
USOO8244758B1

(12) United States Patent (10) Patent No.: US 8,244,758 B1
Cornali (45) Date of Patent: * Aug. 14, 2012

(54) STATE MANAGEMENT FOR USER 2003/0043.187 A1 3/2003 Li 345,749
INTERFACES 2003/0105589 A1* 6/2003 Liu et al. 7O2/1

2007/0033595 A1* 2, 2007 Carr et al. T19,328
2007/0239468 A1* 10, 2007 O'Brien et al. 705/1

(75) Inventor: Del J. Cornali, Seattle, WA (US) 2008/0001751 A1 1/2008 Giesekeet al. 340,572.1
2008. O108035 A1* 5, 2008 Warda 434,335

(73) Assignee: Amazon Technologies, Inc., Reno, NV 2008. O162305 A1* 7, 2008 Rousso et al. 705/27
(US) 2008/0181123 A1* 7/2008 Huang et al. . 370.252

2009,025995.0 A1* 10, 2009 Sullivan et al. 715,762
c - r 2010/0063971 A1* 3/2010 Cragun et al. 707/741

(*) Notice: sity is titly 2010/0063975 A1* 3/2010 Hayes 707/765
U.S.C. 154(b) by 0 days. * cited by examiner

This patent is Subject to a terminal dis- Primary Examiner — Binh V Ho
claimer. 74) Attorney, Agent, or Firm — Kilpatrick Townsend & ey, Ag p

(21) Appl. No.: 13/210,266 Stockton LLP

(22) Filed: Aug. 15, 2011 (57) ABSTRACT
State information for a page can be stored and restored using

Related U.S. Application Data a component state manager to extract and set state informa
(63) Continuation of application No. 12/118.436, filed on tion for various components on a page. Each appropriate

component can register W1th the State manager, Such that May 9, 2008, now Pat. No. 8,001,145. p 9. h the stat g h th
when a user requests to store state information, the State

(51) Int. Cl. manager can extract state information for each registered
G06F 7700 (2006.01) component and store the state information accordingly. The

(52) U.S. Cl. 707/779; 707/798: 707/805; 707/807 user can be provided with a tag or other identifier that allows
(58) Field of Classification Search 707/779 the user to Subsequently request recreation of that state. In

See application file for complete search history. response to receiving the identifier, the state manager
retrieves the stored state information and sets the state of each

(56) References Cited respective registered component on the page. The identifiers
can be shared with other users to allow those users to also

U.S. PATENT DOCUMENTS quickly access the same state.
6,768,997 B2 * 7/2004 Schirmer et al. 707/779
7,065,525 B1* 6/2006 Sasaki et al. 369,13.01 22 Claims, 6 Drawing Sheets

S
402

Create application with
registerable components 452

for State information
Register components with 404

state manager

information
Enable user to navigate to 4O6

desired State

registered objects for page
Receive request from user to 408

save current State

for registered objects
Query each registered object 410

for current page for state

respective objects
Store received state 412

information
Present user with recreated 462

state corresponding to
identier

Provide user with identifier for 414
accessing stored state

U.S. Patent Aug. 14, 2012 Sheet 1 of 6 US 8,244,758 B1

S. OO

Application
Server

102
104

106

Development
Server

120

U.S. Patent Aug. 14, 2012 Sheet 2 of 6 US 8,244,758 B1

Web Browser
FILE EDIT VIEW FAVORITES TOOLS HELP
AddressCWCGO

Product Type Property Type

V Consumer Electronics Normalization Target

V Audio Devices Merchant Facing

MP3 Players - Rule Set

Receivers Compensation type

Satellite RadioS Revenue Share

> Video Devices - Advertiser StatuS

) Home and Garden Authority
) Toys and Games - Suggestions

FIG. 2 “ao

304
300

User Interface 302 S
Component 1

Component 3
Component 2

se
Component

State Manager 310

External Data
Service

XML
doCument

308 306

FIG. 3

U.S. Patent Aug. 14, 2012 Sheet 3 of 6 US 8,244,758 B1

S 400

402
Create application with

registerable components

Register components with 404
State manager

Enable user to navigate to 406
desired State u?

Receive request from user to 408
Save Current State

Query each registered Object 410
for Current page for State

Store received State 412
information

Provide uSer With identifier for 414
accessing Stored State

FIG. 4(a)

U.S. Patent Aug. 14, 2012 Sheet 4 of 6

Receive request with identifier
for State information

Retrieve Stored State
information

Determine Corresponding
registered Objects for page

Determine State information
for registered Objects

Set State information for
respective Objects

Present uSer With recreated
State corresponding to

identifier

FIG. 4(b)

452

454

456

458

460

462

US 8,244,758 B1

S 450

U.S. Patent Aug. 14, 2012 Sheet 5 of 6 US 8,244,758 B1

FILE EDIT VIEW FAVORITES TOOLS HELP
Address IVBGO

Product Type Type B Type C

W enter link v.
04 Property Type Hierarchy

Environment Filter

Environment: 83
Pacific Rim
at America MP3 Players

Product Type Filters Receivers
Satellite RadioS

Operty Value Poet
Normalization Attribute 2020 ordering id Video Devices
Mormalization Rule Set mapSet(omit)
Organization Facing true

FIG. 5

U.S. Patent Aug. 14, 2012 Sheet 6 of 6 US 8,244,758 B1

600

: John Doe Doc'>
anizational Filter".

Ok fs
k Ok is

< s: "PropteryFilter">

fo's "productTypeselections Filter's
as “KIMONO" was: "selected" fix
r"OBI' assic selected" is

is is "SOCKSHOSIERY" is iss'selected fa
s: "SKIRT was sists selected
s: "NONAPPARELMISC' y &
s: "SUIT was is as "selected" f
'APPAREL is "selected" fix
"SLEEPWEAR Y, 'selected" fo
"UNDERWEAR" yasies: selected" f

: "POWERSPORTS RIDING GLOWES', \
POWERSPORTS RIDING SUIT" was

:: "SWEATER y : 'selected" is
s:"DRESS" was : "selected' fix
: "CHANCHANKO" waise:"selected' fa
: "SWIMWEAR" y 38: "selected" is
"HOMEACCESSORY y 'selected' fly

Sir "BRA" was is selected' is
s: "JINBEI" was re'selected
se"POWERSPORTS RIDING SHIRT" was
is “PROTECTIVE GEAR was iss"selected” fix
s: "POWERSPORTS RIDING JACKET" was: "selected a
: “POWERSPORTS RIDING PANTS" was ess "selected ge
s"SHORTS" was ass selected" is
s"YUKATA : "selected fa
"PANTS' y; 'selected" fe
"HAT." Wasie: 'selected" is

::"BLAZER" was: 'selected" f>
"POWERSPORTS PROTECTIVE GEAR visis: "selected fix

:"ACCESSORY" was: 'selected" fix
"POWERSPORTS RIDING HELMET" was: "selected fix
"BAG & : 'selected" fix
"POWERSPORTS RIDING APPAREL" was re'selected" fix

is "PERSONALBODYCARE" was re'selected" f.
&r"OUTERWEAR" was is a 'selected' fly

"SHIRT, y &iss'selected" is
ss. "POWERSPORTS RIDING UNDERWEAR was iss'selected" is

a.
3.

: “selected" f:

::::"selected" &
&: 'selected fY

'selected" f

FIG. 6

US 8,244,758 B1
1.

STATE MANAGEMENT FOR USER
INTERFACES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 12/118,436, filed May 9, 2008, the full disclosure of
which is incorporated herein by reference.

BACKGROUND

The present disclosure relates generally to, among other
things, the generation, maintenance, and use of data, meta
data, and/or various data structures. As the amount of Such
information stored electronically continues to increase dra
matically, approaches for managing this increasing amount of
data become evermore important. Data typically is stored in a
data storage using a two-dimensional approach, with each
item of data corresponding to a row in at least one table that
includes entries in respective columns of information. The
mapping or other linking between tables provides the ability
for the data to be linked to various other data, organizations,
classifications, etc. The linking of various tables at different
levels can thus produce a hierarchy of information relating to
each stored data item. In order to attempt to provide some
context for the data, metadata is often stored that provides
additional information for each stored data item. For
example, metadata might be used to associate a data item with
one or more categories of data, as well as to provide informa
tion about those categories.
As the size of these hierarchies and the amount of data

increases, the ability to manage the data and even locate
specific data becomes more difficult. Further, as categories
and other information can change over time, it becomes
increasingly difficult to manage and update all the appropriate
stored information. Not only is it time consuming to locate the
information, but it can be difficult to get back to that infor
mation at a later time without having to again go through the
lengthy navigation process. Also, there is no way to easily
share the location of that data without having to instruct
another user as to how to locate the data, which then requires
that user to also endure the navigation process. Various other
aspects of these approaches are time consuming or inefficient,
or come with various other deficiencies.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis
closure will be described with reference to the drawings, in
which:

FIG. 1 illustrates a system configuration that can be used in
accordance with one embodiment;

FIG. 2 illustrates a page showing product type information
that can be used in accordance with one embodiment;

FIG.3 illustrates a system configuration that can be used in
accordance with one embodiment;

FIGS. 4(a) and 4(b) illustrate steps that can be used to save
and retrieve state information for a page in accordance with
one embodiment;

FIG. 5 illustrates a page showing restored product type
information that can be used in accordance with one embodi
ment; and

FIG. 6 illustrates an extensible markup language (XML)
document including state information for a number of regis
tered components that can be used in accordance with one
embodiment.

10

15

25

30

35

40

45

50

55

60

65

2
DETAILED DESCRIPTION

Systems and methods in accordance with various embodi
ments of the present disclosure may overcome one or more
the aforementioned and other deficiencies experienced in
conventional approaches to managing information in an elec
tronic environment. The information can include, or relate to,
any appropriate content desired to be stored electronically. As
used herein, the term “content can refer to anything that can
be displayed, stored, manipulated, reported on, analyzed, or
otherwise conveyed to a user, such as through a graphical user
interface (GUI), typically in response to a request from the
user. A request for content can include any appropriate
request sent over an appropriate system or network, Such as a
request sent to an Enterprise server over a local area network
(LAN), a request submitted via a Web page over the Internet,
or a message sent via a messaging system to a content pro
vider, for example.

FIG. 1 illustrates an example of an environment 100 for
implementing aspects in accordance with various embodi
ments. As will be appreciated, different environments may be
used, as appropriate, to implement various embodiments. The
environment 100 shown includes both a testing or develop
ment portion (or side) and a production portion. The produc
tion portion includes an electronic client device 102, which
can include any appropriate device operable to send and
receive requests, messages, or information over an appropri
ate network 104 and convey information back to a user of the
device. Examples of Such client devices include personal
computers, cellphones, handheld messaging devices, laptop
computers, set-top boxes, personal data assistants, electronic
book readers, and the like. The network can include any
appropriate network, including an intranet, the Internet, a
cellular network, a local area network, or any other Such
network or combination thereof. Protocols and components
for communicating via Such a network are well known and
will not be discussed herein in detail. Communication over
the network can be enabled by wired or wireless connections,
and combinations thereof. In this example, the network
includes the Internet, as the environment includes a Web
server 106 for receiving requests and serving content in
response thereto, although for other networks an alternative
device serving a similar purpose could be used as would be
apparent to one of ordinary skill in the art.
The illustrative environment includes at least one applica

tion server 108 and a data store 110. As used herein the term
“data store refers to any device or combination of devices
capable of storing, accessing, and retrieving data, which may
include any combination and number of data servers, data
bases, data storage devices, and data storage media, in any
standard, distributed, or clustered environment. The applica
tion server can include any appropriate hardware and soft
ware for integrating with the data store as needed to execute
aspects of one or more applications for the client device,
handling a majority of the data access and business logic for
an application. The application server provides access control
services in cooperation with the data store, and is able to
generate content such as text, graphics, audio, and/or video to
be transferred to the user, which may be served to the user by
the Web server in the form of HTML for at least one Web page
using hypertext transfer protocols. The handling of all
requests and responses, as well as the delivery of content
between the client device 102 and the application server 108,
can be handled by the Web server. It should be understood that
the Web and application servers are not required and are
merely example components, as structured code discussed
herein can be executed on any appropriate device or host

US 8,244,758 B1
3

machine as discussed elsewhere herein. Further, the environ
ment can be architected in Such a way that a test automation
framework can be provided as a service to which a user or
application can Subscribe. A test automation framework can
be provided as an implementation of any of the various testing
patterns discussed herein, although various other implemen
tations can be used as well, as discussed or Suggested herein.

The environment also includes a development and/or test
ing side, which includes a user device 118 allowing a user
Such as a developer, data administrator, or tester to access the
system. The user device 118 can be any appropriate device or
machine, such as is described above with respect to the client
device 102. The environment also includes a development
server 120, which functions similar to the application server
108 but typically runs code during development and testing
before the code is deployed and executed on the production
side and is accessible to outside users, for example. In some
embodiments, an application server can function as a devel
opment server, and separate production and testing Storage
may not be used.
The data store 110 can include several separate data tables,

databases, or other data storage mechanisms and media for
storing data relating to a particular aspect. For example, the
data store illustrated includes mechanisms for storing produc
tion data 112 and user information 116, which can be used to
serve content for the production side. The data store also is
shown to include a mechanism for storing testing data 114,
which can be used with the user information for the testing
side. It should be understood that there can be many other
aspects that may need to be stored in the data store, Such as for
page image information and access right information, which
can be stored in any of the above listed mechanisms as appro
priate or in additional mechanisms in the data store 110. The
data store 110 is operable, through logic associated therewith,
to receive instructions from the application server 108 or
development server 120, and obtain, update, or otherwise
process data in response thereto. In one example, a user might
Submit a search request for a certain type of item. In this case,
the data store might access the user information to Verify the
identity of the user, and can access the catalog detail infor
mation to obtain information about items of that type. The
information then can be returned to the user, Such as in a
results listing on a Web page that the user is able to view via
a browser on the user device 102. Information for a particular
item of interest can be viewed in a dedicated page or window
of the browser.

Each server typically will include an operating system that
provides executable program instructions for the general
administration and operation of that server, and typically will
include a computer-readable medium storing instructions
that, when executed by a processor of the server, allow the
server to perform its intended functions. Suitable implemen
tations for the operating system and general functionality of
the servers are known or commercially available, and are
readily implemented by persons having ordinary skill in the
art, particularly in light of the disclosure herein.
The environment in one embodiment is a distributed com

puting environment utilizing several computer systems and
components that are interconnected via communication links,
using one or more computer networks or direct connections.
However, it will be appreciated by those of ordinary skill in
the art that such a system could operate equally well in a
system having fewer or a greater number of components than
are illustrated in FIG.1. Thus, the depiction of the system 100
in FIG. 1 should be taken as being illustrative in nature, and
not limiting to the scope of the disclosure.

5

10

15

25

30

35

40

45

50

55

60

65

4
Aspects of the various embodiments can be utilized on the

production side or the development side. These aspects also
can be used in other environments, where there may not be
Such a separation, or where there may be other portions such
as a dedicated test server (not shown) or other such devices.
Arrangements for testing development and production code
are known in the art and will not be discussed herein in detail.

FIG. 2 illustrates an example of a graphical user interface
(GUI) window 200, in this example programmed to be dis
played via a browser application on a client device, displaying
a Web page in which a user is able to view data, metadata, and
product information for content in an electronic marketplace
application. While an electronic marketplace is used for pur
poses of explanation, it should be understood that this is
merely an example and that any electronic environment
where information is stored, retrieved, and managed can take
advantage of aspects of various embodiments described and
Suggested herein. For example, an Enterprise system could
store information relating to employees, salaries, benefits,
etc.

In the example of FIG. 2, a user is able to first select a type
of information to view, such as by selecting a type filter tab
202 or other appropriate user-selectable object. Once a type
of information is selected, additional navigational elements
are presented to the user, which allow the user to navigate to,
and/or select, the desired information. Here, the user is pre
sented with a hierarchical list 204 of product types (per selec
tion of the product type tab) that allows the user to navigate
through the list to obtain the desired product type. Once the
user locates and selects the desired product type, the user can
be presented with another list 206 of property types for the
selected product type. The property types in one embodiment
correspond to metadata about the selected product type data.
The list of property types can allow a user to select one or
more property types to be viewed, analyzed, extracted, or
otherwise processed. In some embodiments, the property
type list also can be hierarchical. As can be seen in this
example, the user selected the product type tab 202, navigated
through the hierarchical product type list 204 to select infor
mation for MP3 players, and selected at least three property
types from the property type list 206. At this point, the user
can select an export 208 or other appropriate option to per
form the desired action for the selected data. Other tech
niques, options, or directions for navigating content on a page
can be used as well. Further, in order to access the informa
tion, a user can be identified to the system using any appro
priate approach known in the art, such as by having the user
login to the site, or by storing a cookie for the user's browser.
One such metadata editor utilizes Java Server Faces (JSF)

available from Sun Microsystems, Inc. of Santa Clara, Calif.,
to implement a Model View Controller (MVC)-based
approach to managing metadata and related information. An
MVC-based approach includes an abstract data model that
includes a hierarchy of the data and the relationships therebe
tween, which can be implemented using a series of Java
modules. An MVC-based approach also includes a view por
tion that determines which information the user is allowed to
see and how the user is able to interact with that information,
and includes the actual user interface. The model and view are
kept separate within the MVC environment, with the interac
tion of these components being determined by the controller
portion. An advantage of implementing MVC using a tech
nology such as JSF (a potent building block of Web 2.0
interfaces) is that a technology Such as JSF is able to leverage
the power and ease of existing data systems and data services
using standard GUI elements such as Ajax elements. Further,
conventional approaches relied upon state variables to define

US 8,244,758 B1
5

a current user's state within the application, including, for
example, URL (“GET) variables, session variables, and
database values. Using JSF, however, allows an application to
be "state aware.” as the backing Java beans are able to main
tain and track user State. Such an approach allows a user to
stay on a single page of an application or Web site, but engage
in multiple user transactions thus making the application or
site appear more like a traditional desktop application than a
traditional web page.
As discussed above, however, such an approach can have

various disadvantages, as the process for locating and select
ing the correct data in the hierarchies can be lengthy and
difficult, particularly for those users who are only familiar
with data for a portion of the available information. If a user
wishes to Subsequently access the same types of information,
the user goes through the entire navigational process again.
While this might not be as difficult for the same user a second
or third time around, the difficulty for a different user trying to
access that same data will not be improved. Further, even for
users who know how to navigate to the desired data, the
process still can take an unacceptable amount of time, par
ticularly when a user frequently navigates to the same data.
For example, a metadata editor for a provider of an electronic
marketplace might be used by various users, each of which is
responsible for metadata for a particular category of product
information. The metadata editor, which in one example takes
the form of a thin GUI wrapper around a database that per
tains to item metadata, can present the information using very
large lists, some of which can be hierarchical whereby it is
beneficial that a user be at least somewhat familiar with the
tree structure in order to know which nodes contain the
desired information. A user responsible for a product type
might have to periodically locate the appropriate metadata for
a product type to determine information about that product,
Such as how the product is being used or processed. At least
one user also can be tasked with managing the entire knowl
edge base of metadata. The inability to quickly navigate back
to a desired State thus can be problematic from a cost and
efficiency standpoint.

For example, a category manager might use a company
wide back-end JSF-application. The manager might spend
the first several minutes interacting with the application just
"setting up' the application, or pre-selecting the elements
which pertain just to the respective area(s) of expertise. Since
standard uniform resource locator (URL)-based approaches
using GET statements are not secure, and can be easily
hacked to gain unauthorized access to the data, a JSF-based
editor is used that does not utilize links or URLs with embed
ded GET statements. Unfortunately, the lack of usable GET
variables means that the category manager has no way to
preset the application to the manager's preferences. Without
any way to save or restore the state of their interaction with an
application, the manager is forced to re-do the same time
consuming repetitive steps simply to get to a starting point in
the application to perform their daily work activities.

Accordingly, systems and methods in accordance with one
embodiment enable applications, modules, programs, sites,
and other Such functionality to store and restore state infor
mation, such as user interaction through a user interface (UI).
Such an approach can still take advantage of technologies
such as JSF and Ajax, which allow users to interact with a
variety of components including components providing for
single-selections, multi-selections (e.g., flat drop-down lists
and tree-type hierarchies), and complex key-value properties.
A user is able to navigate to any particular state using the

10

15

25

30

35

40

45

50

55

60

65

6
components of the UI, and is able to save the state information
to be subsequently retrieved to regenerate that state of the UI
components.

FIG.3 illustrates an implementation overview 300 that can
be used in accordance with one embodiment. As can be seen,
the approach includes a user interface 302. Such as a metadata
editor in JSF, which includes a number of components 304
able to allow a user to view, select, or otherwise manage
information available through the interface-generating appli
cation. These components can include, for example, text
boxes, Ajax boxes, multi-select elements, check boxes, drop
down menus, etc. In addition to the UI application, the
approach includes a component state manager 306, Such as
may include a Java class, with which the components 304 of
the UI application are able to register. Each component is able
to register as a separate entity for a particular page. By
enabling the UI components to register with the component
state manager 306, the component state manager is able to
obtain appropriate state information (e.g., visual state, con
textual state, selected State, etc.) for each registered compo
nent on a page at any time, such as in response to a user
request. The component state manager 306 then can store that
state information for subsequent retrieval. The state informa
tion can be stored to any appropriate data store as known or
used in the art. In one embodiment, the state information is
stored to an external data service 308 that allows any data to
be stored and retrieved using any appropriate naming conven
tion. An external data service can include any remote data
service, data source, and/or data store that is accessible over a
network, Such as the Internet, and is able to store data,
retrieve, and otherwise manage data as a service. An applica
tion in one embodiment is able to subscribe to the external
data service in order to store application data remotely, which
also provides the advantage that the operator of the applica
tion does not have to manage the data or the hardware and
Software necessary to store and manage the data locally.
Another advantage to using an external data service is that the
information can be accessed from any appropriate location by
using the identifier. Further, the identifier does not expose
information about the state information or the data store that
could allow for unauthorized access to the stored state infor
mation. It should be understood, however, that data can also
be stored locally in other embodiments as would be apparent
to one of ordinary skill in the art in light of the teachings and
Suggestions contained herein.

In one embodiment, the state information for each regis
tered component is written to an extensible markup language
(XML) document 310, which is then stored to the external
data service 308. Using XML is advantageous because it is a
very flexible yet standardized and structured approach to
storing any type of data. XML allows the application to be
very extensible, and since XML is internationalized the char
acter streams can be in any character set. Although other
formats can be used, the components, names, and State fit well
into the hierarchical XML structure in at least some applica
tions.

FIG. 4(a) illustrates steps of one example process 400 for
storing state information in accordance with one embodi
ment. In this example, an application is created which con
tains a UI with components able to allow a user to view, select,
and/or otherwise access data 402. These components are reg
istered with a component state manager 404. A user of the
application utilizes the components to navigate to a particular
state corresponding to the desired information 406. At any
time when the user navigates to a selection of data that is
desirable to be saved for any reason, the user is able to request
that the data selection be saved 408. In response to the request,

US 8,244,758 B1
7

the component state manager is able to query state informa
tion from each registered component on the page 410. The
state information is then stored for subsequent retrieval 412.
The user is provided with means for accessing the stored State
information 414, such as a link or identifier that can be used to
retrieve the stored state information. As discussed above, this
can include writing the data to an XML document or other
structured object for storage and Subsequent retrieval.

FIG. 4(b) illustrate steps of an example process 450 for
retrieving the stored State information in accordance with one
embodiment. In this example, the user Submits a request
including the identifier for the stored state information 452. In
one example, where the application is displayed through a
browser or similar application, the user can simply select or
enter the link that corresponds to the stored state information.
In other embodiments, the user can be required to first open or
otherwise access the application, then select or enter the
identifier as discussed elsewhere herein. In response to the
request, the component manager retrieves the stored State
information 454. As discussed above this can involve retriev
ing an XML document from an external data service, for
example. The component state manager can determine which
objects on the respective page are registered with the manager
and able to provide, or have set, state information 456. For
each registered component on the page, the component state
manager determines whether state information was stored
458. Where information was stored, the component state
manager sets the appropriate state information for the regis
tered component(s) 460. In the case of XML, the XML can be
broken apart or parsed to determine the appropriate state data
and object information. When the states of all the registered
components are set, the user is presented with selections in
the application that correspond to the selections set by the
user 462. As discussed above, the link or identifier can be
shared such that the user retrieving the state information may
not be the same user who initially saved the information.

FIG. 5 shows an example page 500 that can be displayed in
response to retrieving stored State information according to a
process such as that described with respect to FIG. 4(b). In
this page, the user is able to entera link, tag, or otheridentifier,
corresponding to saved state information, into a textbox 502,
an AJAXbox allowing for any type of text matching based on
the AJAX auto completion, or a similar user-accessible ele
ment. As shown, the text box can be configured as a drop
down menu or other selectable element allowing a user to
select recent links or state identifiers. Other elements, such as
“history.” “bookmark.” or “recent elements, can be used to
find these identifiers as well. If the user does not know the link
or identifier, the user can instead search for a link or identifier
using a search function 504. In some embodiments, a user is
able to search for state information by entering keywords,
Such as property types, which the application or component
state manager, for example, can use to search the saved data
and present corresponding results. In other embodiments, a
user can enter a portion of a state identifier to retrieve match
ing identifiers. For example, a user can create an identifier that
includes that user's name or another string that is used by that
user with every saved state such that the user is easily able to
retrieve any state information saved by that user. Various
other ways of Saving, identifying, and retrieving data would
be apparent to one of ordinary skill in the art in light of the
teachings and Suggestions contained herein, and will not be
discussed herein in detail.
Once the user has selected a link or identifier using one of

the aforementioned approaches, the corresponding State
information is retrieved. The example page of FIG. 5 includes
at least four components that can be registered with the com

10

15

25

30

35

40

45

50

55

60

65

8
ponent state manager, including a data type tab navigation
component 506, an environment filter component 508, a
product type filter component 510, and a product type hier
archy component 512. Various combinations of these and/or
other components can be used as well within the scope of this
disclosure. When a user first accesses the page, there may be
no information selected, or default information selected, for
each component. In response to Submitting a state identifier,
however, the component state manager will retrieve the State
information, determine the corresponding registered compo
nents on the page, and work with the UI application to display
the corresponding state for each. As shown in this example,
by submitting a state identifier, the UI displays “Product
Type' data for UK operations for MP3 players, and is has
selected or otherwise specified various product type filters to
obtain information for MP3 players in the UK. Here, the user
was able to navigate back to this state by simply selecting the
appropriate state identifier, without the tedious process of
navigating back to this state and selecting all the desired
options. When the user has the state information restored, the
user can select an option 518 to publish the corresponding
information, or an option 520 to export the corresponding
information, useful when the same report has to be re-run
periodically using the same data types. The user can also
select an option 514 to reset the state, doing away with the
restored selections in the displayed interface, or to modify the
state of at least one of the components and then select an
option 516 to save the modified state using a new identifier (or
overwriting the previous identifier). Various known methods
can be used for extracting, publishing, and overwriting data
and will not be discussed in detail herein. Other options can
also exist, such as to make the state information private or to
store the state information locally so that the state information
is not available to other and/or external users. Storing the state
information to an external data service also allows for sharing
state information across various stages, such as beta, produc
tion, and development versions, all using the same data. Such
an approach can be used to store any appropriate information,
including but not limited to metadata as described herein.
When saving state information, an approach in accordance

with one embodiment causes a pop-up dialog to be generated
which is able to capture an identifying name, description,
keywords, date, or other such information about the state. The
component state manager then creates and stores a corre
sponding data object (such as an XML document) in a bucket
for GUI filters. Subsequently, any authorized user can locate
and access this and other shared applicable filters via, for
example, an Ajax-enabled widget. Users can enter text frag
ments to find a suitable filter by any of the metadata entries,
including date of creation. The application can forward the
selected data object to all of the page's registered components
(e.g., each UI component, as backed by a Java bean), which
then is able to finds an applicable section, decode the State
information, and set the corresponding UI.

FIG. 6 shows an example of one such XML document 600
that can be generated and saved for a particular state in accor
dance with one embodiment. As discussed, product or item
type information typically is stored in a hierarchy, where
items such as audio devices are stored under a consumer
electronics type, and MP3 players are stored under the audio
devices type. As used herein, the term “item can refer to
anything that can be ordered, purchased, rented, used, or
otherwise consumed and/or accessed via a network request or
electronic Submission, Such as a product, service, or system.
If a user just wants information about MP3 players specific to
the UK marketplace, for example, the XML document could
store values for the appropriate filters that allow the applica

US 8,244,758 B1

tion to readily recreate the state for MP3 players in the UK
without having to navigate back through consumer electron
ics, for example. In the example of FIG. 6, it can be seen that
a number of product type selection filter values were selected
for a specific organization filter and property filter. Due to the
large number of selections that would otherwise have to be
made for this state, a significant amount of time can be saved
by utilizing the state information stored in this XML docu
ment. Further, when the application utilizes a technology
such as JSF, all of the internal interactions that the controller
is using to manipulate the model and present the view can all
be done internally with information tracking. Further, an
advantage over approaches that commit all state directly to
the database or within the program itself is that this approach
is more flexible and extensible and does not commit any
changes to a database. Such that new operations can be per
formed using any state of the data. Other technologies. Such
as PHP, could be used as well.

Components in various embodiments are able to register
with the component state manager regardless of the appear
ance or functionality of the UI. In the case where the manager
is a Java class, there can be a defined interface for the class
that allows a UI component to register. When it is desired to
implement the save state mechanism for an application, the
UI components in one embodiment are designed to follow or
implement this interface, which allows those components to
register and also to be set by this class. The class is able to
connect to the external data service or other data source or
store, and is able to identify connections, stages, identifiers,
accounts, and other Such information used to access the
desired data. Registering of the components in at least one
embodiment occurs at design time. A developer can bring in
the class and make an instance of the UI component that is
written to adhere to the Java interface requirements. Once that
component is registered, a method is added for saving the
state information Such that the registered component can
divulge the current state. When the registered components are
then queried for state information, the registered components
pass back their current state. In other embodiments, the com
ponent state manager is able to locate any appropriate object
in the interface at run time and retrieve or set state informa
tion.

In one embodiment, the component state manager is pro
vided as a service to which components of a page can Sub
scribe. The service can be provided remotely, and can allow
any authorized application to have state information stored
and retrieved as discussed herein.
As discussed above, the various embodiments can be

implemented in a wide variety of operating environments,
which in some cases can include one or more user computers,
computing devices, or processing devices which can be used
to operate any of a number of applications. User or client
devices can include any of a number of general purpose
personal computers, such as desktop or laptop computers
running a standard operating system, as well as cellular, wire
less, and handheld devices running mobile Software and
capable of supporting a number of networking and messaging
protocols. Such a system also can include a number of work
stations running any of a variety of commercially-available
operating systems and other known applications for purposes
Such as development and database management. These
devices also can include other electronic devices. Such as
dummy terminals, thin-clients, gaming systems, and other
devices capable of communicating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for Supporting commu
nications using any of a variety of commercially-available

10

15

25

30

35

40

45

50

55

60

65

10
protocols, such as TCP/IP. OSI, FTP, UPnP NFS, CIFS, and
AppleTalk. The network can be, for example, a local area
network, a wide-area network, a virtual private network, the
Internet, an intranet, an extranet, a public Switched telephone
network, an infrared network, a wireless network, and any
combination thereof.

In embodiments utilizing a Web server, the Web server can
run any of a variety of server or mid-tier applications, includ
ing HTTP servers, FTP servers, CGI servers, data servers,
Java servers, and business application servers. The server(s)
also may be capable of executing programs or Scripts in
response requests from user devices, such as by executing one
or more Web applications that may be implemented as one or
more scripts or programs written in any programming lan
guage, such as Java R., C, C# or C++, or any scripting lan
guage, such as Perl, Python, or TCL, as well as combinations
thereof. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle(R, Microsoft(R), Sybase(R), and IBM(R).
The environment can include a variety of data stores and

other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers are remote from any or all of the computers across
the network. In a particular set of embodiments, the informa
tion may reside in a storage-area network ("SAN) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers,
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput
erized devices, each Such device can include hardware ele
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, or keypad), and at least one output device (e.g., a
display device, printer, or speaker). Such a system may also
include one or more storage devices, such as disk drives,
optical storage devices, and Solid-state storage devices Such
as random access memory (“RAM) or read-only memory
(“ROM), as well as removable media devices, memory
cards, flash cards, etc.

Such devices also can include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device, etc.), and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium, representing remote, local, fixed, and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information. The system
and various devices also typically will include a number of
Software applications, modules, services, or other elements
located within at least one working memory device, including
an operating system and application programs, such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard
ware might also be used and/or particular elements might be
implemented in hardware, Software (including portable soft
ware, such as applets), or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com
munication media, Such as but not limited to volatile and

US 8,244,758 B1
11

non-volatile, removable and non-removable media imple
mented in any method or technology for storage and/or trans
mission of information Such as computer readable instruc
tions, data structures, program modules, or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by the a system
device. Based on the disclosure and teachings provided
herein, a person of ordinary skill in the art will appreciate
other ways and/or methods to implement the various embodi
mentS.
The specification and drawings are, accordingly, to be

regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.
What is claimed is:
1. A method of managing state information for an applica

tion utilizing a graphical user interface, comprising:
under control of one or more computer systems configured

with executable instructions,
receiving a request to save state information for a user

interface of an application, the user interface includ
ing a plurality of components, each component hav
ing a state able to be altered by a user;

registering at least one of the plurality of components
with a component state manager;

in response to receiving a request to save state informa
tion from the user:
determining state information corresponding to a cur

rent state for each registered component;
creating a data object including the state information

for each registered component;
causing the data object to be stored to a data store; and
generating, independent of a textual user input, an

identifier corresponding to the data object in the
data store;

in response to receiving user input corresponding to at
least a portion of the generated identifier, providing
for presentation a plurality of identifiers associated
with the at least a portion of the generated identifier,
the plurality of identifiers including the generated
identifier corresponding to the data object in the data
store; and

in response to receiving the generated identifier selected
by the user from the plurality of identifiers:
retrieving the data object from the data store; and
setting the state of each corresponding registered
component using the state information from the
retrieved data object,

wherein the user is able to use the identifier in the user
interface to restore the state information for the plu
rality of components.

2. A method according to claim 1, wherein:
creating the data object includes generating an extensible
markup language (XML) document for storing the state
information for each registered component.

3. A method of managing State information for a user
interface, comprising:

under control of one or more computer systems configured
with executable instructions,
receiving a request to save state information for a user

interface, the user interface including a plurality of

10

15

25

30

35

40

45

50

55

60

65

12
components, each of the plurality of components hav
ing a state able to be altered by a user;

in response to receiving the request to save state infor
mation for the user interface from the user:
determining state information corresponding to a cur

rent state for each of the plurality of components;
creating a data object including the state information

for each of the plurality of components:
causing the data object to be stored to a data store; and
generating, independent of a textual user input, an

identifier corresponding to the data object in the
data store;

in response to receiving user input corresponding to at
least a portion of the generated identifier, providing
for presentation a plurality of identifiers associated
with the at least a portion of the generated identifier,
the plurality of identifiers including the generated
identifier corresponding to the data object in the data
store; and

in response to receiving the generated identifier selected
by the user from the plurality of identifiers:
retrieving the data object from the data store; and
setting the state of the plurality of components using

the state information from the retrieved data object,
wherein the user is able to use the identifier in the user

interface to restore the state information for the plu
rality of components.

4. A method according to claim 3, further comprising:
registering each of the plurality of components with a

component State manager.
5. A method according to claim 4, wherein:
the component state manager includes a Java class; and
the user interface is generated by a JavaServer Faces (JSF)

application allowing a user to manage metadata.
6. A method according to claim 3, wherein:
creating the data object including the state information

includes abstracting the state information and storing the
abstracted State information using a hierarchical data
model.

7. A method according to claim 6, wherein:
the hierarchical data model is provided as part of a Model

View Controller (MVC) application.
8. A method according to claim 3, wherein:
the data store is provided as part of an external data service.
9. A method according to claim 3, wherein:
state information includes at least one of visual state, con

textual state, and selected State information.
10. A method according to claim 3, wherein:
the user interface is provided as part of a metadata editor

application.
11. A method according to claim 3, further comprising:
receiving a search term; and
retrieving identifiers that correspond to the search term by

at least one of a name, content, an author, and a keyword.
12. A method according to claim 11, further comprising:
receiving at least a part of the identifier from the user.
13. A method according to claim 3, further comprising:
displaying at least a most recent identifier in the user inter

face.
14. A method according to claim 3, further comprising:
storing an indication of whether the identifier is able to be

used or exposed to another user.
15. A method of managing state information, comprising:
under control of one or more computer systems configured

with executable instructions,
receiving a request to save state information for a user

interface of an application, the user interface includ

US 8,244,758 B1
13

ing a plurality of components, each component hav
ing a state able to be altered by a user;

determining state information corresponding to a cur
rent state for each of the plurality of components;

creating a data object including the state information for 5
each of the plurality of components;

causing the data object to be stored to a data store;
generating, independent of a textual user input, an iden

tifier corresponding to the data object in the data store;
receiving user input corresponding to at least a portion of

the generated identifier and providing for presentation
a plurality of identifiers associated with the at least a
portion of the generated identifier, the plurality of
identifiers including the generated identifier corre
sponding to the data object in the data store; and

retrieving the data object from the data store and setting
the state of each corresponding registered component
using the state information from the retrieved data
object,

wherein the user is able to use the identifier in the user
interface to restore the state information for the plu
rality of components.

16. A system for managing state information for a user
interface, comprising:

a processor; and
a memory device including instructions that, when

executed by the processor, cause the system to:
receive a request from a user to save state information for

a user interface including a plurality of components,
each of the plurality of components having a state able
to be altered by a user; and

in response to receiving the user request:
determine state information corresponding to a cur

rent state for each of the plurality of components;
create a data object including the state information for

each of the plurality of components;
cause the data object to be stored to a data store; and
generate, independent of a textual user input, an iden

tifier corresponding to the data object in the data
Store;

in response to user input corresponding to at least a
portion of the generated identifier, provide for presen
tation a plurality of identifiers associated with the at
least a portion of the generated identifier, the plurality
of identifiers including the generated identifier corre
sponding to the data object in the data store; and

in response to receiving the generated identifier selected
by the user from the plurality of identifiers, retrieve
the data object from the data store and set the state of
each corresponding registered component using the
state information from the retrieved data object,

wherein the user is able to use the identifier in the user
interface to restore the state information for the plu
rality of components.

15

25

30

35

40

45

50

14
17. A system according to claim 16, wherein the memory

device further includes instructions that, when executed by
the processor, further cause the system to:

register each of the plurality of components with a compo
nent State manager.

18. A system according to claim 16, wherein:
the instructions for creating the data object including the

state information include instructions for abstracting the
state information and storing the abstracted State infor
mation using a hierarchical data model.

19. A computer program product embedded in a non-tran
sitory computer readable storage medium for managing state
information for a user interface, comprising:

program code for receiving a request from a user to save
state information for a user interface including a plural
ity of components, each of the plurality of components
having a state able to be altered by a user, and

program code for, in response to receiving the user request:
determining state information corresponding to a cur

rent state for each of the plurality of components;
creating a data object including the State information for

each of the plurality of components;
causing the data object to be stored to a data store; and
generating, independent of a textual user input, an iden

tifier corresponding to the data object in the data store;
program code for, in response to user input correspond

ing to at least a portion of the generated identifier,
providing for presentation a plurality of identifiers
associated with the at least a portion of the generated
identifier, the plurality of identifiers including the
generated identifier corresponding to the data object
in the data store; and

program code for, in response to receiving the generated
identifier selected by the user from the plurality of
identifiers, retrieving the data object from the data
store and setting the state of each corresponding reg
istered component using the state information from
the retrieved data object,

wherein the user is able to use the identifier in the user
interface to restore the state information for the plu
rality of components.

20. A computer program product according to claim 19,
further comprising:

program code for registering each of the plurality of com
ponents with a component state manager.

21. A computer program product according to claim 19,
wherein:

program code for creating the data object including the
state information includes program code for abstracting
the state information and storing the abstracted State
information using a hierarchical data model.

22. A method according to claim 3, wherein the identifier
does not expose information about the state information or the
data store that could allow for unauthorized access to the
stored State information.

k k k k k

