US009669828B2

a2 United States Patent

Caveney et al.

US 9,669,828 B2
Jun. 6, 2017

(10) Patent No.:
45) Date of Patent:

(54) COOPERATIVE DRIVING AND COLLISION References Cited
AVOIDANCE BY DISTRIBUTED RECEDING

HORIZON CONTROL

(56)
U.S. PATENT DOCUMENTS

7,248,952 B2 7/2007 Ma et al.
(75) Inventors: Derek Stanley Caveney, Plymouth, MI 7418372 B2 8/2008 Ni:heir: et al.
(US); William Bruce Dunbar, Santa 7,756,615 B2 7/2010 Barfoot et al.
Cruz, CA (US) 8,249,799 B2* 82012 Flotteovvcercns GOSG 5/0021
340/945
N .
(73) Assignee: Toyota Motor Engineering & 8,788,121 B2 7/2814 t,Khnier """"""""""""""" 7013
Manufacturing North America, Inc., (Continued)
Erlanger, KY (US)
OTHER PUBLICATIONS
(*) Notice: SUbjeCt. to any disclaimer, > the term of this Felipe Nunez et al., “Model Predictive Control of Multi-Line Metro
patent is extended or adjusted under 35 Systems: A Distributed Approach”, 2011 9th IEEE International
U.S.C. 154(b) by 963 days. Conference on Control and Automation (ICCA), Santiago, Chile,
Dec. 19-21, 2011, pp. 532-537.
(21) Appl. No.: 13/486,598 (Continued)
(22) Filed: Jun. 1, 2012 Primary Examiner — Khoi Tran
Assistant Examiner — Robert Nguyen
. s guy
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Oblon, McClelland,
US 2013/0325306 Al Dec. 5, 2013 Maier & Neustadt, L.L.P.
(51) Int. CL (57) ABSTRACT
G08G 1/16 (2006.01) Distributed control of vehicles with coordinating cars that
B60OW 30/095 (2012.01) implement a cooperative control method, and non-coordi-
GOSD 1/02 (2006.01) pating cars that. are presumed to follow predi.ctablfz dynam-
GOSD 1/10 (2006.01) ics. A cooperative control metho.d can .comblne distributed
receding horizon control, for optimization-based path plan-
G08G 1/00 (2006.01) ; S0 .
(52) US.Cl ning and feedback, with higher level logic, to ensure that
i] implemented plans are collision free. The cooperative
CPC ... B60W 30/0956 (2013.01); B6OW 30/0953 method can be completely distributed with partially syn-
(2013.01); GO5D 1/0289 (2013.01); GO5D chronous execution, and can afford dedicated time for com-
1/0295 (2013.01); G0501()g G]/ 5/0242 ((220011330011))5 munication and computation, features that are prerequisites
G . for implementation on real freeways. The method can test
(58) Field of Classification Search for conflicts and can calculate optimized trajectories by

CPC GOSD 1/0295; GOSD 1/104; GO5D 1/0289;

GO5D 2201/0213; B60W 30/09; B6OW

30/095

USPC ..ccovevenee 701/1, 2, 24, 25, 26, 28, 300, 301
See application file for complete search history.

adjusting parameters in terminal state constraints of an
optimal control problem.

19 Claims, 9 Drawing Sheets
(5 of 9 Drawing Sheet(s) Filed in Color)

Calculate |

Assumed |

Trajectory |
T

Exchange -/

Trajectory
Messages

Detect |
Conflict |

5808

¢
)

A
!Y.Q.Qnﬂic%
N

b
YES |
| 5810

Adjust OCP |
Constraints

i

Optimized |

Trajectory |
T

US 9,669,828 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0088318 Al* 4/2005 Liu ...ccccoovvviivinnn. GO08G 1/161
340/902
2008/0065328 Al* 3/2008 Eidehall GO1S 7/295
701/301

2009/0079839 Al 3/2009 Fischer et al.
2009/0319112 A1* 12/2009 Fregene B60W 30/16
701/25

2010/0094481 Al 4/2010 Anderson

2010/0114633 Al* 5/2010 Sislak ... GO06Q 10/047
701/120

2010/0121576 Al* 5/2010 ASO ...cccovvieiiinns GO1S 13/726
701/301

2010/0131121 A1* 5/2010 Gerlock GO8G 5/0013
7012

2010/0228419 Al* 9/2010 Lee ..o B60W 30/0953
701/25

2011/0029235 Al
2012/0010768 Al

2/2011 Berry
1/2012 Phillips et al.

2012/0306663 Al* 12/2012 Mudalige GO08G 1/163
340/903

2013/0054128 Al* 2/2013 Moshchuk GO08G 1/167
701/301

2013/0218365 Al* 82013 Caveney ... GOSD 1/0295
7011

2013/0238170 Al* 9/2013 Klingerc..... GO5D 1/104
701/3

2013/0325210 Al* 12/2013 Palmcccooene GOSD 1/0289
7012

OTHER PUBLICATIONS

Hojjat A. Izadi et al., “Decentralized Receding Horizon Control of
Multiple Vehicles subject to Communication Failure”, 2009 Ameri-
can Control Conference, St. Louis, MO, US, Jun. 10-12, 2009, pp.
3531-3536.

Wei Li et al., “Centralized and distributed cooperative Receding
Horizon control of autonomous vehicle missions”, Mathematical
and Computer Modeling 43 (2006) 1208-1228.

Hiroaki Fukushima et al., “Distributed Model Predictive Control for
Multi-Vehicle Formation with Collision Avoidance Constraints”,
Proceedings of the 44th IEEE Conference on Decision and Control,
and the European Control Conference 2005, Seville, Spain, Dec.
12-15, 2005, pp. 5480-5485.

L. D. Baskar, B. De Schutter, J. Hellendoorn, and Z. Papp. Traffic
control and intelligent vehicle highway systems: a survey. Intelli-
gent Transport Systems, IET, 5(1):38-52, Mar. 2011.

O. Becker. Tutorial—2D Rotated Rectangles Collision Detection,
2003. url: www.ragestorm.net/tutorial?id=22.

R. Bishop. Intelligent vehicle applications worldwide. IEEE Trans-
actions on Intelligent Systems and their Applications, 15(1):78-81,
Jan.

W. B. Dunbar and R. M. Murray. Distributed receding horizon
control for multi-vehicle formation stabilization. Automatica,
42(4):549-558, 2006.

P. Falcone, F. Borrelli, E. H. Tseng, J. Asgari, and H. Davor. Low
complexity MPC schemes for integrated vehicle dynamics control
problems. In Proceedings of the 9th International Symposium on
Advanced Vehicle Control (AVEC *08), pp. 875-880, 2008.

R. A. Ferlis. The dream of an automated highway. Public Roads,
71(1), Pub. No. FHWA-HRT-07-005 2007.

E. Franco, L. Magni, T. Parisini, M.M. Polycarpou, and D. M.
Raimondo. Cooperative constrained control of distributed agents
with nonlinear dynamics and delayed information exchange: A
stabilizing receding-horizon approach. IEEE Trans. on Automatic
Control, 53(1):324-338, 2008.

T. Keviczky, F. Borrelli, and G. J. Balas. Decentralized receding
horizon control for large scale dynamically decoupled systems.
Automatica, 42(12):2105-2115, Dec. 2006.

N. J. Kohut, J. K. Hedrick, and F. Borrelli. Integrating traffic data
and model predictive control to improve fuel economy. In Proceed-
ing of 12th IFAC Symposium on Control in Transportation Systems,
pp. 2806-2813, 2009.

Y. Kuwata, A. G. Richards, T. Schouwenaars, and J. P. How.
Distributed robust receding horizon control for multi-vehicle guid-
ance. IEEE Transactions on Control Systems Technology, 15(4), Jul.
2007.

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert.
Contrained model predictive control: Stability and optimality.
Automatica, 36:789-814, 2000.

M. B. Milam, K. Mushambi, and R. M. Murray. A new computa-
tional approach to real-time trajectory generation for constrained
mechanical systems. In Proceedings of the Conference on Decision
and Control, 2000.

N. Petit, M. B. Milam, and R. M. Murray. Inversion based trajectory
optimization. In Proceedings of the IFAC Symposium on Nonlinear
Control Systems Design (NOLCOS), 2001.

A. Richards and J. How. Robust model predictive control with
imperfect information. In Proceedings of the American Control
Conference, 2005.

A. G. Richards, J. P. How, T. Schouwenaars, and E. Feron. Space-
craft trajectory planning with avoidance constraints using mixed-
integer linear programming. AIAA Journal of Guidance Control and
Dynamics, 25(4):755-764, 2002.

B. Saerens, M. Diehl, J. Swevers, and E. Van den Bulck. Model
predictive control of automotive powertrains—first experimental
results. In Proceedings of the 47th IEEE Conference on Decision
and Control, pp. 5692-5697, 2008.

J. D. Schwartz and M. B. Milam. On-line path planning for an
autonomous vehicle in an obstacle filled environment. In Proceed-
ings of the IEEE Conference on Decision and Control, pp. 2806-
2813, 2008.

R. Sengupta, S. Rezaei, S. E. Shladover, D. Cody, S. Dickey, and H.
Krishnan. Cooperative collision warning systems: Concept defini-
tion and experimental implementation. Journal of Intelligent Trans-
portation Systems, 11(3):143-155, 2007.

S. E. Shladover. Path at 20—History and major milestones. IEEE
Transactions on Intelligent Transportation Systems, 8(4):584-592,
Dec. 2007.

A. Vahidi and A. Eskandarian. Research advances in intelligent
collision avoidance and adaptive cruise control. Intelligent Trans-
portation Systems, IEEE Transactions on, 4(3):143-153, Sep. 2003.
Y. Wang and S. Boyd. Fast model predictive control using online
optimization. IEEE Transactions on Control Systems Technology,
18(2):267-278, 2010.

Dunbar, William B. And Caveney, Derek S., Distributed Receding
Horizon Control of Vehicle Platoons: Stability and String Stability,
IEEE Transactions on Automatic Control, vol. 57, No. 3, pp.
620-633, Mar. 2012.

Dunbar, William B. And Murray, Richard M., Distributed Receding
Horizon Control with Application to Multi-Vehicle Formation Sta-
bilization, Automatica, 47 pgs, Jan. 26, 2004.

* cited by examiner

US 9,669,828 B2

Sheet 1 of 9

Jun. 6, 2017

U.S. Patent

SUIn

AE

L, ’

h X
‘wsjgosd

uoneziwndo “AIpSsadaU

‘£A0 L yse] | aajos ‘paanbsi Jwejgoad

Ul PRAJ0S 10U uonnjosal i sesuopsfen| uoneznundo

Huwejgoid 'oiboj uonnjosal pawunsse | aajog aiepdn

uolleZiuildo | pue UIPARBP | aalEdal puUe [EUIUOU

BAJOS [DIPJUOD 3IN09XY Jsuel | 39K

b Asel 3 LA CAseL L Ase]
pouad ajepdn JHY >

U.S. Patent Jun. 6, 2017 Sheet 2 of 9 US 9,669,828 B2

Fig. 2

US 9,669,828 B2

Sheet 3 of 9

Jun. 6, 2017

U.S. Patent

T T T

AT RY IR IR R RN KRR KRR AW N nn

-
5
3
5
5
%
8
%
%
3
<
<
<
<
<
<
<
2
L]
4
2
o
»
»
»
»
2
E
x
»
»
3

EYT Y S

ARKREM R NSRS

¥

wed 120 pendiuns - |

NXIXV
yied eD pRUINSESY -

@
»
#
=
. »
Pl M W

(v

US 9,669,828 B2

Sheet 4 of 9

Jun. 6, 2017

U.S. Patent

i

w

o]

Ly

"
22

4

G

o

itz

Eeed oo
- S
P e

K
50
83

REsty
H

il W

Ty

g

bee]

-

Fig. 4

Eed

o]
ey

U.S. Patent Jun. 6, 2017

Sheet 5 of 9

paads

.
e

Oar
H

&

O

i i H § :
e W i & g W0 % Wy
s & : Y = & o

¥ Y
O N od

LRI

US 9,669,828 B2

35

33

N2

s

Hme {ze0)
Fig. 5

148

&

US 9,669,828 B2

Sheet 6 of 9

Jun. 6, 2017

U.S. Patent

v,..f,._ .‘..f w.m
\ Bz \ \
\ Bugbasg \
M x\«v, wmuﬁ.mwh .,w.
ATRA Y STITYRA

SOTPRA
Remgfry .

2880y

Burbasy
AOTBL
Femgbry

088gE

e
ITOTYSA |

femybry -

3980¢

Y 3 T Vi
ef ..w f. «,x
AN } N STOTgRA /
5 4 aromy N burbn /' » ,
A Mo \ R /o swey
N N/ a4 waony /A
AN _ Y- 2 futsse ./ 4
k by o K
N S G 5 Soe 7 spamps S e
g S s Remgb S e S
w.ﬂﬂﬂﬁwhr %ﬂﬂw/».M“ %, A.f A..\. P - W '\.\\\,.

Buhoy

28847 ,,i,.,{q%w%.

Y

28§07 |

L m_n_ "D)8 ‘Uone)s aseg

US 9,669,828 B2

W [‘apiyan JByI0
[eoyduad } — ~— = e BUUDIUY -

|
| _
| |

—] — o —— — e —
|

Sheet 7 of 9

Jun. 6, 2017

U.S. Patent

_ |
N A0SUSS | | eoepo 145 opey ooepeu|_|
o ! ol . sompen | |
: | |
| |
Z J0Susg |— _ sng |
| |
| Josuag |— |
13]|013U0D) 19)j10:3U0D |
_ 381Q Alowei Aedsig |
|
- T T
|
| 4/
JOYHUON wosAg
Buissao0.id

U.S. Patent Jun. 6, 2017 Sheet 8 of 9 US 9,669,828 B2

0
la

— { START)

A A
Calculate j

Assumed
Trajectory

S802

S804

A 4

Exchange
Trajectory
Messages

S806

Y

Detect
Contlict

$808 Fig. 8

S

NO

YES S$810

Adjust OCP
Constraints

S$812

h 4
Calculate 5

Optimized
Trajectory

y

U.S. Patent Jun. 6, 2017 Sheet 9 of 9 US 9,669,828 B2

Event-based
Communications
A

T
' Road Network Level s Navigation Route

@ ----------------------------- Route Plan

pomees ST e |) ¥]
! High Level ! Coordinated Maneuvers <

Road Geometry Task 1
{Centerline Projections)

Maneuver Plan

y

Update Nominal Assumed Trajectory

Assumed Trajectory Abort?
Communications ~ 1ask 2 y

N Communication Between Vehicles

.
' Middle Level (Four 2 Assumed Trajectory
i Task Strategy) | Task3 y
""""""""""""""""" Conflict Detection and Resolution |

Road Geometry

Task 4 v J
Optimal Path Planning

@ ““““““““““““““““““““““““““ Desired Accelerations
P ‘ Convert Global-Frame Accelerations to
§ Low Level ! Body-Fixed Longitudinal Accelerations
“““““““““““““““““ and Wheel Angles

ECU Commands

Fig. 9

US 9,669,828 B2

1
COOPERATIVE DRIVING AND COLLISION
AVOIDANCE BY DISTRIBUTED RECEDING
HORIZON CONTROL

BACKGROUND

This disclosure relates to distributed receding horizon
control (DRHC) and collision avoidance of coordinating and
non-coordinating vehicles.

The “background” description provided herein is for the
purpose of generally presenting the context of the disclo-
sure. Work described herein, to the extent it is described in
this background section, as well as aspects of the description
which may not otherwise qualify as prior art at the time of
filing, are neither expressly or impliedly admitted as prior
art.

Aspects of this disclosure relate to the teachings of the
following references, which are referred to throughout:

[1] L. D. Baskar, B. De Schutter, J. Hellendoorn, and Z.
Papp. Traffic control and intelligent vehicle highway
systems: a survey. Intelligent Transport Systems, IET,
5(1):38-52, March 2011.

[2] O. Becker. Tutorial-2D Rotated Rectangles Collision
Detection, 2003. url: www(dot)ragestorm(dot)net/tutori-
al?1d=22.

[3] R. Bishop. Intelligent vehicle applications worldwide.
IEEE Transactions on Intelligent Systems and their Appli-
cations, 15(1):78-81, January

[4] W. B. Dunbar and D. Caveney. Distributed receding
horizon control of vehicle platoons: Stability and string
stability. IEEE Trans. on Automatic Control, In press,
DOI 10.1109/TAC.2011.2159651, June 2011.

[5] W. B. Dunbar and R. M. Murray. Distributed receding
horizon control for multi-vehicle formation stabilization.
Automatica, 42(4):549-558, 2006.

[6] P. Falcone, F. Borrelli, E. H. Tseng, J. Asgari, and H.
Davor. Low complexity MPC schemes for integrated
vehicle dynamics control problems. In Proceedings of the
9th International Symposium on Advanced Vehicle Con-
trol (AVEC °08), pages 875-880, 2008.

[7] R. A. Ferlis. The dream of an automated highway. Public
Roads, 71(1), Pub. No. FHWA-HRT-07-005 2007.

[8] E. Franco, L. Magni, T. Parisini, M. M. Polycarpou, and
D. M. Raimondo. Cooperative constrained control of
distributed agents with nonlinear dynamics and delayed
information exchange: A stabilizing receding-horizon
approach. IEEE Trans. on Automatic Control, 53(1):324-
338, 2008.

[9] P. Ioannou, editor. Automated Highway Systems. Ple-
num Press, New York, 1997.

[10] T. Keviczky, F. Borrelli, and G. J. Balas. Decentralized
receding horizon control for large scale dynamically
decoupled systems. Automatica, 42(12):2105-2115,
December 2006.

[11] N. J. Kohut, J. K. Hedrick, and F. Borrelli. Integrating
traffic data and model predictive control to improve fuel
economy. In Proceeding of 12th IFAC Symposium on
Control in Transportation Systems, pages 2806-2813,
2009.

[12] Y. Kuwata, A. G. Richards, T. Schouwenaars, and J. P.
How. Distributed robust receding horizon control for
multi-vehicle guidance. IEEE Transactions on Control
Systems Technology, 15(4), July 2007.

[13] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert. Contrained model predictive control: Stability
and optimality. Automatica, 36:789-814, 2000.

10

15

20

25

30

35

40

45

50

55

60

65

2

[14] M. B. Milam, K. Mushambi, and R. M. Murray. A new
computational approach to real-time trajectory generation
for constrained mechanical systems. In Proceedings of the
Conference on Decision and Control, 2000.

[15] Intelligent Transportation Systems (ITS) Joint Program
Office. Intellidrive safety workshop. U.S. Department of
Transportation, Research and Innovative Technology
Administration, http://www.its.dot.gov/, July 2010.

[16] N. Petit, M. B. Milam, and R. M. Murray. Inversion
based trajectory optimization. In Proceedings of the IFAC
Symposium on Nonlinear Control Systems Design (NOL-
COS8), 2001.

[17] A. Richards and J. How. Robust model predictive
control with imperfect information. In Proceedings of the
American Control Conference, 2005.

[18] A. G. Richards, J. P. How, T. Schouwenaars, and E.
Feron. Spacecraft trajectory planning with avoidance con-
straints using mixed-integer linear programming. AIAA
Journal of Guidance Control and Dynamics, 25(4):755-
764, 2002.

[19] B. Saerens, M. Diehl, J. Swevers, and E. Van den Buick.
Model predictive control of automotive powertrains—
first experimental results. In Proceedings of the 47th IEEE
Conference on Decision and Control, pages 5692-5697,
2008.

[20] J. D. Schwartz and M. B. Milam. On-line path planning
for an autonomous vehicle in an obstacle filled environ-
ment. In Proceedings of the IEEE Conference on Decision
and Control, pages 2806-2813, 2008.

[21] R. Sengupta, S. Rezaei, S. E. Shladover, D. Cody, S.
Dickey, and H. Krishnan. Cooperative collision warning
systems: Concept definition and experimental implemen-
tation. Journal of Intelligent Transportation Systems,
11(3):143-155, 2007.

[22] S. E. Shladover. PATH at 20-History and major mile-
stones. IEEE Transactions on Intelligent Transportation
Systems, 8(4):584-592, December 2007.

[23] Technical showcase. Raytheon: Infrastructure BSM
generator for V2V. In 18th World Congress on Intelligent
Transport Systems, October 2011.

[24] A. Vahidi and A. Eskandarian. Research advances in
intelligent collision avoidance and adaptive cruise con-
trol. Intelligent Transportation Systems, IEEE Transac-
tions on, 4(3):143-153, September 2003.

[25] Y. Wang and S. Boyd. Fast model predictive control
using online optimization. IEEE Transactions on Control
Systems Technology, 18(2):267-278, 2010.

SUMMARY

An aspect of this disclosure considers the problem of
distributed control of vehicles with coordinating cars that
implement a cooperative control method, and non-coordi-
nating cars that are presumed to follow predictable dynam-
ics. The cooperative control method presented combines
distributed receding horizon control, for optimization-based
path planning and feedback, with higher level logic, to
ensure that implemented plans are collision free. The coop-
erative method is completely distributed with partially syn-
chronous execution, and affords dedicated time for commu-
nication and computation, features that are prerequisites for
implementation on real freeways. Merging simulations with
coordinating and non-coordinating cars demonstrate the
viability of the method, including a detailed six-car merging
scenario, and a larger-scale merge that models the Japanese
Tomei Expressway road geometry and traffic flow condi-
tions. The look-ahead feature of receding horizon control is

US 9,669,828 B2

3

exploited for resolving conflicts (future collisions) before
they occur, and for negotiating aspects of inter-vehicle
merging coordination, even before the closed-loop response
is initiated. Such capabilities are not possible by any other
method that simultaneously provides low-level control.

An embodiment of controller for a first coordinating
vehicle can include a communication terminal configured to
receive trajectory messages from a plurality of second
coordinating vehicles in a communication range. The tra-
jectory messages can include vehicle trajectory information
for a predetermined update interval.

The controller can include a computer processor config-
ured to execute instructions stored on a non-transitory
memory. The instructions can include calculating an
assumed trajectory for the first coordinating vehicle by
solving an optimal control problem, detecting a conflict
based on the received trajectory information and the calcu-
lated assumed trajectory, and when a conflict is detected,
adjusting terminal state constraints in the optimal control
problem and calculating, with the adjusted constraints in the
optimal control problem, an optimized trajectory for the first
coordinating vehicle such that the detected conflict is
resolved. The assumed trajectory for the first coordinating
vehicle can be calculated by solving the optimization control
problem with terminal constraints modified by a high-level
maneuver plan. The optimal control problem can include
cost terms including a move suppression (MS) term indi-
cating an amount that the optimized trajectory may deviate
from the assumed trajectory.

The controller can be further configured such that the
conflict is detected by determining, based on the received
trajectory information and the calculated assumed trajectory,
whether a first avoidance boundary of the first coordinating
vehicle and a second avoidance boundary of any one of the
second coordinating vehicles intersect during the update
interval.

The terminal state constraints in the optimal control
problem can include a velocity term and a vehicle spacing
term. When a conflict is detected, the processor can adjust
the velocity term and/or the vehicle spacing term in the
optimal control problem such that the detected conflict is
resolved.

During each of successive update intervals, the computer
processor can recursively detect conflicts between the first
coordinating vehicle and each of the second coordinating
vehicles that will occur during the update interval and
calculate the optimized trajectory for each of the recursively
detected conflicts. The assumed trajectory for the first coor-
dinating vehicle in a current update interval can be initially
set to the calculated optimized trajectory from an immedi-
ately preceding update interval. The assumed trajectory for
the first coordinating vehicle in a current update interval can
be initially set, in the absence of a high-level maneuver plan,
by extrapolating the optimized trajectory from an immedi-
ately preceding update interval.

During each of the successive update intervals, the con-
troller can calculate the optimized trajectory for the detected
conflict with the earliest loss-of-separation that requires
action by the first coordinating vehicle.

During each of the successive update intervals, the com-
munication terminal can be configured to transmit the opti-
mized trajectory to the second coordinating vehicles and
receive updated trajectory messages from the second coor-
dinating vehicles.

The controller can be further configured to classify the
detected conflict based on a predetermined rule set and
adjust the terminal state constraints based on the detected

10

15

20

25

30

35

40

45

50

55

60

65

4

conflict classification. The conflict classification can be
based on a position of the first coordinating vehicle relative
to a conflicting vehicle, of the second coordinating vehicles,
which is determined to be in conflict with the first coordi-
nating vehicle. When a conflict is detected, the MS term can
be set such that the amount from which the optimized
trajectory may deviate from the assumed trajectory is infi-
nite.

The controller can include a detection unit configured to
detect a position and speed information for a non-coordi-
nating vehicle within a predetermined detection range. The
processor can determine trajectory information for the non-
coordinating vehicle based on the detected position and
speed information, and the processor can detect a conflict
between the first coordinating vehicle and the non-coordi-
nating vehicle based on the determined trajectory informa-
tion and the assumed trajectory. The processor can be
configured to set a third avoidance boundary for the non-
coordinating vehicle, the third avoidance boundary being
smaller in size than the first and second avoidance bound-
aries.

A method for controlling a first coordinating vehicle can
comprise receiving trajectory messages from a plurality of
second coordinating vehicles in a communication range, the
trajectory messages including vehicle trajectory information
for a predetermined update interval; calculating an assumed
trajectory for the first coordinating vehicle by solving an
optimal control problem; detecting a conflict based on the
received trajectory information and the calculated assumed
trajectory; and when a conflict is detected, adjusting termi-
nal state constraints in the optimal control problem and
calculating, with the adjusted constraints in the optimal
control problem, an optimized trajectory for the first coor-
dinating vehicle such that the detected conflict is resolved.

A vehicle coordination system can comprise a plurality of
coordinating vehicles, each vehicle (i=1, 2, 3, . . ., N) having
a controller. The controller can include a communication
terminal configured to receive trajectory messages from
each vehicle, of the plurality of coordinating vehicles, in a
communication range. The trajectory messages can include
vehicle trajectory information for a predetermined update
interval. The controller can include a computer processor
configured to execute instructions stored on a non-transitory
memory. The instructions can include calculating an
assumed trajectory by solving an optimal control problem;
for each received trajectory message, detecting a conflict
with a corresponding vehicle based on the received trajec-
tory information and the calculated assumed trajectory; and
when a conflict is detected, adjusting terminal state con-
straints in the optimal control problem and calculating, with
the adjusted constraints in the optimal control problem, an
optimized trajectory for the first coordinating vehicle such
that the detected conflict is resolved.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

A more complete appreciation of the disclosed embodi-
ments and many of the attendant advantages thereof will be
readily obtained as the same becomes better understood by
reference to the following detailed description when con-
sidered in connection with the accompanying drawings,
wherein:

US 9,669,828 B2

5

FIG. 1 is a conceptual description of the four tasks
executed during each d-second update period [t,, t,,], with
update times t, and t,,,=t,+9;

FIG. 2 is a graphical representation of a car at some
instant of time with global configuration positions (X, y) and
(W, v);

FIG. 3A is a computed (solid outline) and assumed
(dashed outline) configuration for a car at some instant of
time, in an arbitrary road geometry;

FIG. 3B is a close-up of two vehicle configurations in the
relative frame in which the assumed position and heading
are zero, where the variables in the figure (Ax, Ay, Ay) are
defined in equation (8);

FIGS. 4A-4F are position space (y, X) snapshots of a 6 car
simulation at varying times, where the black boundary for all
cars (coordinating and non-coordinating) represents the
avoidance boundaries parameterized by (A,, A), and the
added white boundary around the coordinating cars repre-
sents the added margin afforded by move suppression
parameters (€,, €,), and overlapping white boundaries are
conflicts, and boundaries change color to red for one conflict
and to yellow for two simultaneous conflicts, in which:

FIG. 4A is a O sec snapshot that shows the cars at
steady-state, before the car 1 lane change and consequent
conflicts;

FIG. 4B is a 3.4 sec snapshot that shows cars 2 and 3 in
conflict with each other;

FIG. 4C is a 4.7 sec snapshot that shows cars 1 and 3 are
in conflict with car 2, where car 2 has two conflicts, and so
has a yellow boundary;

FIG. 4D is a 5 sec snapshot that shows cars 1 and 2 with
two conflicts each, and car 3 with one conflict;

FIG. 4E is a 8.7 sec snapshot that shows that the conflict
between car 1 and car-1 is no longer active, resulting in a
color change for the boundary of car 1, where car 2 still has
two conflicts, one with car 1 and one with car 3; and

FIG. 4F is an end time (30 sec) snapshot that shows that
all conflicts are resolved;

FIG. 5 is a graphical plot of speed v, for each of four
coordinating cars with respect to time t, where Cars 3 and 4
slow initially due to the conflicts with cars 2 and 3, respec-
tively, and the more dramatic chain of speed reductions
follows the merging of car 1 behind car-1, with speed
reductions required to create enough space to resolve all
in-lane conflicts;

FIG. 6 is a series of five-second snapshots of a merging
scenario on the Tomei Expressway in Japan;

FIG. 7 is a schematic of a processing system according to
embodiments of this disclosure;

FIG. 8 is a flowchart of algorithms implementing aspects
of this disclosure; and

FIG. 9 is a cooperative driving software framework for a
coordinating vehicle, where interfaces between different
layers of the framework are numbered and described in
Table 1, while communication interfaces are lettered.

DETAILED DESCRIPTION
1. Introduction

An issue facing the developed world is that much of the
infrastructure for transportation will not scale with near-
future populations [7], [9]. To bypass the cost of new road
infrastructure, there is substantial effort to develop automa-
tion-based solutions in which control algorithms perform
human tasks to yield greater throughput within existing
infrastructure [1], [22]. In the context of freeway driving,

20

25

30

40

45

55

60

6

such methods incorporate hardware/software and control
logic into existing vehicles on freeways already in use.
There are many challenges to any approach that automates
some aspect of highway driving. The obvious challenge is
ensuring vehicles do not collide with each other or roadway
barriers. Another challenge is to ensure that adaptation to
changing freeway conditions occurs seamlessly and
robustly, while maintaining throughput that exceeds that of
human driving under (ideally) all conditions.

This disclosure considers the problem of automated free-
way driving under the specific scenario of merging. Within
this scenario, challenges include the spatial and time con-
straints associated with merging when cooperative and non-
cooperative vehicles are in the merging lane. Related work
has proposed and tested cooperative collision warning
(CCW) systems that provide situation awareness and warn-
ings to drivers [21]. There are also review papers that
consider trends in collision avoidance/warning systems and
automation of vehicle control tasks [3], [24]. Adaptive cruise
control alone cannot handle time constraints in general,
which will be required within one or more layers of logic
that automate freeway driving under general conditions,
including freeway merging. Thus, there is a need to merge
lower-level control with higher-level task management
schemes in freeway automation methods.

This disclosure presents an automation method with
receding horizon control as the lower-level control method,
combined with a higher-level logic for management of lane
changing and collision avoidance. A new implementation of
distributed receding horizon control is utilized in which each
cooperative vehicle is assigned its own optimal control
problem, optimizes only for its own control at each update,
and transmits and receives information with vehicles in
communication range. The local optimal control problems
are entirely decoupled; thus, feasibility of each optimization
problem does not depend on solutions or even communica-
tion with other vehicles. Cooperation is achieved by adjust-
ing constraints and parameters in each optimal control
problem, based on a separate higher-level logic that tests for
collisions and manages parameter/constraint adjustments
when conflicts arise. This approach is in contrast with other
receding-horizon approaches where cooperation between
subsystems is incorporated directly in the optimal control
problem by including explicit coupling terms in the cost
function or constraints [5], [10]. Another advantage of the
method is that the implemented optimization problem is a
quadratic programming problem, which can be solved
robustly and efficiently.

As a non-limiting example, this disclosure presents a
specific freeway scenario that is a left-lane merger of a car
onto a freeway, a common scenario on Japanese freeways.
Cars are treated as either “coordinating” or “non-coordinat-
ing.” By definition, coordinating cars employ the control
approach presented herein. Non-coordinating cars are not
being regulated, and are viewed as moving obstacles by each
coordinating car. To simplify the problem, the short-term
future plan of non-coordinating cars is assumed to be
predictable without error by each coordinating car. Knowl-
edge of the current state (e.g., position, heading, velocity) of
non-coordinating cars is consistent with recent advances by
industry and government that advances vehicle-2-vehicle
(V2V) technology. Such technology could provide knowl-
edge of non-coordinating cars by each car broadcasting its
state information (USDOT, [15]), or by road-side devices
that estimate and broadcast the state of such cars (Raytheon,
[23]). Thus, it is conceivable that in future intelligent free-
ways the state of non-coordinating is available, from which

US 9,669,828 B2

7

a short-term plan could be estimated. In the approach
presented here, coordinating cars exchange future plans, and
modify them as necessary to ensure collision avoidance and
acceptable performance. The term “conflict” refers to when
the plan of any car results in a loss of separation, which
means that the avoidance boundaries of the two cars inter-
sect, now or at some time within the planning horizon. If loss
of separation does not occur, then actual collision cannot
occur. Thus, a conflict-free plan is sufficient as a collision-
free plan.

The approach presented herein is comprised of the fol-
lowing features: 1) distributed, partially synchronous execu-
tion, 2) optimization-based maneuvering and feedback con-
trol by receding horizon control, and 3) logic-based conflict
avoidance. A high-level overview of each of these three
aspects is now given.

Distributed Partially-Synchronous Execution

Each coordinating car must make decisions locally,
exchanging plan information with cars (“neighbors”) in
range of communication. Each update window is synchro-
nized (via a global clock keeping with GPS), while com-
munication exchanges can be asynchronous provided the
maximum delay is bounded and less than the update period.
Computations (by optimization) are also completely distrib-
uted and asynchronous.

FIG. 9 illustrates a non-limiting exemplary framework for
cooperative driving that integrates event-based group coor-
dination logic, periodic (optimization-based) path planning,
digital maps, collision avoidance, and communications. The
interfaces between various levels of the framework and
external entities are summarized in Table 2. At the core of
the framework is a four-task strategy for path planning.
Although DRHC based path planning is proposed within this
strategy, optimization is not a prerequisite. However, inte-
gration through online optimization guarantees constraints
are satisfied and maximum (as defined by the cost function)
performance is achieved.

10

15

20

25

30

35

8

Task 2: Exchange (transmit and receive) assumed trajec-
tories with each neighbor.

Task 3: Check assumed trajectories (self against neigh-
bors) for conflicts, and resolve any conflicts as necessary.
Conflict “types” determine the resolution assignment, as
detailed in this work. Computing a conflict-resolving
maneuver involves solving an optimization problem.

Task 4: Solve an optimization problem to generate the
next implemented maneuver, if not already done in tasks 1
or 3. This is required when initial maneuvers are simple to
compute (i.e., no optimization required in task 1) and such
maneuvers do not result in a conflict (no optimization
required in task 3).

FIG. 1 shows, at a conceptual level, each of the four tasks
sequentially executed during each receding horizon update
period. An optimization problem will be solved one or two
times during each update period, for each coordinating car.
During each update period, the purpose of the four tasks is
to provide a conflict-free receding horizon trajectory that
will be implemented during the next update period. Assume
that all cars have synchronized update times t,, ke N, but the
execution of tasks within each update period need not be
synchronized. The timing requirement is that all four tasks
are completed within each update period for every car. Only
the inter-vehicle communication task 2 requires coordina-
tion between vehicles.

The four-task strategy presented here separates the opti-
mization problem from the handling of collision avoidance.
Handling collision avoidance constraints directly in the
optimization problem generally makes the problem non-
convex and/or introduces decision variables ([12], [18]) that,
when added to the computed trajectory variable set, can
dramatically increase computation time. The solution to
such non-convex problems are also locally optimal, which
has computational implications (e.g., solutions depend
largely on the chosen warm-start solution). To bypass these
computational issues, avoidance constraints are not included

TABLE 1

Interface Functionality

Example

1. Road Network Level in High
Level
2. High Level to Middle Level

Route plan to event-based scenarios

Event-based maneuver plans to

(periodic) nominal assumed trajectories

3. Middle Level to Low Level Conflict-free path plans to (body-
fixed) throttle, brake, and steering
commands

4. Low Level to Physical Actuators
to CAN messags

Messages containing quantities
necessary to coordinate the
maneuvers of multiple vehicles

A. Event-based Communications

B. Assumed Trajeciory
Commucations

Road Geometry (Digital Map)

Abort Maneuver Plan

Messages containing (nominal)

path planning solutions of other
cooperative vehicles

Upcoming road geometry to nominal
assumed Irajectories updates
Conflict defections to negotiated

maneuver plans

Throttle, brake, and steering commands

I am a cooperative vehicle traveling on the highway and approaching
an interchange. I will now listen for vehicles merging from a ramp.

I have negotiated a lane-change to begin in 2.1 secs. I will speed up
to 25 m/s at 0.5 m/s/s to meet a gap in the traffic available in 6.2 secs.
I resolved a conflict with a trajectory from a neighboring vehicle and
produced a global longitudinal and lateral acceleration profiles to
realize the conflict-free trajectory.

I need throttle angle of 10.2 deg. This requires. a PWM Signal of
12.3%.

I am to cooperative vehicle traveling on the highway. Here are gaps
around me in which vehicles can lane change,

I am a cooperative vehicle. Here are my (global) position, velocity,
and acceleration profiles for the next 5 seconds

Here are GPS waypoints defining the three lanes of upcoming road
geometry in the next 300 meters.

I have an unforeseen conflict with another vehicle this is unable to be
resolved without abandoning our negotiated maneuver plan.

Referring to FIG. 9, the common order of execution of
tasks for each car over the common update period (0.5
seconds here, without loss of generality) includes:

Task 1: Generate a nominal “assumed trajectory” for the
next planning horizon, which may involve solving an opti-
mization problem. For cars that are merging into a lane, for
example, optimization is used to compute the initial lane-
change maneuver.

in the present optimization problem. Instead, task 3 logic
tests for conflicts and adjusts parameters in the terminal state
constraints in the optimization problem to resolve a detected
conflict. This is a distinct advantage the present approach
compared to approaches in the literature.

Optimization-Based Maneuvering

Receding horizon control is used to compute the maneu-
ver of each car. In receding horizon control the current

US 9,669,828 B2

9

control action is determined by solving a finite-horizon
optimal control problem within each sampling period [13].
Each optimization yields an open-loop control trajectory and
the initial portion of the trajectory is applied to the system
until the next sampling instant. In this disclosure, the
planned maneuver is short-term (5 seconds) and incorpo-
rates the dynamics of the car, smoothness conditions
between maneuver updates, a move suppression constraint,
and minimizes a cost function. In practice, low-level (inner-
loop) controllers may be used to stabilize cars along the
computed maneuver. Avoidance constraints (between cars,
and between car and road boundary) are not included in the
optimization problem, but are incorporated in distributed
logic executed by each car in parallel, between optimization
updates.

The automotive industry is embracing receding horizon
control research for powertrain [19] and vehicle stability [6]
applications. Furthermore, this research is being applied to
path planning applications for autonomous driving [20] and
eco-driving [11]. The convergence of advanced global posi-
tioning technologies, prototype V2V communication, and
increased onboard computation capabilities has allowed
academia and industry to explore the possibilities of coop-
erative control between cars. Distributed receding horizon
control enables cooperative control by enforcing constraints
on allowable vehicle motion and sharing predicted paths
between vehicles. Global positioning further enables coop-
erative control through the existence of a common global
clock and inertial coordinate frame.

Each coordinating vehicle uses an assumed trajectory
(denoted M), which is computed in task 1. The assumed
trajectory is made available to all neighboring cars in task 2,
then checked for conflicts using logic in task 3. When
conflicts are detected, the logic “types” the conflict, and then
resolves the conflict according to its type. Conflict types are
distinguished by the position of each vehicle relative to the
conflicting vehicle (e.g., behind, ahead, on left and merging
right, etc.). The notation Mi is used to denote the assumed
trajectory specific to car i. The move suppression constraint
in the optimization problem is used to ensure that newly
optimized trajectories remain within set bounds (termed
“move suppression margins”) of M. The logic that ensures
M is conflict-free incorporates the move suppression mar-
gins, to ultimately ensure that implemented maneuvers are
conflict free. This is described in greater detail in Section II.

Section II defines the optimal control problem (OCP)
solved locally for each car, and includes calculations for
parameters in each OCP that are tuned by the four-task
execution logic. The OCP is time-discretized and solved
numerically by methods detailed in Section III. The four-
task logic is presented in Section IV, which includes the
method of typing different conflicts that can occur between
vehicles. To demonstrate the logic in cooperative freeway
merging, a non-limiting example of a six-car merging sce-
nario is presented in Section V, followed by a larger-scale
example in Section VI that models a representative merge on
the Japanese Tomei Expressway. Section V1I discusses hard-
ware controllers and exemplary algorithms. Section VIII
discusses conclusions and extensions.

II. Optimal Control Problem for Individual
Coordinating Vehicles

This section defines the continuous time 2-dimensional
optimal control problem (OCP) for each individual coordi-
nating vehicle. In future sections, the subscript i=1, 2, . . . n,
on each variable denotes the coordinating car number. Since

10

15

20

25

30

35

40

45

50

55

60

65

10

the OCP is decoupled for each car, the i-subscript notation
is not used in this section. Based on a unicycle model, each
car has state variables (x(t), y(t), X(t), y(t))er' and heading/
speed control inputs (Y(t), v(t))eR* at any time t=0, with
coordinate frame defined in FIG. 2. The continuous time
model of the dynamics is:

ey

The control problem requires constraints on the states and
inputs, and a cost penalty is used to smooth the time
rate-of-change of the control inputs. Using the concept of
differential flatness [16], there is a one-to-one map from the
variables (X, X, X, y, ¥, ¥) to the variables (X, y, {, v, {5, V)
using these substitutions:

X=v cos(1),p=v sin(r).

Xy — yx (2)
P

AWy arctan(y /0, =

vy, o=

P2+

Using these substitutions in the OCP, the dynamics are
implicitly (and exactly) satisfied, and the dynamic equations
(1) need not be included as constraints in the OCP. Since v>0
in the described multi-car scenarios, x>0 and/or y>0; thus,
there are no singularity problems in computing the substi-
tuted variables (2). While the OCP is defined in terms of the
X, X, X, v, v, §) variables, the “assumed trajectories”
communicated (in task 2) and tested for conflicts (in task 3)
are based on the variables (X, y, {, v). When conversion to
either variable set is required, (2) or its inverse map (which
follows trivially from (1) and its time derivative) is used.

Notation used to define the OCP is assembled into Table
2.

TABLE 2
Variable Meaning
T Receding horizon planning period (5 sec)
o Receding horizon update period (0.5 sec)
t Receding horizon update time (sec),

t=k*d,k=0,1,...

Trajectory to be optimized

likewise for y and time derivatives)
Reference trajectory in the cost function
(likewise for y and time derivatives)
Desired end state, x° (t; + p0 T; t;) = x9°*
(likewise, for y and time derivatives)
Assumed trajectory, versionn =1, 2
(likewise for y, 1, v)

The communicated set of assumed
trajectories {%, ¥, }, v}.

XC3t) ¢ [t e+ T] =R
Kt [t e + T) =R
xdes e

(3t [t t = T] =R

M(t)

Notation x(t) denotes the actual x-position of car at any time
t, whereas x°(t; t,) is the computed position defined only on
the time interval [t,, t,+T]. By the receding horizon imple-
mentation, these trajectories coincide over the update
period:

*(O=x (0 1) 1€ [l by] 3

In reality, of course, inner-loop control makes these
trajectories close but not exactly equal. For the planning
period [t,, t,+T], the OCP has the following data: the initial
values

Xt =0elt) 2(83) F(8) Y (00 90358,

the desired end values

Xty T)—(aes 35 s jdesy

US 9,669,828 B2

11

and the reference and assumed trajectories. The continuous
time OCP using the flat parameterization is:

ty +T 4
f {msla(ss 1) =2 (53101 + @
(6,56 16,5°,56.59) Iy
wyly (53 1) = ¥ (53 10T + waaXCs; 1) = 2 (53 01" +
w3053 1) = 5 (55 0T w3 (53 8017 +
wyaa[¥° (53 1)) s
st Vs G @ 1), Y 1), M(3)) <0 €RY, 1€ [t 1 +T) &
(s), ¥ 1), ¥ (0 1), Yot 1), 3 1), Y s 1)) = X)) ()
G+ T), @+ T 1), Y + T 1), 3 + T 1)) = Xp(+) (D)

The weights are chosen (W, W,, W,, Wz, Wy 0 W,,5,)>0 in
(4). Reference trajectories enter only in the cost function (4),
and assumed trajectories enter only in the constraints (5).
The function G in (5) defines two “move suppression
constraints” and yms=1 if move suppression is active, and 0
if it is not. The move suppression constraints G=(g1, g2) are
defined as

g8 {x(a)-%1)} cos @)+ -9t}
sin(y(t:4))-€,,

2 P)-PE1)} cos@tt) 1 {x (61210}
sin((t:1,))-€,,

with €, € >0. Activation (on vs. off) of the move suppression
constraints is described in the four-task execution logic
details in Section IV. The assumed trajectories M(t,) are
defined to start and end with the corresponding initial
condition and desired values, respectively. Consequently,
due to (6)-(7), the computed and assumed trajectories are
always equal at the start and the end of each planning
horizon.

The purpose of the move suppression constraints (5) is to
ensure that the computed maneuver remains within bounds
of M. Separately, logic (defined in Section IV-A) ensures
that M is conflict free, and incorporates the margin that
defines how far computed maneuvers can be from M to thus
ensure that the maneuver itself is conflict free. To graphi-
cally visualize (5), define the deviation variables (Ax, Ay,
Av) in a relative frame that is translated by X, ¥ and rotated
by 1, such that the assumed car is at the origin:

Yo) - ®

Ax 2 (x5, 1) — 3003 p)beos(—i(z 1) - { X }sin(—@;(r;)
3@)
A R X)) -
Ay =4y 1) - §(p)leos(— (5 1) + { .
X5 n)

}sin(—@(z; w)

ARy n) - e)

Then (5) is equivalent to |Ax|<e, and |Ayl<e,. In FIG. 3, a
car’s computed and assumed configurations are shown at
some instant in time (FIG. 3A), and a close-up of these
configurations in the relative frame (FIG. 3B) shows the
deviation variables defined in (8).

Although the move suppression constraints (5) explicitly
bound how much Ax, Ay deviate, the heading deviation Ay
is only implicitly bounded, since a feasible solution to the
OCP (in which dynamics and move suppression are satisfied
for all time over the planning horizon) limits how big A,, can
be. Moreover, since the computed and assumed trajectories

10

15

25

30

35

40

45

50

55

60

12

are always equal at the start and the end of each planning
horizon, A}=0 at the start and end of each planning horizon
also.

When the move suppression constrains (5) are off, the
OCP does not require the assumed trajectories M(t,). Con-
straints (5) are activated except in two cases: 1) The car is
computing the nominal assumed trajectory in task 1 that is
initiating a change in desired speed or a lane change; or, 2)
The car is computing a resolution to a detected conflict in
task 3. Observe that (5) are linear constraints in the com-
puted variables (X, y°).

A. Computation of Initial and Desired States

1) Task 1: Before an optimization problem is solved, the
initial states X; and desired end states X must be computed.
This computation is done during task 1, the nominal update
task, using the trajectories computed during the previous
update. Changes to X, are also possible in task 3 if a
resolution is required for a coordinating car; details on these
changes are provide in Section IV. The initial states are
defined simply as

X102 5 (Ot F O 1) F B (Bt)
(et 1) (et 1)-

The 4 desired end states X (t,+T)=(x%*, x%, y?es y¥e)
are computed as described next.

Here, and in the remainder of this disclosure, assume the
highway is straight with driving in the x-direction (y=0
heading). Non-straight roads have been addressed in the
present method by projecting the (x, y, 1)-path onto the
centerline of the corresponding lane, with the centerline
position and heading computed using a road geometry
mapping library. Where appropriate, the present disclosure
indicates how the straight-road assumption would be gen-
eralized to the non-straight road case.

Desired velocities (%7, y7*) are computed from
(Vdeswdes) uSing (l) The values (Xdes, ydes, Vdes, wdes)
therefore define X (t,+T) at each update. In the straight-road
case,)“**=0 at every update. For the nominal update in task
1, the value for x** is defined by extrapolating x“(t,_,+T;
t,_,) by d seconds, assuming that speed remains constant at
v¥s gver the § seconds. Thus, updates to (y**, v_,,) com-
pletely define X(t,+T) at each update.

There are a few cases to consider with defining (y
at each task 1 update. If no lane change occurs, then y
kept at its previous value. If a lane change occurs, then y
is incremented by one lane width. Simulations in the present
disclosure involve a lane change only for a merging car,
though in-lane cars could also change lanes in general
during task 1 (nominal update) or task 3 (as part of a
resolution). Also, nominal updates in v¥* are possible in task
1. For simplicity in this disclosure, v¥** is set equal to the
previous value set during the update period (i.e., no nominal
changes to v in task 1). Thus, if no conflict resolutions are
required for a car, v?** will remain the same indefinitely.

2) Task 3: Conflict resolutions in task 3 necessarily adjust
v@s altering the value set at the nominal update (task 1).
When resolving a conflict, x%* is defined to be set distance
behind the car in front in most cases. The only exception is
when the lane merger is first introduced as a task 1 nominal
update to y**. If the optimization problem solved in task 1
for an initial lane merger results in a conflict behind a car
already in the lane, an alternative optimization problem is
solved that replaces the equality constraint on x“(t,+T; t;)
with an inequality constraint, as detailed in Section IV.

B. Reference Trajectories

The assumed trajectories M, (t,) are defined in the four-
task execution logic details in Section IV. If move suppres-

des, Vdes)

des is
des

US 9,669,828 B2

13

sion is on (y,,.=1), the reference trajectories are initialized

using the assumed trajectories as

B O AN C A ©)

Fhsri)=0(s1)e0s (W11, ¥ (s:1)=0(s;0)sin
[W(s;1)]

For non-straight road geometries, the reference trajecto-
ries are next modified by projecting the initial trajectories
onto the road’s centerline path (available from a mapping
library), keeping the speed profile the same as before. The
projection modification has the effect of removing steady-
state errors that can accumulate if no projection was used
(data not shown). For proprietary reasons, details regarding
the projection method are not provided here. Since the
simulations shown in Section V are for lane-merging on a
straight road, no projection is needed.

If move suppression is off (y,,.=0), the reference trajec-
tories are computed assuming a straight-line path from
initial to final values with constant heading and acceleration
or deceleration. Though this choice of reference trajectories
may not be dynamically feasible in general, they influence
the cost function only, and the optimized trajectories are
always dynamically feasible.

10)

II1. Numerical Methods

This section shows how the OCP is time-discretized and
numerically solved. A key feature of the OCP defined in the
previous section is that the discretized problem is a qua-
dratic-programming (QP) problem, which can be solved
using a QP-solver. With positive weights on each term in the
cost function, the present QP-problem has a unique global
minimizer as its solution. In a non-limiting example, Mat-
lab’s solver quadprog.m (with the active-set algorithm) is
used to solve the QP problem. Before reviewing the meth-
ods, a nomenclature table (Table 3) is provided to defined
relevant variables.

TABLE 3

Variable Definition

T'k) B-spline coeflicients that parameterize the discretized and
optimized trajectories for update t;.

Breakpoint time discretization vector defined as

TR =[C 8- s Gl with Gy =t and § =t + T.
1, is the number of breakpoints, with n, - 1 polynomial
pieces.

Time discretization for constraint enforcement and cost

k) ek

(k) €R™
evaluation
k) =[T, T ..., T, witht, =ty and 7,. =t + T.
1, is the number of enforcement points, with n, = 2n,,.
Discretized and optimized trajectories (termed “flat outputs™)
defined at breakpoints T(k) for update t, (initial guess
is Zo(k)).
k Spline order (e.g., ayt? + at + ag is order 3, with 3
coefficients)
T Repetition number (multiplicity) of each breakpoint.
m Smoothness of spline at breakpoints (m = k — r). Spline
is CmL
" Number of coefficients per output
n,=m, -)(k-m)+m=(n, - Dr+m.

Ek)

In the spline parameterization, each G, defines the break-
point in time where two polynomial pieces are joined in the
trajectory, and n, is the number of breakpoints. In the present
formulation, the breakpoint and enforcement time point
vectors are linearly spaced between the start and end times
of'each RH planning period. The discretized optimal control
problem is parameterized using B-spline polynomials. One

10

15

20

25

30

35

40

45

50

55

60

65

14

can setup the problem to solve for the B-spline coefficients
T',(k) as done in [14], [16]. Alternatively, one can setup the
problem to solve directly for the trajectories defined at the
B-spline breakpoints =,(k), as done in [20]. The latter is
more efficient (7 times faster in based on observations), with
equal accuracy, and so these results are presented here.

There are n,=6 breakpoints in (¢, . . ., T,,) the present
implementation, which means there are five polynomial
pieces (intervals) over the [0, 5] sec period, and one break-
point every 1 second. The variables (X, y) are parameterized
k™-order B-spline polynomials. In Matlab, we set k=6 with
interior breaks having multiplicity r=3. As a result, the
polynomial pieces are C*""'=C? (i.e., m=3 smoothness con-
ditions are satisfied) at the interior breakpoints, and therefore
C? over the [0, T] interval. The number of coefficients for
each B-spline (for x and y) is equal to n, n_=(n,-1)(k-m)+
m=18. There are n,=51 enforcement points (t, . . ., T,,.)
where the cost function and constraints get evaluated and
enforced, respectively.

The collocation matrix C,_,, is defined in Matlab using the
spcol function. The matrix C_,, has dimensions 3n_xn_, and
is a tall matrix. Algebraically, the x° trajectory and its
derivatives satisty

X(T15 1)
F(rin)

Flrsn)

x(t(k)) 2 = Conl (k) € R¥, and T*(k) = C%mx(‘r(k)) eR™,

X°(T25 1)
s 1)

where C_,,* is the pseudo-inverse of C_,,. Coeflicient vector
F is defined likewise by C,_,,, with y (t(k))=C_, 1”(k). The
2n =36 coeflicients are denoted I'=I™",I*). The vectors x
(v(k)) and y (t(k)) are the flat outputs at the enforcement
points. Denote the (smaller) vectors of flat outputs at the
breakpoints as

X1 1)
(G n)
¥ n)

ENOE ,
© X5 1)

3Gy 1)

with =¥(k) denoting the comparable vector for y. The
2(3n,=36) outputs are denoted E=(Z*, Z). The collocation
matrix C_,, is defined to relate = and I', as

E(k)=C,,, T*(k), and TZ(k)=C,,, 'EX (k). (11)

The collocation matrix C,,, has dimensions 3n,xn_=18x
18, and is by design a square and invertible matrix [20]. The
E(k) variables are the free variables to be optimized. Note
that this is the same number of free variables to be solved for
as when solving for the B-spline coefficients I'. By accessing
the B-spline coefficients in (11), the values of the flat outputs
can be accessed at the enforcement points. This is necessary
for the move suppression constraints (5), and the cost
function (4), and is achieved by the relation
Cou "B (K) and ya()=C,,,Con BF (F).

(T (£)=Chpn 12)

US 9,669,828 B2

15

The initial and final constraints occur at breakpoints, and
s0 no collocation matrix is needed to access the states (this
is not the case when the problem is parameterized in terms
of T instead of E. For example, the initial condition con-
straint on x°(t;; T,) is posed in terms of the flat outputs as

[10...0]ZF=x()

Algebraic manipulation results in a flat output-parameter-
ized QP problem:

rréin(E _ Eref)TQ(E _ Eref) (13)

S AgE = by (14)

Aineg= = bineg

1s)

The 10 linear equality constraints (14) in the present OCP
are (6) and (7) (and define A, and b,,), and the 4n, linear
inequality constraints are (5) (and define (A,,,., and by,). In
the cost function, "% parameterizes the reference values as
defined by the cost function (4) and in Section II-B. Given
the discretized reference trajectories x’¥(t(k)), the vector
5~"%1is computed as E="Y=C_, C_. *(t(k)), for example. The
integrated cost (4) is discretized and becomes a summation,
evaluating the terms at the enforcement points. This means
Q incorporates the matrix multiplications in (12).

A numerical solution of the discretized OCP requires an
initial guess, denoted ;. Nominal trajectories (correspond-
ing to the assumed trajectories M) are used to generate the
initial guess. Denoting the x nominal trajectories at update
time t; as X,(t(k)), the E;7(k) is simply a sampled version of
Xo(t(k)) if breakpoints coincide with enforcement points,
and a simple interpolation can be used if breakpoints do not
coincide with enforcement points. The assumed trajectories
M(t,) are also discretized, defined at ©(k), and can be
computed from = using (12) and converting to the variables

(% ¥, ¥, v) using (2).
IV. Four-Task Logic

Details about each task in the execution logic are now
provided. During update period [t,,t,.,,], solving an optimi-
zation problem for the future interval [t ,, t,, , +T] results in
a solution =,(k+1) for vehicle i that can be implemented over
the next update period. For the update period [t,t,,,], the
tasks have the following sequential steps:

1) Task 1—Nominal Updates.

a) Compute the initial states X(t,,,) and desired states
X(t.,,+7T) (see Section II-A).

b) Test if the desired states include a lane change.

1) If the desired states do not include a lane change, keep
the move suppression flag ON (i.e., v,,,=1), and define
the assumed trajectories M(t,, ,) as the remainder of the
trajectories computed during the previous update,
extended by 8 seconds to end at the desired states. In
the case of y, for example, this is

Y5 1), 1€ [tge1, 1 + T, (16)

ydex ,

I far) = {

te+T, 54+ 7]

i1) If the desired states do include a lane change, turn the
move suppression flag OFF (i.e., v,,=0), and use opti-
mization to compute Z,(k+1). The assumed trajectories
M,(t,,,) are computed from =,(k+1),

10

15

20

25

30

35

40

45

50

55

60

65

16

2) Task 2—Communication. Once task 1 is complete, each
coordinating car broadcasts (t,,), and receives Mj(tk+1) for
each can j in a prescribed range.

3) Task 3—Contflict Detection and Resolution.

a) For each neighboring car j, check for a conflict. A
conflict is detected if the assumed trajectories, which
have rectangular safety margins around them, overlap
at any time in the interval [t,, , t, ,+T]. The function
checkConflict.m used for conflict checks is provided in
Appendix A. Cars are checked in serial order, sorted by
car number.

i) If no conflict is detected, proceed to checking the
next neighboring car.

ii) If conflict is detected, compute conflict type=1, 11,
21, 22,23, 24 or 3 (each defined in Section [V-A) and
store in a conflict log. If the conflict type (1 or 21 or
22) warrants a resolution, turn the move suppression
flag OFF (i.e., v,,,=0), then compute and store the
change in desired states X(t,, ,+T) that will provide
a resolution. Proceed to checking next neighboring
car. NOTE: turning the move suppression flag OFF
is only done once.

b) Once all neighboring cars are checked for conflicts, if
any resolutions are required, use optimization to com-
pute Z,(k+1) for the “most critical” conflict, defined as
the conflict that results in greatest loss of separation
between the two cars. If a type 22 conflict occurs, the
optimization problem is modified, as detailed in Sec-
tion IV-A.

4) Task 4: If move suppression flag is still on (y,,,=1), solve
the optimization problem. This is the case only if optimiza-
tion was not used in the nominal update (task 1) or to resolve
a conflict (task 3).

Details regarding how conflicts are typed, how desired states
X(t,,,+7T) are updated to provide a resolution for specific
conflicts, and how prior and ongoing conflicts are logged
and logically handled, are provided in the coming sections.

A. Details on Task 3 Conflict Detection and Resolution

If a conflict is detected and a resolution for i is required,
then x,%* and v,”** can change, or v,%* alone changes. The
conflict detection and resolution logic is designed to run
deterministically and generate the same results in every car
locally, so that no further communications are required to
achieve conflict resolutions. A conflict between cars i and j
is detected using the checkConflict.m function provided in
Appendix A. The rectangular shape associated with each
car’s avoidance boundary has width equal to cp+ye +2A,
and length c;+ye +2A,, where (cy, c;) are the car width and
length dimensions, y=1 when one car is non-coordinating
and y=2 when both are coordinating. The larger y for both
cars coordinating is due to the increased position flexibility
permitted by the move suppression constraints. The param-
eters (A,, A)) define nominal avoidance boundaries. The
logic in checkConflict.m (Appendix A) takes the global
position and heading of a pair of cars, and checks if their
rectangular shapes overlap. Since the rectangles can have
arbitrary relative heading, this function is already applicable
to non-straight road geometries.

The checkConflict.m function is called within a for-loop
and evaluated sequentially at each breakpoint {t,, T, - . . ,
T, If a conflict is detected, the first breakpoint that
registers a conflict defines the “first loss-of-separation time,”
and the breakpoint that corresponds to the largest loss of
separation during the planning horizon defines the “maxi-
mum loss-of-separation time.” The logic then proceeds with

US 9,669,828 B2

17

typing the conflict, as detailed below. There are three main
categories in enumerating pair-wise (i and j) conflict types
for car i
1) When a front/rear conflict arises in the same lane,
satisfying
(&t)Pt) 1M, V€[l 1,1+ T,
(m is a proprietary value) there are two types:
Type 1: IF R, (4, 15 ty) <K, (L 15 Ly), Signaling that car i is
behind car j. In this case, car i logs the conflict and a
resolution based on the adaptive v*** update rule (alter-
native update rules have been tested, and are possible):

an

e =

des
i Vi

+ B 15 Bi) = Va1 e} + Ozmringy([, i p, (18

where
&NVt)P 8, D= (Cprtye, +2A).
The desired position behind the car is

x,fes Z2 o1+ Tl)= [HYE+2A,], (19)

using y=2 if car j is coordinating, y=1 if non-coordinating.
While this adaptation may initially resolve the conflict, the
conflict can re-occur later, since the adaptation is attempting
to space the cars optimally, i.e., such that there is no wasted
space and the boundaries of desired separation are tangent to
one another.

Type 11: If car i is ahead of car j, car i only logs the
conflict, but does not change v®°. In this case, the
conflict must be resolved by car j.

This front/rear conflict is typically resolved by the next
update period. Nonetheless, type 1 and 11 conflicts are
kept in the log and (18)-(19) is indefinitely imple-
mented for the following car, unless the leading car
changes lanes or a new conflict arises (e.g., a car
merges between car i1 and car j, as considered in the
simulations).

2) If a conflict does not satisfy (17) for all te[t,, |, t,.,+T],
but does satisfy (17) at t=t,,,+T, (that is, the cars start in
different lanes but end in conflict in the same lane) there are
four possibilities (labeled type 2x, with x=123 or 4):

Type 21: Car i is in the lane approaching a merging car j
too closely from behind. As with type 1, the (18)-(19)
adaptation is stored in the log as the resolution.

Type 22: Car i is merging into a lane and approaching an
in-lane car j too closely from behind. The resolution
must change the merging maneuver to not run into car
j from behind. This is the only conflict type that utilizes
an alternative optimization problem to compute reso-
Iution. Constraint parameter updates (18)-(19) are used,
but the equality constraint on x°(t,+7T; t,) is changed
from x“(t+T; t,)=x,%* to x°(t,+T; t,)=x,. When this
conflict occurs, it is by definition the “most critical”
conflict for the merging car. The modified optimization
problem is solved at the end of task 3 in this case.

Type 23: Car i is in the lane and ahead of merging car j.
There is no resolution stored in the log, and car j is
responsible for resolving this conflict.

Type 24: Car i is merging ahead of in-lane car j, which is
approaching car i too closely from behind. As with type
23, there is no resolution stored in the log, and car j is
responsible for resolving this conflict.

3) If a contflict does not fit any of the above criteria, it is
given Type 3—this includes all unclassified conflicts. Future
work will explore detection and classification of other
conflicts.

10

15

20

25

30

35

40

45

50

55

60

65

18

In the merging scenario considered in the next section,
type 3 conflicts are never encountered, while all other
conflict types (six: 1, 11, 21, 22, 23, 24) do occur. Type 3
conflicts have been observed in non-straight road situations.

V. Simulation of a Six-Car Merging Scenario

In the six-car scenario, four coordinating cars (numbered
1, 2, 3, 4) interact with two non-coordinating cars (num-
bered-1, -2). The initial conditions, and corresponding lane,
for each car at the start of the simulation is shown in Table
4 below.

TABLE 4

Initial Condition Lane

Car No. (x(0), y(0), $(0), v(0)) (Merging, Left, Right)
1 (coord) (=95, 1.75, 0, 25) Merging
2 (coord) (-110, -1.75, 0, 25) Left
3 (coord) (-140, -1.75, 0, 27) Left
4 (coord) (-170, -1.75, 0, 27) Left
-1 (non-coord) (-80, -1.75, 0, 25) Left
-2 (non-coord) (=50, -5.25, 0, 20) Right

Non-coordinating cars travel at constant speed without
changing lanes. The objective is for Car 1 to merge into the
left freeway lane, and Cars 1-4 to avoid conflicts with each
other and with non-coordinating cars. Challenging initial
conditions were chosen to cause a chain of conflicts within
the left-hand lane. An extended version of the logic permits
coordinating cars to change lanes to avoid conflicts while
maintaining a desired speed, under specific circumstances.
The purpose of the non-coordinating Car-2 is, essentially, to
block this from happening, so that left-lane coordinating
cars are forced to slow down to avoid conflicts. The details
of this extended logic are not provided here.

The positions of the six cars at initial time t,=0 are shown
in FIG. 4A. The cars are represented by blue rectangles. The
black boundary surrounding each car represents the avoid-
ance boundary parameterized by (A,, A), and the added
white boundary around coordinating Cars 1-4 represents the
added margin afforded by move suppression parameters (e,,
€,). The positions are shown at time 3.4 sec in FIG. 4B.
Observe the color change in the boundaries of coordinating
Cars 2 and 3. This was done to signal a conflict at that time.
The conflict occurs because Car 3 is going 2.0 m/sec faster
behind Car 2. The four-task logic detects and resolves
conflicts that may occur at any time during the 5-second
planning horizon; thus, conflicts can be resolved with no
visible color change, since only the first 0.5 sec of each 5 sec
window are implemented. Conflicts that do include the
implemented portion of the RH planning period will cause
the boundary color change. The color red is used to signal a
conflict with one car, and the color yellow signals a conflict
with two cars simultaneously.

The position of the six cars at time 47 sec is shown in FI1G.
4C. The lane merging by Car 1 is now progressing. At this
time, there is a detected conflict between Car 1 and non-
coordinating Car-1, although it is not yet observable by any
color change. This is because the conflict happens 1.2
seconds into the RH planning period, i.e., after the RH
update period duration, but before the end of the RH
planning period for Car 1. The conflict between Cars 1 and
2 happens from the start of the planning period, and so is
visible from the boundary color change. Due to the conflict
between Car 1 and non-coordinating Car-1, Car 1 is slowing
down while changing lanes, making use of an alternative

US 9,669,828 B2

19

optimization defined in task 3. In fact, Car 1 continues to
slow down until time t 8 seconds to resolve the conflict with
Car-1. The time history of the speeds v, for all coordinating
cars is shown in FIG. 5.

The position of the six cars at time 5 sec is shown in FIG.
4D. This is the first time that the conflict between Cars 1 and
-1 occurs within the RH update period, and so results in the
color change in the boundary of Car 1. The position of the
six cars at time 8.7 sec is shown in FIG. 4E. Although
conflicts exist at this time, the black boundaries do not (and
will not) overlap. At time t=18.5 seconds, there are no
conflicts present between any cars. FIG. 4F shows the cars
at the end time of the simulation, with no conflicts present.
Use of (18)-(19) can cause eventual re-activation of type
1-type 11 conflicts, though this does not occur within the
simulation time shown. For the remainder of this section, the
progress of the four-task logic execution during the simu-
lated merging scenario is highlighted at specific RH update
periods.

During RHC iteration 1 (0.0 to 0.5 sec), an in-lane conflict
between Cars 2 and 3 is first detected (type 11 for Car 2, and
type 1 for Car 3). Car 3 implements the adaptive update rule
(18), and at RHC iteration 2, the conflict is gone. When the
difference in speed between cars in this conflict scenario is
larger, the conflict can persist for more than one update
period before going away. In this case, Cars 2 and 3 have
only a 2 m/s speed difference, and start far enough apart
initially to prevent an egregious conflict.

During RHC iteration 2 (0.5 to 1.0 sec), Car 3 has an
ongoing type 1 conflict with Car 2, though the conflict is no
longer active. Car 2 removes the type 11 conflict from the
log, since it is no longer active, while Car 3 keeps the type
1 conflict in the log, and continues to implement the adaptive
v¥s ypdate rule (18). Car 3 also has a new type 11 conflict
with Car 4, and Car 4 performs a resolution to slow down
behind Car 3. By RHC iteration 3, since by (18) Car 3 is
attempting to maintain the minimum safe separation dis-
tance, the conflict with Car 2 is re-activated. Since Car 2
removed the prior type 11 conflict with Car 3, it is treated as
a new type 11 active conflict. Since Car 3 kept the conflict
in the log, it is treated as a pre-existing type 1 conflict with
Car 2 that is reactivated. Alternative methods of conflict log
management are possible, of course.

Initially, Cars 3 and 4 have the same speed. When Car 3
slows down to resolve the conflict with Car 2, it creates a
conflict with Car 4 at the next RHC iteration. As with the Car
2-Car 3 conflict, the Car 3-Car 4 conflict requires Car 4 to
slow down. By the next RHC iteration, this conflict is gone,
and Car 3 removes the conflict (type 11) from its log, while
Car 4 keeps the conflict (type 1) to continue to implement
(18).

During RHC iteration 8 (3.5 to 4.0 sec), Car 1 computes
a nominal lane-changing maneuver, and two new conflicts
arise: A type 24 conflict with Car 2 (which requires Car 2 to
resolve, and it does), and a type 22 conflict with non-
coordinating Car-1. Resolving task 22 requires Car 1 to
merge while slowing down behind Car-1, for which an
alternative optimization problem is run. The problem is like
the OCP, except there are no move-suppression constraints,
and x(t,+7T) is bounded in inequality constraints, instead of
being set equal to X% in an equality constraint. The need for
Car 1 to merge while slowing down behind Car-1 persists
until RHC iteration 18, at which time the resolved conflict
is removed from the log.

During RHC iteration 31 (15.0 to 15.5 sec), Car 1 has an
ongoing conflict of type 24 with Car 2, which was initially
detected at time 4. At this time of detection, this conflict was

10

15

20

25

30

35

40

45

50

55

60

65

20

type 21 for Car 2, since Car 2 was approaching merging Car
1 too closely from behind, in the left lane. At time 12, the
type 21 conflict for Car 2 was converted to type 1 since is
satisfied the condition (17). Also, at time 12, the type 24
conflict for Car 1 was converted to type 11. Type 11, 23 and
24 conflicts are removed from a log if the conflict becomes
in-active at any RH update.

During the final RHC iteration 60 (29.5 to 30.0 sec), Cars
1-4 show no active conflicts, while Cars 2-4 have ongoing
resolution of the type 1 conflicts with the cars ahead of them.
The adaptive update rule (18) for v¥* is being implemented
in all three cases. Note that the rule can result in the conflict
becoming transiently active again, if the inter-vehicle dis-
tance shrinks below the desired separation of ¢, +ye +2A . In
any case, the vehicles are observed to converge to the
common separation distance and speed 25 m/s.

The total computation time to serially compute the four-
task logic for each of the 4 cars, for all 60 receding horizon
updates, was 8.44 seconds. Dividing the total time by the
number of cars and update periods, the four-task execution
runtime per vehicle and per update period was ~35 milli-
seconds for this simulation example. The simulations were
run on a Sony VAIO laptop (Intel Core Duo CPU, T7500 at
2.2 GHz, with 2 GB RAM). The demonstrated speed of the
logic and optimization-based control calculations suggests
that implementations on real vehicles, with dedicated hard-
ware, is certainly feasible. Additionally, most of update
period can be dedicated to transmitting and receiving data
(Task 2 of FIG. 1) in real implementations. More than 90%
of the 0.5 sec would available for Task 2 in the simulation
example.

V1. Realistic Large-Scale Simulation

This section details the incorporation of the partially-
synchronous four-task strategy into a larger-scale merging
scenario. This scenario models a representative merge on the
Japanese Tomei Expressway, which runs between Tokyo and
Nagoya. The scenario has one short (90 m) merging zone
with a single merge lane and two highway lanes, which are
termed cruising (i.e. slow lane) and passing (i.e. fast lane)
(see FIG. 6).

In addition to the optimization-based maneuvering and
logic-based conflict avoidance of the four-task strategy, this
simulation expands the cooperation between vehicles to
include discrete negotiation between vehicles to align merg-
ing vehicles with gaps in the highway flow. The negotiation
between vehicles leverages communication to proactively
reduce the number and severity of conflicts that would
subsequently require resolution if vehicles only reacted to
the assumed trajectories, M, of neighboring vehicles at the
time of the merging lane change. The negotiation between
vehicles aligns arrival times, speeds, and relative positions at
the point of the merging lane change. The negotiation logic
realizes this alignment by modifying the end points of the
nominal trajectories, X,, given in task 1 of the optimization-
based maneuver planning.

Besides the negotiation logic, the simulations also utilize
the road geometry mapping library mentioned earlier to
update nominal and compute reference trajectories such that
the vehicles follow the geometry of the Japanese highway.
Furthermore, each vehicle’s computed trajectory, %, which
is in a global coordinate frame, is converted to the body-
fixed control inputs of longitudinal acceleration and steering
wheel angle, which induces a yaw rate.

Different flow rates (see Table 5) and inter-vehicle com-
munication (i.e., V2V) penetration percentages (0%, 5%,

US 9,669,828 B2

21
10%, 20%, 50%, 75%, 100%) are used in the large-scale
simulations. The combinations of light flow rates (e.g., 450
veh/hr implies 1 vel/8 s arrival rate) and heavy flow rates
(e.g., 1800 vel/hr implies 1 vel/2 s arrival rates) were used
to challenge the negotiation and four-task logic.

TABLE 5
Traffic Flow Pattern
1 2 3 4
Merging Lane 900 veh/hr 450 veh/hr 900 veh/hr 900 veh/hr
Cruising Lane 900 veh/hr 450 veh/hr 1350 veh/hr 1800 veh/hr
Passing Lane 1800 vel/hr 1800 veh/hr 1350 vel/hr 900 veh/hr

FIG. 6 shows snapshots of a particular merging vehicle
that negotiates a gap in front of a highway vehicle. The
figure shows the three lane types (passing, cruising and
merging) and the merging zone during the simulation.

The following are some qualitative observations from
these simulations.

A slight (3%) increase in the average arrival speed of
merging vehicles was observed for those that incorpo-
rated a negotiated gap in the highway flow.

Significant traffic flow improvement requires greater than
50% V2V penetration.

With sufficient V2V penetration, the negotiation allows
for better load balancing on the highway lanes leaving
the merge zone.

Negotiation harmonizes and slightly (3-5%, depending on
V2V penetration percentage) increases the average
speeds through the merge zone.

To clarify the significance of these large-scale simula-
tions, it should be noted that the heavy flow rates do not
cause any loss of liveness to the simulation and that each
cooperative vehicle executes the four-task logic within every
0.5 second update period of simulation time. Moreover, the
optimization-based maneuver planning is performed by
vehicles regardless of their position on the road and their
surrounding vehicles. The method’s generality allows the
vehicles to path plan under all scenarios, such as car-
following, lane-changing, and open road. In the case of
merging, some vehicles will modify their nominal trajecto-
ries to assist or complete a highway merge, but the generality
of the methods means that all cooperative vehicles continu-
ally perform the four-task logic, and thereby ensure conflict-
free driving anywhere along the roadway.

VII. Discussion of Hardware Controllers

FIG. 7 schematically illustrates a processing system in
accordance with this disclosure. Such a processing system is
provided in each vehicle of a platoon. However, it is should
be appreciated that an identical processing system in each
vehicle is not necessary. Yet, providing each vehicle with the
processing system allows the vehicles to process in parallel
in accordance with this disclosure.

The processing system can be implemented using a
microprocessor or its equivalent, such as a central process-
ing unit (CPU) or at least one application specific processor
ASP (not shown). The microprocessor utilizes a computer
readable storage medium, such as a memory (e.g., ROM,
EPROM, EEPROM, flash memory, static memory, DRAM,
SDRAM, and their equivalents), configured to control the
microprocessor to perform and/or control the processes and
systems of this disclosure, including executed all or part of
the equations and algorithms described herein in serial or

10

15

20

25

30

35

40

45

50

55

60

65

22

parallel. Other storage mediums can be controlled via a
controller, such as a disk controller, which can controls a
hard disk drive or optical disk drive.

The microprocessor or aspects thereof, in an alternate
embodiment, can include or exclusively include a logic
device for augmenting or fully implementing the algorithms
and processes presented in this disclosure. Such a logic
device includes, but is not limited to, an application-specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a generic-array of logic (GAL), and their equiva-
lents. The microprocessor can be a separate device or a
single processing mechanism. Further, this disclosure can
benefit from parallel processing capabilities of a multi-cored
CPU.

In another aspect, results of processing in accordance with
this disclosure can be displayed via a display controller to a
monitor (e.g., allowing a driver to perceive a status of
cooperative vehicle control or to confirm commands from a
lead vehicle). The display controller would then preferably
include at least one graphic processing unit for improved
computational efficiency. Additionally, an /O (input/output)
interface is provided for inputting sensor data from Sensors
1,2 ... N, which collect data relating to vehicle positioning
(either, own or other vehicle positioning).

Further, as to other input devices, the same can be
connected to the I/O interface as a peripheral. For example,
a keyboard or a pointing device (not shown) for controlling
parameters of the various processes and algorithms of this
disclosure can be connected to the /O interface to provide
additional functionality and configuration options, or control
display characteristics. Moreover, the monitor can be pro-
vided with a touch-sensitive interface to a command/instruc-
tion interface.

The above-noted components can be coupled to a net-
work, as shown in FIG. 7, such as the Internet or a local
intranet, via a network interface for the transmission or
reception of data, including controllable parameters. The
network can also be a vehicle-centric network such as a
vehicle local area network. In such an implementation,
vehicle path prediction can be routed by packets to auto-
mated vehicle equipment to control steering, throttle and
braking for purposes of cooperative vehicle control and
collision avoidance via the vehicle local area network. That
is, the control path for the cooperative vehicle can be
executed by transmitting appropriate commands and instruc-
tions to the automated vehicle equipment. Other implemen-
tations include safety warnings and driver assistance. Also,
a central BUS is provided to connect the above hardware
components together and provides at least one path for
digital communication there between.

A coordinating vehicle can also be connected to other
coordinating vehicles via the network, either via the Internet
or a proprietary private network. Also, vehicle communica-
tions can also be performed by radio communications which
do not rely specifically on an Internet-based network. Such
communications can rely on GSM, CDMA or LTE-based
communications, and can involve relaying via a base station
or other intermediary device. Otherwise, communication
can be performed directly by various methods capable of
transferring data between devices.

As shown in FIG. 7, a coordinating vehicle may also
detect the presence of a non-coordinating vehicle via periph-
eral sensors, such as radar transceivers. In a non-limiting
example, the sensors are configured to determine relative
location and actual speed information of surrounding non-
coordinating vehicles within a detection range. Based on the
determined location and speed information, the processor is

US 9,669,828 B2

23

configured to calculate trajectory information corresponding
to each detected non-coordinating vehicle. Accordingly,
conflicts with non-coordinating vehicles are detected and
resolved by the processing system based on the trajectory
information and the above-described logic and the following
exemplary algorithm, with the exception of communication
between coordinating and non-coordinating vehicles.

FIG. 8 shows an algorithm 800 implementing one
embodiment of this disclosure in accordance with the four-
task logic discussed above, which involves the processing of
at least one processing system, such as that shown in FIG.
7. FIG. 8 involves steps which may be performed by a single
controller or by a plurality of controllers operating in
parallel or in a partially sequential manner, in accordance
with the descriptions provided above.

Referring to exemplary algorithm 800, a first coordinating
vehicle which includes the above-described processing sys-
tem first calculates an assumed trajectory (S802). Next, the
first coordinating vehicle exchanges trajectory messages
with other coordinating vehicles which are within a com-
munication range (S804). Based on the calculated assumed
trajectory and the received trajectory messages, the first
coordinating vehicle determines if a conflict between coor-
dinating vehicles will occur (S806). If a conflict is detected
(S808), the terminal constraints of the first coordinating
vehicle’s optimal control problem (OCP) are adjusted
(S810) and an optimized trajectory is calculated such that
the conflict is resolved (S812). If no conflict is detected at
step S808, the first coordinating vehicle will calculate an
optimized trajectory without adjusting the optimal control
problem terminal constraints. The processing system can be
configured such that processing, such as in exemplary algo-
rithm 800, occurs recursively over subsequent update inter-
vals.

Any processes, descriptions or blocks in flow charts or
functional block diagrams should be understood as repre-
senting modules, segments, portions of code which include
one or more executable instructions for implementing spe-
cific logical functions or steps in the processes/algorithms
described herein, and alternate implementations are included
within the scope of the exemplary embodiments of this
disclosure in which functions may be executed out of order
from that shown or discussed, including substantially con-
currently or in reverse order, depending upon the function-
ality involved.

Moreover, as will be recognized by a person skilled in the
art with access to the teachings of this disclosure, several
combinations and modifications of the aspects of this dis-
closure can be envisaged without leaving the scope of this
disclosure. Thus, numerous modifications and variations of
this disclosure are possible in light of the above teachings,
and it is therefore to be understood that within the scope of
the appended claims, this disclosure may be practiced oth-
erwise than as specifically described herein.

VIII. Conclusions And Extensions

This disclosure considers the problem of automated free-
way merging. The method presented to address this problem
incorporates receding horizon control as a lower-level con-
trol method, combined with a higher-level logic for man-
agement of lane changing and collision avoidance objec-
tives. The method is distributed with partially-synchronous
execution, and relies on the high-level logic (rather than the
optimization algorithm) to solve conflicts as they arise. It is
thus applicable to traffic flows of arbitrary size, including
under realistic conditions. The local optimization problems

10

15

20

25

30

35

40

45

50

55

60

65

24

are also entirely decoupled; thus, feasibility of each problem
does not depend on the performance of other vehicles.
Additionally, the optimization problem when discretized
becomes a quadratic programming problem, for which
global minimizers can be computed in real-time with great
efficiency [25]. The method was demonstrated in detail in a
6-car simulation, and more coarsely (showing trends) in
larger-scale simulations that reflect realistic merging sce-
narios on Japanese freeways.

In the present disclosure, cars are either “coordinating” or
“non-coordinating,” with coordinating cars running the
method derived and non-coordinating cars proceeding with
predictable dynamics. Thus, the results shown rely on the
assumption that the short-term future plan of non-coordi-
nating cars is predictable without error by each coordinating
car. With advances in vehicle-2-vehicle (V2V) technology,
real-time knowledge of the state of non-coordinating cars is
a realistic assumption, but consideration of uncertainty in
the state and the predicted short-term plan for such cars must
be addressed for implementations.

At present, communication between cars is assumed to be
lossless. Prior to implementation, communication failures
between cars must also be considered. RHC has the advan-
tage of having a look ahead policy, so that communication
loss can be handled in principle by continuing to use the
most recently received policy. In the context of this project,
policies are the assumed trajectories. An obvious issue is
that, if communication is lost and this is unknown to the
transmitting car, that car may continue with modifying its
assumed trajectory (by resolving a conflict with a different
car, say), and implement a resolution that is not conflict-free
with the car that lost communication. Most worst-case
scenarios may or may not be possible, depending on the
worst-case communication failures. Failures that last over
multiple update periods, for example, are essentially impos-
sible to resolve in general. If failures are limited to single
update periods, contingencies can be developed to deal with
communication loss. For example, the lost-car can be given
priority in its maneuver selection, if the loss is unknown to
that car. An easier case is when cars are aware of the loss,
in which case contingencies that are mutual to both parties
can be developed.

The four-task strategy presented here separates the opti-
mization problem from the handling of collision avoidance.
This is a distinct advantage compared to approaches in the
literature that include collision avoidance constraints
directly in the optimization problem, which increases the
computation time drastically.

APPENDIX

A. Conflict Checking Function in Matlab

The following Matlab function checkConflict.m was cre-
ated based on the logic in [2]. Given (X, y;, };) and (X5, ¥»,
y,) for two rectangles (presumed coordinating cars here),
the function returns a 1 if there is overlap (a conflict) and 0
otherwise. The coordinate frame here is consistent with the
configuration shown in FIG. 2: x-positive vertical and up,
y-positive horizontal and left, with yr-positive counter-
clockwise and zero along the positive x-axis.

Start function:

function flag=checkConlflict (x1, y1, psil, x2, y2, psi2,
PARAMYS)

Within the PARAMS structure, the following parameters

are defined: carW (car width); carL. (car length); xdev,

US 9,669,828 B2

25

ydev (move suppression margins €,, €,); and xmargin,
ymargin (conflict avoidance margins A, A, defined in
Section IV-A).

Next, create rectangle structures, with variables that are
assigned the coordinates, angles and dimensions of the
cars:

al=carl/2+xmargin+xdev;
a2=al; b2=bl;

rectl=[|; rect2=[|;

rectl.S=[al; bl]; rect2.S=[a2; b2]; % half-boundary
dimensions

rectl.center=[x1; y1]; rectl.angle=psil;

rect2.center=[x2; y2]; rect2.angle=psi2;

Shift rect2 (associated with car 2) to the origin:

rect2.center=rect2.center-rectl.center;

Rotate plane (i.e., rotate the vector to translated rect 2) to
make rect2 x-axis aligned

ang=rect2.angle;

W=[cos(ang) sin(ang); -sin(ang) cos(ang)];

rect2.center=W *rect2 .center;

Compute extreme vertices of translated, axis-aligned
rect2

BL=rect2.center-rect2.S; % bottom-left

TR=rect2.center+rect2.S; % top-right

Calculate vertices of rotated rectl

sin a=sin(rectl.angle-rect2.angle);

cos a=cos(rectl.angle-rect2.angle);

W=[cos a-sin a; sin a cos a];

A=W#rectl.S; B=W%*[-rectl.S(1);
a*cos a;

Verify that A is vertical min/max, B is horizontal min/max

bl=carW/2+ymargin+ydev;

rectl.S(2)]; t=sin

ift<o0
Ap=B;B=A; A=Ap;
end

Verify that B is horizontal minimum (leftest-vertex) of
rotated rect 1 (and therefore has a negative x-value)

if sin a<0, B=-B; end

If (rotated rect 1 not in horizontal range of (translated/
axis-aligned) rect 2, then collision is impossible.

if (B(1) <TR(1) I B(1) > -BL(1))
flag = 0; return
end

Ifrotated r1 axis aligned, vertical min/max are easy to get.

ift==0
extl = A(2); ext2 = —extl;
else
x = BL(1)-A(1); a = TR(1)-A(1); extl = A(2);

% If the first vertical min/max isn’t in (BL.x, TR.x),
then find the vertical min/max on BL.x or on

TR.x

if a*x > 0

dx = A(1);

ifx <0
dx = dx - B(1);
extl = extl — B(2);
X =a

10

15

20

25

30

35

40

45

50

55

26
-continued

else

dx = dx + B(1);

extl = extl + B(2);
end
extl = extl*x/dc + A(2);
end

x = BL(1)+A(1); a = TR(1)+A(1); ext2 = —A(2);

% if second vertical min/max isn’t in (BL.x,Tr.x), then
find vertical min/max on BL.x or on TR.x

ifa*x >0, dx = -A(1);
ifx>0
dx = dx — B(1); ext2 = ext2 - B(2); x = a;
else
dx = dx + B(1); ext2 = ext2 + B(2);
end
ext2 = ext2*x/dx — A(2);
end
end

Check for collision

if (extl < BL(2) && ext2 < BL (2)) Il (extl > TR(2) && ext2 >

TR(2)
flag = 0;
else
flag = 1;
end

The function is simply adapted to the case when car 2 is
non-coordinating by reducing the size of a2 and b2 by xdev
and ydev (the move-suppression margins), respectively.

The invention claimed is:

1. A method for controlling a first coordinating vehicle,

the method comprising:

receiving trajectory messages from a plurality of second
coordinating vehicles in a communication range, the
trajectory messages including vehicle trajectory infor-
mation for a predetermined update interval;

calculating an assumed trajectory for the first coordinating
vehicle by solving an optimal control problem, the
optimal control problem not including an avoidance
constraint;

detecting a conflict based on the received trajectory
information and the calculated assumed trajectory; and

when a conflict is detected, adjusting terminal state con-
straints in the optimal control problem and calculating,
with the adjusted constraints in the optimal control
problem, an optimized trajectory for the first coordi-
nating vehicle such that the detected conflict is
resolved,

wherein the optimal control problem includes cost terms
including a move suppression (MS) term indicating an
amount that the optimized trajectory may deviate from
the assumed trajectory.

2. A controller for a first coordinating vehicle, the con-

troller comprising:

a communication terminal configured to receive trajectory
messages from a plurality of second coordinating
vehicles in a communication range, the trajectory mes-
sages including vehicle trajectory information for a
predetermined update interval; and

a computer processor configured to execute instructions
stored on a non-transitory memory, the instructions
including

US 9,669,828 B2

27

calculating an assumed trajectory for the first coordi-
nating vehicle by solving an optimal control prob-
lem, the optimal control problem not including an
avoidance constraint,
detecting a conflict based on the received trajectory
information and the calculated assumed trajectory,
and
when a conflict is detected, adjusting terminal state
constraints in the optimal control problem and cal-
culating, with the adjusted constraints in the optimal
control problem, an optimized trajectory for the first
coordinating vehicle such that the detected conflict is
resolved,
wherein the optimal control problem includes cost
terms including a move suppression (MS) term indi-
cating an amount that the optimized trajectory may
deviate from the assumed trajectory.
3. The controller according to claim 2, wherein the
conflict is detected by determining, based on the received
trajectory information and the calculated assumed trajectory,
whether a first avoidance boundary of the first coordinating
vehicle and a second avoidance boundary of any one of the
second coordinating vehicles intersect during the update
interval.
4. The controller according to claim 2, wherein:
the terminal state constraints include a velocity term and
a vehicle spacing term; and

when a conflict is detected, the processor adjusts the
velocity term and/or the vehicle spacing term in the
optimal control problem such that the detected conflict
is resolved.
5. The controller according to claim 2, wherein during
each of successive update intervals, the computer processor
is further configured to:
recursively detect conflicts between the first coordinating
vehicle and each of the second coordinating vehicles
that will occur during the update interval; and

calculate the optimized trajectory for each of the recur-
sively detected conflicts.

6. The controller according to claim 2, wherein the
computer processor is further configured to:

classify the detected conflict based on a predetermined

rule set; and

adjust the terminal state constraints based on the detected

conflict classification.

7. The controller according to claim 2, wherein the
assumed trajectory for the first coordinating vehicle is
calculated by solving the optimization control problem with
terminal constraints modified by a high-level maneuver
plan.

8. The controller according to claim 2, further comprising:

a sensor configured to detect a position and speed infor-

mation for a non-coordinating vehicle within a prede-
termined detection range, wherein

the processor determines trajectory information for the

non-coordinating vehicle based on the detected posi-
tion and speed information, and

the processor detects a conflict between the first coordi-

nating vehicle and the non-coordinating vehicle based
on the determined trajectory information and the
assumed trajectory.

9. The controller according to claim 5, wherein during
each of the successive update intervals, the communication
terminal is further configured to:

transmit the optimized trajectory to the second coordinat-

ing vehicles; and

10

15

20

25

30

35

40

45

50

55

60

65

28

receive updated trajectory messages from the second
coordinating vehicles.
10. The controller according to claim 5, wherein the
assumed trajectory for the first coordinating vehicle in a
current update interval is initially set to the calculated
optimized trajectory from an immediately preceding update
interval.
11. The controller according to claim 5, wherein the
assumed trajectory for the first coordinating vehicle in a
current update interval is initially set, in the absence of a
high-level maneuver plan, by extrapolating the optimized
trajectory from an immediately preceding update interval.
12. The controller according to claim 5, wherein the
processor is further configured to, during each of the suc-
cessive update intervals, calculate the optimized trajectory
for the detected conflict with an earliest loss-of-separation
that requires action by the first coordinating vehicle.
13. The controller according to claim 6, wherein the
conflict classification is based on a position of the first
coordinating vehicle relative to a conflicting vehicle, of the
second coordinating vehicles, which is determined to be in
conflict with the first coordinating vehicle.
14. The controller according to claim 2, wherein when a
conflict is detected, the MS term is set such that the amount
from which the optimized trajectory may deviate from the
assumed trajectory is increased.
15. The controller according to claim 8, wherein the
processor sets a third avoidance boundary for the non-
coordinating vehicle, the third avoidance boundary being
smaller in size than the first and second avoidance bound-
aries.
16. The controller according to claim 2, wherein the
optimal control problem does not include at least one of (1)
an avoidance constraint between the first coordinating
vehicle and another vehicle and (2) an avoidance constraint
between the first coordinating vehicle and a road boundary.
17. The controller according to claim 2, wherein the
optimal control problem does not include an avoidance
constraint between the first coordinating vehicle and another
vehicle and does not include an avoidance constraint
between the first coordinating vehicle and a road boundary.
18. The controller according to claim 2, wherein the
computer processor is further configured to control the first
coordinating vehicle based upon the optimized trajectory.
19. A vehicle coordination system comprising a plurality
of coordinating vehicles, each vehicle (i=1, 2, 3, . . . , N)
having a controller including:
a communication terminal configured to receive trajectory
messages from each vehicle, of the plurality of coor-
dinating vehicles, in a communication range, the tra-
jectory messages including vehicle trajectory informa-
tion for a predetermined update interval; and
a computer processor configured to execute instructions
stored on a non-transitory memory, the instructions
including:
calculating an assumed trajectory by solving an optimal
control problem, the optimal control problem not
including an avoidance constraint,

for each received trajectory message, detecting a con-
flict with a corresponding vehicle based on the
received trajectory information and the calculated
assumed trajectory, and

when a conflict is detected, adjusting terminal state
constraints in the optimal control problem and cal-
culating, with the adjusted constraints in the optimal

US 9,669,828 B2
29

control problem, an optimized trajectory for the first
coordinating vehicle such that the detected conflict is
resolved,

wherein the optimal control problem includes cost
terms including a move suppression (MS) term indi- 5
cating an amount that the optimized trajectory may
deviate from the assumed trajectory.

#* #* #* #* #*

30

