(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

AT Y00 O

(10) International Publication Number

WO 2004/062214 A2

(51) International Patent Classification’: HO4L 12/56, (74) Agent: CLARK, Robin, C.; Hunton & Williams, LLP,
HO04Q 11/04 1900 K Street, N.W., Suite 1200, Washington, DC 20006-
1109 (US).

(43) International Publication Date
22 July 2004 (22.07.2004)

(21) International Application Number: .)
PCT/US2003/041063 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,

GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,

KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,

MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,

(25) Filing Language: English RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:
29 December 2003 (29.12.2003)

(26) Publication Language: English

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(30) Priority Data:
60/436,997 31 December 2002 (31.12.2002) US

(71) Applicant: GLOBESPANVIRATA INCORPORATED
[US/US]; 100 Schulz Drive, Red Bank, NJ 07701 (US).

(72) Inventors: MILWAY, David; 90 Rooks Street, Cotten- Published:
ham, Cambs CB4 8RB (GB). STOYE, William; 7 St. Mar- — without international search report and to be republished
garets Road, Girton, Cambridge CB3 OLT (GB). upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR PROVIDING QUALITY OF SERVICE IN ASYNCHRONOUS TRANSFER MODE
CELL TRANSMISSION

108 104
106 | -
AN i 102
N 7 L
Protocol Network
Processor | I\% hared | | Processor — lé TrI:/I
(PP) emory (PP) orts

100/

& (57) Abstract: A method and apparatus for scheduling the transmission of cells onto an network, or other packet switching network,
& is disclosed. The central feature of the scheduling mechanism is a quality of service engine (QoS Engine) which accelerates the
processing of packets in a packet switching networks, such as an ATM network, by assisting the accurate pacing of many ATM virtual
O circuits. The QoS Engine allows the concurrent support of a wide variety of port speeds, traffic classes using different priorities and
traffic parameters, quality of service engine (QoS Engine) works in conjunction with a network processor (NP) to allow it to maintain
g software flexibility, and for it to achieve accurate pacing.

47062214 A2 | IO 0.0 0O

WO 2004/062214 A2 I} 110 AA0VOH0 T PO 00 00 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2004/062214 PCT/US2003/041063

SYSTEM AND METHOD FOR PROVIDING QUALITY OF SERVICE IN
ASYNCHRONOUS TRANSFER MODE CELL TRANSMISSION

CROSS-REFERENCE TO RELATED APPLICATIONS

The present invention claims priority to co-pending United States Provisional Patent
Application No. 60/436,997, filed December 31, 2002 and entitled “System and method for
providing quality of service in asynchronous transfer mode cell transmission”, the entirety of

which is incorporated by reference herein.

BACKGROUND OF THE INVENTION

The present invention relates generally to data communication networks and, more
particularly, to transmission control mechanisms, including ATM communications processors
and switches, and cell reception and header interpretation in asynchronous transfer mode
systems/networks. |

With the proliferation of the digital age, increasing need has arisen for a single versatile
networking technology capable of efficiently transmitting multiple types of information at high
speed across different network environments. In response to this need, the International
Telegraph and Telephone Consultative Committee (CCITT), and its successor organization, the
Telecommunications Standardization Sector of the International Telecommunication Union
(ITU-T), developed Asynchronous Transfer Mode, commonly referred to as ATM, as a
technology capable of the high speed transfer of voice, video, and data across public and private
networks.

ATM utilizes very large-scale integration (VLSI) technology to segment data into
individual packets, e.g., B-ISDN calls for packets having a fixed size of 53 bytes or octets.

These packets are commonly referred to as cells. Using the B-ISDN 53-byte packet for purposes

WO 2004/062214 PCT/US2003/041063

of illustration, each ATM cell includes a header portion comprising the first 5 bytes and a
payload portion comprising the remaining 48 bytes. ATM cells are routed across the various
networks by passing though ATM switches, which read addressing information included in the
cell header and deliver the cell to the destination referenced therein. Unlike other types of
networking protocols, ATM does not rely upon Time Division Multiplexing in order to establish
the identification of each cell. That is, rather than identifying cells by their time position in a
multiplexed data stream, ATM cells are identified solely based upon information contained
within the cell header.

Further, ATM differs from systems based upon conventional network architectures such
as Ethernet or Token Ring in that rather than broadcasting data packets on a shared wire for all
network members to receive, ATM cells dictate the successive recipient of the cell through
information contained within the cell header. That is, a specific routing path through the
network, called a virtual path (VP) or virtual circuit (VC), is set up between two end nodes
before any data is transmitted. Cells identified with a particular virtual circuit are delivered to
only those nodes on that virtual circuit. In thisrmanner, only the destination identified in the cell
header receives the transmitted cell.

The cell header includes, among other information, addressing information that essentially
describes the source of the cell or where the cell is coming from and its assigned destination.
Although ATM evolved from Time Division Multiplexing (TDM) concepts, cells from multiple
sources are statistically multiplexed into a single transmission facility. Cells are identified by the
contents of their headers rather than by their time position in the multiplexed stream. A single
ATM transmission facility may carry hundreds of thousands of ATM cells per second originating

from a multiplicity of sources and traveling to a multiplicity of destinations.

WO 2004/062214 PCT/US2003/041063

The backbone of an ATM network consists of switching devices capable of handling the
high-speed ATM cell streams. The switching components of these devices, commonly referred to
as the switch fabric, perform the switching function required to implement a virtual circuit by
receiving ATM cells from an input port, analyzing the information in the header of the incoming
cells in real-time, and routing them to the appropriate destination port. Millions of cells per
second need to be switched by a single device.

Importantly, this connection-oriented scheme permits an ATM network to guarantee the
minimum amount of bandwidth required by each connection. Such guarantees are made when
the connection is set-up. When a connection is requested, an analysis of existing connections is
performed to determine if enough total bandwidth remains within the network to service the new
connection at its requested capacity. If the necessary bandwidth is not available, the connection
is refused.

In order to achieve efficient use of network resources, bandwidth is allocated to
established connections under a statistical multiplexing scheme. Therefore, congestion
conditions may occasionally occur within the ATM network resulting in cell transmission delay
or even cell loss. To ensure that the burden of network congestion is placed upon those
connections most able to handle it, ATM offers multiple grades of service. These grades of
service support various forms of traffic requiring different levels of cell loss probability,
transmission delay, and transmission delay variance, commonly known as delay jitter. It is
known, for instance, that many multimedia connections, e.g., video streams, can tolerate
relatively large cell losses, but are very sensitive to delay variations from one cell to the next. In

contrast, traditional forms of data traffic are more tolerant of large transmission delays and delay

WO 2004/062214 PCT/US2003/041063

variance, but require very low cell losses. This variation in requirements can be exploited to
increase network performance.

In particular, the following grades of service are preferably supported in modern ATM networks:
constant bit rate ("CBR") circuits, variable bit rate ("VBR") circuits, and unspecified bit rate
("UBR") circuits. These categories define the qualities of service available to a particular
connection, and are selected when a connection is established. More specific definitions of each
of these categories are set forth below.

A CBR virtual circuit is granted a permanent allocation of bandwidth aloﬁg its entire
path. The sender is guaranteed a precise time interval, or fixed rate, to send data, corresponding
to the needed bandwidth, and the network guarantees to transmit this data with minimal delay |
and delay jitter. A CBR circuit is most appropriate for real-time video and audio multimedia
streams which require network service equivalent to that provided by a synchronous transmission
network. From the perspective of the source and destination, it must appear as if a virtual piece
of wire exists between the two points. This requires that the transmission of each cell belonging
to this data stream occur at precise intervals.

A VBR virtual circuit is initially specified with an average bandwidth and a peak cell
rate. This type of circuit is appropriate for high priority continuous traffic which contains some
burstiness, such as compressed video streams. The network may "overbook" these connections
on the assumption that not all VBR circuits will be handling traffic at a peak cell rate
simultaneously. However, although the transmission rate may vary, applications employing VBR
service often require low delay and delay jitter. The VBR service is further divided into real-

time VBR (1t-VBR) and non-real-time VBR (nrt-VBR). These two classes are distinguished by

WO 2004/062214 PCT/US2003/041063

the need for an upper bound delay (Max CTD). MaxCTD is provided by rt-VBR, wnereas for
nrt-VBR no delay bounds are applicable.

A UBR virtual circuit, sometimes referred to as connectionless data traffic, is employed
for the lowest priority data transmission; it has no specified associated bandwidth. The sender
may send its data as it wishes, but the network makes no guarantee that the data will arrive at its
destination within any particular time frame. This service is intended for applications with
minimal service requirements, e.g., file transfers submitted in the background of a workstation.

A particular end-node on the network may have many virtual circuits of these varying
classes open at any one time. The network interface at the end-node is charged with the task of
scheduling the transmission of cells from each of these virtual circuits in some ordered fashion.
At a minimum, this will entail pacing of cells from CBR circuits at a fixed rate to achieve virtual
synchronous transmission. Additionally, some form of scheduling may be implemented within
some or all of the switches which form the ATM network. Connections which have deviated
from their ideal transmission profile as a result of anomalies in the network can be returned to an
acceptable service grade. |

The design of conventional ATM switching systems involves a compromise between
which operations should be performed in hardware and which in software. Generally, but not
without exception, hardware gives optimal performance, while software allows greater flexibility
and control over scheduling and buffering, and makes it practical to have more sophisticated cell
processing (e.g., OAM cell extraction, etc.).

Additional background information pertaining to ATM can be found in a number of sources and
need not be repeated directly herein. For example, U.S. Patent No. 6,122,279 (Milway et al.),

assigned to the assignee of the present invention, provides a thorough description of ATM and is

WO 2004/062214 PCT/US2003/041063

incorporated herein by reference. In addition, U.S. Patent No. 5,953,336 (Moore et al.), also
assigned to the assignee of the present invention, provides background on ATM traffic shaping,
among other things, and is likewise incorporated herein by réference.

Relative to traffic shaping, the small size of ATM cells allows fine-grain interleaving of
multiple data streams on a single physical connection, which means that it is possible to maintain
the contracted quality of service individually for each stream. However, this is hard to achieve in
practice, as the data streams will have different traffic parameters, different priorities, and the
data to be transmitted may be arriving from multiple sources, and may be a mixture of ready-
formatted cells and buffers which must be segmented.

Accordingly, there is a need in the art of ATM networking for a more flexible method
and system for shaping ATM traffic and ensuring adequate quality of service guarantees.

SUMMARY OF THE INVENTION

The present invention overcomes the problems noted above, and provides additional
advantages, by providing a system and method for pacing asynchronous transfer mode (ATM)
cell, where a shaping acceleration engine (hereinafter referred to as a QoS engine”) accelerates
the processing of ATM traffic. The QoS Engine 205, accelerates the processing of ATM traffic,
by assisting the accurate pacing of many ATM virtual circuits (VC’s) over many physical ports.
It allows for the concurrent support of a wide variety of port speeds, traffic classes, and traffic
parameters. It works hand in hand with the Network Processor in order to achieve such accurate
pacing, so that the software flexibility of the Network Processor is maintained. The QoS Engine
operates on data entries, with its values consisting of timestamp, representing an absolute time,
an index field representing a newly created entry, port representing a physical port number,

priority field representing a high or low priority, by constantly sorting the values of those entries

WO 2004/062214 PCT/US2003/041063

so that when a particular port is ready-to-transmit, the next best entry is immediately available.
In one embodiment, the present invention discloses a dual-processor hardware configuration
incorporated in the traffic shaping system of the present invention. In particular, the hardware
configuration includes several ATM ports for both receiving and transmitting ATM cells to
neighboring network nodes. Two processors a network processor and a protocol processor share
a memory. In one embodiment, the network processor handles low-level transmission and
reception of ATM cells which may include, for example, segmentation and re-assembly
functions, as well as the scheduling of port servicing. The network processor may also handle
other network ports and have hard real-time requirements on the behavior of its software. The
protocol processor conversely handles higher level protocols and performs functions, such as
bridging and routing. In another embodiment of the present invention, a generic rate control
algorithm GRCA (leaky bucket), that uses logical cell time (ILCT) and the system clock to
determine when the bucket is full, over-full and when it is empty.

Other aspects and advantages of the invention will become apparent from the following detailed
description, taken in conjunction with the accompanying drawings, illustrating by way of
example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention can be understood more completely by reading the following
Detailed Description of the Preferred Embodiments, in conjunction with the accompanying
drawings, in which:

FIG. 1 is a schematic block diagram illustrating a dual processor hardware configuration

according to one embodiment of the present invention.

WO 2004/062214 PCT/US2003/041063

i

FIG. 2 is a schematic block diagram illustrating a Quality of Service engine that polices
insertion and extraction of bits according to one embodiment of the present invention.

FIG. 3 is a schematic block diagram illustrating a Quality of Service engine polling and
determining the next-port register according to one embodiment of the present invention.

FIG. 4 is a graph showing a variable bit rate transmission and the relationship between a
physical cell transmit slot, sustainable cell interval, peak cell interval and last compliant time
values according to one embodiment of the present invention.

FIG. 5 is a schematic block diagram illustrating a simplified per-flow state machine
according to one embodiment of the present invention.

FIG. 6 is a procedure for inserting a virtual circuit into the Quality of Service engine
according to one embodiment of the present invention.

FIG. 7 is a procedure for re-inserting a virtual circuit into the Quality of Service engine
according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description is intended to convey a thorough understanding of the
invention by providing a number of specific embodiments and details involving ATM processing
and systems. It is understood, however, that the invention is not limited to these specific
embodiments and details, which are exemplary only. It is further understood that one possessing
ordinary skill in the art, in light of known systems and methods, would appreciate the use of the
invention for its intended purposes and benefits in any number of alternative embodiments,
depending upon specific design and other needs.

Now referring to the Figures and, in particular, FIG. 1, there is shown a schematic block

- diagram illustrating one embodiment of a dual-processor hardware configuration 100

WO 2004/062214 PCT/US2003/041063

incorporated in the traffic shaping system of the present invention. In particular, the hardware

‘ configuration 100 includes several ATM ports 102 for both receiving and transmitting ATM
cells to neighboring network nodes. Two processors 104 and 106 are also included as well as a
memory 108 which is shared by the two processors. In one embodiment, the first processor 104
(hereinafter referred to as the “Network Processor” or “NP”) handles low-level transmission and
reception of ATM cells. This may include, for example, segmentation and re-assembly
functions, as well as the scheduling of port servicing. The NP 104 may also handle other
network ports and have hard real-time requirements on the behavior of its software. The second
processor (dubbed the “Protocol Processor” or “PP”) 106 conversely handles higher level
protocols and performs functions, such as bridging and routing.

In the exemplary embodiment described in detail below, two general types of sources
may generate ATM traffic handled by the above hardware configuration. A first type of source
includes locally originated ATM traffic. Locally originated ATM traffic is defined as traffic that
is locally generated as far as an ATM driver on the PP 106 is concerned. For example, this
locally originated traffic may be created by a process on the PP 106 or, alternatively, the traffic
may consist of packets bridged or routed from another network interface (which might not be
considered “locally generated” in the system as a whole, but which is considered “locally
generated” for the instant example). In general this bridged or routed traffic is held as buffers
which correspond to groupings of several ATM cells (e.g., AALS packets) and which must be
segmented into discrete cells before transmission from an output port.

The second source of ATM traffic includes switched ATM cells which arrives on the
ATM ports and are switched individually to one or more ports as they arrive. Switched circuits

may be unicast, with one output cell for each input cell, or multicast, wherein each input cell is

WO 2004/062214 PCT/US2003/041063

replicated to several branches (which may be on different output ports). ATM traffic streams
from both types of sources are carried by virtual circuits or virtual paths, which we will refer to
generically as “flows”. Each flow may be characterized by the following: a priority; a traffic
class, such as CBR, 1t-VBR, nrt-VBR, or UBR; and a corresponding set of traffic parameters
specifying the rate at which cells should be transmitted and how much variation in the
transmission rate is permissible. For the sake of simplicity, the following description assumes
that the priority corresponds to the traffic class with CBR cells being given the highest priority
and UBR cells being given the lowest priority. However, it should be understood that this
convention need not be applied.

In another embodiment of the present invention, and in reference to Figure 2, a system
and method for pacing asynchronous transfer mode (ATM) cell is disclosed, where a shaping
acceleration engine (hereinafter referred to as a QoS engine”) accelerates the processing of ATM
traffic. The QoS Engine 205 which is described here, is in terms of ATM operations, however,
nothing within it is ATM-specific and it is generally applicable to any paced transmit interface.
The QoS Engine 205, accelerates the processing of ATM traffic, by assisting the accurate pacing
of many ATM virtual circuits (VC’s) over many physical ports. It allows for the concurrent
support of a wide variety of port speeds, traffic classes, and traffic parameters. It works hand in
hand with the Network Processor 104 in order to achieve such accurate pacing, so that the
software flexibility of the Network Processor 104 is maintained. The QoS Engine 205 operates
on data entries 215, with its values shown in table 1, and consisting of timestamp 210(a) an
absolute time, index 210(b) an index for newly created entry, port 210(c) a physical port number,
priority 210(d), a high or low priority, by constantly sorting the values of those entries so that

when a particular port is ready-to-transmit, the next best entry is immediately available. The

-10-

WO 2004/062214 PCT/US2003/041063

driving software uses the ‘index’ field 215 (b) to locate a particular Virtual Circuit, transmits one
cell from that circuit, and then re-inserts the entry into the QoS Engine 205 with a new updated
timestamp 215(a) that corresponds to when the virtual circuit can next transmit a cell.

Table 1: Entries stored by the QoS Engine..

timestamp 20-bit value (count of microseconds)
index 12-bit value

port 8-bit value (physical port number)
priority Boolean — high or low

The timestamp 215(a) is an indication of the earliest absolute time at which an entry
should be returned. All times are relevant to a system clock that is a 32-bit count of 8™ of
microseconds since reset and designated as ‘timer 1°. Time values may not be inserted more than
half the available range ahead of the current ‘timer 1’ value, otherwise, there will be a possibility
of creating a wraparound in the timestamp comparison. The QoS Engine block 205 does not
interpret the ‘index’ value, rather, the index value is typically used by the driving software as an
index into a Flow table. A Flow that usually corresponds to one direction of a single virtual
circuit. The index 210(b) of the present invention is used as a secondary sort key, in order to
provide stability in cases where many Flows have the same traffic contract.

In an inventive step of an index value 210(b) comparison, a 32-bit subtract of a
concatenated timestamp and index values is calculated, and when the result is a positive number
(top bit clear), then the first value is regarded as being later in time than the second that may not
be a conventional signed or unsigned compare, but which gets the desired answer in the presence

of wrapping in the available number space.

"1].‘ {

WO 2004/062214 PCT/US2003/041063

The primary resource of the QoS Engine is a large SRAM memory, with a 32 bit word
for each stored entry. There is some additional overhead for each port. The memory may be
partitioned at start of the day for the maximum number of entries per port, such a space may not
be re-allocated at run-time without interrupting the pacing process. Each port may hold entries
with high or low priority that are absolute, in that a high priority entry will always be selected in
preference to a low priority one. In the event that more than two priorities per port are required, it
must be implemented by the external software.

QoS Engine Memory Layout

The PP 106 and the NP 104 read and write to the QoS Engine 205’s memory as a
memory-mapped area which is used for setup and management, and therefore, high speed
processing may not be paramount to the overall operation. At the start of the day, various values
may be written to divide up the space among the physical ports. The first few words of the QoS
Engine 205°s memory are used to provide general details about each port queue. Each port queue
uses four words for this purpose, so that the details of the queue for a port n are to be found at
the nx4™ word of the memory. The memory words are divided up in a fashion depicted in table

2.

WO 2004/062214 PCT/US2003/041063

Table 2: NP memory word address, size and purpose.

NP address size (bits) purpose
byte offset
0 16 base of queue: a word offset from the base of QoS Engine
‘ memory
2 16 size of queue: a number of words
4 16 number of high-priority elements currently in the queue
6 16 number of low-priority elements currently in the queue
8 12 index to return for a null available transmit slot
20 inactive-poll time: timestamp at which to return news of a
null available transmit slot
12 32 reserved

The PP 106 or NP 104 may correctly set up the structures for the values of each memory
address of the QoS engine 205, before performing an insert or a remove operations on the QoS
Engine 205. The QoS Engine 205 map address and value for the NP 104 access is shown in table

3 below.

Table 3: QoS Engine Memory map for NP access, relative to QOS_ENGINE_MEM:

address reset value value

+0 uninitialized | location 0 of QoS Engine RAM
+4 location 1 of QoS Engine RAM
+ nx4 location n of QoS Engine RAM

-13-

WO 2004/062214 PCT/US2003/041063

One other embodiment of the present invention is the setup for the NP 104 access to the
QoS Engine 205’s addresses, where the network processor (NP) 104 accesses the QoS engine
205’s memory address, bit sizes of such addresses, and whether it is able to write to or read out
of , as well as the instruction required to be performed after such an access by the NP 104. The

complete illustration is depicted on table 4.

Table 4: QoS Engine Register Addresses for NP access, relative to QOS_ENGINE

address | width | read/ | reset value | name use

(bits) | write

+0 0 CONTROL What bits needed? Any at all?

+4 8 r/w 0 PORT Current port, for Insert or Remove.

Auto-updated by reading from

Next-port.

+8 12 r/w 0 INSERT_INDEX | Auto-updated by any Remove
operation

+12 1 I/w 0 INSERT_PRIO Auto-updated by any Remove
operation

+16 20 w/o INSERT_TIME A write to here triggers an Insert at

this absolute time, in 256" of a

microsecond
+20 32 r/w 0 PORTMASKO ports 0..31 polling mask
+24 32 r/w 0 PORTMASK1 ports 32..63 polling mask
+28 32 r/w 0 PORTMASK2 ports 64..95 polling mask
+64 (16 R/o 0 REMOVExx Remove an entry (see table of
words) Remove operations for details)

-14-

WO 2004/062214 PCT/US2003/041063

For REMOVE reads, each address bit which has a high or a low value (i.e. a one or a
zero) allows an operation as depicted in table 5 below.

Table 5: The lowest few bits of the address read and the exact remove operation:

address bit | value | meaning

bit 2 0 High priority if present, else low priority
1 Force access to low priority on that port
bit 3 0 Mask out the timestamp (high bits of reply are zero)

1 Provide the timestamp (in bits 12..31 of reply)

bit 4 0 Remove only if timestamp is ‘ready’ compared to now,

returning index 0 otherwise.

1 Remove whether ready or not

bit 5 0 Remove

1 Peek (return the value, do NOT remove from the port

queue)

How to Insert

In one embodiment of the present invention, and in reference to Figure 3, the NP 104
may perform an insert operation by doing a STM (store-multiple) instruction to the QoS Engine
305 registers, wheré the last address of the STM actually triggers the insert operation. The words
that should be written are port (physical port number) 310 (c), index (index for newly created
entry, where the bottom 12 bits only are retained) 310(b), prio (priority bottom bit only is

retained) 310(d) and timestamp (absolute time) 310(a). The time value should be in 256 of

-15-

WO 2004/062214 PCT/US2003/041063

microseconds, as a timer 1 (system clock) value shifted left by 5 bits, a value that should be
greater than the current value of timer 1, and not more than half a second beyond the current
value of timer 1.

How to Remove

The NP 104 removes an entry from a port queue by doing a single local destination re-
routing (LDR) operation, that provides an ‘index’ value, which is then converted by the NP 104
into the address of a structure representing a Flow; the PORT register is set every time the NP
104 reads from the next-port logic 345, which makes processing via next-port slightly faster. The
act of Removing an entry sets the INSERT_INDEX and INSERT_PRIO, in case the resulting
code intends to re-insert the entry again.

Polling and the Next-Port register

The next-port logic 345 which resides outside the QoS Engine 305, is used by the NP 104
to decide which port to process next. The QoS Engine 305 provides a mask through block 330
that provides a polling mask to this process that prevents a port from showing up if it is being
already handled by the QoS Engine, but does not yet have an entry that is ready to be processed.
The QoS Engine continuously checks the database 310 to see which ports are ‘ripe’, i.e. have an
entry which needs processing, or have reached their inactive-poll time.

Using a port queue unrelated to a physical port.

Since there is nothing that prevents the software from maintaining a port queue that is not
related to a physical port. The software can simply by choosing a port n which is not paced by
the QoS Engine 305, ensure that port n is not set in the polling mask, allocate the desired size of

some memory in the QoS Engine 305, initialize QoS Engine 305 locations nx4 and nx4+1 to

-16-

WO 2004/062214 PCT/US2003/041063

point to the allocated memory, and insert or remove entries as desired. It should be noted that it
is highly desirable for the next-port 345 hardware to provide a bit which does not correspond to a
physical port, but which can claim to be ‘ready-to-transmit’ at low priority. The software could
use this, for instance, in collection with a port queue, to schedule ‘background’ operations such
as the replicating of ATM multicast cells, such a mode of operation provided within the QoS
Engine 305 requires no special hardware, an it might be desirable to provide more than one such
bit. For instance, the software could use this in order to implement the pacing into an inverse
multiplexing over ATM (IMA) link, or a Virtual Path (VP). These applications suggest that
several such bits should be provided.

GRCA representation

For the GRCA (Generic Rate Control Algorithm) that may be used to time cell
transmissions on a virtual circuit (VC).

Table 6: Generic Rate Control Algorithm (GRCA) parameters, size and units.

GRCA parameter | represented as value size value units

SCR, Sustainable SCI, interval between sustainable 32 bits 256" of microseconds

Cell Rate cell transmission times

PCR, Peak Cell PCI, interval between peak cell 32 bits 256" of microseconds

Rate transmission times

BT, Burst ’ maximum burst length permitted at 30 bits 64" of microseconds

Tolerance peak rate

class rtP, the real-time peak flag 1 bit set for CBR and rt-VBR
VCs, clear for all others

1tS, the real-time sustained flag 1 bit set for CBR and all VBR,

clear for UBR

current credit LCT, logical cell time 32 bits 256™ of microseconds

-17-

WO 2004/062214 PCT/US2003/041063

level

In an embodiment of the present invention, a generic rate control algorithm GRCA (leaky
bucket), is disclosed wherein a logical cell time (I.CT) is the deficit from the GRCA, and timer 1
(which is the system clock) is a credit to the GRCA. In the event that the LCT is equal to timer 1,
the bucket is full, and thus there is maximum credit, when the LCT is less than timer 1, the
bucket is over-full and must be carefully pruned, and when the LCT is greater than or equal to
the addition of timer 1 and the burst tolerance (BT), the bucket is empty. When transmitting at
peak rate LCT will advance faster than timer 1, until it is BT ahead (= no credit left). At this
point, there is only a need to transmit at a sustained rate. LCT and timer 1 will advance in step
from there on.

Comparisons are done as simple unsigned integer comparisons, and wraparound works
neatly in most cases, but there is a problem if the Flow stays outside the QoS Engine (because no
data to transmit) for over half the time it takes for LCT to wrap (about 8 seconds). In this case,
the Flow can appear to have no credit. This is a relatively minor effect. It can be defeated, if
required by a background thread in the controlling software, which must visit all Flows at least
every 8 seconds and patch up the LCT values. A specific instance of the GRCA 530 is used
either for receive (policing) or for transmit (pacing) of cells. On transmit, cell delay variation
(CDV) may not used, which corresponds to an allowance for cells that are closer together than
the peak cell interval (PCI), due to variation introduced by the link or physical layer, or by an
unpaced transmitter. For a receive (policing) GRCA, the act of receiving a cell at a particular

time would update the state, and generate a Boolean return to indicate if the reception violated

-18-

WO 2004/062214 PCT/US2003/041063

the policing operation, an operation that would typically lead to the cell being tagged (e.g. using
cell loss priority, CLP bit) or dropped.

Sustained cell interval (SCI) is held to high precision for the support of high speed ports,
to reduce overall long-term drift. In fact the maximum permissible value is determined by the
range of timestamps held in the database (i.e. half a second). Pacing rates slower than this are not
supported directly by the QoS Engine. Slower rates can be manufactured by software, by only
transmitting a cell every other activation of the Flow. OC3 rates (typically 155.52 Mbps) mean
that the smallest possible inter-cell gap is about 2.73s, so using 256™ of microseconds means
that the worst possible error on the rate in cells per second is about 1 in 700. This should be
sufficient for most purposes, where the bottom two bits of BT is used as flags to give the priority
when at peak or sustained rate.

Typical Virtual Circuit State Machine

In yet another embodiment of the present invention, and in reference to Figure 5, a virtual
circuit state machine implemented by the NP software, for the case of a Flow representing
unidirectional paced traffic on a single ATM virtual circuit or VP is disclosed, where the process
begins with the start of day 515 of figure 5, where a virtual circuit virtual circuit exists but has no
cells to transmit. The virtual circuit is not inserted into the QoS Engine 505, but in the event that
a virtual circuit exists that was not in the QoS Engine 505, and now has data to transmit, the
virtual circuit is inserted into the QoS Engine 505, requesting time-now, which allows waiting
for a physical transmit slot. With T being timer 1(i.e. system clock), one embodiment of the
present invention performs an insert calculation that consists of the system checking if the
system clock, T added to twice the burst tolerance (BT) is less than the logical cell time (LCT), if

the such a check is true, then the system clock T (i.e. timer 1) and the logical cell time are equal,

-19-

WO 2004/062214 PCT/US2003/041063

and therefore, the state is a LCT wrap-around patch-up after long time with no cells. When T2 is
equal to T, it is time to schedule a transmit now. But if the system clock T added to the burst
tolerance is greater than the logical cell time, the indication is that there is not enough credit to
transmit cells at peak cell rate. If a real time peak flag exists, then the indication is that the
priority is high, therefore, the system is instructed to enqueue to transmit at peak rate, otherwise,
the priority is low and the system transmits at sustained cell rate. And if a real time sustained flag
exists, priority may either be high or low, and the system is instructed to enqueue to transmit at
sustained rate. When a virtual circuit emerges from the QoS Engine 505, it is determined by
block 510 whether the virtual circuit has data to transmit, and if there is no data to transmit, it is
passed onto block 520, where waits until a cell is available to transmit, and the GRCA 530 state
is not updated, and the virtual circuit is re-inserted into the QoS Engine 505. And finally, when a
virtual circuit emerges from the QoS Engine 505 at time T, and is determined by block 510 that
the virtual circuit has data to transmit, it is passed onto block 525, where a cell from that flow is
transmitted, and the virtual circuit is re-inserted into the QoS Engine 505 via the GRCA 530 at
time T2 with a priority P based on equating the logical cell time to be equal to the logical cell
time added to the sustained cell interval, that translates to credit to be reduced; and if the time T,
is greater than logical cell time, logical cell time and T are equated, meaning that severe
congestion exists and therefore, the credits must be limited to maximum value; but if T and the
burst tolerance combined is exceeds the logical cell time, it is an indication that there is sufficient
credit and that cells may be transmitted at peak cell rate. When T2 is equal to T added to the
peak cell rate interval, and if a real time peak flag exists, peak is high, and the QoS Engine 505
enqueues fo transmit at peak rate, otherwise, the peak is low and QoS Engine 505 transmits at

less than peak cell rate (typically at sustained cell rate). When T2 is equal to logical cell time

-20-

WO 2004/062214 PCT/US2003/041063

subtracted from the burst tolerance, and if a real time sustained flag exists, and whether peak is
high or low, the QoS Engine 505 enqueues to transmit at a sustained rate.

In an embodiment of the present invention, it is disclosed that on each port, the QoS Engine 505
maintains sorted Flows at two separate priorities. The mapping to ATM traffic classes is
disclosed, using these basic mechanisms. At Constant Bit Rate CBR, virtual circuits are
represented with the sustained cell rate interval being less than or equal to the line rate, as long as
line rate is not greater than SCI and the peak cell rate interval is equal to the sustained cell rate
interval, the burst control being equal to zero and that the real time peak and real time sustained
flags are equal and true. Then the virtual circuit will always be enqueued at high priority (if it has
cells to transmit). If a virtual circuit has no cell available then it builds up no credit. And when a
virtual circuit suffers a minor delay through some other reason (due to other NP load; physical
transmit rate granularity; or other CBR traffic) it will build up credit, and so overall throughput
will not be affected. At real-time Variable Bit Rate VBR, rt-VBR virtual circuits are represented
with the sustained cell rate interval being greater than peak cell rate interval, peak cell rate
interval being greater than the line rate, burst tolerance being equal to (n+1)xSCI — nxPCI, for an
n-cell peak burst and that the real time peak and real time sustained flags are equal and true.
Then the virtual circuit will always be enqueued at high priority, and will achieve PCI and SCL
The PCIs should not be overbooked, i.e., the sum of all CBR and rt-VBR PCIs should be less
than the physical line rate. So, in practice the PCI may not be much more than the SCI. If the
PCIs have been overbooked but the SCIs have not been overbooked, then the SCIs of all CBR
and rt-VBR traffic will eventually be met. At non-real-time variable bit rate VBR virtual circuits
are represented with the sustained cell rate interval being greater than peak cell rate interval,

peak cell rate interval being greater than or equal to the line rate, the burst tolerance equaling

21~

WO 2004/062214 PCT/US2003/041063

(0+1)xSCI — nxPCI, for an n-cell peak burst, and that the real time peak flag is false, and the real
time sustained flag is true. Then the virtual circuit will be enqueued at low priority while sending
at peak rate, and at high priority when sending at sustained rate. The virtual circuit is assured of
achieving its SCI, but higher bandwidth than this is dependent on loading in the lower priority
queue. High (overbooked) peak rates are permissible and do not interrupt CBR traffic.
However, the sustained rate is assured. The SCIs should not be overbooked (when added to the
SCIs of CBR and rt-VBR traffic as well). If they are, the throughput of CBR traffic could be
affected. In the presence of many unspecified bit rate UBR virtual circuits, they could get placed
in low-priority while at peak rate to find that the entire peak time has gone past, and are in fact
not even achieving SCI. If a mix of all of these traffic classes must be supported concurrently,
and the possibility of this behavior is not acceptable, then four priority levels per port should be
used. At UBR+ (UBR with Peak Cell Rate), virtual circuits are represented with the sustained
cell rate interval being greater than peak cell rate interval, peak cell rate interval being greater
than or equal to the line rate, burst tolerance being equal to (n+1)XSCI — nxPCI, for an n-cell
peak burst and that the real time peak flag is false, and the real time sustained flag is false. Then
the virtual circuit will always be enqueuved at low priority. Within this constraint, the system
applies the PCI/SCI/BT within the available bandwidth. High, overbooked peak rates are
permissible. In times of severe overload bandwidth is shared out proportional to SCI, rather than
in proportion to the PCI. At unspecified bit rate UBR, virtual circuits are never held in the
scheduler queues. When a physical port has a transmission slot, but no queued virtual circuits
are yet allowed to transmit, the controlling software can transmit a cell from a UBR virtual

circuit. At available bit rate ABR, there is no specific support for ABR, other than the ability to

22

WO 2004/062214 PCT/US2003/041063

re-specify the SCR at each cell. In this context, ABR should be regarded as being like variable

bit rate, but with an additional control plane which affects the SCI/PCI settings.

Traffic classes using four priorities

In the event that all of the above traffic classes are to be used at once, on a single port,
four priorities are available to a port, using two memory areas, the idea of moving VBR (and
ABR) onto two separate priorities, depending on whether it is at PCR or SCR, may be
appropriate. Four priority levels per port, depending on the exact mix of traffic classes and
number of virtual circuits, may be a requirement to run four priority levels on an individual port.
The software may facilitate it by using two port numbers for a the queuing on a single physical
port. The QoS Engine memory must be allocated in two distinct areas, corresponding to the two
logical ports.

Multicast: No special consideration is required in the pacing. As far as the output
functionality is concerned, each output of a multicast virtual circuit appears just like a unicast
virtual circuit.

Virtual Paths (VPs): The output of a VP is just like a virtual circuit. It would be
possible for the software to pace cells feeding into a virtual circuit, by dedicating a logical port
number (and a corresponding area of QoS Engine memory) to that VP. The VP is also
represented as a single entry on the physical port over which it runs. A state machine
implemented in NP software links the various states based on combinations of:

no cells to transmit / one or more virtual circuits within the VP may transmit a cell

no capacity / the VP itself may transmit a cell

-23-

WO 2004/062214 PCT/US2003/041063

Only a small number of VPs can be controlled in this way, as each requires a pre-
allocated area of QoS Engine memory, and a pre-allocated software-controlled ready-to-transmit
bit in the next-port register.

Inverse Multiplexing for ATM (IMA): The virtual circuits that operate within an IMA
link occupy a port queue , just like a Virtual Path. In addition to this, the physical ports over
which the IMA link operates can use the port queue facilities, if required. The software
implements the IMA state machine.

Dynamic Reallocation of QoS Engine Memory. The intention of this section is to allow port
queue areas to be re-allocated, while in use. This would considerably alleviate the pain of having
to pre-allocate the available space. On Flow creation, if there is not enough room, a port’s port
queue could be moved to a larger contiguous area as long as there is some spare space. What
this means is that the entries of a ‘port’ are divided into more than one physical area of memory.
This is merged with hardware support for four priority levels per port, which also requires
multiple physical areas per port. The representation of a port’s entries is changed, as follows. It

maps several areas of QoS Engine Memory, to a single port.

Dynamic reallocation of QoS Engine memory

In another embodiment of the present invention is a method to allow port queue areas to
be re-allocated, while in use. On Flow creation, if there is not enough room, a port’s queue could
be moved to a larger contiguous area as long as there is some spare space. What this means is
that the entries of a ‘port’ are divided into more than one physical area of memory. This is
merged with hardware support for four priority levels per port, which also requires multiple
physical areas per port. The representation of a port’s entries is changed, as follows. It maps

several areas of QoS Engine Memory, to a single port.

24.-

WO 2004/062214 PCT/US2003/041063

Port n (which can be a physical or logical port; the port numbers are defined by the next-port
logic) has a single word pointer at 32-bit location n in the QoS Engine’s memory. This in turn, is

a pointer to a Memory area Descriptor.

Table 7: The layout of a memory descriptor (MD).

NP address | size (bits) | name purpose
byte offset
0 16 base base of queue: a word offset from the base of QoS
Engine memory
2 16 size size of queue: a number of words
4 16 nhi number of high-priority elements currently in the queue
6 16 nlo number of low-priority elements currently in the queue
8 12 nulli index to return for a null available transmit slot
20 nullt inactive-poll time: timestamp at which to return news of
a null available transmit slot
12 16 next pointer to another MD, or 0 for ‘end of chain’
14 1 same if set, and next!=0, the next MD in the chain is the at the
same priority as the current one, for polling purposes.
Otherwise, the next one is at a lower priority than the
current one.
15 unused

If the ‘next’ field is non-null, then the nulli and nullt fields are ignored. Thus, you only get

nulli/nullt at the end of the chain. In effect they are the lowest priority item of all.

25.-

WO 2004/062214 PCT/US2003/041063

The control software for the device must construct these chains of descriptors, in allocating
memory at start of day. It is expected that this runs on the PP, not the NP. The PP also keeps
track of what areas of memory area unused. |

The polling hardware must traverse this chain of descriptors every time a port is polled. By
default each MD in the chain provides another two priority levels. Or, if the ‘same’ flag is set
then the two are regarded as being at the same priority as each other.

The PORT register, for Insert operations, is replaced by a register called INSERT_ADDR which
is a pointer to the MD at which the insertion occurs. The Remove operation fills in the correct
value to allow easy re-insertion. If the traffic classes want to support removal from one MD and
insertion into another, for instance to change priorities, then the software must figure out the
linkage between the two MDs using its own structures.

The intention of this structure is that four (or even six) priorities may be attached to a port, in two
memory areas. A memory area can thus be realloc-ed and provide a service while both old and
new areas are linked on the chain. The old one immediately precedes the new one, and has the
‘same’ bit set.

In order to support the ‘realloc’ case, there is one final wrinkle to the behavior of Remove. When
Remove-ing from a MD, and the ‘same’ bit is set, then the INSERT_ADDR register is set to the
next MD in the chain for this port. In this way entries will be removed from the old port queue ,
and inserted into the new one. In more detail, this should allow the realloc-ing of a port queue
area, entirely under the control of the PP. Neither the NP, nor the QoS Engine, need break the
service at all. Given a port n with four priorities, represented by two MDs at m1 and m2. To
replace the higher priority MD, at m1:

1. Allocate a new memory area

26-

WO 2004/062214 PCT/US2003/041063

Construct anew MAD, m3, which is to replace m1.

. m3—next = m2; ml—next = m3, ml—>same = true. Now there are three MADs on the chain

for port n, in order m1, m3, m2. The arrangement of fields in the MAD means that the update
of m1-—>same/true is atomic.

As entries mature, the memory of m1 should gradually become empty. Wait until this is so.
Set QoS Engine memory location n to point to m3, rather than m1. m1 is now removed from

the list (atomically). Its memory can be reclaimed for future use.

The initial array of pointers, rather than the initial array of immediate MADs, is specifically to

allow the atomic asynchronous replacement of the first MAD entry in the chain. The m1

replacement case also works when there is only one memory area for this port. To replace the

lower priority MD, at m2:

6.

7.

9.

10.

Allocate a new memory area

Construct a new MAD, m3, which is to replace m2.

m2—>next = 0; m2—next = m3, m2—same = true. Now there are three MADs on the chain
for port n, in order m1, m2, m3. The arrangement of fields in the MAD means that the update
of m2—same/true is atomic. The nulli/nullt fields of m2 are ignored now because m2—next
is no longer O.

As entries mature, the memory of m2 should gradually become empty. Wait until this is so.
Set m1—next to point to m3, rather than m2. m2 is now removed from the list (atomically).

Its memory can be reclaimed for future use.

Overall this makes the hardware block a great deal more flexible. It also makes four priorities per

port far more acceptable.

27-

WO 2004/062214 PCT/US2003/041063

While the foregoing description includes many details and specificities, it is to be understood
that these have been included for purposes of explanation only, and are not to be interpreted as
limitations of the present invention. Many modifications to the embodiments described above

can be made without departing from the spirit and scope of the invention.

28-

WO 2004/062214 PCT/US2003/041063

What is claimed:
1. A method of accelerating the processing of packet-based traffic in a packet switching network,
comprising:

providing a quality of service engine for accelerating the processing of packet-based
traffic by accurately pacing multiple virtual circuits;

allocating data entry values for scheduling transmission of packets on one or more
virtual circuits, wherein each data further comprises: a timestamp field, an index field, a port
field and a priority field;

sorting out the data entry values to determine the next best available entry when a
particular port is ready to transmit.
2. The method according to claim 1 wherein the index field is used to locate a particular virtual
circuits.
3. The method according to claim 1 wherein the timestamp field indicates the earliest absolute
time at which an entry maybe returned.
4. The method according to claim 1 wherein the port field indicates a physical port number.
5. The method according to claim 1 wherein the priority field is a Boolean high or low value and
indicates the priority of an entry.
6. The method according to claim 1 wherein the quality of service engine provides a mask that
prevents a port that have an entry which is not ready to be processed from showing up when it is
being handled by the quality of service engine.
7. The method of claim 1, wherein the quality of service engine is accessed by a network
processor to determine whether to write to or read out of the its memory.

8. The method of claim 7, wherein the network processor performs remove reads.

-29-

WO 2004/062214 PCT/US2003/041063

9. The method of claim 8, wherein each remove read is priority checked prior to removing.
10. The method of claim 8, wherein each remove read is a conditional or unconditional remove.
11. An apparatus for accelerating the processing of packet-based traffic in a packet switching
network, comprising:

a quality of service engine for accelerating the processiﬁg of packet-based traffic by
accurately pacing multiple virtual circuits;

data eﬁtry values for scheduling transmission of packets on one or more virtual circuits,
wherein each data further comprises: a timestamp field, an index field, a port field and a priority
field;

data entry values sorter for determining the next best available entry when a particular
port is ready to transmit.
12. The apparatus according to claim 11 wherein the index field is used to locate a particular
virtual circuits.
13. The apparatus according to claim 11 wherein the timestamp field indicates the earliest
absolute time at which an entry maybe returned.
14. The apparatus according to claim 11 wherein the port field indicates a physical port number.
15. The apparatus according to claim 11 wherein the priority field is a Boolean high or low value
and indicates the priority of an entry.
16. The apparatus according to claim 11 wherein the quality of service engine provides a mask
that prevents a port that have an entry which is not ready to be processed from showing up when
it is being handled by the quality of service engine. |
17. The apparatus of claim 11, wherein the quality of service engine is accessed by a network

processor to determine whether to write to or read out of the its memory.

-30-

WO 2004/062214 PCT/US2003/041063

18. A computer-readable media containing a computer-executable program for accelerating the
processing of packet-based traffic in a packet switching network, the program comprising:

one or more instructions for providing a quality of service engine for accelerating the
processing of packet based traffic;

one or more instructions for allocating data entry values for scheduling transmission of
]S)ackets on one or more virtual circuits;

one or more instructions for sorting data entry values to determine the next best available
data entry once a particular port is ready to transmit;
19. The computer-readable media of claim 18, wherein the one or more instructions for
allocating data entry values for scheduling transmission of packets on one or more virtual circuits
further comprises one or more instructions for identifying a timestamp field, an index field, a
port field and a priority field;
20. The computer-readable media of claim 18, further comprising one or more instructions for
providing a rﬁask that prevents a port that have an entry which is not ready to be processed from
showing up when it is being handled by the quality of service engine.
21. The computer-readable media of claim 18, further comprising one or more instructions for
the accessing of the quality of service engine by a network processor to determine whether to
write to or read out of the its memory.
22. The computer-readable media of claim 18, further comprising one or more instructions fér
the network processor to perform remove reads that are priority checked prior to removing is a

conditional or unconditional remove.

-31-

WO 2004/062214 PCT/US2003/041063

108 104
106 ’ _
AN J 102
N 7 |
Protocol Network
Processor |— l\f;‘.hared — Processor _ QT:;A
(PP) emory (PP) orts

100/

FIG. 1

1/7

WO 2004/062214

Insert

PCT/US2003/041063

225

/iT—siampl index | port 1 priorityl

7.

/ (N
215(a) 215(b) 215(c) 215(d)

220

.)
L
Z
}

\

A

»
o

N N

240 235

2/7

FIG. 2

WO 2004/062214

Insert

PCT/US2003/041063
305
315
\ 330\/
l \ /] g
o D
325
310 (
\ 335 340
320
—
310(a) 310(b) 310(c) 310(d)
> |T-stamp| index ‘ port |priorlty|
Extract

3/7

- 345

FIG. 3

WO 2004/062214 PCT/US2003/041063

\ 4

v

FIG. 4

4/7

WO 2004/062214 PCT/US2003/041063

(/"‘ 505

Insert Extract
530
+ 510
y
Yes
/ No

525 515
- 4—————45: Flow
Created

520

FIG. 5

57

WO 2004/062214 PCT/US2003/041063

AN INSERT CALCULATION CONSISTS OF THE FOLLOWING (WITH T BEING
TIMER 1

if (T + 2*BT < LCT) ILCT = T; // LCT wrap-around patch-up after

long time wi’th no cells

T2 = T; // schedule now
if (T + BT > LCT) // sufficient credit to send at
PCR
if (rtP) P = high; else P = low;
// enqueue to transmit at peak rate
else // send at SCR

if (rtS) P = high; else P = low;

// enqueue to transmit at sustained rate

FIG. 6

6/7

WO 2004/062214 PCT/US2003/041063

AVC WITH DATA TO TRANSMIT AND THE UPDATING THE GRCA STATE

LCT += SCI; // reduce credit

if (T > LCT) LCT = T; // severe congestion - limit credit to max
value

if (T + BT > LCT) // sufficient credit to send at PCR |

{
T2 = T + PCI;
if (rtP) P = high; else P = low;

// enqueue to transmit at peak rate
else // send at less than PCR (typically at SCR)
T2 = LCT - BT;

if (rt8) P = high; else P = low;

// enqueue to transmit at sustained rate

FIG. 7

717

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

