This invention relates particularly to the weather stripping of counterbalanced windows of the general type of that shown in Letters Patent of the United States No. 1,864,745 dated June 28, 1932, granted to Unique Balance Company as assignee of Algol Larson, but in which the counterbalanced mechanism is enclosed, in part at least, within a cylindrical tube which is seated in a vertical recess in each side of the window sash. In accordance with the invention there is interposed between the window sash and the face of the casing member a metal weather strip which is so formed as to be resilient and to conform in part to and fit against the tube and preferably also to make contact with the sash itself on lines at opposite sides of the recess in the sash in which the tube is located. The weather strip is also formed so that it is held in place mainly by a movable member, such as the parting strip, in the case of the upper sash, and the stop bead in the case of the lower sash, a light nail at top and bottom being desirable for security.

The invention will be more fully explained hereinafter with reference to the accompanying drawings, in which:

Figure 1 is a view in sectional elevation, broken out to save space, of a window equipped with the improved parting strip.

Figure 2 is a view in horizontal section with the two sashes, upper and lower, moved into such relative position that both are cut by the plane of section.

Figure 3 is a detail view in isometric projection on a larger scale of a portion of the weather strip for the upper sash.

Figure 4 is a view similar to Figure 3 of a portion of the weather strip for the lower sash.

Figure 5 is a detail view on a larger scale of a portion of the construction shown in Figure 2.

In the embodiment of the invention illustrated, the window frame is of such construction, having at each side a casing member a and having a head b and a sill c. The face d of the casing, at each side of the window, inset somewhat from the outer member of the casing, receives the usual parting strip e and the usual stop bead f whereby there are formed the channels in which the sashes are guided. In the construction shown each side of the upper sash g and of the lower sash h is formed with a vertical recess i and k, respectively, in which is located the tube l which, in the improved sash balance mechanism of the type shown in said Letters Patent, receives a torsion spring m which coacts with the spiral m1 and the nut m2.

The improved weather strip n for the upper sash, made of any suitable resilient metal is formed as shown clearly in Figure 3, with a central concaved portion n1 which conforms with and fits upon the tube l, having a substantial area of contact therewith. At each edge of the curved portion n1 the strip is bent away from the sash and toward the center line of the strip, as at n2, n3, and is then flared outwardly and inwardly from the central portion, as at n4, n5, to give the strip the desired resilience. One edge portion of the strip is bent away from the sash to form a flange n6 to be received between the parting strip e and the side wall of the recess in the member d, in which it is placed, while the other portion n7 may be lapped, as at n8, to bear against the face member d of the casing. The weather strip o for the lower sash is similarly formed, having a central concaved portion o1 conforming to the tube l of the balance mechanism, having the flared portions o4 and o5 which give resilience, and having at one side a flange o6 to be received between the stop bead f and the jamb member d and having the other edge lapped, as at o7, to bear against the face of the jamb member d.

Nails may be used, as at n9 and o9, if desired for the purpose of holding the weather strips securely in place.

It will be observed that the flaring members n4, n5 and o4, o5 are arranged to bear, as at n10 and o10, against the edges of the vertical recesses in the sides of the sashes, thereby affording further protection against the entrance of air in addition to that afforded by the conforming of the middle portion of the strip to the tube with which it cooperates.

The resilient character of the weather strip causes it to bear with a constant pressure against the tube of the balance mechanism and thereby to assure good contact and also enables it to compensate for moderate variations in the width of the sash.

It will be understood that the form of the weather strip may be varied to suit different conditions of use.

I claim as my invention:

1. The combination of a window frame having a face plate, a window sash, a tube interposed between the sash and the face plate, and a resilient weather strip interposed between the tube and the face plate and having its central portion conforming to the tube.

2. The combination of a window frame having
a face plate, a window sash, a tube interposed between the sash and the face plate, and a resilient weather strip interposed between the tube and the face plate having its central portion conformed to the tube and having its flange to be engaged by said movable member. 4. The combination of a window frame having a face plate, a window sash vertically recessed in its edge, a counterbalance tube located in the recess of the sash, and a resilient weather strip interposed between the tube and the face plate and having its central portion conformed to the tube and having flared members to bear at their edges against the face plate and to make contact with the edges of the recess in the sash.

LORING WASHBURN.