 余量

[0014] 该悬浮剂的具体生产步骤为先将其他助剂混合，经高速剪切混合均匀，加入有效成分嘧啶磷、乙基多杀菌素，在磨球机中磨球 2～3 小时，使粒径均在 5mm 以下，即可制成成本发明组合物的悬浮剂制剂。

[0015] 所述的杀虫组合物是可湿性粉剂，组分的重量百分比如下：

嘧啶磷 1～80%
乙基多杀菌素 1～80%
分散剂 3～10%
湿润剂 1～5%
填料 余量

[0016] 该可湿性粉剂的具体生产步骤为：按上述配方将有效成分嘧啶磷、乙基多杀菌素以及分散剂、润湿剂和填料混合，在搅拌釜中均匀搅拌，经气流粉碎机后在混合均匀，即可制成成本发明组合物的可湿性粉剂。

[0017] 所述的杀虫组合物为水分散粒剂，组分的重量百分比如下：

嘧啶磷 1～80%
乙基多杀菌素 1～80%
分散剂 3～10%
湿润剂 1～10%
崩解剂 1～5%
填料 余量

[0019] 该水分散粒剂的具体生产步骤为：按上述配方将有效成分嘧啶磷、乙基多杀菌素和分散剂、润湿剂、崩解剂以及填料混合均匀，用超微气流粉碎机粉碎，经捏合，然后加入流化床造粒干燥机中进行造粒、干燥、筛分后经取样分析，即可制成成本发明组合物的水分散粒剂。
所述的杀虫组合物为水乳剂，组分的质量百分比为：

<table>
<thead>
<tr>
<th>组分</th>
<th>百分比</th>
</tr>
</thead>
<tbody>
<tr>
<td>噻唑磷</td>
<td>1~80%</td>
</tr>
<tr>
<td>乙基多杀菌素</td>
<td>1~80%</td>
</tr>
<tr>
<td>乳化剂</td>
<td>3~30%</td>
</tr>
<tr>
<td>溶剂</td>
<td>5~15%</td>
</tr>
<tr>
<td>稳定剂</td>
<td>2~15%</td>
</tr>
<tr>
<td>防冻剂</td>
<td>1~5%</td>
</tr>
<tr>
<td>消泡剂</td>
<td>0.1~8%</td>
</tr>
<tr>
<td>增稠剂</td>
<td>0.2~2%</td>
</tr>
<tr>
<td>水</td>
<td>余量</td>
</tr>
</tbody>
</table>

该水乳剂的具体生产工艺步骤为：首先将原药有效组分噻唑磷和有效组分乙基多杀菌素、溶剂和乳化剂、助溶剂加在一起，使溶剂成均匀的油相；将部分水，抗冻剂、抗微生物剂等其他农药助剂混合在一起成均匀的水相；在反应釜中高速搅拌的同时将油相加入水相，缓缓加大到达到转相点，开启剪切机进行高速剪切，并加入剩余的水，剪切约半小时，形成水包油型的水乳剂。即制得本发明杀虫组合物的水乳剂。

本发明所述的杀虫组合物为水剂时，组分的质量百分比为：乙基多杀菌素1~90%，噻唑磷1~80%，防冻剂2~6%，增稠剂0.1~0.8%，表面活性剂3~8%，稀释剂65.7~90.8%。将增稠剂、表面活性剂、稀释剂、乙基多杀菌素、噻唑磷、防冻剂在80~98℃温度条件下混合均匀，60分钟后所得溶液即为本发明杀虫组合物水剂。

本发明所述的一种含有氟虫腈的缓释释颗粒剂的基本组成为：含乙基多杀菌素1~30%，噻唑磷1~80%，粘土5~50%，石膏粉5~50%，石蜡3~20%，但不限于此。工艺方法为把氟虫腈用粘土、高岭土、陶土、石膏粉、硅藻土作载体并挤压（或滚动）造粒形成颗粒剂，用石蜡或聚乙烯醇等包衣，以控制药剂的释放。

乳化剂为烷基苯磺酸盐、烷基硫酸氢氧化乙烯琥珀酸盐、二苯基酚聚氧乙烯聚氧丙烯酸、苯乙烯聚氧乙烯醚、烷基酚聚氧乙烯醚甲基缩合物、二苯基酚聚氧乙烯聚甲醛缩合物、苯基乙烯环氧乙烷加成物及其衍生物，例如农乳300、农乳500、农乳600、农乳700、农乳SorplKS、OX2511、NO、NP、系列等，乳化剂可以是一种或几种的混合物。

分散剂有木质素磺酸盐、脂肪酰胺N-甲基牛磺酸钠盐、烷基酚聚氧乙烯醚硫酸酸盐、亚硫酸纸浆废液、脂肪酸酯硫酸盐、聚氧乙烯聚氧丙烯嵌段共聚物，烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚中的一种或几种的混合物。

湿润剂为脂肪酰胺N-甲基牛磺酸钠盐、木质素磺酸盐、烷基酚聚氧乙烯醚硫酸酸盐、石油磺酸钠、烷基苯磺酸盐、脂肪酸酯硫酸盐、烷基酚聚氧乙烯醚、脂肪醇聚氧乙烯醚、亚硫酸纸浆废液、茶枯粉、皂角粉中的一种或几种的混合物。

增稠剂为羟甲基纤维素、聚乙二醇、黄原胶、阿拉伯树胶、海藻酸钠、聚乙烯吡咯烷酮、膨润土、硅酸镁铝、石膏中的一种或几种的混合物。

促渗剂为月桂氮卓酮、JFC中的一种或两种的混合物。
说明书

消泡剂可以是有机硅油、甲醇、乙醇、环状二甲基硅油中的一种或几种的混合物。

防冻剂可为乙二醇、丙二醇、丙三醇、聚乙二醇、山梨醇中的一种或几种的混合物。

pH值调节剂为氢氧化钠、氢氧化钾、氨水、盐酸、醋酸、磷酸或柠檬酸中的一种或几种的混合物。

溶剂和助溶剂有水、甲醇、乙醇、丁醇、乙二醇、丙二醇、丙三醇、聚乙二醇、丙酮、环己酮、吡咯烷酮、甲苯、二甲苯、乙酸乙酯、二甲基甲酰胺（DMF）、二甲基亚砜（DMSO）中的一种或几种的混合物。

崩解剂可以是尿素、氯化镁、氯化铝、氯化钠、硫酸铵、膨润土中的一种或几种的混合物。

载体为高岭土、硅藻土、活性白土、白碳黑、粘土、轻质碳酸钙、滑石粉、蒙脱石中的一种或几种的混合物。

具体实施方式：

为了使本发明的目的、技术方案及优点更加清楚明白，本发明例举具体实施例进行说明，但本发明并非仅限于这些例子。本发明采用室内生物测定和田间试验相结合的方法。如无特别说明，以下提及的比例（包括百分比）都是质量比。应当指出的是，凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等，均应包含在本发明的保护范围之内。因此，本发明专利的保护范围应以所附权利要求为准。

喹唑磷与乙基多杀菌素不同配比联合毒力

（1）供试药剂

93%喹唑磷原药，日本石原产业株式会社，81.2%乙基多杀菌素原药，美国陶氏益农公司。

（2）供试虫源

室内用萝卜苗连续饲养10代的小菜蛾的三龄幼虫，温度（25±2）℃，相对湿度50%±4%，光照周期14/10h（L/D）。

（3）单剂测定方法

采用浸虫法分别将两种原药都用少量丙酮溶解，再用0.1%的吐温水溶液稀释成等差的5个浓的溶液，稀释在烧杯中以备用，并以清水作为对照。

将大小一致的三龄小菜蛾幼虫在浸虫剂的药液中浸渍5s，吸去多余药液后将其置于直径为9cm的培养皿中，皿中放有新鲜甘蓝叶片加盖。密试样处理10头，重复4次。设空白对照，于（27±1）℃光照培养箱中保持24h后检查死亡率，用拔针轻触虫体无反应者为死亡。死亡率用Abbott公式校正，再根据浓度对数—死亡率机率值分析（bliss）法，求出毒力回归方程和置信中量LC50的值。

（4）不同配比的联合毒力测定方法

混配组合及含量：

20%乙基多杀菌素·喹唑磷含量百分比分别为3：11.5：15.7：13.9：11：9，即3%+17%+5%+15%+7%+13%+9%+11%+11%+9%共5个混配组合。

采用上述1.3方法进行毒力测定，计算LC50，并按孙云沛方法计算共毒系数（CTC）。共毒系数CTC，计算公式如下：(以乙基多杀菌素为标准药剂，其毒力指数为100)：
说明书

[0050] 噻唑磷的毒力指数（TI）= 乙基多杀菌素的 LC_{50} / 噻唑磷的 LC_{50} × 100

[0051] M 的实际毒力指数（ATI）= 乙基多杀菌素的 LC_{50} / M 的 LC_{50} × 100

[0052] M 的理论毒力指数（TTI）= 乙基多杀菌素的 TI × P 乙基多杀菌素 + 噻唑磷的 TI × P

噻唑磷

[0053] M 的共毒系数（CTC）= M 的 ATI / M 的 TTI × 100

[0054] 式中：

[0055] M 为乙基多杀菌素与噻唑磷不同配比的混合物

[0056] P 乙基多杀菌素为乙基多杀菌素在混剂中所占的比例

[0057] P 噻唑磷为噻唑磷在混剂中所占的比例

[0058] （5）毒力测定结果及分析

[0059] 表 1 噻唑磷、乙基多杀菌素对小菜蛾的室内测定结果

<table>
<thead>
<tr>
<th>处理名称</th>
<th>配比</th>
<th>毒力回归方程（Y=b+ax）</th>
<th>相关系数 r 值</th>
<th>LC_{50} (mg/L)</th>
<th>共毒系数（CTC）</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙基多杀菌素</td>
<td>—</td>
<td>Y=2.3124X+1.3854</td>
<td>0.9712</td>
<td>36.75</td>
<td>—</td>
</tr>
<tr>
<td>噻唑磷</td>
<td>—</td>
<td>Y=2.5123X+0.3649</td>
<td>0.9633</td>
<td>68.92</td>
<td>—</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>3：17</td>
<td>Y=2.4009X+1.3072</td>
<td>0.9802</td>
<td>34.52</td>
<td>176.26</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>5：15</td>
<td>Y=2.3861X+1.4664</td>
<td>0.9546</td>
<td>30.26</td>
<td>186.51</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>7：13</td>
<td>Y=2.3082X+1.5651</td>
<td>0.9411</td>
<td>30.77</td>
<td>171.03</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>9：11</td>
<td>Y=2.1658X+1.8052</td>
<td>0.9569</td>
<td>29.86</td>
<td>165.09</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>11：9</td>
<td>Y=2.5007X+1.3955</td>
<td>0.9747</td>
<td>27.63</td>
<td>167.79</td>
</tr>
</tbody>
</table>

[0061] 从表中可以看出，在 3：11、5：15、7：13、9：11、11：9 比例的混配中，其共毒系数均大于 120，表现出一定的增效作用，其中乙基多杀菌素：噻唑磷为 5：15 的增效作用最明显，共毒系数为 186.51。试验结果表明，在室内条件下乙基多杀菌素、噻唑磷两种药剂对小菜蛾均有较高的活性，其中以乙基多杀菌素：噻唑磷为 5：15 时，增效效果最好，可在此范围内做进一步的田间试验以评价其实际田间药效。

[0063] 活性测定实例 2:

[0064] （1）试验药剂

[0065] 93%噻唑磷原药，日本石原产业株式会社，81.2%乙基多杀菌素原药，美国陶氏益农公司。

[0066] 先用丙酮溶解原药，根据预备用的不同结果将适量的两原药配成 5 个不同配比，再用丙酮将各处理分别稀释成 5 个系列浓度梯度待用。5 个乙基多杀菌素和噻唑磷不同配比有效成分之比分别为 3：47；13：37；23：27；33：17；43：7 分别稀释成 5 个系列浓度梯度待用。

[0067] （2）试验靶标

[0068] 甜菜夜蛾，室内累代饲养的甜菜夜蛾，室内条件：温度（26±2）℃。相对湿度 70%
±5%，光照周期 16h/8h（L/D）。
[0069] (3) 试验方法
[0070] 本试验采用虫体浸液法。首先将乙基多杀菌素、噻唑磷的原液稀释成 5 个浓度，分别置于烧杯中备用。用毛笔将生理状况一致的 3 周初期的甜菜夜蛾幼虫轻轻地扫入各自浸虫器内，将浸虫器浸入各自实验药液中，轻轻摇动 5s 后取出，迅速用吸水纸吸干虫体及周围地多余药液。处理后的幼虫置于温度为 28°C，相对湿度为 70% 的智能养虫室内。每浓度重复 3 次，每重复 20 只幼虫，同时设空白对照，分别于药后 48h 检查死虫数，计算死亡率、校正死亡率，求出毒力回归方程并计算 LC50。对照组死亡率在 10% 以下为有效试验。
[0071] (4) 数据统计与分析
[0072] 处理后 24h 调查试虫死亡情况（判断供试虫死亡标准是以针轻刺无自主反应），记录总虫数和死虫数。
[0073] 根据调查数据，计算各处理的校正死亡率。并参照 NY/T1154.7-2006 采用孙云沛法计算混剂的共毒系数（CTC 值）。若对照死亡率 < 5%，不校正；对照死亡率在 5% ~ 20% 之间，按公式 2 进行校正；对照死亡率 > 20%，试验需重做。
[0074] 以药剂浓度 (mg/L) 的对数值为自变量 X，以校正死亡率的机率值为因变量 Y，分别建立毒力回归方程式，采用 DPS 软件计算单剂及各配比混剂的 LC50 及其混剂共毒系数，比较增效情况。计算 LC50 按照孙云沛方法计算共毒系数 (CTC)。共毒系数 CTC 计算公式如下：
（以乙基多杀菌素为标准药剂，其毒力指数为 100）
[0075] 噻唑磷的毒力指数 (TI) = 乙基多杀菌素的 LC50 / 噻唑磷的 LC50 × 100
[0076] M 的实际毒力指数 (ATI) = 乙基多杀菌素的 LC50 / M 的 LC50 × 100
[0077] M 的理论毒力指数 (TTI) = 乙基多杀菌素的 TI × P 乙基多杀菌素 + 噻唑磷的 TI × P
[0078] M 的共毒系数 (CTC) = M 的 ATI/M 的 TTI × 100
[0079] 式中：
[0080] M 为噻唑磷与乙基多杀菌素不同配比的混合物
[0081] P 噻唑磷为噻唑磷在混剂中所占的比例
[0082] P 乙基多杀菌素为乙基多杀菌素在混剂中所占的比例
[0083] (5) 毒力测定结果及分析
[0084] 表 2 乙基多杀菌素、噻唑磷对甜菜夜蛾的室内测定结果
[0085]
<table>
<thead>
<tr>
<th>处理名称</th>
<th>配比</th>
<th>毒力回归方程 (Y=ax+b)</th>
<th>相关系数 r 值</th>
<th>LC50 (mg/L)</th>
<th>共毒系数 (CTC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙基多杀菌素</td>
<td>—</td>
<td>Y=1.8742X+2.1699</td>
<td>0.9845</td>
<td>32.36</td>
<td>—</td>
</tr>
<tr>
<td>噻唑磷</td>
<td>—</td>
<td>Y=1.6943X-1.8627</td>
<td>0.9809</td>
<td>71.06</td>
<td>—</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>3:47</td>
<td>Y=1.8005X+2.1421</td>
<td>0.9766</td>
<td>38.66</td>
<td>171.50</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>13:37</td>
<td>Y=1.7432X+2.4652</td>
<td>0.9846</td>
<td>28.45</td>
<td>190.52</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>23:27</td>
<td>Y=1.9042X+2.3031</td>
<td>0.9715</td>
<td>26.08</td>
<td>175.77</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>33:17</td>
<td>Y=1.8803X+2.3581</td>
<td>0.9674</td>
<td>25.41</td>
<td>156.29</td>
</tr>
<tr>
<td>乙基多杀菌素:噻唑磷</td>
<td>43:7</td>
<td>Y=1.5468X+2.8606</td>
<td>0.9823</td>
<td>24.16</td>
<td>144.99</td>
</tr>
</tbody>
</table>
[0086] 从表中可以看出，在不同比例的混配中，其共毒系数均大于 120，表现出一定的增
说明书

说明


[0087] 田间试验例 1：田间试验防治小菜蛾

[0088] (1) 施药方法

[0089] 试验共喷药 1 次，施药日期为 7 月 3 日。此时小白菜有 5-6 片叶。小菜蛾幼虫大部处处于 2 ~ 3 龄期。喷药时天气多云无风。用利农牌定压背负式手动喷雾器对各处理均匀喷雾，叶片正反面都要求喷有效药液。每小区用药液 2L。

[0090] (2) 调查方法

[0091] 调查每个小区固定 15 株小白菜作为调查株，记录全部叶片上的幼虫数量。喷药前调查虫口基数，分别在喷药后 3、7 天和 10 天调查活虫数。本试验共调查 4 次。

[0092] (3) 药效计算方法

[0093] 虫口减退率（%） = （施药前活虫数 - 施药后活虫数）/ 施药前活虫数 × 100

[0094] 防效（%） = （处理区虫口减退率 - 对照区虫口减退率）/（100 - 对照区虫口减退率）× 100

[0095] (4) 药害调查方法

[0096] 施药后连续 10d 目测药剂对作物没有药害产生，小白菜生长良好。

[0097] (5) 田间药效试验结果

[0098] 表 3 处理药剂防治小菜蛾田间药效试验结果

<table>
<thead>
<tr>
<th>处理药剂</th>
<th>制剂用药量/克</th>
<th>虫口基数</th>
<th>虫口活虫数</th>
<th>虫口减退率</th>
<th>防效%</th>
<th>虫口活虫数</th>
<th>虫口减退率</th>
<th>防效%</th>
<th>虫口活虫数</th>
<th>虫口减退率</th>
<th>防效%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%乙基多杀菌素+15%噻嗪磷</td>
<td>8 168</td>
<td>20 88.09</td>
<td>90.27</td>
<td>27 83.92</td>
<td>91.00</td>
<td>42</td>
<td>0.75</td>
<td>88.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 174</td>
<td>18 89.65</td>
<td>91.83</td>
<td>26</td>
<td>85.05</td>
<td>92.13</td>
<td>44</td>
<td>74.71</td>
<td>87.78</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 159</td>
<td>16 89.93</td>
<td>92.11</td>
<td>25</td>
<td>84.27</td>
<td>91.35</td>
<td>38</td>
<td>76.10</td>
<td>89.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60克/升乙基多杀菌素 SC</td>
<td>8 164</td>
<td>35 78.65</td>
<td>80.83</td>
<td>40</td>
<td>75.60</td>
<td>82.69</td>
<td>48</td>
<td>70.73</td>
<td>83.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 179</td>
<td>34 81.01</td>
<td>83.18</td>
<td>39</td>
<td>78.21</td>
<td>85.29</td>
<td>53</td>
<td>70.39</td>
<td>83.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 181</td>
<td>33 81.76</td>
<td>83.94</td>
<td>40</td>
<td>77.90</td>
<td>84.98</td>
<td>56</td>
<td>69.06</td>
<td>82.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30%噻嗪磷 WG</td>
<td>10 175</td>
<td>45 74.28</td>
<td>76.46</td>
<td>47</td>
<td>73.14</td>
<td>80.22</td>
<td>58</td>
<td>66.85</td>
<td>79.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 163</td>
<td>38 76.68</td>
<td>78.86</td>
<td>45</td>
<td>72.39</td>
<td>79.47</td>
<td>57</td>
<td>65.03</td>
<td>78.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 179</td>
<td>39 78.21</td>
<td>80.39</td>
<td>48</td>
<td>73.18</td>
<td>80.26</td>
<td>57</td>
<td>68.15</td>
<td>81.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>清水对照</td>
<td>— 182</td>
<td>18 6</td>
<td>-2.19</td>
<td>19 5</td>
<td>-7.14</td>
<td>206</td>
<td>-13.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[0100] 从表3可以看出，不同比例的混配药剂，按不同的用量进行大田试验，药后其对甘蓝小菜蛾的防治效果均优于对照药剂。5%乙基多杀菌素+15%噻虫磷在药后10天，杀虫效果分别为92.11%、92.13%和89.16%，杀虫效果随着用量的增加而增大，各用量处理杀虫效果之间差异达到极显著。根据田间目测，在试验剂量范围内，作物生长正常，各处理药剂均未出现对甘蓝的药害现象，说明其对甘蓝是安全的。建议与作用机理不同的杀虫剂混合使用以延缓害虫抗药性的产生。