发明名称

布洛芬注射液及其制备方法

摘要

本发明涉及布洛芬注射液中活性成分与药用辅料不同配比以及布洛芬注射液的全新制备方法。本发明的药用辅料主要包括精氨酸、赖氨酸、葡萄糖，本发明的主药活性成分为布洛芬。布洛芬在临床上主要用于小儿发热症状，目前市场的布洛芬剂型均为口服给药，口服给药的主要缺点是起效慢，本发明的产品可静脉注射，或者添加于大输液中进行静脉滴注，可在病人体内迅速起效，并减少了口服药在体内的分布过程，提高了药物在体内的生物利用度。本发明重点解决了目前上市的布洛芬注射液在添加于大输液中过程中出现析晶问题。本品可含有活性成分布洛芬，是由下述重量百分比的原料及药用辅料制成：布洛芬所占注射液中的浓度百分比为10%（W/V）；药用辅料在注射剂中的浓度百分比为7.0-20%（W/V）。
1. 一种布洛芬注射液的处方及制备工艺，含有活性成分布洛芬和药用辅料，其特征在于在注射液中是由下述重量百分比的原料及药用辅料制成：布洛芬在注射液浓度比例为 10% (W/V)；药用辅料在注射液制剂中的浓度百分比为 7.0-20% (W/V)。

2. 如权利要求 1 所述的布洛芬注射液，其特征在于：所述的药用辅料可以选自精氨酸、赖氨酸、葡甲胺中的一种。

3. 如权利要求 1 所述的布洛芬注射液，其特征在于：所述的布洛芬注射液优先选择的药用辅料为精氨酸，其占布洛芬注射液的浓度为 8.4-20% (W/V)。

4. 如权利要求 3 所述的注射用布洛芬注射液，其特征在于：所述的布洛芬注射液优先选择的药用辅料为精氨酸，其占布洛芬注射液的更精确的浓度为 8.4-9% (W/V)。

5. 如权利要求 1 所述的注射用布洛芬注射液，其特征在于：所述的布洛芬注射液选择的药用辅料如为赖氨酸，其占布洛芬注射液的浓度为 7.0-12% (W/V)。

6. 如权利要求 5 所述的注射用布洛芬注射液，其特征在于：所述的布洛芬注射液选择的药用辅料如为赖氨酸，其占布洛芬注射液的更精确的浓度为 7.3-8.5% (W/V)。

7. 如权利要求 1 所述的注射用布洛芬注射液，其特征在于：所述的布洛芬注射液选择的药用辅料如为葡甲胺，其占布洛芬注射液的浓度为 9.0-20% (W/V)。

8. 如权利要求 7 所述的注射用布洛芬注射液，其特征在于：所述的布洛芬注射液选择的药用辅料如为葡甲胺，其占布洛芬注射液的更精确的浓度为 9.6-15% (W/V)。

9. 如权利要求 1 至 8 所述的注射用布洛芬注射液的制备方法，其特征在于该方法包括如下过程：

 (1) 称取占注射液浓度为 7-20% (W/V) 的药用辅料，加入到约 60% 的注射用水中，搅拌至全部溶解，调节溶液的 pH 值为 11-12，搅拌均匀；

 (2) 称取占注射液浓度为 10% (W/V) 的布洛芬，加入至以上溶液中，搅拌完全溶解，加注射用水至全量。

 (3) 加入上述溶液总体积的 0.05-0.3% 的针用活性碳，搅拌 10-30 分钟，将溶液采用钛棒减压过滤除炭，再用两次 0.22 微孔滤膜精滤，得布洛芬溶液；

 (4) 取布洛芬溶液测定 pH 值、含量，滤液检查合格后，根据含量计算灌装溶液的装量，按标示量灌封于安瓿；

 (5) 将灌封好的安瓿于湿热灭菌，121℃，15 分钟灭菌，检漏，灯检，包装即得布洛芬注射液；

10. 如权利要求 9 所述的注射用布洛芬注射液的制备方法，其特征在于：所述步骤 (1) 中调 pH 值用 1mol/L 盐酸溶液。

11. 如权利要求 6 所述的注射用布洛芬注射液制剂的制备方法，其特征在于：所述微孔滤膜孔径是 0.22 μm，经过两次过滤。

12. 如权利要求 9 所述的注射用布洛芬注射液的制备方法，其特征在于：所述步骤 (5) 中的灭菌方法为 121℃，15 分钟灭菌。
布洛芬注射液及其制备方法

技术领域
[0001] 本发明涉及一种布洛芬注射液配制方法及全新的制备工艺，属于医药技术领域。

背景技术
[0003] 布洛芬是有效的 PG 合成酶抑制剂，具有解热镇痛及抗炎作用。用于扭伤、劳损、下腰疼痛，肩周炎，滑囊炎，肌腱及腱鞘炎，牙痛和术后疼痛，类风湿性关节炎，骨关节炎以及其他血清阴性（非类风湿性）关节疾病。
[0004] 用于减轻中度疼痛，如关节痛，肌肉痛，偏头痛，头痛，牙痛，痛经，神经痛，也可用于减轻普通感冒或流行性感冒引起的发热。
[0005] 布洛芬良好的解热镇痛效果带动了众多剂型的开发上市，目前除了注射剂之外，均为口服剂型和局部给药剂型，有片剂、胶囊、干混悬剂、颗粒剂、滴剂、泡腾片、口崩片以及软膏、凝胶、搽剂。布洛芬注射剂将是众多疼痛和发热患者的福音，国外多项大型临床试验均显示了布洛芬注射液在治疗中度疼痛、甚至是重度疼痛以及解热方面的优良效果。

发明内容
[0006] 本发明的主要内容是制备布洛芬注射液以及制备工艺，布洛芬注射液的配比是布洛芬在注射液浓度比例为 10% (W/V)；药用辅料在注射液剂型中的浓度百分比为 7.0~20% (W/V)。所用的药用辅料为精氨酸，赖氨酸，葡萄糖中的一种。通过不同的配比解决了上市的注射液在添加于大输液的过程中出现析晶问题。
[0007] 根据试验本发明的制备工艺可通过下列步骤实现：
[0008] （1）、称取占注射液浓度为 7~20% (W/V) 的药用辅料，加入到约 60%的注射用水中，搅拌至全部溶解，调节溶液的 pH 值为 11~12，搅拌均匀；
[0009] （2）、称取占注射液浓度为 10% (W/V) 的布洛芬，加入至以上溶液中，搅拌完全溶解；加注射用水至全量。
[0010] （3）、加入上述溶液总体积的 0.05~0.3%的针用活性炭，搅拌 10~30 分钟，将溶液采用 1 微米微孔减压过滤除炭，再用两次 0.22 微孔滤膜精密滤，得布洛芬溶液；
[0011] （4）、取布洛芬溶液测定 pH 值、含量，滤液检查合格后，根据含量计算灌装溶液的装量，按标示量灌封于安瓿；
[0012] （5）、将灌封好的安瓿于湿热灭菌，121℃，15 分钟灭菌，检漏，灯检，包装即得布洛
芬注射液；
[0013] 本发明的制备步骤 (3) 中采用 0.1～0.2％的针用活性炭过滤可除热原及色素，保证样品溶液的澄清无色及无细茵内毒素；采用的两次微孔滤膜精滤孔径为 0.22μm，可保证本品的无菌。本发明的制备关键步骤应在百级净化的无菌条件下生产，特别是精滤、灌封，以保证本品的无菌水平。制备流程图见图 1。

附图说明
[0014] 图 1 为布洛芬注射液工艺制备流程图
[0015] 图 2 为安全性试验中血管刺激性试验药后 14 天布洛芬注射液组 (5cm)
[0016] 图 3 为安全性试验中血管刺激性试验药后 14 天布洛芬注射液组 (1cm)
[0017] 图 4 为有关物质测定系统适用性液相色谱图
[0018] 图 5 为实施例 1 空白溶剂液相色谱图
[0019] 图 6 为实施例 1 空白辅料液相色谱图
[0020] 图 7 有关物质降解对照液相色谱图
[0021] 图 8 酸降解试验液相色谱图
[0022] 图 9 碱降解试验液相色谱图
[0023] 图 10 氧化降解试验液相色谱图
[0024] 图 11 光照降解试验液相色谱图
[0025] 图 12 高温降解试验液相色谱图
[0026] 图 13 实施例 1 有关物质液相色谱图

具体实施方式
[0027] 以下的实施例仅在于详细说明本发明，而不是限制本发明。
[0028] 实施例 1
[0029] 处方
[0030] 布洛芬 100g
精氨酸 84g
1M 盐酸 适量
注射用水加至 1000ml

[0031] 制备工艺
[0032] (1)、按处方量称取精氨酸，加入到 600ml 注射用水中，搅拌至全部溶解，1M 盐酸调节溶液的 pH 值为 11-12，搅拌均匀；
[0033] (2)、按处方量称取布洛芬，加入至以上溶液中，搅拌完全溶解，加注射用水至全量。
[0034] (3)、加入上述溶液总体积的 0.1％的针用活性炭，搅拌 10～30 分钟，将溶液采用 1 微米钛棒减压过滤除炭，再用两次 0.22 微孔滤膜精滤，得布洛芬溶液；
[0035] (4)、取布洛芬溶液测定 pH 值、含量，滤液检查合格后，根据含量计算灌装溶液的装量，按标示量灌封于安瓿；
说明书

[0036] （5）将灌封好的安瓿于湿热灭菌，121℃，15 分钟灭菌，检漏，灯检，包装即得布洛芬注射液；
[0037] 实施例 2
[0038] 处方

布洛芬 100g
精氨酸 90g
1M 盐酸 适量
注射用水加至 1000ml

[0040] 制备工艺
[0041] （1）按处方量称取精氨酸，加入到 600ml 注射用水中，搅拌至全部溶解，1M 盐酸调节溶液的 pH 值为 11-12，搅拌均匀；
[0042] （2）按处方量称取布洛芬，加入至以上溶液中，搅拌完全溶解，加注射用水至全量。
[0043] （3）加入上述溶液总体积的 0.1% 的针用活性炭，搅拌 10-30 分钟，将溶液采用 1 微米钛棒减压过滤除炭，再用两次 0.22 微孔滤膜精滤，得布洛芬溶液；
[0044] （4）取布洛芬溶液测定 pH 值，含量，滤液检查合格后，根据含量计算灌装溶液的装量，按标示量灌封于安瓿；
[0045] （5）将灌封好的安瓿于湿热灭菌，121℃，15 分钟灭菌，检漏，灯检，包装即得布洛芬注射液；

[0046] 实施例 3
[0047] 处方

布洛芬 100g
赖氨酸 75g
1M 盐酸 适量
注射用水加至 1000ml

[0049] 制备工艺
[0050] （1）按处方量称取精氨酸，加入到 600ml 注射用水中，搅拌至全部溶解，1M 盐酸调节溶液的 pH 值为 11-12，搅拌均匀；
[0051] （2）按处方量称取布洛芬，加入至以上溶液中，搅拌完全溶解，加注射用水至全量。
[0052] （3）加入上述溶液总体积的 0.1% 的针用活性炭，搅拌 10-30 分钟，将溶液采用 1 微米钛棒减压过滤除炭，再用两次 0.22 微孔滤膜精滤，得布洛芬溶液；
[0053] （4）取布洛芬溶液测定 pH 值，含量，滤液检查合格后，根据含量计算灌装溶液的装量，按标示量灌封于安瓿；
[0054] （5）将灌封好的安瓿于湿热灭菌，121℃，15 分钟灭菌，检漏，灯检，包装即得布洛芬注射液；
布洛芬 100g
赖氨酸 85g
1M 盐酸 适量
注射用水加至 1000ml

制备工艺

1) 按处方量称取氨酸赖, 加入到 600ml 注射用水中, 搅拌至全部溶解, 1M 盐酸调节溶液的 pH 值为 11-12, 搅拌均匀;
2) 按处方量称取布洛芬, 加入至以上溶液中, 搅拌完全溶解; 加注射用水至全量。
3) 加入上述溶液总体积的 0.1% 的针用活性炭, 搅拌 10-30 分钟, 将溶液采用 1 微米钛棒减压过滤除炭, 再用两次 0.22 微孔滤膜精滤, 得布洛芬溶液;
4) 取布洛芬溶液测定 pH 值、含量、滤液检查合格后, 根据含量计算灌装溶液的总量, 按标示量灌封于安瓿;
5) 将灌封好的安瓿于湿热灭菌, 121℃, 15 分钟灭菌, 检漏, 灯检, 包装即得布洛芬注射液;

布洛芬 100g
葡甲胺 90g
1M 盐酸 适量
注射用水加至 1000ml

制备工艺

1) 按处方量称取葡甲胺, 加入到 600ml 注射用水中, 搅拌至全部溶解, 1M 盐酸调节溶液的 pH 值为 11-12, 搅拌均匀;
2) 按处方量称取布洛芬, 加入至以上溶液中, 搅拌完全溶解; 加注射用水至全量。
3) 加入上述溶液总体积的 0.1% 的针用活性炭, 搅拌 10-30 分钟, 将溶液采用 1 微米钛棒减压过滤除炭, 再用两次 0.22 微孔滤膜精滤, 得布洛芬溶液;
4) 取布洛芬溶液测定 pH 值、含量, 滤液检查合格后, 根据含量计算灌装溶液的总量, 按标示量灌封于安瓿;
5) 将灌封好的安瓿于湿热灭菌, 121℃, 15 分钟灭菌, 检漏, 灯检, 包装即得布洛芬注射液;

对本发明生产的布洛芬注射液进行安全性试验。
本发明生产的布洛芬注射液过敏性、溶血性和血管刺激性试验的研究资料如下：

1. 布洛芬注射液的过敏性试验

1.1 试验目的

观察布洛芬注射液有无过敏反应，初步考查本品的安全性。

1.2 受试药品

实施例1所得布洛芬注射液，规格：100mg/ml/瓶、灭菌注射用水、卵白蛋白

1.3 受试动物

豚鼠，体重250-350g，雌雄各半，喂以豚鼠专用颗粒饲料，辅以新鲜蔬菜洗净饲用，自由饮水。饲养室温度24±1℃，相对湿度50-60%，自然通风。

1.4 试验方法

试验前，参照布洛芬注射液的使用说明书确定剂量，取布洛芬注射液，取健康豚鼠24只，按体重随机分为4组，每组6只，阴性对照组给予注射用水0.5ml致敏，并以布洛芬注射液注射1.0ml进行攻击；阳性对照组预先以1%卵白蛋白溶液0.5ml致敏，并以布洛芬注射液注射进行激发；受试药预处理组以0.1ml布洛芬注射液致敏，并以该药溶液1.0ml溶液腹腔注射进行激发。受试药低剂量组以布洛芬注射液稀释1倍，采用稀释后的0.5ml腹腔注射致敏，并以该药溶液1.0ml溶液腹腔注射进行激发。

各组首先隔日肌肉注射药液，共注射3次。于末次给药后第14天由前肢静脉注射相应药物进行激发，剂量见后。于最后一次致敏和激发当日测定每只动物体重。激发当日按表1症状详细观察每只动物静脉注射药物后30分钟内反应，症状的出现及消失时间。并按表2判断过敏反应发生程度。计算过敏反应发生率。根据过敏反应发生率和发生程度进行综合判断。

表1 过敏反应症状

<table>
<thead>
<tr>
<th>0</th>
<th>正常</th>
<th>7</th>
<th>呼吸急促</th>
<th>14</th>
<th>步态不稳</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>躁动</td>
<td>8</td>
<td>排尿</td>
<td>15</td>
<td>跳跃</td>
</tr>
<tr>
<td>2</td>
<td>竖毛</td>
<td>9</td>
<td>排粪</td>
<td>16</td>
<td>喘息</td>
</tr>
<tr>
<td>3</td>
<td>颤抖</td>
<td>10</td>
<td>流泪</td>
<td>17</td>
<td>咳痰</td>
</tr>
<tr>
<td>4</td>
<td>搐鼻</td>
<td>11</td>
<td>呼吸困难</td>
<td>18</td>
<td>旋转</td>
</tr>
<tr>
<td>5</td>
<td>喷嚏</td>
<td>12</td>
<td>哮鸣音</td>
<td>19</td>
<td>潮式呼吸</td>
</tr>
<tr>
<td>6</td>
<td>咳嗽</td>
<td>13</td>
<td>紫癜</td>
<td>20</td>
<td>死亡</td>
</tr>
</tbody>
</table>

表2 全身致敏性评价标准

<p>| 0 | - | 过敏反应阴性 |</p>
<table>
<thead>
<tr>
<th>1-4症状</th>
<th>+</th>
<th>过敏反应弱阳性</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-10症状</td>
<td>++</td>
<td>过敏反应阳性</td>
</tr>
<tr>
<td>11-19症状</td>
<td>+++</td>
<td>过敏反应阳性</td>
</tr>
<tr>
<td>20</td>
<td>++++</td>
<td>过敏反应最强阳性</td>
</tr>
</tbody>
</table>

[0091] 1.5 试验结果

布洛芬的高、低剂量组豚鼠分别于末次致敏后第14天用对应剂量药物进行攻击均未发生过敏性反应，评分均为0；而阳性对照组豚鼠于注射后5分钟内出现跳跃、呼吸困难，抽搐而下，而后死亡，评分均为20，过敏反应均呈极强阳性。阴性对照组6只豚鼠均未发生过敏反应，评分均为0。结果见表3。末次致敏和激发当日各组动物体重没有明显差别。综合以上试验结果，布洛芬全身主动过敏反应为阴性。

[0092] 表3 过敏性反应试验结果

<table>
<thead>
<tr>
<th>攻击时间</th>
<th>组别</th>
<th>动物数（只）</th>
<th>反应情况</th>
<th>阳性率</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照组</td>
<td>6</td>
<td>-/6</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>第14天</td>
<td>阳性对照组</td>
<td>6</td>
<td>++++/6</td>
<td>100%</td>
</tr>
<tr>
<td>受试高剂量组</td>
<td>6</td>
<td>-/6</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>受试低剂量组</td>
<td>6</td>
<td>-/6</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

[0095] 1.6 试验结论

在本次试验条件下，布洛芬注射液对受试豚鼠无致敏作用。

[0096] 2. 布洛芬注射液的溶血性试验

[0098] 2.1 试验目的

[0099] 观察布洛芬注射液对家兔红细胞有溶血和凝集作用，初步考查本品的安全性。

[0100] 2.2 受试药品

[0101] 实施例1所得布洛芬注射液，规格：100mg/ml，灭菌注射用水，卵白蛋白

[0102] 2.3 受试动物

[0103] 家兔，体重2.2kg，雄性。饲养室温度24±1℃，相对湿度50～60%，自然通风。

[0104] 2.4 试验方法

[0105] 2.4.12%红细胞悬液制备

[0106] 取健康家兔1只，颈动脉取血5ml至洁净干燥小烧杯中，用玻璃棒搅拌去纤维蛋白，加入0.9%氯化钠注射液5ml，离心，弃去上清液，再加10ml0.9%氯化钠注射液轻轻摇匀，离心，弃去上清液，如此反复几次至上清液不呈红色为止，然后按所得红细胞容积，用灭菌注射用水配制成2%红细胞悬液，置冰箱备用。

[0107] 2.4.2 试验步骤

[0108] 试验前，参照布洛芬注射液使用说明书确定剂量，取1支布洛芬注射液备用，取试
管7支，1-5管分别加入0.1ml、0.2ml、0.3ml、0.4ml、0.5ml的布洛芬，并用0.9％氯化钠注射液稀释至2.5ml，于6号、7号试管中分别加入0.9％氯化钠注射液及蒸馏水2.5ml（完全溶血对照）。最后每管均加入2％兔红细胞悬液2.5ml，轻轻摇匀，置37℃水浴中，分别记录15min、30min、45min、1h、2h、3h、4h各管的溶血和凝集情况。

0109 溶血结果判断标准为：
0110 完全溶血：溶液澄清，红色，管底无红细胞残留。
0111 部分溶血：溶液澄清，红色或棕色，管底尚有少量红细胞残留。
0112 不溶血：红细胞全部下沉，上层液无色透明。
0113 凝集：虽不溶血，但出现红细胞凝集，振摇后不能分散，或出现药物沉淀。
0114 2.5试验结果
0115 布洛芬注射液1-5管在4小时内未引起溶血和凝集反应。
0116 2.6试验结论
0117 本次试验条件下，布洛芬注射液对兔红细胞无溶血和凝集作用。表明布洛芬注射液不引起溶血和凝集反应。
0118 3.布洛芬注射液的血管刺激性试验
0119 3.1试验目的
0120 观察布洛芬注射液静脉注射对家兔耳缘静脉的刺激性，为临床安全用药提供依据。
0121 3.2受试药品
0122 实施例1所得布洛芬注射液，规格：100mg/ml，灭菌注射用水、卵白蛋白
0123 3.3受试动物
0124 白色家兔，体重2.0-2.5kg，雌雄各半，饲养室温度24±1℃，相对湿度50-60％，自然通风。
0125 3.4剂量设计
0126 试验前，根据布洛芬注射液使用说明书确定剂量，取布洛芬注射液，剂量设计为8ml/kg，注射用水为8ml/kg，家兔耳缘静脉注射给予。
0127 3.5试验方法
0128 家兔8只，采用同体左右侧自身对比法，左侧耳缘静脉作为受试药物组，另一侧作为注射用水对照组。左侧每日耳缘静脉注射受试药物8ml/kg，另一侧耳缘静脉亦每日注射8ml/kg注射用水，每日1次，连续3日，末次给药后48h，肉眼观察试验家兔耳缘静脉，并处死4只动物，剪取距注射部位1cm处和5cm处兔耳，置10％福尔马林溶液中固定，石蜡包埋，HE染色。剩余动物继续观察注射部位静脉14天，于观察末期，处死剩余动物，剪取距注射部位1cm处和5cm处家兔耳缘静脉，放于10％福尔马林溶液中固定，石蜡包埋，HE染色。光镜下观察给药后48小时及末次给药14天后对兔耳血管的刺激性反应。
0129 3.5.1肉眼观察标准
0130 观察注射部位兔耳静脉有无充血、水肿变性、硬结及坏死现象，记录病变程度及出现血管组织变化的家兔数目，血管充血及水肿程度分为0、I、II、III度，0度为无变化，I度为轻微变化，II度为明显变化，III度为严重变化。
0131 3.5.2病理组织学检查标准
说明书 8/12 页

[0132] 观察注射部位兔耳静脉血管扩张充血，血栓形成、水肿和炎性细胞浸润等改变，每项内容按病变程度分正常、轻、中、重，分别以 -、+、++、+++ 表示。

[0133] 3.6 试验结果

[0134] 3.6.1 肉眼观察结果

[0135] 家兔末次给药后 48 小时肉眼观察给药侧与对照侧有充血、水肿等表现，但两组没有明显差别。末次给药后第 14 天，剩余家兔给药侧与注射用水对照侧均已恢复正常，无任何异常表现。

[0136] 3.6.2 病理组织学检查结果（见图 2.3）

[0137] 末次给药后 48h，家兔双侧耳缘静脉给药 1cm 及 5cm 处均未见充血、水肿及出血，周围血管有轻度的炎性细胞浸润，未见硬结和坏死。给药后第 14d，注射用水侧与给药侧均未见充血、出血、水肿及硬结和坏死等病理变化，对照侧与给药侧无明显的差异性，试验结果显示布洛芬对家兔耳静脉血管没有明显的刺激性。

[0138] 3.7 试验结论

[0139] 本次试验条件下，布洛芬对家兔耳缘静脉无明显局部刺激反应。

[0140] 从以上安全性试验可知，本发明生产的布洛芬安全性有保证。

[0141] 实验例 2

[0142] 对本发明的产品建立检测方法学。参考中国药典 2010 版收载的布洛芬原料药及制剂质量标准，及 EP6.0 中收载的布洛芬原料质量标准及相关文献，及注射液常规项目，进行质量检测。

[0143] 1. 性状：实施例 1-5 均为无色澄清溶液。

[0144] 2. 鉴别：

[0145] 2.1. 紫外-可见分光光度法鉴别

[0146] 取实施例 1～5 各批次布洛芬注射液及布洛芬对照品，分别加 0.4% 氢氧化钠溶液制成每 1ml 中含 0.25mg 的溶液，照紫外-可见分光光度法（中国药典 2010 年版二部附录 VIA）在 200 ～ 400nm 的波长范围内扫描。另制备各实施例空白辅料溶液，同上法扫描紫外吸收曲线。

[0147] 结果表明，各实施例布洛芬注射液样品，均在 265nm，273nm 处有最大吸收，在 245nm 与 271nm 处有最小吸收，259nm 处有一肩峰。与布洛芬对照品紫外吸收图谱一致，空白辅料无干扰。

[0148] 3. 检查：

[0149] 3.1. 装量差异

[0150] 取实施例 1-5 样品各 5 瓶，按（中国药典 2010 年版二部附录 VI B 下注射液装量检查）操作，结果实施例 1-5 样品装量均符合规定。

[0151] 3.2. pH 值

[0152] 取实施例 1-5 样品各 2 瓶，按（中国药典 2010 年版二部附录 VI H）操作，pH 值结果见下表：

[0153]
实施例

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH值</td>
<td>7.63</td>
<td>7.72</td>
<td>7.56</td>
<td>7.49</td>
<td>7.71</td>
</tr>
</tbody>
</table>

[0154] 实施例 1-5 产品的 pH 值均在我们规定的 6-8 范围之内，符合规定。
[0155] 3.3 渗透压摩尔浓度
[0156] 取实施例 1-5 样品各 2 瓶，按中国药典 2010 版二部附录 IX G 渗透压摩尔浓度测定法，测定样品渗透压摩尔浓度，结果见下表：
[0157]
<table>
<thead>
<tr>
<th>实施例</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>渗透压摩尔浓度(mOsmol/kg)</td>
<td>289</td>
<td>296</td>
<td>290</td>
<td>286</td>
<td>294</td>
</tr>
</tbody>
</table>

[0158] 3.4 有关物质
[0159] 参考布洛芬 EP 标准中有关物质的方法进行测定。
[0160] 色谱条件
[0161] 色谱柱：C18 柱 (15mmX4.6mm, 5um)
[0162] 流动相：
[0163] 流动相 A：将 0.5ml 的磷酸、340ml 的乙腈、600ml 的水混合，待其平衡后用水稀释至 1000ml。
[0164] 流动相 B：乙腈
[0165] 采用梯度洗脱的方法进行。梯度条件如下：
[0166]
<table>
<thead>
<tr>
<th>时间 (min)</th>
<th>流动相 A(per cent V/V)</th>
<th>流动相 B(per cent V/V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>25-55</td>
<td>80 → 15</td>
<td>20 → 85</td>
</tr>
<tr>
<td>55-70</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>70-75</td>
<td>15 → 100</td>
<td>85 → 0</td>
</tr>
</tbody>
</table>

[0167] 检测波长：214nm
[0168] 流速：1ml/min
[0169] 柱温：35℃
[0170] 进样量：20ul
[0171] 3.4.1 系统适用性试验
[0172] 取杂质 E 与布洛芬原料，按供试品溶液制备法制成混合溶液，进样，杂质 E 与布洛芬的分离度约为 10.4，理论塔板数按布洛芬峰计约为 11000，见图 4。
[0173] 3.4.2 溶剂空白与辅料空白
3.4.3. 降解试验

取实施例1布洛芬注射液适量，加流动相A制备每1ml约含2.5mg的溶液作为降解试验的贮备液。

A. 破坏试验对照

精密量取降解贮备液1ml，加流动相A制成含布洛芬为250μg/ml的溶液，取20μl注入液相色谱仪，记录色谱图，作为降解对照溶液，见图7。

B. 酸破坏试验

精密量取贮备液1ml，加4mol/L盐酸溶液1ml，80℃水浴放置2h，用4mol/L氢氧化钠溶液调节至中性，再用流动相A稀释至10ml，取20μl注入液相色谱仪，记录色谱图至75min，见图8。

C. 碱破坏试验

精密量取贮备液1ml，加4mol/L氢氧化钠溶液1ml，80℃水浴放置2h，用4mol/L盐酸溶液调节至中性，再用流动相A稀释至10ml，取20μl注入液相色谱仪，记录色谱图，见图9。

D. 氧化破坏试验

取贮备液1ml，加30%H2O21ml，80℃水浴放置1小时，用流动相A稀释至10ml，取20μl注入液相色谱仪，记录色谱图，见图10。

E. 光照破坏试验

取贮备液1ml，置暗箱内，调节至中性，再用流动相A制成每1ml含250μg/ml的溶液，取20μl注入液相色谱仪，记录色谱图，见图11。

F. 高温破坏试验

取布洛芬注射液，置烘箱中，105℃下放置72小时，放冷，按供试品溶液制备法制成供试品溶液，精密量取20μl注入液相色谱仪，记录色谱图，见图12。

6. 降解试验结论

1) 布洛芬注射液在各种条件下发生不同程度的降解，降解产物与主峰良好分离，表明该色谱条件适用于进行有关物质检查。

2) 布洛芬性质较稳定，在多种条件下破坏程度轻微，仅在高温氧化、剧烈条件下发生较大程度降解。

3) 空白辅料对布洛芬有关物质检查无影响。

4. 4. 供试液制备

供试液制备：精密量取实施例1布洛芬注射液适量，加流动相A制备每1ml含0.25mg的溶液，作为供试品溶液；按以上色谱条件进样，有关物质结果为0.08%，见图13。

实验例3

根据中国药典2010年版四部附录“药物稳定性试验指导原则”的要求，对本发明实施例1样品进行稳定性考察，考察条件包括影响因素试验、加速试验、长期试验，考察项目包括：性状、pH值、溶液的澄清度与颜色、有关物质、含量、(可见异物、无菌，细菌内毒素...
在加速试验最后一个半月和长期试验最后一个月中考察。

[0197] 考查条件

[0198] 1. 影响因素试验

[0199] 1.1. 光照试验（4500lx±500lx）

[0200] 取实施例1样品适量置于4500lx±500lx照度条件下放置10天，于第5、10天取样测定，并与0天数据对比。

[0201] 1.2. 高温试验（60℃）

[0202] 取实施例1样品适量60℃的恒温室中放置10天，于第5、10天取样测定，并与0天数据对比。

[0203] 1.3. 高湿试验（RH92.5%）

[0204] 取实施例1样品适量，打开西林瓶盖，置相对湿度为92.5%（饱和KN03溶液）的容器中放置10天，于第5、10天取样测定，并与0天数据对比。

[0205] 2. 加速试验

[0206] 取本发明的实施例1，置于加速条件下（40℃，RH75%±5%）放置6个月，并于第1、2、3、6月末取样测定，并与0月数据对比。

[0207] 3. 长期留样试验

[0208] 取本发明的实施例1样品各适量，置于温室条件下（25℃，RH60%±5%）放置6个月，并于第3、6、9、12、18、24、36月末取样测定，并与0月数据对比。

[0209] 考查结果

[0210] 稳定性结果见以下各表。

[0211] 实施例1样品影响因素试验结果

<table>
<thead>
<tr>
<th>条件</th>
<th>时间 (天)</th>
<th>外观性状</th>
<th>pH 值</th>
<th>溶液的澄清度与颜色</th>
<th>有关物质 (%)</th>
<th>含量 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>无色澄清溶液</td>
<td>7.63</td>
<td>澄清、无色</td>
<td>0.08</td>
<td>99.7</td>
</tr>
<tr>
<td>高温(60℃)</td>
<td></td>
<td>5</td>
<td>无色澄清溶液</td>
<td>7.54</td>
<td>澄清、无色</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>无色澄清溶液</td>
<td>7.67</td>
<td>澄清、无色</td>
<td>0.10</td>
</tr>
<tr>
<td>高湿(92.5%)</td>
<td></td>
<td>5</td>
<td>无色澄清溶液</td>
<td>7.49</td>
<td>澄清、无色</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>无色澄清溶液</td>
<td>7.72</td>
<td>澄清、无色</td>
<td>0.09</td>
</tr>
<tr>
<td>光照(4500lx)</td>
<td></td>
<td>5</td>
<td>无色澄清溶液</td>
<td>7.56</td>
<td>澄清、无色</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>无色澄清溶液</td>
<td>7.45</td>
<td>澄清、无色</td>
<td>0.09</td>
</tr>
</tbody>
</table>

[0213] 实施例1加速试验6个月结果；

[0214]
<table>
<thead>
<tr>
<th>时间 (月)</th>
<th>外观性状</th>
<th>pH 值</th>
<th>可见异物</th>
<th>无菌</th>
<th>细菌内毒素</th>
<th>有关物质 (%)</th>
<th>含量 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无色澄清溶液</td>
<td>7.63</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.08</td>
<td>99.7</td>
</tr>
<tr>
<td>1</td>
<td>无色澄清溶液</td>
<td>7.58</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.09</td>
<td>99.6</td>
</tr>
<tr>
<td>2</td>
<td>无色澄清溶液</td>
<td>7.74</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.07</td>
<td>99.9</td>
</tr>
<tr>
<td>3</td>
<td>无色澄清溶液</td>
<td>7.69</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.10</td>
<td>100.3</td>
</tr>
<tr>
<td>6</td>
<td>无色澄清溶液</td>
<td>7.57</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>0.08</td>
<td>99.5</td>
</tr>
</tbody>
</table>

[0215] 实施例 1 长期试验 6 个月结果：

<table>
<thead>
<tr>
<th>时间 (月)</th>
<th>外观性状</th>
<th>pH 值</th>
<th>可见异物</th>
<th>无菌</th>
<th>细菌内毒素</th>
<th>有关物质 (%)</th>
<th>含量 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无色澄清溶液</td>
<td>7.63</td>
<td>符合规定</td>
<td>符合规定</td>
<td>符合规定</td>
<td>0.08</td>
<td>99.7</td>
</tr>
<tr>
<td>3</td>
<td>无色澄清溶液</td>
<td>7.78</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.09</td>
<td>99.4</td>
</tr>
<tr>
<td>6</td>
<td>无色澄清溶液</td>
<td>7.59</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.07</td>
<td>99.8</td>
</tr>
</tbody>
</table>

[0217] 稳定性考察结论：
[0219] 影响因素试验结论：本发明样品在各影响因素条件下 10 天，各指标与 0 天相比基本无明显变化。

[0220] 加速试验结论：本发明样品（选取了实施例 1）在西林瓶中，在加速试验条件下 6 个月，各稳定性考察项目与 0 天相比基本无变化。

[0221] 长期试验结论：本发明样品（选取了实施例 1）在西林瓶中，在长期试验条件下 6 个月（室温条件），各稳定性考察项目与 0 天相比基本无变化。

[0222] 上述稳定性试验结果表明本发明产品稳定性良好。
图 2

图 3
图 4

图 5
图 6

图 7
PDA 多色谱图 1/214nm 4nm

<table>
<thead>
<tr>
<th>组分</th>
<th>保留时间</th>
<th>浓度</th>
<th>浓度</th>
<th>峰面积</th>
<th>峰面积</th>
<th>分离度</th>
<th>分离度</th>
<th>峰谷比</th>
<th>峰谷比</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.50</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>6.72</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>2.48</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>1.34</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>6</td>
<td>1.50</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>7</td>
<td>2.64</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

图 8
<色谱图>

图9

PDA 多色谱图 1/214nm 4nm

<table>
<thead>
<tr>
<th>峰表</th>
<th>PDA Ch1 214nm 4nm</th>
<th>基线</th>
<th>面积</th>
<th>面积%</th>
<th>面积%</th>
<th>面积%</th>
<th>面积%</th>
<th>面积%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.406</td>
<td>100</td>
<td>100</td>
<td>0.13</td>
<td>0.25</td>
<td>0.00</td>
<td>0.14</td>
<td>0.75</td>
</tr>
<tr>
<td>2</td>
<td>0.261</td>
<td>1255</td>
<td>795</td>
<td>0.46</td>
<td>0.46</td>
<td>0.11</td>
<td>0.36</td>
<td>0.87</td>
</tr>
<tr>
<td>3</td>
<td>1.083</td>
<td>220</td>
<td>74</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>4</td>
<td>1.354</td>
<td>188</td>
<td>110</td>
<td>0.73</td>
<td>0.73</td>
<td>0.40</td>
<td>0.40</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>2.345</td>
<td>2665</td>
<td>306</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>2.082</td>
<td>105</td>
<td>94</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

图9
<色谱图>

![色谱图](image)

1 PDA 丰色谱图 1/214nm 4nm

峰表

<table>
<thead>
<tr>
<th>序号</th>
<th>PDA</th>
<th>丰色谱图 1/214nm 4nm</th>
<th>颜色</th>
<th>面积</th>
<th>面积 %</th>
<th>峰面积</th>
<th>分析时间</th>
<th>分析时间差</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.57</td>
<td>582.1</td>
<td>1261</td>
<td>0.006</td>
<td>1.634</td>
<td>0.000</td>
<td>3060.071</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.93</td>
<td>1400.8</td>
<td>715.5</td>
<td>0.381</td>
<td>0.000</td>
<td>1.375</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.63</td>
<td>645.8</td>
<td>648.9</td>
<td>0.227</td>
<td>0.000</td>
<td>0.227</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.58</td>
<td>957.9</td>
<td>858.7</td>
<td>0.104</td>
<td>1.105</td>
<td>0.282</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.61</td>
<td>957.9</td>
<td>858.7</td>
<td>0.104</td>
<td>1.105</td>
<td>0.282</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12.76</td>
<td>957.9</td>
<td>858.7</td>
<td>0.104</td>
<td>1.105</td>
<td>0.282</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13.28</td>
<td>1078.1</td>
<td>887.5</td>
<td>0.104</td>
<td>1.105</td>
<td>0.282</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17.86</td>
<td>1078.1</td>
<td>887.5</td>
<td>0.104</td>
<td>1.105</td>
<td>0.282</td>
<td>1.779.710</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18.31</td>
<td>1264.3</td>
<td>818.0</td>
<td>0.121</td>
<td>0.000</td>
<td>0.121</td>
<td>827.6728</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>22.41</td>
<td>22736</td>
<td>728.6</td>
<td>0.190</td>
<td>0.082</td>
<td>0.190</td>
<td>11060.668</td>
<td></td>
</tr>
<tr>
<td>总计</td>
<td>1183546</td>
<td>574250</td>
<td>140.000</td>
<td>574250</td>
<td>140.000</td>
<td>11060.668</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图10
1 PDA 多色谱图 1/214nm 4nm

峰表

<table>
<thead>
<tr>
<th>峰号</th>
<th>保留时间</th>
<th>214nm</th>
<th>4nm</th>
<th>340nm</th>
<th>434nm</th>
<th>分子量</th>
<th>TIC/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.638</td>
<td>2.64</td>
<td>41</td>
<td>0.028</td>
<td>0.19</td>
<td>0.009</td>
<td>3.634</td>
</tr>
<tr>
<td>2</td>
<td>3.417</td>
<td>5.06</td>
<td>53</td>
<td>0.013</td>
<td>1.06</td>
<td>3.15</td>
<td>3.413</td>
</tr>
<tr>
<td>3</td>
<td>1.851</td>
<td>1.79</td>
<td>1.8</td>
<td>0.012</td>
<td>0.77</td>
<td>1.02</td>
<td>1.85</td>
</tr>
<tr>
<td>4</td>
<td>6.365</td>
<td>6.75</td>
<td>5.1</td>
<td>0.013</td>
<td>1.39</td>
<td>6.07</td>
<td>6.37</td>
</tr>
<tr>
<td>5</td>
<td>10.277</td>
<td>10.55</td>
<td>10</td>
<td>0.014</td>
<td>1.01</td>
<td>13.01</td>
<td>10.28</td>
</tr>
<tr>
<td>6</td>
<td>14.075</td>
<td>13.59</td>
<td>88</td>
<td>0.072</td>
<td>1.06</td>
<td>9.57</td>
<td>14.08</td>
</tr>
<tr>
<td>7</td>
<td>15.535</td>
<td>15.07</td>
<td>3000</td>
<td>99.875</td>
<td>1.025</td>
<td>2.025</td>
<td>15.55</td>
</tr>
<tr>
<td>8</td>
<td>22.228</td>
<td>20.79</td>
<td>33</td>
<td>0.076</td>
<td>1.025</td>
<td>10.375</td>
<td>22.24</td>
</tr>
<tr>
<td>总计</td>
<td>115.807</td>
<td>110.90</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>115.8</td>
</tr>
</tbody>
</table>