The priority details shown above contain a late declaration of priority made under Section 5(2B) of the Patents Act 1977 and Rule 7.
Firewall allows images from the camera to be viewed when IP Address and MAC match Access Control List (ACL) on Router.

If other device spoofs the ID of the original camera, the control room is unaware because the IP address and MAC are the same as the original camera.
Locking mechanism (Scenario 1):
Video Station A try to lock Camera A

1 : send DISCOVERY message()
2 : send ADVERTISE message()
3 : send LOCK message()
4 : send ACCEPT message()
5 : connect()
6 : start video streaming()

Locking mechanism (Scenario 2):
After Video Station A success to lock Camera A, Video Station B try to lock Camera A

7 : send LOCK message()
8 : send REJECT message()
9 : connect()
10 : fail to connect()

Video Station B cannot create a connection with camera A, because camera A has been locked by Video Station A

Locking mechanism (Scenario 3):
Video Station A unlock Camera A and Video Station B try to lock Camera A

11 : send UNLOCK message()
12 : send ACCEPT message()
13 : send LOCK message()
14 : send ACCEPT message()
15 : socket connect()
16 : start video streaming()

Figure 3
[A] Network-based camera State Chart

[A.1] INIT

network is ready

[A.2] UNLOCK

network is loss

receive LOCK message

[A.3] LOCK

receive UNLOCK message, or alive timer is timeout

Processes A.1 – A.3 in this flow chart will be detailed in the following figures.

Figure 4a
[A.1] INIT Flow Chart

INIT state

network is ready?

[not ready]

[ready]

goto UNLOCK state

Figure 4b
UNLOCK state

Process A

send ADVERTISE to video station (Broadcast)

Waiting message from video station

[no message]

[new message]

message = DISCOVERY?

[yes]

send ADVERTISE to video station

[no]

is message addressing this camera?

[no]

[yes]

message = LOCK?

[no]

[yes]

DISCOVERY only contains the video station ID

Update network setting and lock key

send ACCEPT (LOCK) to video station

goto LOCK state

LOCK contains the following information:
1. Video station ID
2. Camera ID
3. New network setting: IP, subnet mask
4. Lock key

lock key is for later communication

The video station will assign new IP address for the camera, so the camera needs to update its network setting.

goto INIT state

Process B

monitor network status

[loss]

[healthy]

Figure 4c
Figure 4d

The socket sends DISCOVERY message to the locked camera periodically for avoiding the camera going to UNLOCK state.
[B] Video Station State Chart for each socket

[B.1] INIT

[B.2] UNLOCK
- camera connect
- camera disconnect

[B.3] DETECT
- receive ADVERTISE message

[B.4] WAIT
- camera disconnect, timeout, or receive REJECT message
- receive ACCEPT message

[B.5] LOCK
- camera disconnect or timeout

↑ Processes B.1 – B.5 in this flow chart will be detailed in the following figures.
[B.1] INIT flow chart

Steps of resetting the socket:
1. reset Ethernet PHY interface (Hardware)
2. reset Ethernet MAC interface (Hardware)
 - MAC = Media Access Control
3. reset routing table (MAC address control table)

Figure 5b
[B.2] UNLOCK flow chart

UNLOCK state

waiting for camera connection (Hardware level)

[no camera]

[camera is found]

send DISCOVERY message

goto DETECT state

Figure 5c
[B.3] DETECT flow chart

DETECT state

Process A
- waiting message from camera
 - [no message]
 - [new message]
 - message = ADVERTISE?
 - [no]
 - is camera locked already?
 - [yes]
 - [no]
 - Allocate new IP address for the camera
 - generate new lock key
 - send LOCK to the camera
 - goto WAIT state
 - [yes]
 - goto UNLOCK state

Process B
- reset discovery timer
- discovery timer = timeout?
 - [no]
 - [yes]
 - send DISCOVERY message

Process C
- camera disconnect (Hardware level)?
 - [no]
 - [yes]
 - goto UNLOCK state

Types of camera disconnection (Hardware Level):
1. camera is physically unplugged from socket.
2. camera is power down.
3. camera cannot function.

LOCK message mainly contains new P, subnet and lock key.

Figure 5d
Types of camera disconnection (Hardware Level):
1. Camera is unplugged from socket.
2. Camera is power down.
3. Camera cannot function.

[B.4] WAIT flow chart
if there is no responses from the target camera in waiting period, then abandon to lock

WAIT state

Process A

- waiting message from camera
 - [no message]
 - [new message]
 - is message from the target camera?
 - [no]
 - [yes]
 - message = ACCEPT (LOCK)?
 - [yes]
 - connect to the target camera (Software level)
 - [no]
 - message = REJECT (LOCK)?
 - [yes]
 - goto LOCK state
 - [no]
 - release allocated IP

Process B

- reset camera timer
 - camera timer = timeout?
 - [no]
 - [yes]

Process C

- camera disconnect (Hardware Level)?
 - [yes]
 - [no]
[B.5] LOCK flow chart

1. capture video from the locked camera
2. send DISCOVERY periodically

LOCK state

- Process A
 - waiting message from locked camera
 - [no message] (diamond)
 - [new message]
 - is message from the target camera?
 - [no] (diamond)
 - [yes]
 - reset heart-beat timer
 - including HEART-BEAT signal from locked camera.

- Process B
 - reset heart-beat timer
 - heart-beat is timeout?
 - [no]
 - [yes]
 - disconnect camera (Software level)
 - camera disconnect (Hardware Level)?
 - [yes]
 - release allocated IP
 - goto UNLOCK state

- Process C
 - receive video data from locked camera
 - discovery timer = timeout?
 - [yes]
 - send DISCOVERY message
 - [no]

- Process D
 - send DISCOVERY message

If no message is received from the locked camera, we can assume the camera is lost.

Types of camera disconnection
1. camera is unplugged from socket.
2. camera is power down.
3. camera cannot function.

Figure 5f
Methods of Connecting Network-based Cameras to Video Stations, and Corresponding Video Surveillance Systems, Video Stations, and Network-Based Cameras

Field of the Invention

This invention relates to video surveillance systems, particularly those with IP-based digital cameras and digital video recorders.

Background of the Invention

Video surveillance systems play an important role in many different areas such as crime prevention, business management and traffic monitoring. Surveillance systems can be found almost everywhere such as banks, casinos, airports, military installations, and stores.

Due to better resolution and output quality, there is a growing trend of replacing analog cameras by digital cameras in the surveillance field. In a digital video surveillance system, network- or IP-based cameras are used instead of traditional analog cameras, which capture images and convert to digital formats right away and transmit the video data to a network-based video recorder (NVR) or video station over network, typically over ethernet under IP protocol.

Although these network- or IP-based surveillance systems are gaining popularity, there are some shortcomings. First of all, the installation of IP-based cameras is more complicated than analog cameras. The operator needs extensive network knowledge to configure each connected camera. Whenever there is a new camera connected to the system, the setup involves a lot more configuration changes than those of traditional analog surveillance system, for example prevention of conflicts of IP addresses. The second issue concerns security. Because video data from the IP-based cameras is sent over a shared network, hackers can easily access the cameras by connecting to the shared network and acquire the sensitive video data, or replace video images sent from the camera to the NVR. In fact there are tools readily available on the Internet for these. Figure 1 shows a possible scenario in which a hacker replaces video images sent from the camera to the NVR by using a computer with the same IP and MAC addresses of those of the IP-camera registered at the video station, which is generally known as “spoofing”.

Therefore, there is a need to devise more secure video surveillance systems that utilize network-based, or more specifically IP-based cameras, and NVR or video stations.
Objects of the Invention

Therefore, it is an object of this invention to resolve at least one or more of the problems as set forth in the prior art. Particularly, it is an object of the current invention to provide video surveillance systems using network-based cameras and video stations with easier installation and/or improved security. As a minimum, it is an object of this invention to provide the public with a useful choice.

Summary of the Invention

Accordingly, this invention provides a method of connecting at least one network-based camera to a video station, said video station having at least one socket for connecting said network-based camera. The method of this invention includes the steps of:

a) sending a camera-advertising signal from the network-based camera to the video station for notifying the presence of the network-based camera, said camera-advertising signal includes a camera-identification tag for identification of the network-based camera;

b) if the network-based camera is in an unlock state, locking ownership of the network-based camera with the respective connected socket; and

c) if the network-based camera is in a lock state and is not locked by the respective socket, terminating connection between the network-based camera and the video station

such that at any time, each of the at least one socket
- can lock ownership of only one network-based camera; and
- receives video from the only one network-based camera with ownership locked by the respective socket.

Preferably, the method of this invention further includes the steps of:

a1) after receiving the camera-advertising signal, determining whether the camera-identification tag is acceptable to the video station; and

a2) if the camera identification tag is not acceptable to the video station, terminating connection between the network-based camera and the video station.

Preferably, the steps b) and c) above include the steps of
- sending an ownership-locking-query signal from the video station to the network-based camera for querying whether ownership of the network-based camera with the respective connected socket can be locked;
after the network-based camera receives the ownership-locking-query signal,
 • sending an accept-locking signal from the network-based camera to the video
 station if the network-based camera is in the unlock state; or
 • sending a reject-locking signal from the network-based camera to the video
 station if the network-based camera is in the lock state and is not locked by
 the respective socket;
• if the accept-locking signal is sent from the network-based camera to the video
 station, locking ownership of the network-based camera with the respective
 connected socket and establishing a video connection for sending video from the
 network-based camera to the video station; and
• if the reject-locking signal is sent from the network-based camera to the video
 station or if the camera-identification tag is not acceptable to the video station,
 terminating connection between the network-based camera and the video
 station.

More preferably, the ownership-locking-query signal includes a lock key for decrypting
data transmission between the network-based camera and the video station. With the
provision of the ownership-locking-query signal, the method of this invention may additionally
further include the step of broadcasting a station-discovery signal from the video station
before the camera-advertising signal is sent from the network-based camera to the video
station, said station-discovery signal including a station-identification tag for the identification
of the video station. Even more preferably, the ownership-locking-query signal further
includes any one of the camera-identification tag, the station-identification tag, a set of
assigned networking settings, or their combinations, and on this basis, the step of locking
ownership of the network-based camera by the respective connected socket includes the
steps of
• recording at least one of the following:
 o recording the camera-identification tag at the respective connected socket;
 and
 o recording the station-identification tag at the network-based camera
• selecting a set of unique networking settings at the video station as the assigned
 networking settings in the ownership-locking signal; and optionally, updating the
 network-based camera with the set of assigned networking settings.

Preferably, the camera-advertising signal further includes any one of a set of camera
networking settings, camera-locking status, or their combinations.
Optionally, the method of this invention further including the steps of:

- sending a heart-beat signal from the network-based camera to the respective connected socket for maintaining ownership of the network-based camera with the respective connected socket; and
- if the heart-beat signal is not received within a predetermined period of time, unlocking ownership of the network-based camera with the respective connected socket and terminating connection between the network-based camera and the respective connected socket.

Preferably, the network-based camera is connected to said at least one socket through a network cable.

It is another aspect of this invention to provide a video surveillance system having at least one network-based camera and a video station incorporating any one of the above methods.

It is yet another aspect of this invention to provide a method of controlling connection between at least one network-based camera to a video station, in which a camera-advertising signal is sent from the network-based camera to the video station for notifying the presence of the network-based camera. The camera-advertising signal includes a camera-identification tag for identification of the network-based camera, said video station having at least one socket for connecting said network-based camera. The method includes the steps of:

1) if the network-based camera is in an unlock state, locking ownership of the network-based camera with the respective connected socket; and
2) if the network-based camera is in a lock state and is not locked by the respective socket, terminating connection between the network-based camera and the video station such that at any time, each of the at least one socket
 - can lock ownership of only one network-based camera; and
 - receives video from the only one network-based camera with ownership locked by the respective socket.

It is a further aspect of this invention to provide a video station for a video surveillance system incorporating the above method.
This invention further provides a method of connecting at least one network-based camera to a video station, said video station:

- having at least one socket for connecting said network-based camera,
- can locking ownership of the network-based camera with the respective connected socket if the network-based camera is in an unlock state, and provide the network-based camera with a lock key for decrypting data transmission between the network-based camera and the video station and
- can terminate connection between the network-based camera and the video station if the network-based camera is in a lock state and is not locked by the respective socket

and the method includes the steps of:

a) sending a camera-advertising signal from the network-based camera to the video station for notifying the presence of the network-based camera, said camera-advertising signal includes a camera-identification tag for identification of the network-based camera;

b) recording the lock key at the network-based camera if an ownership-locking-query signal from the video station is received, and the network-based camera is in a unlock state such that at any time, each of the at least one socket

- can lock ownership of only one network-based camera; and
- receives video from the only one network-based camera with ownership locked by the respective socket.

It is another aspect of this invention to provide a network-based camera for a video surveillance system incorporating the above method.

Brief description of the drawings

Preferred embodiments of the present invention will now be explained by way of example and with reference to the accompanying drawings in which:

- **Figure 1** shows how fake video images can be sent to a video station by “spoofing”;
- **Figure 2** shows the general system architecture of the video surveillance system of the current invention;
- **Figure 3** shows the flow chart of how a network-based camera is locked by one socket of the video station of this invention;
- **Figures 4a to 4d** show the flow charts of the processes involved in the network-based camera for controlling its connection with the video station; and
Figures 5a to 5f show the flow charts of the processes involved in the video station for controlling the connection of one socket with the IP-based camera.

Detailed Description of the Preferred Embodiments

This invention is now described by way of examples with reference to the figures in the following paragraphs. Objects, features, and aspects of the present invention are disclosed in or are apparent from the following description. It is to be understood by one of ordinary skilled in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions. List 1 is a list showing the parts and respective reference numerals in the figures.

<table>
<thead>
<tr>
<th>Reference numeral</th>
<th>Part name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>video surveillance system</td>
</tr>
<tr>
<td>12</td>
<td>network-based camera</td>
</tr>
<tr>
<td>14</td>
<td>video station</td>
</tr>
<tr>
<td>16</td>
<td>socket</td>
</tr>
<tr>
<td>20</td>
<td>video recorder</td>
</tr>
</tbody>
</table>

List 1

Referring to Figure 2, the video surveillance system 10 has two components, at least one network-based camera 12, and at least one video station 14. The video station 14 has at least one socket 16 for connecting to the network-based camera 12, and a video recorder 20. The video surveillance system 10 can have as many network-based cameras 12, video stations 14, and sockets 16 as desired, which is to be determined according to the usage of the video surveillance system 10 depending on various factors including the area to be covered, complexity of the venue, and so on, subject to resources available. The sockets 16 in the context of this invention refer to physical sockets that can connect with the network-based cameras 12 physically, for example through a wired connection. The sockets 16 are not virtual sockets in typical networking that connect to various network devices. The video station 14 is connected to the internet, monitoring device, and storage if desired with known technologies, for example RJ-45 sockets and cables, VGA or HDMI sockets and cables, USB, IEEE1394 or eSATA sockets and cables.

The network-based cameras 12 and the video station 14 are each implemented with suitable software control modules, for example in the form of software, for controlling their connections. These will be described in detail in the following paragraphs.
Figure 3 shows a flow chart explaining how a network-based camera 12 is locked by one socket 16 of the video station 14 of this invention. When a network-based camera 12 is connected to one socket 16, a camera-advertising signal is sent from the network-based camera 12 to the video station 14 for notifying the presence of the network-based camera 12. This camera-advertising signal includes a camera-identification tag for identification of the network-based camera 12. This camera-identification tag can be any desirable unique code that can identify individual network-based camera 12, preferably at hardware level for example production serial number of the network-based camera 12. If the network-based camera is in an unlock state, ownership of the network-based camera 12 is locked with the respective connected socket 16. If the network-based camera 12 is in a lock state and is not locked by the respective socket, connection between the network-based camera 12 and the video station 14 is terminated.

Before the network-based camera 12 enters the lock state, the camera-advertising signal can be sent by the network-based camera 12 actively, that is, can be sent periodically regardless whether the network-based camera 12 detects connection with the socket 16, or even whether the network-based camera 12 detects connection to a network. Alternatively, the camera-advertising signal can be sent by the network-based camera 12 passively, that is, can be sent only when the network-based camera 12 detects connection with the socket 16, or when the network-based camera 12 detects connection to a network.

Optionally, after receiving the camera-advertising signal, the video station 14 then determines whether the camera-identification tag is acceptable to the video station 14, for example, by checking whether the camera-identification tag is contained in a list, which can be stored in the video station 14 or accessible to the video station 14 through a network connection. If the camera-identification tag is acceptable to the video station and, as described above, if the network-based camera is in an unlock state, ownership of the network-based camera 12 is locked with the respective connected socket 16. Otherwise, if the camera-identification tag is not acceptable to the video station, connection between the network-based camera 12 and the video station 14 is terminated.

Other than the camera-identification tag, the camera-advertising signal can optionally contain a field indicating the locking status of the network-based camera 12, i.e. indicating whether the network-based camera 12 is in lock or unlock state for connection to the a socket of the video station 14. This is desirable as the video station can immediately determine whether the ownership of the network-based camera 12 with the respective connected socket
16 can be locked, or connection with the network-based camera 12 with the video station 14 should be determined.

If the video station 14 is not aware of the locking state of the network-based camera 12, for example from the camera-identification tag, then the following processes are applicable. Specifically, an ownership-locking-query signal is sent from the video station 14 to the network-based camera 12 for querying whether ownership of the network-based camera 12 with the respective connected socket 16 can be locked. After the network-based camera 12 receives the ownership-locking-query signal, if the network-based camera 12 is in an unlock state, an accept-locking signal is sent from the network-based camera 12 to the video station 14, the ownership of the network-based camera 12 with the respective connected socket 16 is then locked and a video connection is established for sending video from the network-based camera 12 to the video station 14. Otherwise, if the network-based camera 12 is in a lock state and is not locked by the respective socket, a reject-locking signal is sent from the network-based camera 12 to the video station 14, and connection between the network-based camera 12 and the video station 14 is terminated. The connection between the network-based camera 12 and the video station 14 is also terminated if the camera-identification tag of the network-based camera 12 is determined to be unacceptable to the video station 14. Through the above operations, each of the socket 16 can lock ownership of only one network-based camera, and receives video from the only one network-based camera with ownership locked by the respective socket. Having said the above, the above processes can still be implemented if the video station 14 is aware of the locking state of the network-based camera 12 as back up. It should be note that while the network-based camera 12 is in a lock state, the respective connected socket 16 may still send the ownership-locking-query signal to the network-based camera 12, for example, for updating the network settings, the lock key, or any necessary settings. In such a case, the reject-locking signal, which will terminate connection between the network-based camera 12 and the video station 14, should not be sent.

Optionally, a station-discovery signal can be broadcasted from the video station 14 before the camera-advertising signal is sent from the network-based camera to the video station 14. In such a case, a camera-advertising signal can be sent after receiving the station-discovery signal. This station-discovery signal includes a station-identification tag for the identification of the video station 14. This station-identification tag can be any desirable unique code that can identify individual video station 14, preferably at hardware level for example production serial number of the video station 14. The use of this station-identification tag will be explained later.
Other than the camera-identification tag, the ownership-locking-query can also include a lock key for decrypting data transmission between the network-based camera 12 and the video station 14. All data transmission including video and various control messages including the heart-beat signals. However, preferably only the control messages are encrypted so as to reduce network overhead and processing power requirements at the network-based camera 12 and the video station 14. Various encryptions can be used, for example RC4 (http://en.wikipedia.org/wiki/RC4), WEP (http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy), and DES (http://en.wikipedia.org/wiki/Data_Encryption_Standard). The lock key can be generated by various methods, for example UUID (http://en.wikipedia.org/wiki/UUID) or OUI (http://en.wikipedia.org/wiki/Organizationaly_Unique_Identifier), which can be generated on-demand or stored in the video station 14. Generation of the lock key in the video station 14 on-demand is more preferred as this would be less prone to security breach.

Additionally, the ownership-locking-query signal can further include any one of the camera-identification tag, the station-identification tag, a set of assigned networking settings, or their combinations. The camera-identification tag can serve for additional checking purpose, while the use of the station-identification tag and the set of assigned networking settings will be described later.

The "locking" of the ownership of the network-based camera 12 with the respective connected socket 16 can be implemented in various different manners. For example, the network-based camera 12 and the connected socket 16 may each be associated to a virtual electronic locking status which can be in either "unlock" or "lock", for which this virtual electronic status can be as simple as a true/false field. During the locking of the ownership, the respective locking status of the network-based camera 12 and the connected socket 16 is updated to "lock". To enhance security, it is even more preferred that the video station 14 selects a set of unique networking settings as the set of assigned networking settings in the ownership-locking-query signal, such that the networking settings of the network-based camera 12 can be updated during the locking process. The selection and updating of the network settings, which may include IP address, subnet mask, DNS server address, and so on can follow the standard DHCP procedures or static IP assignment procedures.

Optionally the camera-identification tag is recorded at the video station 14 and/or the station-identification tag is recorded at the network-based camera 12 during locking of the ownership. This can be useful to enhance subsequent checking capabilities and security. In
order to ensure that the connection between the network-based camera 12 and the video station 14 is intact after some time, it is preferred to send a heart-beat signal from the network-based camera 12 to the video station 14. If this heart-beat signal is not received in a predetermined period of time, say every 5 to 30 seconds, then the ownership of the network-based camera 12 and the respective connected socket 16 changes to “unlock”, i.e. the virtual electronic locking status of the network-based camera and the connected socket 16 is changed from “lock” to “unlock”. The change of the locking status can be done by internal checking for example as in the case of using the heart-beat signal, or by sending a unlock signal to the network-based camera 12 and/or the connected socket 16 under user control. If the camera-identification tag is recorded at the video station 14 and/or the station-identification tag is recorded at the network-based camera 12, these tags can act as extra checking for the security of the connection, for example, in preventing spooling as these tags are associated to the network-based camera 12 and the video station 14 at hardware level. The handling of heart-beat signal is known in the field and will not be further described.

It should be noted that the “locking” of the ownership is done between the network-based camera 12 with the respective connected socket 16, but not between the network-based camera 12 with the video station 14. One consequence of this is that at any time, each of the at least one socket can lock ownership of only one network-based camera, and receives video from the only one network-based camera with ownership locked by the respective socket. That is, even if a network switch or repeater with multiple network ports is connected to a socket 16 of the video station 14, and each of these multiple network ports is connected to one network-based camera 12, only one of these network-based cameras 12 is able to engage with the socket 16 into the “locking” relationship and therefore only video from this “locked” network-based camera 12 is received by the socket 16. Preferably, the locked socket 16 stops looking for unlock network-based camera 12, for example stops sending the station-discovery signal, once the socket 16 enters into the lock status. This is different from the current approach which generally utilizes DHCP as the network connection setup protocol, which allows multiple cameras to be connected to a single network socket on existing video stations. Such current approach at least has the problem of quality drop if too many cameras are connected to a single socket.

The network connection between the socket 16 and the network-based camera 12 can be wireless or wired. In the case of wireless connection, where there are typically multiple channels, each physical socket 16 can allow connection for one channel only so as to achieve the effect that one socket 16 locks ownership of only one network-based camera 12, and receive video from the only one network-based camera 12 with ownership locked by the
respective socket 16 at any time. However, wired connection is preferred which can further enhance the security of the video surveillance system 10. As the socket 16 of the current invention can now engage into “locking” relationship with only one network-based camera 12 with camera-identification tag acceptable to the video station 14, and preferably with the lock key, wired connection can substantially reduce the chance of “spoofing”, as the network-based camera 12 can then be traced physically by the wired connection. By contrast, current network-based video surveillance systems utilize network-based cameras, which allow multiple cameras to be connected to one socket, and/or do not use a lock key sent from the video station 14 as in the current invention. Accordingly, the chance of spoofing is higher, and it can be difficult to trace the actual physical location of the network-based camera.

As one socket 16 can now connect to one network-based camera 12 only, the setting up of the system is simpler than currently available network-based video surveillance systems, which allow multiple cameras to be connected to one socket.

Figures 4a to 4d show exemplary flow charts of the processes involved in the network-based camera 12 for controlling the connection with the video station 14 that has implemented all of the above optional components of the video surveillance system 10 of this invention. Specifically, Figure 4a shows the control of the locking status at the network-based camera 12, in which the network-based camera 12 goes to unlock state during initialization after checking that the network-based camera 12 is ready for network connection. If the ownership-locking-query signal message is received and the network-based camera 12 is in the unlock state, the network-based camera 12 then updates itself to lock state. This status is changed back to “unlock” if an unlock signal is received, network is lost or not ready as shown in Figure 4b, or there is no response to the heart-beat signal sent by the network-based camera 12. Monitoring of the network status can be done by protocols like the Auto-negotiation of Ethernet Physical Layer Communication (http://en.wikipedia.org/wiki/Autonegotiation).

Figure 4c shows various processes involved when the network-based camera 12 is in the unlock state, including

- sends the camera-advertising signal ADVERTISE from the network-based camera 12, and then waits for signals from the socket 16 of the video station 14;
- if a message targeting the network-based camera 12 is received from the socket 16, and if this message is the ownership-locking-query signal LOCK, and if the network-based camera 12 is in the unlock state, the network-based camera 12 changes it status to the lock stage, updates its network settings, stores the lock key
for subsequent data decryption, and sends an accept-locking signal ACCEPT LOCK
to the socket 16 of the video station 14;

- the network-based camera 12 will go to the state of waiting message from the socket
 16 if one of the following happens:

 1. no message is received from the socket 16;
 2. message from the socket 16 is not intended for the network-based camera 12;
 3. the ownership-locking-query signal LOCK is sent from the socket 16 but the
 network-based camera 12 is in the lock state;

- if the network-based camera 12 is in the lock state and if an "unlock" message is
 received containing correct information, for example the correct
 camera-identification and station-identification tags, the network-based camera 12
 updates its locking status to "unlock"

- at all times, the network status is monitored, as described above.

Figure 4d shows processes for monitoring the network status as above, and various
processes involved when the network-based camera 12 is in the lock state, including the
handling of the maintenance of "heart-beat" between the network-based camera 12 and the
respective connected socket 16. As stated above, as these processes are known to the field,
these processes will not be further described

Figures 5a to 5f show exemplary flow charts of the processes involved in the video
station 14 for controlling the connection with the network-based camera 12 that has
implemented all of the above optional components of the video surveillance system 10 of this
invention. Specifically, Figure 5a shows the control of the locking status at each socket 16 of
the video station 14, in which the socket 16 goes to unlock state during initialization after
checking that the socket 16 is ready for network connection. The socket 16 goes into the lock
state if the socket 16 is in an unlock state and receives an accept-locking signal from the
network-based camera 12. The socket 16 goes into the unlock state if one of the following
happens:

 1. the network-based camera is detected to be not connected to the socket 16;
 2. a reject-locking signal REJECT is received;
 3. no heart-beat signal HEART-BEAT is received from the network-based camera 12
 within a predetermined period of time.

Figure 5b shows that the socket 16 goes to unlock state during initialization. Figure 5c
shows the processes involved in the unlocking of the socket 16, which is triggered by the
disconnection of the network-based camera 12 from the socket 16 at hardware level.
Figure 5d shows various processes involved when the socket 16 of the video station 14 is in the state of detecting presence of network-based camera 12, including:

- waits for the camera-advertising signal ADVERTISE from the network-based camera 12;
- if the socket 16 receives the camera-advertising signal ADVERTISE from the network-based camera 12, and if this signal indicates that the network-based camera 12 is unlock, then the video station 14 can allocate or assign a set of unique network settings. The ownership-locking-query signal LOCK can then be generated and sent to the network-based camera 12 for locking the ownership with the connected socket 16;
- the station-discovery signal DISCOVERY will be sent periodically if there is no response from the connected network-based camera 12, or if there is no connection to any network-based camera 12 at all;
- at all times, the connection status at hardware level is monitored, as described above.

Figure 5e show various processes involved after the ownership-locking-query signal LOCK is sent from the socket 16 to the network-based camera 12, including:

- waits for the accept-locking signal ACCEPT LOCK or rejecting-locking signal REJECT from the network-based camera 12;
- checks whether the accept-locking signal ACCEPT LOCK or rejecting-locking signal REJECT is from the target camera, for example, by comparing whether the camera-identification tag in this signal corresponds to that in the earlier sent ownership-locking-query signal;
- if the signal is from the target camera, and if the signal is the accept-locking signal ACCEPT LOCK, connection with the network-based camera is established, and the socket 16 goes into the lock state with the network-based camera 12;
- connection with the network-based camera 12 is terminated if one of the following happens:
 i. the signal is the reject-locking signal REJECT;
 ii. the network-based camera 12 is disconnected; or
 iii. the heart-beat maintenance processes resulted in a timeout;
- the station-discovery signal DISCOVERY will be sent periodically if there is no response from the connected network-based camera 12, or if there is no connection to any network-based camera 12 at all;
- at all times, the connection status on hardware level is monitored, as described above.

Figure 5f describes the processes when the lock relationship is established between the network-based camera 12 and the socket 16, including various processes for handling the heart-beat signal maintenance between the network-based camera 12 and the socket 16. These processes are known in the field and are self-explanatory.

It will be apparent to the skilled persons that the above processes are implemented on the respect network-based camera 12, the socket 16, and the video station 14 as software programs, and a skilled programmer would be able to produce appropriate software codes based on the current description and flow charts in the figures. Existing network-based camera 12, the socket 16, and the video station 14 with suitable hardware configuration with respect to processing power, storage, network connection capabilities implemented with processes of the current invention described herein in the form of software can practice the current invention. When performing the processes of the current invention, the processor will perform different functions at different times depending on which process is taking control of the processor at that time. That is, the processor is acting as various virtual devices each carrying out different processes of the current invention, for example a camera-advertising signal generator when the camera-advertising signal is sent from the network-based camera 12; a camera-identification tag acceptance determining device when determining whether the camera-identification tag is acceptable to the video station; locking status updater when the ownership of the network-based camera is to be locked with the respective connected socket 16; and so on.

While the preferred embodiment of the present invention has been described in detail by the examples, it is apparent that modifications and adaptations of the present invention will occur to those skilled in the art. Furthermore, the embodiments of the present invention shall not be interpreted to be restricted by the examples or figures only. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the claims and their equivalents.
CLAIMS:

1. A method of connecting at least one network-based camera to a video station, said video station having at least one socket for connecting said network-based camera, said method including the steps of:
 a) sending a camera-advertising signal from the network-based camera to the video station for notifying the presence of the network-based camera, said camera-advertising signal includes a camera-identification tag for identification of the network-based camera;
 b) if the network-based camera is in an unlock state, locking ownership of the network-based camera with the respective connected socket; and
 c) if the network-based camera is in a lock state and is not locked by the respective socket, terminating connection between the network-based camera and the video station such that at any time, each of the at least one socket •can lock ownership of only one network-based camera; and •receives video from the only one network-based camera with ownership locked by the respective socket.

2. The method of claim 1 further including the steps of:
 a1) after receiving the camera-advertising signal, determining whether the camera-identification tag is acceptable to the video station; and
 a2) if the camera identification tag is not acceptable to the video station, terminating connection between the network-based camera and the video station.

3. The method of claim 1, wherein the steps b) and c) include the steps of
 •sending an ownership-locking-query signal from the video station to the network-based camera for querying whether ownership of the network-based camera with the respective connected socket can be locked;
 •after the network-based camera receives the ownership-locking-query signal,
 •sending an accept-locking signal from the network-based camera to the video station if the network-based camera is in the unlock state; or
• sending a reject-locking signal from the network-based camera to the video station if the network-based camera is in the lock state and is not locked by the respective socket;

• if the accept-locking signal is sent from the network-based camera to the video station, locking ownership of the network-based camera with the respective connected socket and establishing a video connection for sending video from the network-based camera to the video station; and

• if the reject-locking signal is sent from the network-based camera to the video station or if the camera-identification tag is not acceptable to the video station, terminating connection between the network-based camera and the video station.

4. The method of claim 3, wherein the ownership-locking-query signal includes a lock key for decrypting data transmission between the network-based camera and the video station.

5. The method of claim 4 further including the step of broadcasting a station-discovery signal from the video station before the camera-advertising signal is sent from the network-based camera to the video station, said station-discovery signal including a station-identification tag for the identification of the video station.

6. The method of claim 5, wherein the ownership-locking-query signal further includes any one of the camera-identification tag, the station-identification tag, a set of assigned networking settings, or their combinations.

7. The method of claim 6, wherein the step of locking ownership of the network-based camera by the respective connected socket includes the steps of

• recording at least one of the following:
 o recording the camera-identification tag at the respective connected socket;
 and
 o recording the station-identification tag at the network-based camera

• selecting a set of unique networking settings at the video station as the assigned networking settings in the ownership-locking signal.

8. The method of claim 7 further including the step of updating the network-based camera with the set of assigned networking settings.
9. The method of claim 1, wherein the camera-advertising signal further includes any one of a set of camera networking settings, camera-locking status, or their combinations.

10. The method of claim 1 further including the steps of:
 - sending a heart-beat signal from the network-based camera to the respective connected socket for maintaining ownership of the network-based camera with the respective connected socket; and
 - if the heart-beat signal is not received within a predetermined period of time, unlocking ownership of the network-based camera with the respective connected socket and terminating connection between the network-based camera and the respective connected socket.

11. The method of claim 1, wherein the network-based camera is connected to said at least one socket through a network cable.

12. A video surveillance system having at least one network-based camera and a video station incorporating the methods of any one of claims 1 to 11.

13. A method of controlling connection between at least one network-based camera to a video station, a camera-advertising signal is sent from the network-based camera to the video station for notifying the presence of the network-based camera, said camera-advertising signal includes a camera-identification tag for identification of the network-based camera, said video station having at least one socket for connecting said network-based camera, said method including the steps of:
 1) if the network-based camera is in an unlock state, locking ownership of the network-based camera with the respective connected socket; and
 2) if the network-based camera is in a lock state and is not locked by the respective socket, terminating connection between the network-based camera and the video station such that at any time, each of the at least one socket can lock ownership of only one network-based camera; and
 - receives video from the only one network-based camera with ownership locked by the respective socket.
14. The method of claim 13 further including the steps of:
 1a) after receiving the camera-advertising signal, determining whether the
 camera-identification tag is acceptable to the video station; and
 1b) if the camera identification tag is not acceptable to the video station,
 terminating connection between the network-based camera and the video
 station.

15. The method of claim 13, wherein the steps 1) and 2) includes the steps of:
 • if the camera-identification tag is acceptable to the video station, sending an
 ownership-locking-query signal from the video station to the network-based
 camera for querying whether ownership of the network-based camera with the
 respective connected socket can be locked;
 • if an accept-locking signal from the network-based camera is received by the video
 station, locking ownership of the network-based camera with the respective
 connected socket and establishing a video connection for sending video from the
 network-based camera to the video station; and
 • if a reject-locking signal from the network-based camera is received by the video
 station or if the camera-identification tag is not acceptable to the video station,
 terminating connection between the network-based camera and the video
 station.

16. The method of claim 15, wherein the ownership-locking-query signal includes a lock
 key for decrypting data transmission between the network-based camera and the
 video station.

17. The method of claim 16 further including the step of broadcasting a station-discovery
 signal from the video station before the camera-advertising signal is sent from the
 network-based camera to the video station, said station-discovery signal including a
 station-identification tag for the identification of the video station.

18. The method of claim 16, wherein the ownership-locking-query signal further includes
 any one of the camera-identification tag, the station-identification tag, a set of
 assigned networking settings, or their combinations.

19. The method of claim 18, wherein the step of locking ownership of the network-based
 camera by the respective connected socket includes the steps of
• recording the station-identification tag at the network-based camera; and
• selecting a set of unique networking settings at the video station as the assigned networking settings in the ownership-locking signal.

20. The method of claim 12, wherein the network-based camera is connected to said at least one socket through a network cable.

21. A video station for a video surveillance system incorporating the methods of any one of claims 13 to 20.

22. A method of connecting at least one network-based camera to a video station, said video station:
• having at least one socket for connecting said network-based camera,
• can locking ownership of the network-based camera with the respective connected socket if the network-based camera is in an unlock state, and provide the network-based camera with a lock key for decrypting data transmission between the network-based camera and the video station and
• can terminate connection between the network-based camera and the video station if the network-based camera is in a lock state and is not locked by the respective said method including the steps of:
a) sending a camera-advertising signal from the network-based camera to the video station for notifying the presence of the network-based camera, said camera-advertising signal includes a camera-identification tag for identification of the network-based camera;

b) recording the lock key at the network-based camera if an ownership-locking-query signal from the video station is received, and the network-based camera is in a unlock state such that at any time, each of the at least one socket
• can lock ownership of only one network-based camera; and
• receives video from the only one network-based camera with ownership locked by the respective socket.

23. The method of claim 22, wherein the ownership-locking-query signal is sent from the video station to the network-based camera for querying whether ownership of the
network-based camera with the respective connected socket can be locked, said method further including the steps of:
• after the network-based camera receives the ownership-locking-query signal,
 • sending an accept-locking signal from the network-based camera to the video station if the network-based camera is in the unlock state; or
 • sending a reject-locking signal from the network-based camera to the video station if the network-based camera is in the lock state and is not locked by the respective socket;
• if the accept-locking signal is sent from the network-based camera to the video station, locking ownership of the network-based camera with the respective connected socket and establishing a video connection for sending video from the network-based camera to the video station; and
• if the reject-locking signal is sent from the network-based camera to the video station or if the camera-identification tag is not acceptable to the video station, terminating connection between the network-based camera and the video station.

24. The method of claim 23, wherein the ownership-locking-query signal further includes any one of the camera-identification tag, the station-identification tag, a set of assigned networking settings, or their combinations.

25. The method of claim 23, wherein the step of locking ownership of the network-based camera by the respective connected socket includes the step of recording the station-identification tag at the network-based camera.

26. The method of claim 25 further including the step of updating the network-based camera with the set of assigned networking settings.

27. The method of claim 22, wherein the camera-advertising signal further includes any one of a set of camera networking settings, camera-locking status, or their combinations.

28. The method of claim 22 further including the steps of:
• sending a heart-beat signal from the network-based camera to the respective connected socket for maintaining ownership of the network-based camera with the respective connected socket; and
• If the heart-beat signal is not received within a predetermined period of time, unlocking ownership of the network-based camera with the respective connected socket and terminating connection between the network-based camera and the respective connected socket.

29. The method of claim 22, wherein the network-based camera is connected to said at least one socket through a network cable.

30. A network-based camera for a video surveillance system incorporating the methods of any one of claims 22 to 29.
Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

<table>
<thead>
<tr>
<th>Category</th>
<th>Relevant to claims</th>
<th>Identity of document and passage or figure of particular relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>US 2010/0097473 A1 PARK, LOTFALLAH - see Abstract; paragraphs [0046]-[0049] [0052], etc; Figs 3A-D.</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>US 2007/0233877 A1 QU et al - see Abstract; Fig 3A, etc.</td>
</tr>
</tbody>
</table>

Categories:

- **X** Document indicating lack of novelty or inventive step
- **Y** Document indicating lack of inventive step if combined with one or more other documents of same category.
- **&** Member of the same patent family
- **A** Document indicating technological background and/or state of the art.
- **P** Document published on or after the declared priority date but before the filing date of this invention.
- **E** Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKC:

Worldwide search of patent documents classified in the following areas of the IPC

H04L; H04N

The following online and other databases have been used in the preparation of this search report

WPI, EPODOC

International Classification:

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Subgroup</th>
<th>Valid From</th>
</tr>
</thead>
<tbody>
<tr>
<td>H04N</td>
<td>0005/232</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H04L</td>
<td>0029/06</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H04N</td>
<td>0007/18</td>
<td>01/01/2006</td>
</tr>
<tr>
<td>H04N</td>
<td>0021/2385</td>
<td>01/01/2011</td>
</tr>
<tr>
<td>H04N</td>
<td>0021/647</td>
<td>01/01/2011</td>
</tr>
</tbody>
</table>