

(51) **International Patent Classification:**
G10K 11/178 (2006.01)

(21) **International Application Number:**
PCT/US2013/037049

(22) **International Filing Date:**
18 April 2013 (18.04.2013)

(25) **Filing Language:** English

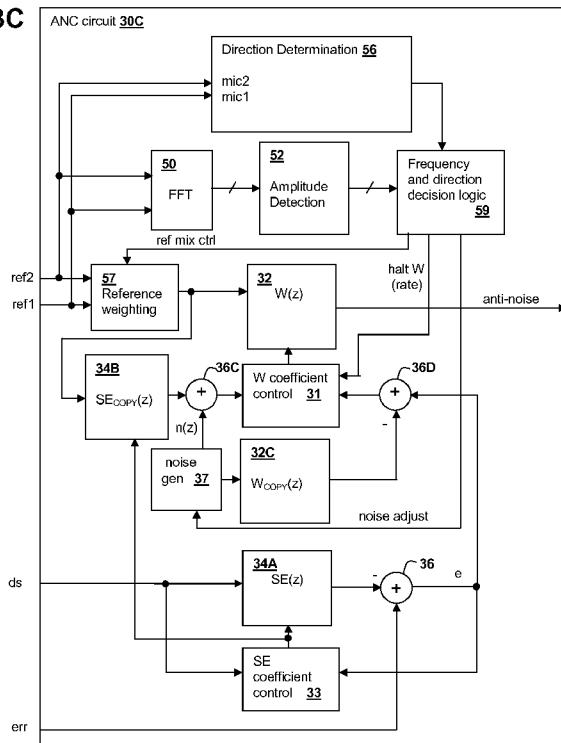
(26) **Publication Language:** English

(30) **Priority Data:**
61/645,244 10 May 2012 (10.05.2012) US
13/784,018 4 March 2013 (04.03.2013) US

(71) **Applicant:** CIRRUS LOGIC, INC. [US/US]; 800 W 6th St, Austin, TX 78701 (US).

(72) **Inventors:** ALDERSON, Jeffrey; 7205 Twilight Mesa Dr, Austin, TX 78735 (US). HENDRIX, Jon, D.; 1351 Thompson Ranch Rd, Wimberly, TX 78676 (US). ZHOU, Dayong; 2821 Fortuna Dr, Austin, TX 78738 (US).

(74) **Agent:** HARRIS, Andrew, Mitchell; Mitch Harris, Attorney at Law, L.L.C., P.O. Box 7998, Athens, GA 30604 (US).


(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: FREQUENCY AND DIRECTION-DEPENDENT AMBIENT SOUND HANDLING IN PERSONAL AUDIO DEVICES HAVING ADAPTIVE NOISE CANCELLATION (ANC)

Fig. 3C

(57) Abstract: A personal audio device, such as a wireless telephone, includes noise canceling circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the output of the transducer in order to control the adaptation of the anti-noise signal and to estimate an electro-acoustical path from the noise canceling circuit through the transducer. A processing circuit that performs the adaptive noise canceling (ANC) function also detects frequency-dependent characteristics in and/or direction of the ambient sounds and alters adaptation of the noise canceling circuit in response to the detection.

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *without international search report and to be republished upon receipt of that report (Rule 48.2(g))*

**FREQUENCY AND DIRECTION-DEPENDENT AMBIENT SOUND HANDLING
IN PERSONAL AUDIO DEVICES HAVING ADAPTIVE NOISE CANCELLATION
(ANC)**

FIELD OF THE INVENTION

[0001] The present invention relates generally to personal audio devices such as wireless telephones that include noise cancellation, and more specifically, to a personal audio device in which frequency or direction-dependent characteristics in the ambient sounds are detected and action is taken on the anti-noise signal in response thereto.

BACKGROUND OF THE INVENTION

[0002] Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players and headphones or earbuds, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.

[0003] Since the acoustic environment around personal audio devices such as wireless telephones can change dramatically, depending on the sources of noise that are present and the position of the device itself, it is desirable to adapt the noise canceling to take into account such environmental changes. However, adaptive noise canceling can be ineffective or may provide unexpected results for certain ambient sounds.

[0004] Therefore, it would be desirable to provide a personal audio device, including a wireless telephone, that provides effective noise cancellation in the presence of certain ambient sounds.

DISCLOSURE OF THE INVENTION

[0005] The above-stated objective of providing a personal audio device providing noise cancellation in the presence of certain ambient sounds, is accomplished in a personal audio device, a method of operation, and an integrated circuit. The method is a method of operation of the personal audio device and the integrated circuit, which can be incorporated within the personal audio device.

[0006] The personal audio device includes a housing, with a transducer mounted on the housing for reproducing an audio signal that includes both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. At least one microphone is mounted on the housing to provide a microphone signal indicative of the ambient audio sounds. The personal audio device further includes an adaptive noise-canceling (ANC) processing circuit within the housing for adaptively generating an anti-noise signal from the microphone signal such that the anti-noise signal causes substantial cancellation of the ambient audio sounds at a transducer. An error microphone may be included for controlling the adaptation of the anti-noise signal to cancel the ambient audio sounds and for compensating for the electro-acoustic path from the output of the processing circuit through the transducer. The ANC processing circuit detects ambient sounds having a frequency-dependent characteristic and takes action on the adaptation of the ANC circuit to avoid generating anti-noise that is disruptive, ineffective or that otherwise compromises performance.

[0007] In another aspect, the ANC processing circuit detects a direction of the ambient sounds, with or without detecting the frequency-dependent characteristic, and also takes action on

adaptation of the ANC circuit to avoid generating anti-noise that is disruptive, ineffective or that otherwise compromises performance.

[0008] The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0009] **Figure 1** is an illustration of an exemplary wireless telephone **10**.

[0010] **Figure 2** is a block diagram of circuits within wireless telephone **10**.

[0011] **Figures 3A-3C** are block diagrams depicting signal processing circuits and functional blocks of various exemplary ANC circuits that can be used to implement ANC circuit **30** of CODEC integrated circuit **20** of Figure 2.

[0012] **Figure 4** is a block diagram depicting a direction detection circuit that can be implemented within CODEC integrated circuit **20**.

[0013] **Figure 5** is a signal waveform diagram illustrating operation of direction determining block **56**.

[0014] **Figure 6** is a block diagram depicting signal processing circuits and functional blocks within CODEC integrated circuit **20**.

BEST MODE FOR CARRYING OUT THE INVENTION

[0015] Noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone, are disclosed. The personal audio device includes an adaptive noise canceling (ANC) circuit that measures the ambient acoustic environment and generates a signal that is injected into the speaker (or other transducer) output to cancel ambient acoustic events. However, for some acoustic events or directionality, ordinary operation of the ANC circuit may lead to improper adaptation and erroneous operation. The exemplary personal audio devices, methods and circuits shown below detect ambient audio sounds having particular frequency characteristics or direction and take action on the adaptation of the ANC circuit to avoid undesirable operation. In particular, high frequency content, such as motor hiss in an automotive context, may not cancel well due to unknowns in the high-frequency response of the coupling between the transducer, the error microphone that measures the transducer output and the user's ear. Low frequency content, such as car noise rumble, is also not easily canceled below a certain frequency at which the transducer's ability to reproduce the anti-noise signal diminishes, and the frequency at which the low-frequency response diminishes depending on whether earphones or a built-in speaker of the wireless telephone is being used.

[0016] **Figure 1** shows an exemplary wireless telephone **10** in proximity to a human ear **5**. Illustrated wireless telephone **10** is an example of a device in which techniques illustrated herein may be employed, but it is understood that not all of the elements or configurations embodied in illustrated wireless telephone **10**, or in the circuits depicted in subsequent illustrations, are required. Wireless telephone **10** includes a transducer, such as speaker **SPKR**, that reproduces distant speech received by wireless telephone **10**, along with other local audio events such as ringtones, stored audio program material, near-end speech, sources from web-pages or other

network communications received by wireless telephone **10** and audio indications such as battery low and other system event notifications. A near-speech microphone **NS** is provided to capture near-end speech, which is transmitted from wireless telephone **10** to the other conversation participant(s).

[0017] Wireless telephone **10** includes adaptive noise canceling (ANC) circuits and features that inject an anti-noise signal into speaker **SPKR** to improve intelligibility of the distant speech and other audio reproduced by speaker **SPKR**. A reference microphone **R** is provided for measuring the ambient acoustic environment and is positioned away from the typical position of a user's/talker's mouth, so that the near-end speech is minimized in the signal produced by reference microphone **R**. A third microphone, error microphone **E**, is provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio signal reproduced by speaker **SPKR** close to ear **5**, when wireless telephone **10** is in close proximity to ear **5**. Exemplary circuit **14** within wireless telephone **10** includes an audio CODEC integrated circuit **20** that receives the signals from reference microphone **R**, near speech microphone **NS**, and error microphone **E** and interfaces with other integrated circuits such as an RF integrated circuit **12** containing the wireless telephone transceiver. In other embodiments of the invention, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit.

[0018] In general, the ANC techniques disclosed herein measure ambient acoustic events (as opposed to the output of speaker **SPKR** and/or the near-end speech) impinging on reference

microphone **R**, and by also measuring the same ambient acoustic events impinging on error microphone **E**, the ANC processing circuits of illustrated wireless telephone **10** adapt an anti-noise signal generated from the output of reference microphone **R** to have a characteristic that minimizes the amplitude of the ambient acoustic events present at error microphone **E**. Since acoustic path $P(z)$ extends from reference microphone **R** to error microphone **E**, the ANC circuits are essentially estimating acoustic path $P(z)$ combined with removing effects of an electro-acoustic path $S(z)$. Electro-acoustic path $S(z)$ represents the response of the audio output circuits of CODEC IC **20** and the acoustic/electric transfer function of speaker **SPKR** including the coupling between speaker **SPKR** and error microphone **E** in the particular acoustic environment. Electro-acoustic path $S(z)$ is affected by the proximity and structure of ear **5** and other physical objects and human head structures that may be in proximity to wireless telephone **10**, when wireless telephone **10** is not firmly pressed to ear **5**. While the illustrated wireless telephone **10** includes a two microphone ANC system with a third near speech microphone **NS**, other systems that do not include separate error and reference microphones can implement the above-described techniques. Alternatively, near speech microphone **NS** can be used to perform the function of the reference microphone **R** in the above-described system. Finally, in personal audio devices designed only for audio playback, near speech microphone **NS** will generally not be included, and the near-speech signal paths in the circuits described in further detail below can be omitted.

[0019] Referring now to **Figure 2**, circuits within wireless telephone **10** are shown in a block diagram. CODEC integrated circuit **20** includes an analog-to-digital converter (ADC) **21A** for receiving the reference microphone signal and generating a digital representation **ref** of the reference microphone signal, an ADC **21B** for receiving the error microphone signal and

generating a digital representation **err** of the error microphone signal, and an ADC **21C** for receiving the near speech microphone signal and generating a digital representation of near speech microphone signal **ns**. CODEC IC **20** generates an output for driving speaker **SPKR** or headphones from an amplifier **A1**, which amplifies the output of a digital-to-analog converter (DAC) **23** that receives the output of a combiner **26**. A headphone type detector **27** provides information via control signal **hptype** to ANC circuit **30** about whether a headset is connected, and optionally a type of the headset that is connected. Details of headset type detection techniques that may be used to implement headphone type detector **27** are disclosed in U.S. Patent Application Ser. No. 13/588,021 entitled “HEADSET TYPE DETECTION AND CONFIGURATION TECHNIQUES,” the disclosure of which is incorporated herein by reference. Combiner **26** combines audio signals **ia** from internal audio sources **24**, the anti-noise signal **anti-noise** generated by ANC circuit **30**, which by convention has the same polarity as the noise in reference microphone signal **ref** and is therefore subtracted by combiner **26**. Additionally, combiner **26** also combines a portion of near speech signal **ns** so that the user of wireless telephone **10** hears their own voice in proper relation to downlink speech **ds**, which is received from radio frequency (RF) integrated circuit **22**. In the exemplary circuit, downlink speech **ds** is provided to ANC circuit **30**. The downlink speech **ds** and internal audio **ia** are provided to combiner **26** to provide source audio (**ds+ia**), so that source audio (**ds+ia**) may be presented to estimate acoustic path $S(z)$ with a secondary path adaptive filter within ANC circuit **30**. Near speech signal **ns** is also provided to RF integrated circuit **22** and is transmitted as uplink speech to the service provider via antenna **ANT**.

[0020] **Figure 3A** shows one example of details of an ANC circuit **30A** that can be used to implement ANC circuit **30** of Figure 2. An adaptive filter **32** receives reference microphone

signal **ref** and under ideal circumstances, adapts its transfer function $W(z)$ to be $P(z)/S(z)$ to generate anti-noise signal **anti-noise**, which is provided to an output combiner that combines the anti-noise signal with the audio signal to be reproduced by the transducer, as exemplified by combiner **26** of Figure 2. The coefficients of adaptive filter **32** are controlled by a W coefficient control block **31** that uses a correlation of two signals to determine the response of adaptive filter **32**, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal **ref** present in error microphone signal **err**. The signals processed by W coefficient control block **31** are the reference microphone signal **ref** as shaped by a copy of an estimate of the response of path $S(z)$ provided by filter **34B** and another signal that includes error microphone signal **err**. By transforming reference microphone signal **ref** with a copy of the estimate of the response of path $S(z)$, response $SE_{COPY}(z)$, and minimizing error microphone signal **err** after removing components of error microphone signal **err** due to playback of source audio, adaptive filter **32** adapts to the desired response of $P(z)/S(z)$. A filter **37A**, that has a response $C_x(z)$ as explained in further detail below, processes the output of filter **34B** and provides the first input to W coefficient control block **31**. The second input to W coefficient control block **31** is processed by another filter **37B** having a response of $C_e(z)$. Response $C_e(z)$ has a phase response matched to response $C_x(z)$ of filter **37A**. The input to filter **37B** includes error microphone signal **err** and an inverted amount of downlink audio signal **ds** that has been processed by filter response $SE(z)$, of which response $SE_{COPY}(z)$ is a copy. Responses $C_e(z)$ and $C_x(z)$ are shaped to perform various functions. One of the functions of responses $C_e(z)$ and $C_x(z)$ is to remove low frequency components and offset that will cause improper operation and serve no purpose in the ANC system, as the response of the anti-noise signal is limited by the response of transducer **SPKR**. Another function of responses $C_e(z)$ and $C_x(z)$ is to bias the adaptation of the ANC system at higher frequencies where cancelation may

or may not be effective depending on conditions.

[0021] In addition to error microphone signal **err**, the other signal processed along with the output of filter **34B** by W coefficient control block **31** includes an inverted amount of the source audio

($ds + ia$) including downlink audio signal **ds** and internal audio **ia** that has been processed by filter response $SE(z)$, of which response $SE_{COPY}(z)$ is a copy. By injecting an inverted amount of source audio, adaptive filter **32** is prevented from adapting to the relatively large amount of source audio present in error microphone signal **err**. By transforming the inverted copy of downlink audio signal **ds** and internal audio **ia** with the estimate of the response of path $S(z)$, the source audio that is removed from error microphone signal **err** before processing should match the expected version of source audio ($ds+ia$) present in error microphone signal **err**. The portion of source audio ($ds+ia$) that is removed matches the source audio ($ds+ia$) present in error microphone signal **err** because the electrical and acoustical path of $S(z)$ is the path taken by downlink audio signal **ds** and internal audio **ia** to arrive at error microphone **E**. Filter **34B** is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of adaptive filter **34A**, so that the response of filter **34B** tracks the adapting of adaptive filter **34A**. To implement the above, adaptive filter **34A** has coefficients controlled by SE coefficient control block **33**, which processes the source audio ($ds+ia$) and error microphone signal **err**, after a combiner **36** removes the above-described filtered source audio ($ds+ia$) that has been filtered by adaptive filter **34A** to represent the expected source audio delivered to error microphone **E** from error signal **e**. Adaptive filter **34A** is thereby adapted to generate an error signal **e** from downlink audio signal **ds** and internal audio **ia**, that when subtracted from error microphone signal **err**, contains the content of error microphone signal **err** that is not due to

source audio (ds+ia).

[0022] In order to avoid ineffective and generally disruptive ANC operation when the ambient audio sounds contain frequency-dependent characteristics that cannot be effectively canceled by ANC circuit **30A**, ANC circuit **30A** includes a fast-Fourier transform (FFT) block **50** that filters the reference microphone signal **ref** into a number of discrete frequency bins, and an amplitude detection block **52** that provides an indication of the energy of the reference microphone signal in each of the bins. The outputs of amplitude detection block **52** are provided to a frequency characteristic determination logic **54** that determines whether energy is present in one or more frequency bands of reference microphone signal **ref** in which ANC operation can be expected to be ineffective or cause erroneous adaptation or noise-cancellation. Which frequency bands are of interest may be programmable and may be selectable in response to various configurations of personal audio device **10**. For example, different frequency bands may be selected depending on control signal **hptype** indicating what type of headset is connected to personal audio device **10**, or ambient sound frequency characteristic detection might be disabled if a headset is connected. Depending on whether selected or predetermined frequency characteristics are present in reference microphone signal **ref**, frequency characteristic determination logic **54** takes action to prevent the improper adaptation/operation of the ANC circuit. Specifically, in the example given in **Figure 3A**, frequency characteristic determination logic **54** halts operation of W coefficient control block **31** by asserting control signal **halt W**. Alternatively, or in combination control signal **haltW** may be replaced or supplemented with a rate control signal **rate** that lowers an update rate of W coefficient control block **31** when frequency characteristic determination logic **54** indicates that a particular frequency-dependent characteristic has been detected in the ambient sounds. As another alternative, frequency characteristic determination logic **54** may alter adaptation of response $W(z)$ of adaptive filter **32** by selecting from among multiple

responses for response $C_e(z)$ of filter **37B** and response $C_x(z)$ of filter **37A**, so that, depending on frequency dependent characteristics of the actual ambient signal received at reference microphone **r**, the responsiveness of coefficient control block **31** at particular frequencies can be changed, so that adaptation can be increased or decreased depending on the frequency content of the ambient sounds detected by ANC circuit **30A**. While the illustrative example uses an analysis of only reference microphone signal **ref** to detect the frequency-dependent characteristics of the ambient sounds, near-speech microphone **NS** can be used, as long as actual near-speech conditions are properly handled, and alternatively error microphone **E** can be used under certain conditions or at frequencies for which the user's ear does not occlude the ambient sounds. Further, multiple microphones, including duplicate reference microphones, can be used to provide input to fast-Fourier transform (FFT) block **50**, which alternatively may use other filtering/analysis techniques such as discrete-Fourier transform (DFT) or a parallel set of filters such as infinite-impulse response (IIR) band-pass filters.

[0023] Referring now to **Figure 3B**, details of another ANC circuit **30B** that may alternatively be used to implement ANC circuit **30** of Figure 2. ANC circuit **30B** is similar to ANC circuit **30A** of Figure 3A, so only differences between them will be described below. In ANC circuit **30B**, rather than employing an adaptive filter to implement response $W(z)$ in ANC circuit **30B**, a fixed response $W_{\text{FIXED}}(z)$ is provided by filter **32A** and an adaptive portion of the response $W_{\text{ADAPT}}(z)$ is provided by adaptive filter **32B**. The outputs of filters **32A** and **32B** are combined by combiner **36B** to provide a total response that has a fixed and an adaptive portion. W coefficient control block **31A** has a controllable leaky response, i.e., the response is time-variant such that the response tends over time to a flat frequency response or another predetermined initial frequency response, so that any erroneous adaptation is corrected by undoing the

adaptation over time. In ANC circuit **30B**, frequency characteristic determination logic **54** controls a level of leakage with a control signal **leakage**, which may have only two states, i.e. leakage enabled or disabled, or may have a value that controls a time constant or update rate of the leakage applied to restore $W_{ADAPT}(z)$ to an initial response.

[0024] Referring now to **Figure 3C**, details of another ANC circuit **30C** are shown in accordance with another exemplary circuit that may be used to implement ANC circuit **30** of Figure 2. ANC circuit **30C** is similar to ANC circuit **30A** of Figure 3A, so only differences between them will be described below. ANC circuit **30C** includes the frequency characteristic determining elements as in ANC circuit **30A** of Figure 3A and ANC circuit **30B** of Figure 3B, i.e., FFT block **50** and amplitude detection **52**, but also includes a direction determination block **56** that estimates the direction from which the ambient sounds are arriving. A combined frequency and direction decision logic **59** generates control outputs that take action on the adaptation of response $W(z)$ of adaptive filter **32**, which may be control signal **halt W** or **rate** as illustrated that halts or changes the rate of update of the coefficients generated by W coefficient control block **31**. Other outputs may additionally or alternatively control adaptation of response $W(z)$ of adaptive filter **32** as in ANC circuit **30A** of Figure 3A and ANC circuit **30B**, e.g., selecting response $C_e(z)$ of filter **37B** and response $C_x(z)$ of filter **37A** as in ANC circuit **30A**, or adjusting leakage of response $W(z)$ as in ANC circuit **30B**. In order to measure the direction of the incoming ambient sounds, two microphones are needed, which may be provided by reference microphone **R** in combination with another microphone such as near-speech microphone **NS** or error microphone **E**. However, to avoid the problem of distinguishing actual near speech from ambient sounds, and the different response of error microphone **E** to the ambient environment when the personal audio device **10** is against the user's ear, it is useful to

provide two reference microphones for generating two reference microphone signals **ref1** and **ref2** as illustrated as inputs to ANC circuit **30C** in **Figure 3C**. A reference weighting block **57** is controlled by a control signal **ref mix ctrl** provided by frequency and direction decision logic **59**, which can improve performance of ANC circuit **30C** by selecting between reference microphone signals **ref1** and **ref2** or combining them with different gains, to provide the best measure of the ambient sounds.

[0025] Additionally, **Figure 3C** illustrates yet another technique for altering the adaptation of the response $W(z)$ of adaptive filter **32**, which may optionally be included within either ANC circuit **30A** of Figure 3A and ANC circuit **30B** of Figure 3B. Rather than adjusting leakage of response $W(z)$ or adjusting the response of the inputs to W coefficient control block **31**, ANC circuit **30C** injects a noise signal **n(z)** using a noise generator **37** that is supplied to a copy $W_{COPY}(z)$ of the response $W(z)$ of adaptive filter **32** provided by an adaptive filter **32C**. A combiner **36C** adds noise signal $n(z)$ to the output of adaptive filter **34B** that is provided to W coefficient control **31**. Noise signal **n(z)**, as shaped by filter **32C**, is subtracted from the output of combiner **36** by a combiner **36D** so that noise signal **n(z)** is asymmetrically added to the correlation inputs to W coefficient control **31**, with the result that the response $W(z)$ of adaptive filter **32** is biased by the completely correlated injection of noise signal **n(z)** to each correlation input to W coefficient control **31**. Since the injected noise appears directly at the reference input to W coefficient control **31**, does not appear in error microphone signal **err**, and only appears at the other input to W coefficient control **31** via the combining of the filtered noise at the output of filter **32C** by combiner **36D**, W coefficient control **31** will adapt response $W(z)$ to attenuate the frequencies present in noise signal **n(z)**. The content of noise signal **n(z)** does not appear in the anti-noise signal, but only appears in the response $W(z)$ of adaptive filter **32**.

which will have amplitude decreases at the frequencies/bands in which noise signal **n(z)** has energy. Depending on the frequency content of, or direction of, the ambient sounds arriving at personal audio device **10**, frequency and direction decision logic block **59** can alter control signal **noise adjust** to select the spectrum that is injected by noise generator **37**.

[0026] Referring now to **Figure 4**, details of an exemplary direction determination block **56** of ANC circuit **30C** are shown. Direction determination block **56** may also be used, alternatively with or in combination with, the frequency characteristic determining circuits in ANC circuit **30A** or ANC circuit **30B**. Direction determining block **56** determines information about direction of the ambient sounds by using two microphones, which may be a pair of reference microphones, or a combination of any two or more of reference microphone **R**, error microphone **E** and near-speech microphone **NS**. A cross-correlation is performed on the microphone signals, e.g., exemplary microphone signals **mic1** and **mic2**, which may be outputs of any combination of the above microphones. The cross-correlation is used to compute a delay confidence factor, which is a waveform indicative of the delay between ambient sounds present in both microphone signals **mic1** and **mic2**. The delay confidence factor is defined as $(T)^* \rho_{\text{mic1*mic2}}(T)$, where $\rho_{\text{mic1*mic2}}(T)$ is the cross-correlation of microphone signals **mic1** and **mic2** and $T = \arg \max_T [\rho_{\text{mic1*mic2}}(T)]$, which is the time at which the value of cross-correlation $\rho_{\text{mic1*mic2}(T)}$ of microphone signals **mic1** and **mic2** is at a maximum. A delay estimation circuit **62** estimates the actual delay from the result of the cross-correlation function and decision logic block **59** determines whether or not to take action on the adaptation of the ANC circuits, depending on the direction of the detected ambient sounds. Decision logic block **59** may additionally receive inputs from frequency characteristic determination logic **54** of Figure 3B so that a combination of frequency-dependent characteristics and directional information can be

used to determine whether to take action such as halting $W(z)$ adaptation, increasing leakage in the example of Figure 3B, or selecting alternate responses for response $C_e(z)$ of filter **37B** and response $C_x(z)$ of filter **37A**, in the example of Figure 3A.

[0027] Referring now to **Figure 5**, a signal waveform diagram of signals within the circuit depicted in Figure 4 is shown. At time t_1 , an ambient sound has arrived at reference microphone **R**, and appears in reference microphone signal **ref**, which is an example of first microphone signal **mic1**.

At time t_2 , the same ambient sound has arrived at error microphone **E**, and appears in error microphone signal **err**, which is an example of second microphone signal **mic2**. The delay confidence factor $(T)^*p_{ref*err(T)}$ of the error microphone signal **err** and reference microphone signal **ref** is illustrated. The peak value of the delay confidence factor $(T)^*p_{ref*err(T)}$ at time t_3 is indicative of the delay between the arrival times at reference microphone **R** and error microphone **E**. Thus, for the first ambient sound arriving in the diagram of **Figure 5**, the direction is toward the reference microphone, and therefore it could be expected that the ANC circuits could effectively cancel the ambient sound, barring any contrary indication from frequency characteristic determination logic **54** or another source of problem detection.

However, the second ambient sound shown in **Figure 5** arrives at error microphone **E** at time t_4 and then at the reference microphone at time t_5 , which indicates that the ambient sound is coming from the direction of error microphone **E** and possibly cannot be effectively canceled by the ANC system, in particular if the frequency content of the ambient sound is near the upper limit of ANC effectiveness. The direction is indicated in the reversed polarity of delay confidence factor $(T)^*p_{ref*err(T)}$. Therefore, at time t_6 , when sufficient confidence that the ambient sound is coming from the direction of the transducer and error microphone **E**, rather

than reference microphone **R**, decision logic **64** asserts control signal **halt W** to cease updating the coefficients of response $W(z)$. Alternatively other actions such as increasing leakage or selecting different responses for $C_e(z)$ of filter **37B** and response $C_x(z)$ of filter **37A** could be performed in response to detecting such a condition. The examples illustrated in Figure 4 and Figure 5 are only illustrative, and in general, observation about repetitive or longer ambient sounds may be performed to effectively identify the direction of ambient sounds that may be problematic and require intervention in the ANC system. In particular, since processing and electro-acoustical path delays impact the ability of the ANC circuits to react to and cancel incoming ambient sounds, it is generally necessary to apply a criteria that if an ambient sound arrives at the reference microphone less than a predetermined period of time before arrival of the ambient sound at the error microphone, then the ANC circuit may determine not to alter ANC behavior in response to that condition.

[0028] Referring now to **Figure 6**, a block diagram of an ANC system is shown for implementing ANC techniques as depicted in Figure 3, and having a processing circuit **40** as may be implemented within CODEC integrated circuit **20** of Figure 2. Processing circuit **40** includes a processor core **42** coupled to a memory **44** in which are stored program instructions comprising a computer-program product that may implement some or all of the above-described ANC techniques, as well as other signal processing. Optionally, a dedicated digital signal processing (DSP) logic **46** may be provided to implement a portion of, or alternatively all of, the ANC signal processing provided by processing circuit **40**. Processing circuit **40** also includes ADCs **21A-21C**, for receiving inputs from reference microphone **R**, error microphone **E** and near speech microphone **NS**, respectively. DAC **23** and amplifier **A1** are also provided by processing circuit **40** for providing the transducer output signal, including anti-noise as

described above.

[0029] While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.

CLAIMS

WHAT IS CLAIMED IS:

1. A personal audio device, comprising:

 a personal audio device housing;

 a transducer mounted on the housing for reproducing an audio signal including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

 at least one microphone mounted on the housing for providing at least one microphone signal indicative of the ambient audio sounds; and

 a processing circuit that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with the at least one microphone signal using an adaptive filter, wherein the processing circuit detects a frequency-dependent characteristic of one of the at least one microphone signal and alters adaptation of the adaptive filter in conformity with a result of the detection of the frequency-dependent characteristic.

2. The personal audio device of Claim 1, wherein the at least one microphone signal includes a reference microphone signal, and wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, and wherein the processing circuit detects the frequency-dependent characteristic of the reference microphone signal.

3. The personal audio device of Claim 1, wherein the at least one microphone signal includes a reference microphone signal, and wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, wherein the at least one microphone includes an error microphone mounted on the housing in proximity to the transducer for providing an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer, wherein the processing circuit further implements a secondary path filter having a secondary path response that shapes the source audio and a combiner that removes the source audio from the error microphone signal to provide an error signal indicative of the combined anti-noise and ambient audio sounds delivered to the listener, and wherein the adaptive filter generates the anti-noise signal in conformity with the error signal and the reference microphone signal.

4. The personal audio device of Claim 3, wherein the processing circuit detects the frequency-dependent characteristic of the reference microphone signal.

5. The personal audio device of Claim 3, wherein the processing circuit detects the frequency-dependent characteristic of the error microphone signal.

6. The personal audio device of Claim 3, wherein the processing circuit further implements a non-adaptive filter having a fixed response for shaping inputs to a coefficient control block of the adaptive filter, so that sensitivity of the adaptation of the adaptive filter is altered at one or more frequencies or in one or more frequency bands by the fixed response, and wherein the altering of the adaptation of the adaptive filter is performed by altering the fixed response of the non-adaptive filter.

7. The personal audio device of Claim 6, wherein the processing circuit selects the fixed response from among multiple predetermined frequency responses in conformity with a result of detecting the frequency-dependent characteristic of the at least one microphone signal.

8. The personal audio device of Claim 1, wherein the processing circuit detects the frequency-dependent characteristic of one or both of the reference microphone signal and the error microphone signal.

9. The personal audio device of Claim 8, wherein the processing circuit detects the frequency-dependent characteristic of both of the reference microphone signal and the error microphone signal and determines a direction of ambient audio sounds causing the frequency-dependent characteristic, and wherein the processing circuit alters adaptation of the adaptive filter selectively in conformity with the direction of the ambient audio sounds.

10. The personal audio device of Claim 1, wherein the at least one microphone signal includes a near-speech microphone mounted on the housing for providing a near-speech microphone signal indicative of speech of the listener and the ambient audio sounds, wherein the processing circuit detects the frequency-dependent characteristic of the near-speech microphone signal.
11. The personal audio device of Claim 1, wherein the processing circuit detects the frequency-dependent characteristic of the at least one microphone signal by measuring an amplitude of one or more frequencies or frequency bands of the at least one microphone signal.
12. The personal audio device of Claim 11, wherein the one or more frequencies or frequency bands are selectable.
13. The personal audio device of Claim 11, further comprising:
 - a headset connector for connecting an external headset; and
 - a headset type detection circuit for detecting a type of the external headset, and wherein the processing circuit selects the one or more frequencies or frequency bands in conformity with the detected type of the external headset.
14. The personal audio device of Claim 1, wherein the processing circuit halts adaptation of the adaptive filter in response to detecting the frequency-dependent characteristic of the at least one microphone signal.

15. The personal audio device of Claim 1, wherein the detecting detects whether low-frequency content is present.
16. The personal audio device of Claim 1, wherein the detecting detects whether high-frequency content is present.
17. The personal audio device of Claim 1, wherein the altering alters a rate of update of a coefficient control block of the adaptive filter.
18. The personal audio device of Claim 1, wherein the processing circuit controls a variable portion of a frequency response of the adaptive filter with a leakage characteristic that restores the response of the adaptive filter to a predetermined response at a particular rate of change, and wherein the processing circuit alters the particular rate of change in conformity with a result of the detection of the frequency-dependent characteristic.
19. The personal audio device of Claim 1, wherein the processing circuit alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

20. A method of countering effects of ambient audio sounds by a personal audio device, the method comprising:

adaptively generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with the at least one microphone signal using an adaptive filter;

combining the anti-noise signal with source audio;

providing a result of the combining to a transducer;

detecting a frequency-dependent characteristic of one of the at least one microphone signal; and

altering adaptation of the adaptive filter in conformity with a result of the detection of the frequency-dependent characteristic.

21. The method of Claim 20, wherein the at least one microphone includes a reference microphone for measuring the ambient audio sounds, wherein the at least one microphone signal includes a reference microphone signal generated from an output of the reference microphone, wherein the method further comprises generating the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, and wherein the detecting detects the frequency-dependent characteristic of the reference microphone signal.

22. The method of Claim 20, wherein the at least one microphone includes a reference microphone for measuring the ambient audio sounds and an error microphone for measuring the ambient audio sounds and an acoustic output of the transducer, wherein the at least one microphone signal includes a reference microphone signal generated from an output of the reference microphone and an error microphone signal generated from an output of the error microphone indicative of an acoustic output of the transducer and the ambient audio sounds at the transducer, wherein adaptively generating generates the anti-noise signal from the reference microphone signal and an error signal indicative of the acoustic output of the transducer and the ambient sounds, wherein the method further comprises:

shaping the source audio with a secondary path response provided by a secondary path adaptive filter; and

removing the shaped source audio from the error microphone signal to generate the error signal.

23. The method of Claim 22, wherein the detecting detects the frequency-dependent characteristic of the reference microphone signal.

24. The method of Claim 22, wherein the detecting detects the frequency-dependent characteristic of the error microphone signal.

25. The method of Claim 22, further comprising shaping inputs to a coefficient control block of the adaptive filter with a non-adaptive filter having a fixed response, so that sensitivity of the adaptation of the adaptive filter is altered at one or more frequencies or in one or more frequency bands by the fixed response, and wherein the altering alters the adaptation of the adaptive filter by altering the fixed response of the non-adaptive filter.

26. The method of Claim 25, further comprising selecting the fixed response from among multiple predetermined frequency responses in conformity with a result of detecting the frequency-dependent characteristic of the at least one microphone signal.

27. The method of Claim 20, wherein the detecting detects the frequency-dependent characteristic of one or both of the reference microphone signal and the error microphone signal.

28. The method of Claim 27, wherein the detecting detects the frequency-dependent characteristic of both of the reference microphone signal and the error microphone signal, and wherein the method further comprises determining a direction of ambient audio sounds causing the frequency-dependent characteristic, and wherein the altering alters the adaptation of the adaptive filter selectively in conformity with the determined direction of the ambient audio sounds.

29. The method of Claim 20, wherein the at least one microphone includes a near-speech microphone mounted on the housing for providing a near-speech microphone signal indicative of speech of the listener and the ambient audio sounds, and wherein the detecting detects the frequency-dependent characteristic of the near-speech microphone signal.

30. The method of Claim 20, wherein the detecting detects the frequency-dependent characteristic of the at least one microphone signal by measuring an amplitude of one or more frequencies or frequency bands of the at least one microphone signal.

31. The method of Claim 30, further comprising selecting the one or more frequencies or frequency bands from among multiple predetermined frequencies or frequency bands.

32. The method of Claim 30, further comprising:
connecting an external headset to the personal audio device;
detecting a type of the external headset; and
selecting the one or more frequencies or frequency bands in conformity with the detected type of the external headset.

33. The method of Claim 20, wherein the halting halts adaptation of the adaptive filter in response to detecting the frequency-dependent characteristic of the at least one microphone signal.

34. The method of Claim 20, wherein the detecting detects whether low-frequency content is present.

35. The method of Claim 20, wherein the detecting detects whether high-frequency content is present.

36. The method of Claim 20, wherein the altering alters a rate of update of a coefficient control block of the adaptive filter.

37. The method of Claim 20, further comprising:

controlling a variable portion of a frequency response of the adaptive filter with a leakage characteristic that restores the response of the adaptive filter to a predetermined response at a particular rate of change; and

altering the particular rate of change in conformity with a result of the detection of the frequency-dependent characteristic.

38. The method of Claim 20, wherein the altering alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

39. An integrated circuit for implementing at least a portion of a personal audio device, comprising:

an output for providing an output signal to an output transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

at least one microphone input for receiving at least one microphone signal indicative of the ambient audio sounds; and

a processing circuit that adaptively generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with the at least one microphone signal using an adaptive filter, wherein the processing circuit detects a frequency-dependent characteristic of one of the at least one microphone signal and alters adaptation of the adaptive filter in conformity with a result of the detection of the frequency-dependent characteristic.

40. The integrated circuit of Claim 39, wherein the at least one microphone signal includes a reference microphone signal indicative of the ambient audio sounds, wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, and wherein the processing circuit detects the frequency-dependent characteristic of the reference microphone signal.

41. The integrated circuit of Claim 39, wherein the at least one microphone signal includes a reference microphone signal indicative of the ambient audio sounds and an error microphone signal indicative of the ambient audio sounds and an acoustic output of the transducer, wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, wherein the processing circuit further implements a secondary path filter having a secondary path response that shapes the source audio and a combiner that removes the source audio from the error microphone signal to provide an error signal indicative of the combined anti-noise and ambient audio sounds delivered to the listener, and wherein the adaptive filter generates the anti-noise signal in conformity with the error signal and the reference microphone signal.

42. The integrated circuit of Claim 41, wherein the processing circuit detects the frequency-dependent characteristic of the reference microphone signal.

43. The integrated circuit of Claim 41, wherein the processing circuit detects the frequency-dependent characteristic of the error microphone signal.

44. The integrated circuit of Claim 41, wherein the processing circuit further implements a non-adaptive filter having a fixed response for shaping inputs to a coefficient control block of the adaptive filter, so that sensitivity of the adaptation of the adaptive filter is altered at one or more frequencies or in one or more frequency bands by the fixed response, and wherein the altering of the adaptation of the adaptive filter is performed by altering the fixed response of the non-adaptive filter.

45. The integrated circuit of Claim 44, wherein the processing circuit selects the fixed response from among multiple predetermined frequency responses in conformity with a result of detecting the frequency-dependent characteristic of the at least one microphone signal.

46. The integrated circuit of Claim 39, wherein the processing circuit detects the frequency-dependent characteristic of one or both of the reference microphone signal and the error microphone signal.

47. The integrated circuit of Claim 46, wherein the processing circuit detects the frequency-dependent characteristic of both of the reference microphone signal and the error microphone signal and determines a direction of ambient audio sounds causing the frequency-dependent characteristic, and wherein the processing circuit alters adaptation of the adaptive filter selectively in conformity with the direction of the ambient audio sounds.

48. The integrated circuit of Claim 39, wherein the at least one microphone signal includes a near-speech microphone signal indicative of speech of the listener and the ambient audio sounds, wherein the processing circuit detects the frequency-dependent characteristic of the near-speech microphone signal.

49. The integrated circuit of Claim 39, wherein the processing circuit detects the frequency-dependent characteristic of the at least one microphone signal by measuring an amplitude of one or more frequencies or frequency bands of the at least one microphone signal.

50. The integrated circuit of Claim 49, wherein the one or more frequencies or frequency bands are selectable.

51. The integrated circuit of Claim 49, further comprising a headset type detection circuit for detecting a type of an external headset coupled to the output, and wherein the processing circuit selects the one or more frequencies or frequency bands in conformity with the detected type of the external headset.

52. The integrated circuit of Claim 39, wherein the processing circuit halts adaptation of the adaptive filter in response to detecting the frequency-dependent characteristic of the at least one microphone signal.

53. The integrated circuit of Claim 39, wherein the detecting detects whether low-frequency content is present.

54. The integrated circuit of Claim 39, wherein the detecting detects whether high-frequency content is present.

55. The integrated circuit of Claim 39, wherein the altering alters a rate of update of a coefficient control block of the adaptive filter.

56. The integrated circuit of Claim 39, wherein the processing circuit controls a variable portion of a frequency response of the adaptive filter with a leakage characteristic that restores the response of the adaptive filter to a predetermined response at a particular rate of change, and wherein the processing circuit alters the particular rate of change in conformity with a result of the detection of the frequency-dependent characteristic.

57. The integrated circuit of Claim 39, wherein the processing circuit alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

58. A personal audio device, comprising:

a personal audio device housing;

a transducer mounted on the housing for reproducing an audio signal including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

at least two microphones mounted on the housing for providing at least two microphone signals indicative of the ambient audio sounds; and

a processing circuit that generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with at least one of the at least two microphone signals using an adaptive filter, wherein the processing circuit determines a direction of a detected ambient audio sound from the at least two microphone signals, and wherein the processing circuit alters adaptation of the adaptive filter selectively in conformity with the direction of the detected ambient audio sound.

59. The personal audio device of Claim 58, wherein the processing circuit alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

60. The personal audio device of Claim 59, wherein the at least two microphone signals include a reference microphone that generates a reference microphone signal and an error microphone that generates an error microphone signal, wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, wherein the error microphone is mounted on the housing in proximity to the transducer so that the error microphone signal is indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer, wherein the processing circuit further implements a secondary path filter having a secondary path response that shapes the source audio and a combiner that removes the source audio from the error microphone signal to provide an error signal indicative of the combined anti-noise and ambient audio sounds delivered to the listener, wherein the adaptive filter generates the anti-noise signal in conformity with the error signal and the reference microphone signal, and wherein the processing circuit determines that the detected ambient audio sound arrived at the error microphone less than a predetermined period of time after arriving at the reference microphone, and in response, alters adaptation of the adaptive filter to de-emphasize higher frequencies in the response of the adaptive filter.

61. The personal audio device of Claim 58, wherein the processing circuit alters the adapting by weighting the contribution of each of the at least two microphones in conformity with the direction of the detected ambient sound.

62. The personal audio device of Claim 61, wherein the weighting disables a contribution of at least one of the at least two microphones to the determining of the direction of the detected ambient sound.

63. A method of countering effects of ambient audio sounds by a personal audio device, the method comprising:

adaptively generating an anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with at least one of the at least two microphone signals using an adaptive filter;

combining the anti-noise signal with source audio;

providing a result of the combining to a transducer;

measuring the ambient audio sounds with at least two microphones that provide corresponding at least two microphone signals;

determining a direction of a detected ambient audio sound from the at least two microphone signals; and

altering adaptation of the adaptive filter selectively in conformity with the direction of the detected ambient audio sound.

64. The method of Claim 63, wherein the altering alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

65. The method of Claim 64, wherein the at least one microphone includes a reference microphone for measuring the ambient audio sounds and an error microphone for measuring the ambient audio sounds and an acoustic output of the transducer, wherein the at least one microphone signal includes a reference microphone signal generated from an output of the reference microphone and an error microphone signal generated from an output of the error microphone indicative of an acoustic output of the transducer and the ambient audio sounds at the transducer, wherein adaptively generating generates the anti-noise signal from the reference microphone signal and an error signal indicative of the acoustic output of the transducer and the ambient sounds, wherein the method further comprises:

shaping the source audio with a secondary path response provided by a secondary path adaptive filter; and

removing the shaped source audio from the error microphone signal to generate the error signal, and wherein the determining determines that the detected ambient audio sound arrived at the error microphone less than a predetermined period of time after arriving at the reference microphone, and wherein altering alters adaptation of the adaptive filter to de-emphasize higher frequencies in the response of the adaptive filter.

66. The method of Claim 63, wherein the altering alters the adapting by weighting the contribution of each of the at least two microphones in conformity with the direction of the detected ambient sound.

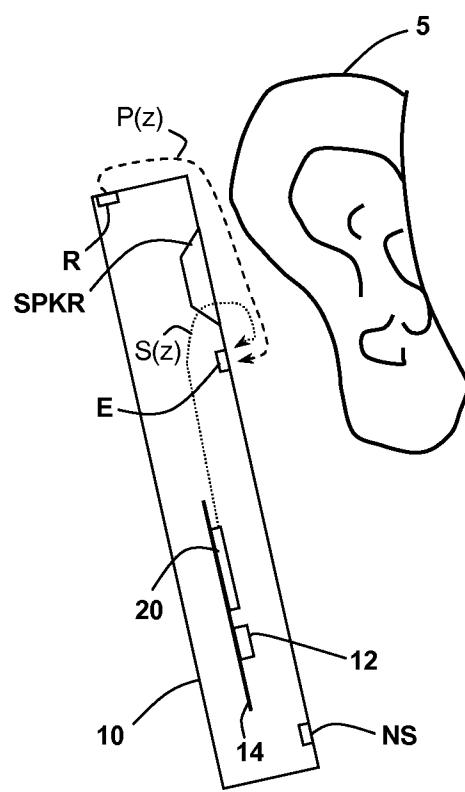
67. The method of Claim 66, wherein the weighting disables a contribution of at least one of the at least two microphones to the determining of the direction of the detected ambient sound.

68. An integrated circuit for implementing at least a portion of a personal audio device, comprising:

an output for providing an output signal to an output transducer including both source audio for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;

at least two microphone inputs for receiving at least two microphone signals indicative of the ambient audio sounds; and

a processing circuit that adaptively generates the anti-noise signal to reduce the presence of the ambient audio sounds heard by the listener in conformity with at least one of the at least two microphone signals using an adaptive filter, wherein the processing circuit determines a direction of a detected ambient audio sound from the at least two microphone signals, and wherein the processing circuit alters adaptation of the adaptive filter selectively in conformity with the direction of the detected ambient audio sound.


69. The integrated circuit of Claim 68, wherein the processing circuit alters adaptation of the response of the adaptive filter by altering a characteristic of a signal injected to shape a response of the adaptive filter.

70. The integrated circuit of Claim 69, wherein the at least two microphone inputs include a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds and an error microphone input for receiving an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer, wherein the processing circuit generates the anti-noise signal from the reference microphone signal by providing the reference microphone signal to an input of the adaptive filter, wherein the processing circuit further implements a secondary path filter having a secondary path response that shapes the source audio and a combiner that removes the source audio from the error microphone signal to provide an error signal indicative of the combined anti-noise and ambient audio sounds delivered to the listener, wherein the adaptive filter generates the anti-noise signal in conformity with the error signal and the reference microphone signal, and wherein the processing circuit determines that the detected ambient audio sound arrived at the error microphone less than a predetermined period of time after arriving at the reference microphone, and in response, alters adaptation of the adaptive filter to de-emphasize higher frequencies in the response of the adaptive filter.

71. The integrated circuit of Claim 68, wherein the processing circuit alters the adapting by weighting the contribution of each of the at least two microphones in conformity with the direction of the detected ambient sound.

72. The integrated circuit of Claim 71, wherein the weighting disables a contribution of at least one of the at least two microphones to the determining of the direction of the detected ambient sound.

1/7

Fig. 1

2/7

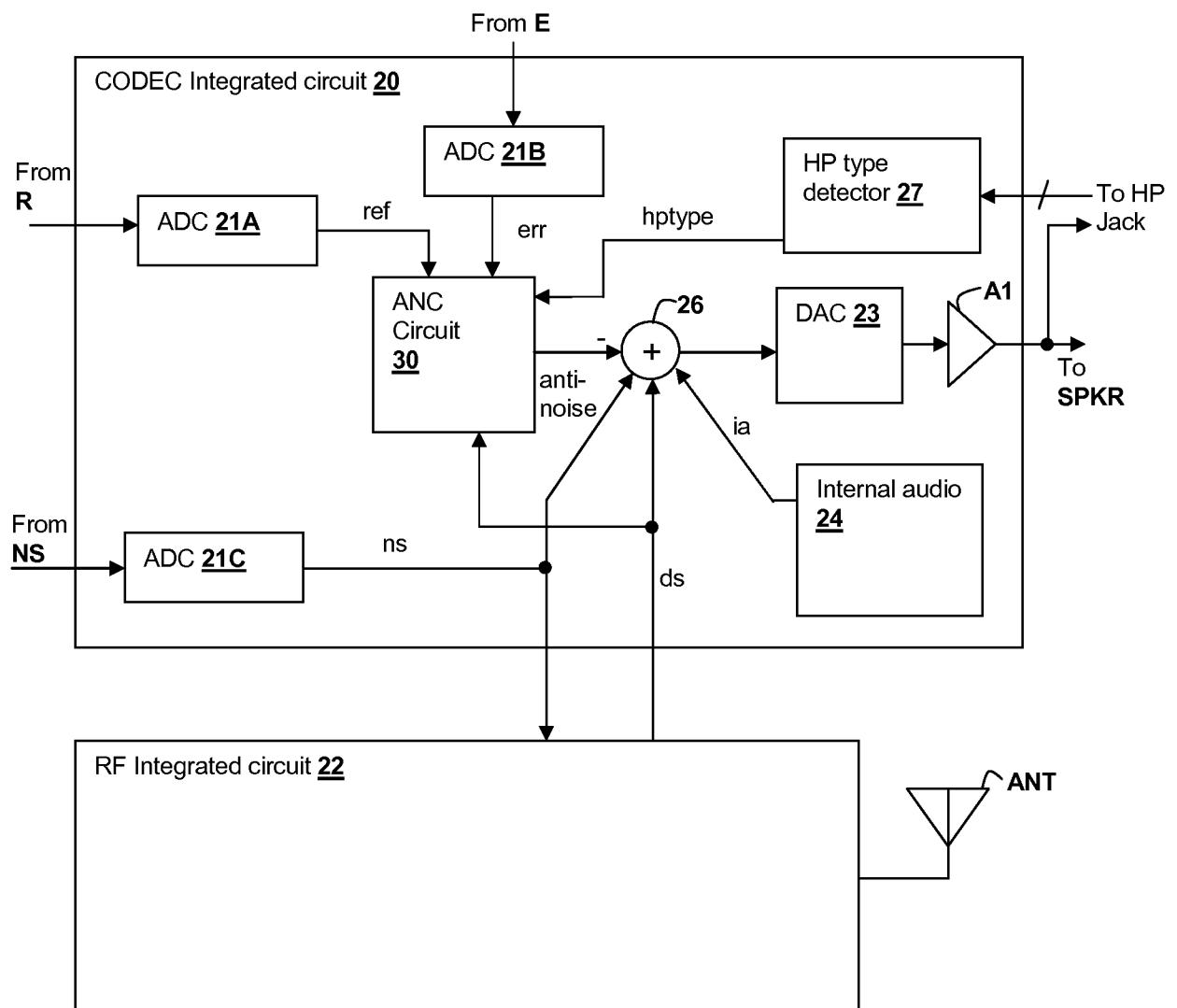
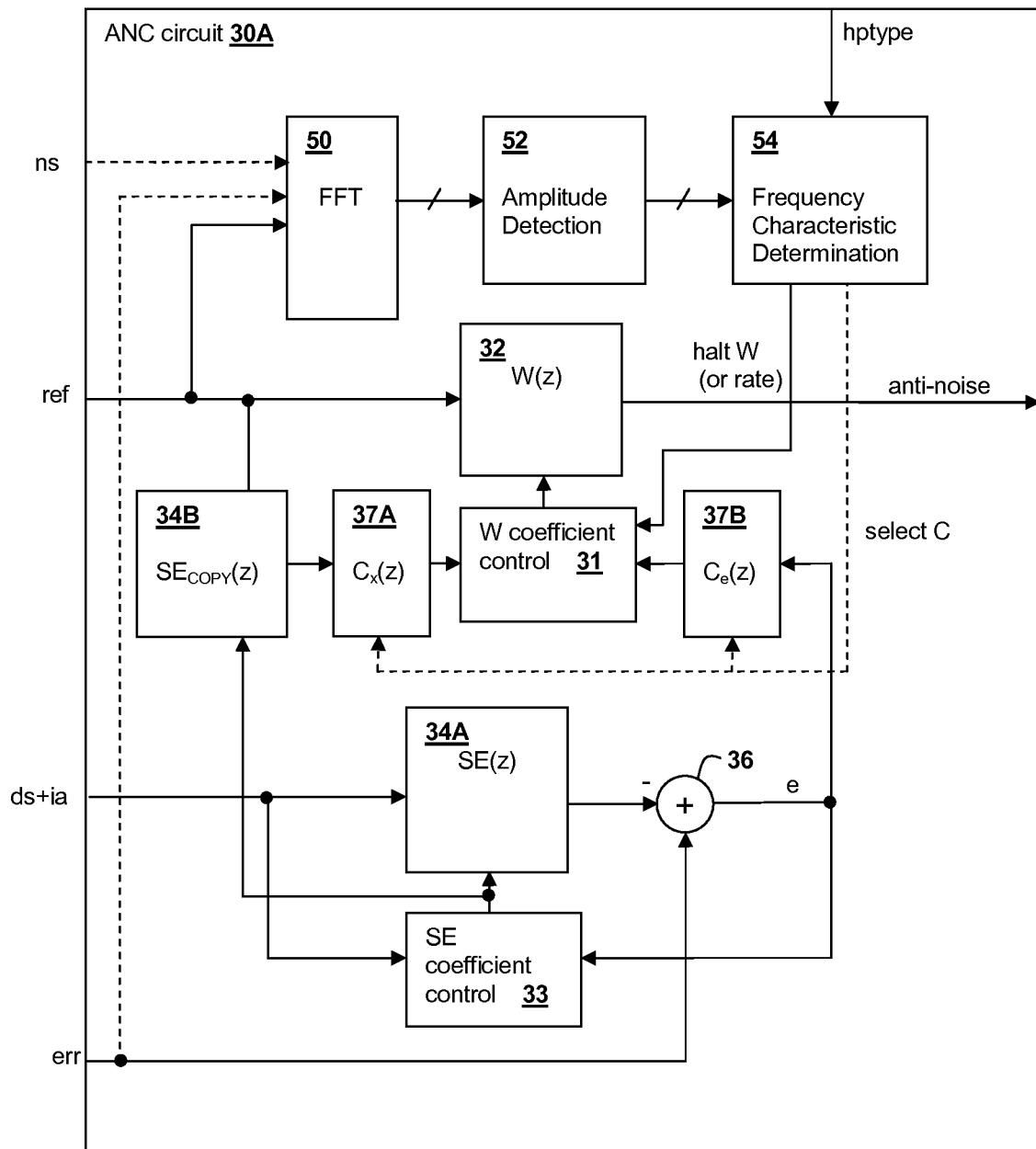
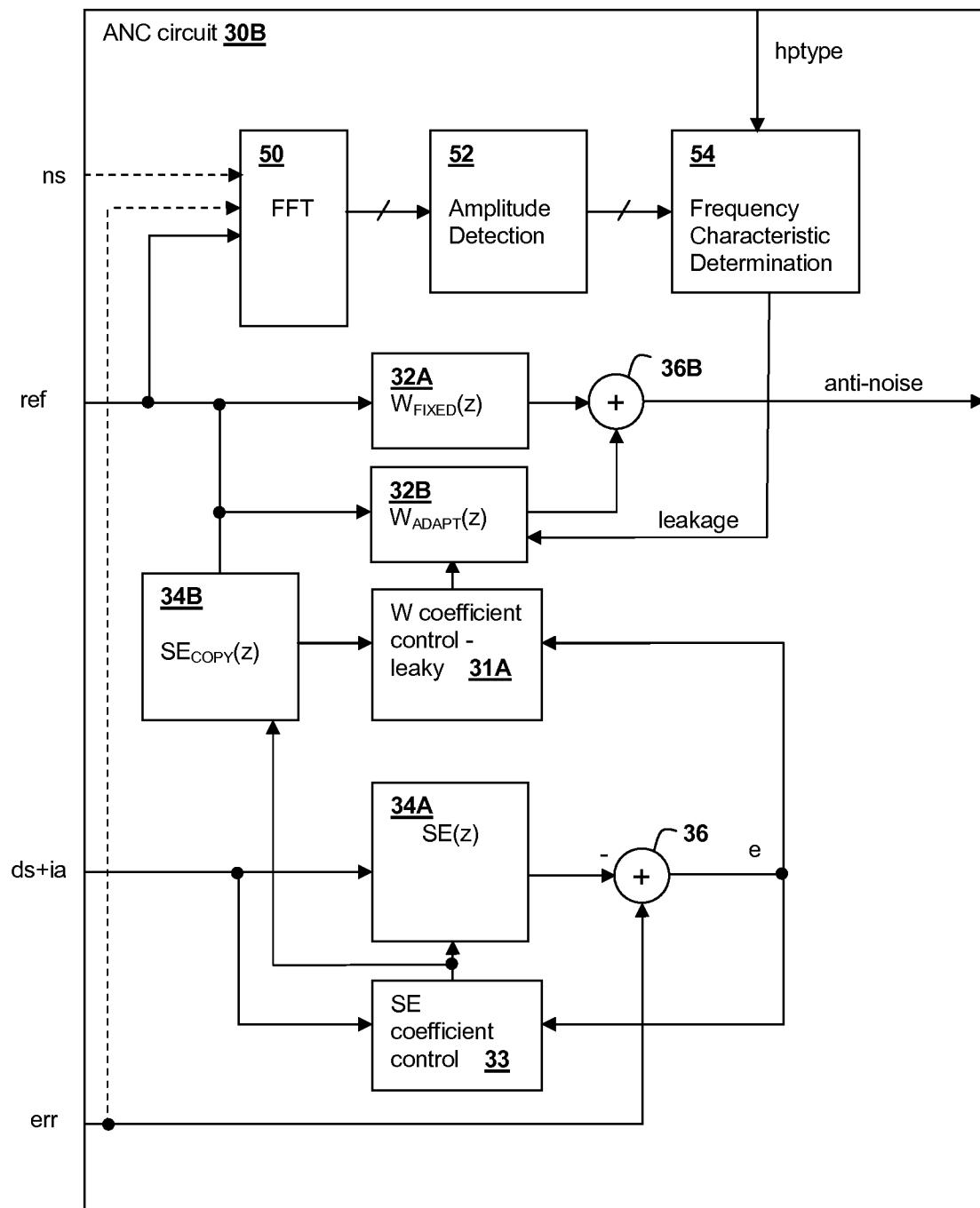




Fig. 2

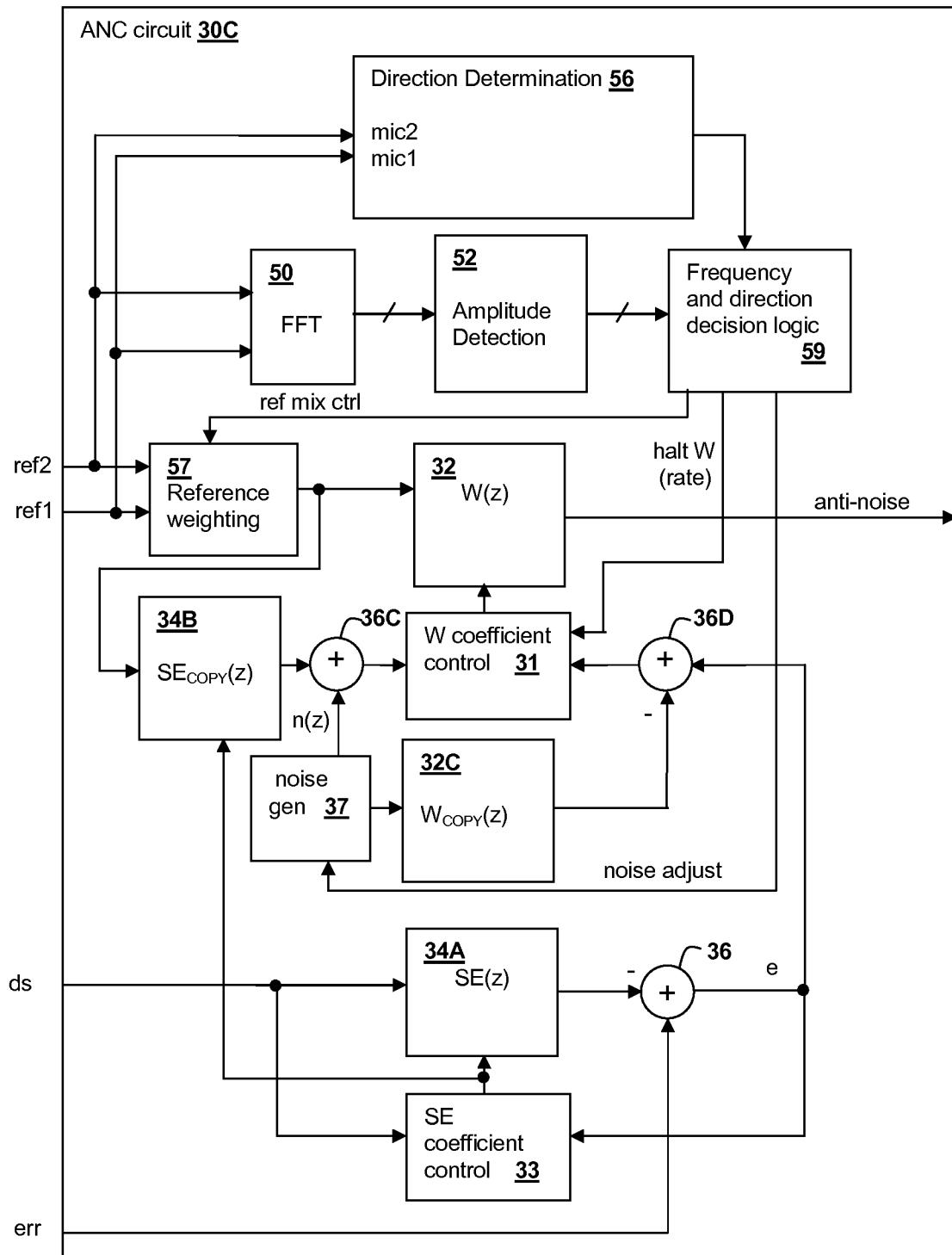

3/7

Fig. 3A

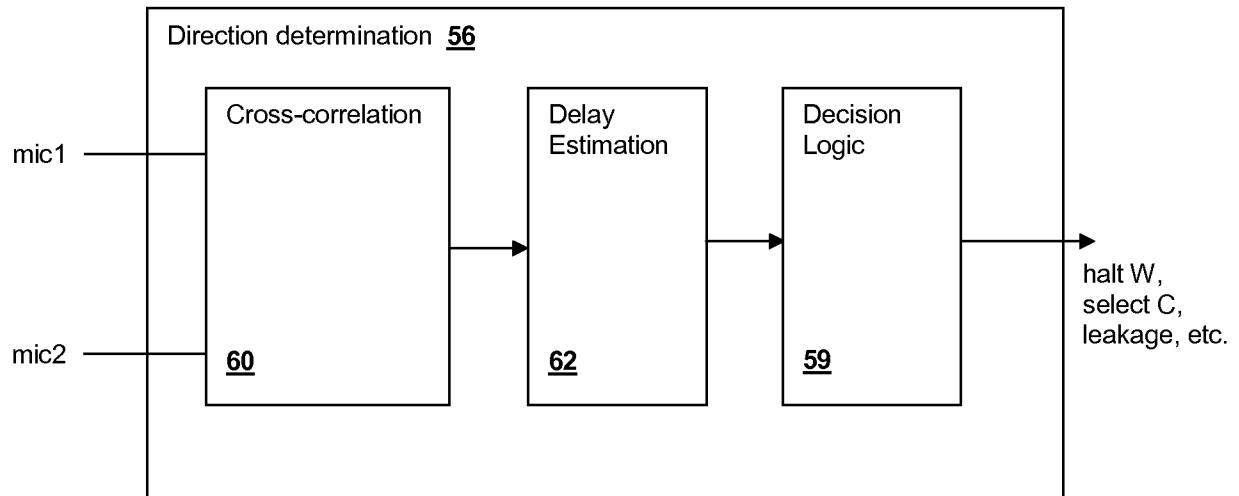
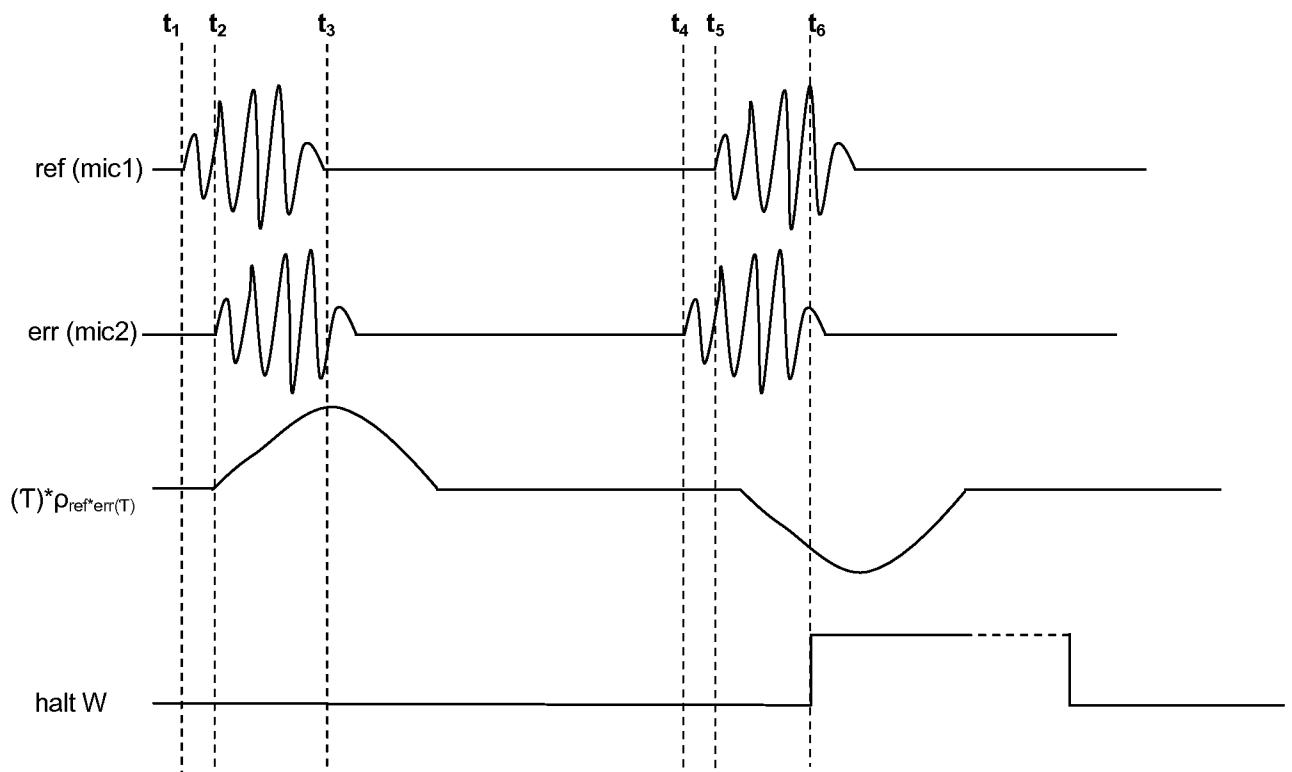


4/7

Fig. 3B

5/7

Fig. 3C

6/7

Fig. 4**Fig. 5**

7/7

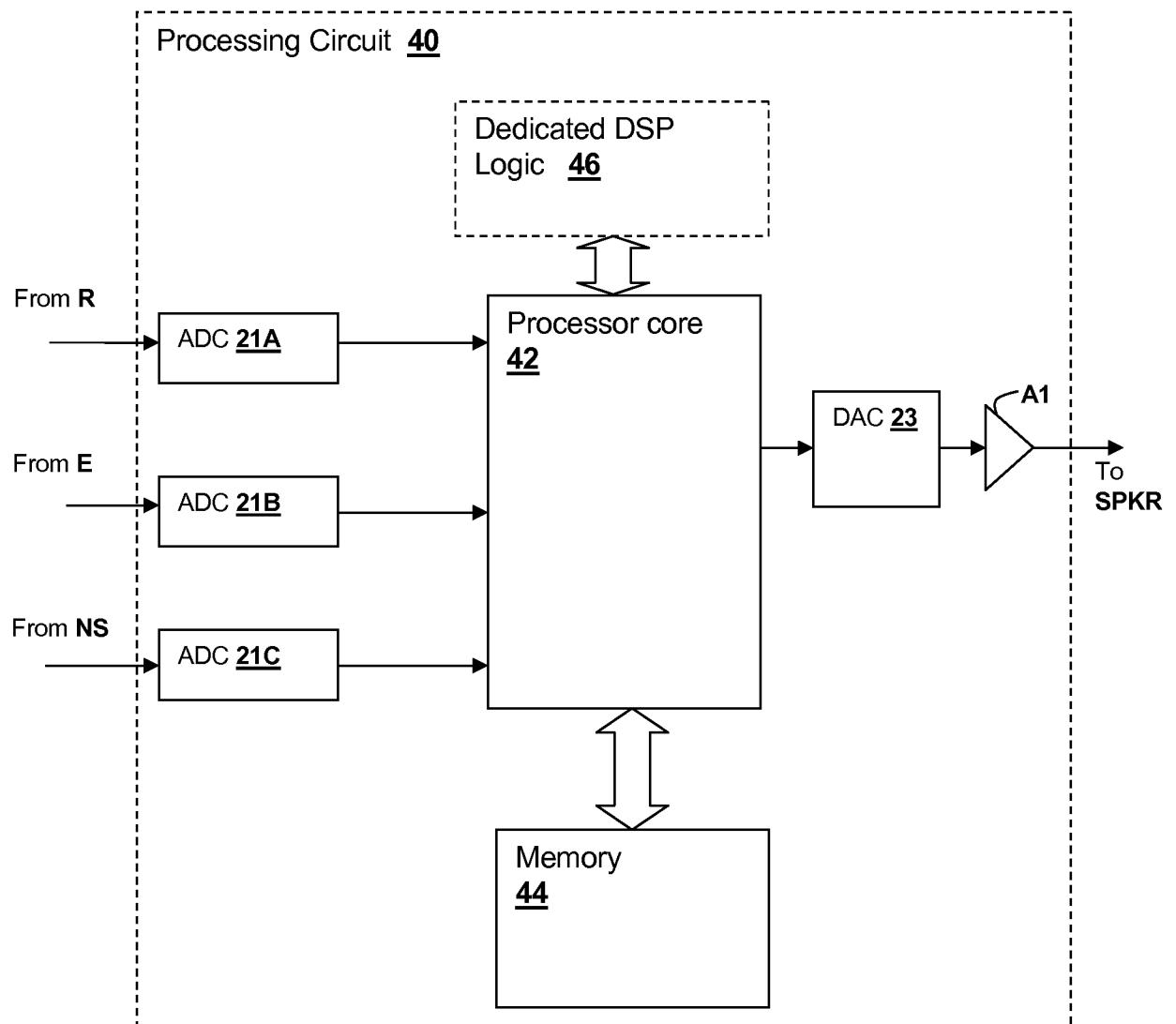


Fig.6