(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2009/146998 A1

(43) International Publication Date 10 December 2009 (10.12.2009)

(51) International Patent Classification: *H04N 7/24* (2006.01) *H04L 29/06* (2006.01) *G11B 20/10* (2006.01)

(21) International Application Number:

PCT/EP2009/055663

(22) International Filing Date:

11 May 2009 (11.05.2009)

(25) Filing Language:

English

(26) Publication Language:

English

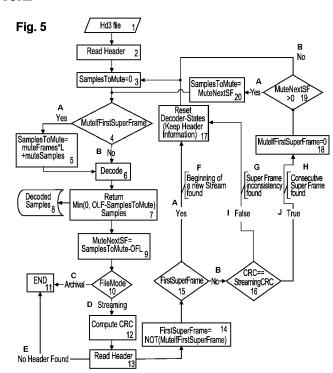
(30) Priority Data:

08157417.0

2 June 2008 (02.06.2008)

EP

(71) Applicant (for all designated States except US): THOM-SON LICENSING [FR/FR]; 46, Quai A. Le Gallo, F-92100 Boulogne-Billancourt (FR).


(72) Inventors; and

(75) Inventors/Applicants (for US only): KORDON, Sven [DE/DE]; Hildesheimer Strasse 117, 30173 Hannover (DE). JAX, Peter [DE/DE]; Am Bokemahle 8, 30171 Hannover (DE). BOEHM, Johannes [DE/DE]; Sieberweg 35, 37081 Göttingen (DE).

- (74) Agent: HARTNACK, Wolfgang; Deutsche Thomson OHG, European Patent Operations, Karl-Wiechert-Allee 74, 30625 Hannover (DE).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR GENERATING OR CUTTING OR CHANGING A FRAME BASED BIT STREAM FORMAT FILE INCLUDING AT LEAST ONE HEADER SECTION, AND A CORRESPONDING DATA STRUCTURE

(57) Abstract: In frame-based bit stream formats the data required for decoding a current frame are usually stored within the data section for that frame. One exception is the mp3 bit stream where data for a current frame is stored in previous frames. If the decoder did not receive the required previous frame, decoding of the current mp3 frame is skipped. The invention can be applied for such bit streams, in an archival mode, a streaming mode and a sample-exact cutting of an archival mode. In the streaming and cutting modes, new headers are established. The number of frames required for initialising the decoder status is signalised in the header, as well as a consistency check value in the streaming mode. These frames are used for decoder initialisation but not for decoding samples or coefficients. For a sample-exact cutting, for the frame at which the cut shall occur, the number of samples or coefficients to be muted is also indicated in the header. The invention can be applied for the hd3 audio file format for lossless extension of an mp3 bit stream.

Published:

— with international search report (Art. 21(3))

Method and apparatus for generating or cutting or changing a frame based bit stream format file including at least one header section, and a corresponding data structure

1

The invention relates to a frame-based data format with changeable format, the frames containing encoded signal data which for decoding of a current frame require access to previous frame data.

10

Background

In frame-based bit stream formats the data required for decoding a current frame are usually stored within the data section for that frame.

An exception is the MPEG1 Audio Layer III bit stream with its bit reservoir technique, where data for a current frame is stored in previous frames. The position of the data is indicated in the bit stream by a pointer to the position in byte of the beginning of the main-data in the previous frame. If the decoder did not receive the required previous frame, decoding of the current mp3 frame is skipped.

25 Invention

30

35

The MPEG1 Audio Layer III bit stream does not have a bit stream header field for enabling sample-exact cutting. The present invention can be applied for a data format or structure where an extension data stream provides lossless extension for a lossy base layer data stream for e.g. an audio signal, e.g. the hd3 audio file format for lossless extension of an mp3 bit stream, wherein decoding of a frame requires decoding of more than one previous frame and the bit stream format offers an archival mode and a streaming mode, as well as a sample-exact cutting feature of the bit

stream.

'Archival mode' means that a file includes a single bit stream header and successive frames of encoded or decoded signal samples or coefficients (in particular audio samples), whereby decoding must start at the beginning of the file, i.e. with the frame following the bit stream header. 'Streaming mode' means that a coherent bit stream is separated into more than one package of data, each package starting with a single bit stream header followed by several frames, whereby decoding can start at each package. 10 Sample-exact cutting means generating as a new bit stream a partial section from an existing bit stream, thereby encoding or decoding only a subset of samples of that existing bit stream, wherein the first and the last decodable sample 15 can be chosen arbitrarily.

The problem to be solved by the invention is to disclose a bit stream format that facilitates the initialisation of the decoder states at the beginning of a cut file or a streaming package. Depending on the frame, the number of previous frames involved in the decoder states recovery is different. A streaming mode file or a cut file can start at each frame and therefore the required number of previous frames for the decoder state recovery is missing.

25 This problem is solved by the methods disclosed in claims 1 and 3 and by the data structure disclosed in claim 2. An apparatus that utilises the method of claim 3 is disclosed in claim 4.

30 The inventive bit stream format can be generated or used at encoder side as well as at decoder side. Regarding decoder side, the invention is related to a corresponding decoder processing and the required bit stream header fields for initialising the decoder states at the beginning of the cut 35 file or the stream package.

According to the invention, it is signalised in the bit

10

30

stream how many frames are required for initialising the decoder states. This is performed explicitly by signalising within the bit stream header the number of frames required for the decoder status recovery. These frames are used for decoder initialisation but not for decoding samples or coefficients. For the sample-exact cutting, for the frame at which the cut shall occur, the number of samples or coefficients to be muted is indicated in the bit stream header, for enabling a sample-exact cutting beyond the frame borders.

The invention can be used e.g. in an hd3 encoder in order to allow two bit stream modes and sample-exact cutting of the bit stream. It is a specific solution because decoding of a 15 frame of the second layer of the hd3 encoder bit stream requires more then one decoded frame of the first layer, whereas in most known frame-based audio formats each frame can be decoded independently from the other frames. Coders that make use of backward adaptive prediction techniques can not use the inventive processing because it re-20 quires that all previously decoded samples are known for recovering the prediction states. Therefore such known bit streams include the prediction states for initialisation of the decoder after a defined number of coded samples, which 25 is not true for the present invention.

In principle, the inventive method is suited for generating a frame based bit stream format file including at least one bit stream header section, said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame can be contained in one or more previous frames, and wherein in said header information items are arranged representing:

- total number of samples per channel for said file;
- 35 an 'archival mode' or a 'streaming mode' for said file;
 - whether or not a decoding of said encoded signal data can

frames,

start at the first frame of said file;

- if a decoding of said encoded signal data is not to start at said first frame of said file, the number of initial frames to mute while decoding states are initialised, and optionally, for a sample-exact cutting feature, the number of samples to mute in the corresponding frame;
- in said streaming mode, a value for identifying a previous super frame for a consistency check,

wherein in said archival mode, said file includes a single

bit stream header section and successive ones of said

frames, and a decoding of said encoded signal data is to

start with the first one of said frames,

and wherein in said streaming mode said bit stream contains

more than one super frame, each one of said super frames

starting with a single bit stream header section followed by

several ones of said frames, and a decoding of said encoded

signal data can be initialised at each one of said super

and wherein said information item regarding the number of
initial frames to mute signalises how many ones of initial
frames in a current super frame are required for establishing data for initialising states of a decoding of said signal data before actually starting decoding of encoded signal
data from the following frame or frames of said current super frame, such initial frames not being used for decoding
the encoded signal data contained therein.

In principle, the inventive data structure is suited for a frame based bit stream format file including at least one

30 bit stream header section, said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame can be contained in one or more previous frames, and wherein in said header information items are arranged representing:

- 35 total number of samples per channel for said file;
 - an 'archival mode' or a 'streaming mode' for said file;

WO 2009/146998 PCT/EP2009/055663

- whether or not a decoding of said encoded signal data can start at the first frame of said file;

5

- if a decoding of said encoded signal data is not to start at said first frame of said file, the number of initial
- frames to mute while decoding states are initialised, and optionally, for a sample-exact cutting feature, the number of samples to mute in the corresponding frame;
 - in said streaming mode, a value for identifying a previous super frame for a consistency check,
- wherein in said archival mode, said file includes a single bit stream header section and successive ones of said frames, and a decoding of said encoded signal data is to start with the first one of said frames,
- and wherein in said streaming mode said bit stream contains

 more than one super frame, each one of said super frames
 starting with a single bit stream header section followed by
 several ones of said frames, and a decoding of said encoded
 signal data can be initialised at each one of said super
 frames,
- and wherein said information item regarding the number of initial frames to mute signalises how many ones of initial frames in a current super frame are required for establishing data for initialising states of a decoding of said signal data before actually starting decoding of encoded signal data from the following frame or frames of said current super frame, such initial frames not being for use for decoding the encoded signal data contained therein.
- In principle one inventive method is suited for cutting a

 section out of a frame based bit stream format file including a bit stream header section, said frames including encoded signal data, wherein data required for a decoding or
 an evaluation of data of a current frame can be contained in
 one or more previous frames, and wherein said header in
 cludes information items representing:
 - total number of samples per channel for said file;

- an 'archival mode' for said file;
- a decoding of said encoded signal data is to start at the first frame of said file,

wherein in said archival mode, said file includes a single bit stream header section and successive ones of said frames,

said method including the step of forming a cutting file by taking the required frames data from said bit stream and arranging a cutting header in front of these frames data,

- 10 wherein said cutting header is derived from said header and in said cutting header:
 - said total number of samples per channel for said file is replaced by the number of samples per channel for said cutting file;
- 15 said archival mode is kept;
 - said information item regarding decoding of said encoded signal data is to start at the first frame of said file is changed to decoding of said encoded signal data is to start later in said file;
- an information item is added regarding the number of initial frames to mute while decoding states are initialised.

In principle one inventive apparatus is suited for cutting a section out of a frame based bit stream format file including a bit stream header section, said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame can be contained in one or more previous frames, and wherein said header includes information items representing:

o - total number of samples per channel for said file; an 'archival mode' for said file; a decoding of said encoded signal data is to start at the first frame of said file,

wherein in said archival mode, said file includes a single bit stream header section and successive ones of said frames,

WO 2009/146998 PCT/EP2009/055663

7

said apparatus including means being adapted for forming a cutting file by taking the required frames data from said bit stream and arranging a cutting header in front of these frames data, wherein said cutting header is derived from said header, and in said cutting header:

- said total number of samples per channel for said file is replaced by the number of samples per channel for said cutting file;
- said archival mode is kept;
- said information item regarding decoding of said encoded 10 signal data is to start at the first frame of said file is changed to decoding of said encoded signal data is to start later in said file;
- an information item is added regarding the number of ini-15 tial frames to mute while decoding states are initialised.

In principle one inventive method is suited for changing a frame based bit stream file format, said bit stream including a header section, said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame can be contained in one or more previous frames, and wherein said header includes information items representing:

- total number of samples per channel for said file;
- 25 - an 'archival mode' for said file;
 - a decoding of said encoded signal data is to start at the first frame of said file,

wherein in said archival mode, said file includes a single bit stream header section and successive ones of said

30 frames,

35

20

said method including the step of generating from said archival mode file a 'streaming mode' bit stream by forming from every successive group of frames of said archival mode file a super frame of said streaming mode bit stream by taking the required frame data from said archival mode file and arranging a super frame header at the beginning of each su-

10

20

25

WO 2009/146998 PCT/EP2009/055663

per frame, wherein these super frame headers are derived from said header and in the first one of said super frame headers:

- said total number of samples per channel for said file is replaced by a first adapted number of samples per channel;
- an information item for 'streaming mode' instead of 'archival mode' is given;
- said information item regarding decoding of said encoded signal data is to start at the first frame of said file is kept,

and in the following ones of said super frame headers:

- said total number of samples per channel for said file is replaced by a second adapted number of samples per channel;
- said information item for 'archival mode' is replaced by an information item for 'streaming mode';
 - said information item regarding decoding of said encoded signal data is to start at the first frame of said file is replaced by an information item regarding decoding of said encoded signal data is not to start at said first frame;
 - an information item is added regarding the number of initial frames to mute while decoding states are initialised;
 - optionally, an information item is added regarding the number of samples to mute in the frame where decoding of said encoded signal data is to begin, which number is '0';
 - an information item is added regarding consistency check data, the value of which is derived from the data of the previous super frame.
- In principle one inventive apparatus is suited for changing a frame based bit stream file format, said bit stream including a header section, said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame can be contained in one or more previous frames, and wherein said header includes information items representing:

35

- total number of samples per channel for said file;
- an 'archival mode' for said file;
- a decoding of said encoded signal data is to start at the first frame of said file,
- 5 wherein in said archival mode, said file includes a single bit stream header section and successive ones of said frames,

said apparatus including means being adapted for generating from said archival mode file a 'streaming mode' bit stream

- 10 by forming from every successive group of frames of said archival mode file a super frame of said streaming mode bit stream by taking the required frame data from said archival mode file and arranging a super frame header at the beginning of each super frame, wherein these super frame headers are derived from said header and in the first one of said
- .5 are derived from said header and in the first one of said super frame headers:
 - said total number of samples per channel for said file is replaced by a first adapted number of samples per channel;
 - an information item for 'streaming mode' instead of 'archival mode' is given;
 - said information item regarding decoding of said encoded signal data is to start at the first frame of said file is kept,

and in the following ones of said super frame headers:

- 25 said total number of samples per channel for said file is replaced by a second adapted number of samples per channel;
 - said information item for 'archival mode' is replaced by an information item for 'streaming mode';
- 30 said information item regarding decoding of said encoded signal data is to start at the first frame of said file is replaced by an information item regarding decoding of said encoded signal data is not to start at said first frame;
 - an information item is added regarding the number of initial frames to mute while decoding states are initialised;
 - optionally, an information item is added regarding the

25

35

WO 2009/146998 PCT/EP2009/055663

number of samples to mute in the frame where decoding of said encoded signal data is to begin, which number is '0';

- an information item is added regarding consistency check data, the value of which is derived from the data of the previous super frame.

In principle, the last-mentioned method can be used for decoding said streaming mode bit stream, further including the steps of:

- o when starting decoding of said streaming mode bit stream at said first super frame, the decoding of the encoded signal data starts at the first frame of that super frame using default decoder states;
- when not starting decoding of said streaming mode bit stream at said first super frame, following a decoding initialisation or reset, a number 'muteFrames' of frames corresponding to said information item regarding the number of initial frames to mute is used for initialising the decoding states, and the decoding of encoded signal data starts at frame number muteFrames+1 of the current super frame using these decoding states;
 - when not starting decoding of said streaming mode bit stream at said first super frame, and consistency check data that were calculated from the previous super frame data is not consistent with corresponding consistency check data calculated from the current super frame, using a number 'muteFrames' of frames of the following super frame for re-initialising the decoding states starting decoding of encoded signal data at frame number
- 'muteFrames'+1 of that following super frame using these decoding states;
 - when not starting decoding of said streaming mode bit stream at said first super frame, and a super frame was decoded before and said consistency check data are valid, using the decoder states of the previously decoded super frame to decode the encoded signal data of the frames of

WO 2009/146998

PCT/EP2009/055663

the current super frame.

Advantageous additional embodiments of the invention are disclosed in the respective dependent claims.

11

5

The following description provides the corresponding bit stream information and the decoder processing for having one bit stream format that supports a streaming mode as well as an archival mode and that facilitates sample-exact cutting.

10

Drawings

Exemplary embodiments of the invention are described with reference to the accompanying drawings, which show in:

- Fig. 1 Structure of an archival mode bit stream;
- Fig. 2 Structure of a cut archival mode bit stream;
- Fig. 3 Structure of the streaming mode bit stream;
- 25 Fig. 5 Decoder flow chart for the processing of archival mode, cutting mode and streaming mode of the inventive bit stream format;
 - Fig. 6 Simplified HD3 file format.

30

Exemplary embodiments

The invention was made during the hd3 codec development.

Therefore, the description is applicable to the current version of the hd3 bit stream format. However, the invention can be applied correspondingly to all frame based file for-

10

15

20

25

mats that require knowledge of a number of previous frames for decoding a frame and wherein number is written into the bit stream header for initialising the decoder states, or for achieving sample-exact cutting by indicating the number of samples to mute of the decoded frame.

12

The hd3 codec processing enables storage, in a single file, of an mp3 file plus extension data for the bit-exact representation of the source of the mp3 file. The first version of the hd3 bit stream format was an archival format with one file header and successive data frames Framen, Framen, ... Framen, as shown in Fig. 1. For an easier understanding, the different layers of the hd3 codec are not depicted here, and it is assumed that the described coder requires a number of previously decoded frames to decode the current frame.

For different applications it might be useful to transform the archival format at decoder side into a streaming format, or to cut a short sequence out of the archival format. For example, cutting enables fast generation of short previews and the streaming format allows starting decoding without having the complete file received.

However, a problem to solve for sample-exact cutting and for the operation in streaming mode and archival mode is the initialisation of the decoder states in case the previous frames are missing. The following description explains the required bit stream information and decoder processing.

Archival mode

- 30 The archival mode bit stream as shown in Fig. 1 consists of one file header at the beginning of the file, followed by signal data divided into frames, wherein each frame represents code representing a segment of L coded signal samples or coefficients.
- The archival mode bit stream decoding can start only at the 35 first frame because only there the decoder states are known

10

30

35

(they are defined in every decoding standard). E.g., the below-mentioned Main_Data_Begin_Pointer in mp3 is set to zero for the first frame. By continuously decoding the following frames, the decoder states get initialised and a correct decoding of the samples is obtained. A main characteristic of the described format is that not all but only k, with $0 \le k < K$, previously decoded frames are required to achieve correct results, wherein K is the maximal number of required decoded frames and K is a constant value that is known in the encoder and in the decoder. However, decoding of the required

The hd3 codec provides such feature by the independently decodable mp3 frames. However, the reconstruction of the bitexact replica (i.e. lossless reconstruction) requires due to the mapping processing status information from three previously decoded mp3 frames, as described in application EP 08102308.7.

information from the previous frames without knowledge of

other frames needs to be feasible.

Furthermore, the MPEG1 Audio Layer III standard ISO/IEC 11172-3 includes the above-mentioned bit reservoir technique that allows storage of main data in previous frames. A main data begin pointer is used that points to the beginning of the main data located in a previous frame. Thus, decoding of single mp3 frames requires information from previous frames as well.

These issues are complicating the cutting or streaming of the said bit stream format due to the fact that the required information from previous frames is missing at the beginning of the streaming mode file or the cut file. Fig. 4 illustrates related issues that affect decoding-side cutting or streaming of the encoding-side (or transmitted, or recorded, or original) archival format. When starting decoding at the header of the bit stream without the data from ${\tt Frame}_{n-5}$, ${\tt Frame}_{n-4}$ can not be decoded because its

tialised decoder states is Framen.

10

15

Main_Data_Begin_Pointer points to non-available Frame_{n-5} data. As well, the frames n-3 to n-1 can not be decoded correctly because their decoder states are not initialised correctly due to the missing data from the previous frames.

However, following availability of data (e.g. spectral values) from three previous frames, although frames n-3 to n-1 are not decoded, the correct decoder states of the following frame can be reconstructed in a decoder states initialisation step/stage DSI by performing the mapping process de-

To overcome these problems, according to the invention, some extra information items are added to the bit stream header depicted in the following table. Based on these additional information items the decoder can decide if the processing will start with known default decoder states or with unknown decoder states:

scribed in EP08102308.7. The first frame with correctly ini-

Bit Data field Contents length Total number of samples per OFL channel corresponding to the Χ (original file length) payload of the following data. '0': Archival mode FileMode 1 '1': Streaming mode '0': Decoding starts at the beginning (i.e. with the first frame or with the first package) of the file, i.e. decoding states have their MuteIfFirstSuperFrame 1 default values '1': Decoding starts later in the file (or at a later package) if(MuteIfFirstSuperFrame) Information required for starting decoding later in

		the stream or at the begin- ning of a cut file
muteFrames	X	Number of frames to mute while initialising the decoder states
muteSamples	X	Number of samples to mute in the corresponding frame for sample-exact cutting
<pre>if(FileMode) {</pre>		Information required in streaming mode
StreamingCheckSum }	Х	Value for identifying the previous super frame for a consistency check

Table 1: Section of the header of the inventive bit stream format

The 'MuteIfFirstSuperFrame' field of the bit stream header indicates whether or not decoding of the following frames requires an additional initialisation of the decoder states. If true (i.e. the flag is set), further information items are inserted into the bit stream header, which will be discussed in the following examples for cutting and streaming.

10

15

20

The bit stream header for the archival mode uses the 'OFL', 'FileMode' and 'MuteIfFirstSuperFrame' data fields only, wherein the values 'FileMode' and 'MuteIfFirstSuperFrame' are set to zero (or the corresponding flags are cleared) to indicate a non-cut archival file.

Cutting of the archival mode bit stream

Cutting is used at decoding side to separate a short subsection from a received or replayed complete coherent bit stream in archival mode. The bit stream mode of the cut file is equal to that of the archival mode format. Fig. 2 depicts a cut file produced from the archival mode file format shown in Fig. 1. Cutting can be used, for example, to get a short

preview of the complete file. Instead of decoding and newly encoding the desired section, the required frames are just cut out from the input file and a new header is inserted in front of these cut-out data frames.

5

10

15

The problem with cutting is that for the decoding of the first frame of the cut-out data frames the data from the required previous frames are missing in case the preview or the cut-out section, respectively, does not start at the beginning of the complete bit stream. Therefore the cut file evaluates the 'MuteIfFirstSuperFrame' data field of the bit stream header indicating that the processing of the first frames merely initialises the decoder states and that the decoded samples of these frames are to be muted. The number of frames that are to be muted is indicated in the bit stream header in the 'muteFrames' field, and the number 'muteSamples' of samples that are to be muted is indicated in the header to enable sample-exact cutting instead of pure frame-exact cutting.

20

The following example explains in more detail how to create a cut file from an archival file:

Given values

L: Number of decoded samples per frame

OFLorig: Total length of the input file in samples per channel

 X_{start} : Number of the first sample of the archival file to be decoded for the cut file

 X_{end} : Number of the last sample of the archival file to be decoded for the cut file

Values to be determined

OFL $_{\text{cut}}$: Total length of the cut file in samples per channel

Framevalid: First decodable frame with known decoder states

Frame_{start}: First decoded frame of the cut file

Frame end: Last decoded frame of the cut file

 k_{mapping} : Number of frames required for mapping status ini-

tialisation, i.e. the number of frames required to

recover the decoder states of Framevalid

 $k_{ exttt{mp3}}$: Number of invalid mp3 frames

Get number of required previous frames

 $Frame_{valid} = floor(X_{start}/L)$

Get $k_{mapping}$ (which is the number of previous frames required for valid decoding of frame number Frame_valid, which number is known but may vary from frame to frame) and read the Main_Data_Begin_Pointer of (mp3-)frame number Frame_valid. Set k_{mp3} equal to the number of frames to add in order to get a valid Main_Data_Begin_Pointer. For example, if the Main_Data_Begin_Pointer points to the previous frame of Frame_valid, set k_{mp3} to '1'.

Compute header values

 $muteFrames = k_{mp3} + k_{mapping}$

 $OFL_{cut} = X_{end} - X_{start} + 1 + L*muteFrames$

 $Frame_{start} = max(0, Frame_{valid} - muteFrames)$

Frame_{end} = min(ceil(OFL_{orig}/L), ceil(X_{end}/L)) -1

 $muteSamples = X_{start} - L*Frame_{start}$

wherein 'floor' rounds a specified decimal number to the closest integer towards negative infinity, and 'ceil' returns a value representing the smallest integer that is greater equal the argument of the ceil function

Establish the corresponding header

Data field	Value
OFL	OFL _{cut}
FileMode	0
MuteIfFirstSuperFrame	1
muteFrames	muteFrames
muteSamples	muteSamples

WO 2009/146998 PCT/EP2009/055663

Create the cut file

Copy the header followed by the frames Frame_{start} to Frame_{end}

For identification of a cut archival mode file, 'FileMode' is set to '0' and 'MuteIfFirstSuperFrame' is set to '1'. These properties will indicate to the decoder that the decoder states are to be initialised using the first 'muteFrame' frames parameter, and that the decoded samples of these frames are invalid.

Several frame-dependent values need to be found out for performing a cutting of the archival bit stream mode-file. However, the first step is finding the frame 'Frame_{valid}' in
which the first sample of the cut file is stored. For the
computation of that first frame, corresponding delays in the
core-codec processing may be introduced which, for easier
understanding, are not considered in the example.

Next, the number of previous frames required for recovering the decoder states is to be obtained. Thus, the cut file must start with the frame that holds the data of the first frame involved in the decoder state recovery of 'Frame_{valid}'.

The obtained number of previous frames is written into the 'muteFrame' field of the bit stream header, such that the decoder knows that these frames are to be used only for initialisation of the decoder states and not for decoding samples.

For enabling a sample-exact cutting, an additional number of 'samples per channel to mute' ('muteSamples') can be indicated in the header as well. These samples will be decoded correctly by the decoder but will not be presented to the user. Therefore the decoded presented signal can start with a sample located anywhere within the frame, instead of starting at the beginning of the frame.

In each case, 'OFL' is the number of samples per channel

that can be decoded with known decoder states. This is explained in more detail in the following Streaming bit stream mode section. Therefore the samples of the initialisation frames are to be added to the actual number of samples of the cut file. The decoder will automatically subtract these additional samples from the 'OFL' value in the decoder process. Further details are described in the Decoding processing section.

10 Streaming mode

5

Using information items from the bit stream header depicted in Table 1, the archival bit stream mode can be transformed at decoding side into a streaming bit stream mode. 'Streaming mode' means that the frames of the archival bit stream are separated into successive packages, whereby each one of these packages is called a 'super frame' (SF) and has the same structure as an archival bit stream. A super frame starts with the corresponding bit stream section header (i.e. a super frame header) followed by frames of data.

20 I.e., in comparison with the archival mode, in the streaming

I.e., in comparison with the archival mode, in the streaming mode super frames each one having a header are repeatedly arranged in the bitstream. An example for such a streaming mode bit stream is depicted in Fig. 3.

The 'FileMode' data field of the bit stream header of each super frame carries the value '1' indicating the streaming mode, in which the decoder must decode several successive super frames in order to reconstruct all samples of the encoded file. The first super frame of a streaming mode stream is basically identical to the beginning of an archival mode file, but in the bit stream header the data fields 'FileMode' and 'OFL' carry values different than in an archival mode header. When the decoder starts decoding of the first super frame, the default decoder states are used and the first frame can be decoded directly without requiring any further information items.

However, a streaming mode bit stream can be replayed or decoded starting at each one of its super frames. But in that case the required data from previous frames for initialising the decoder states are missing. Therefore all super frames of a stream except the first super frame must indicate in the 'MuteIfFirstSuperFrame' data field that their first 'muteFrames' number of frames are to be used only for the decoder state recovery.

In streaming mode one must distinguish the decoding initialisation phase, where the decoding states are unknown, from the decoding phase, where the decoding states are known from previously decoded super frames. The corresponding type of phase is obtained at the beginning of the each super

frame using the header information of the super frame. The header properties for both phases are shown in the following.

Decoding initialisation phase

20 FileMode = 1

5

MuteIfFirstSuperFrame = 0

AND decoding starts at the beginning of a new coherent bit stream in streaming mode.

The default decoder states are used and the decoding of the samples can start directly at the first frame of the super frame.

FileMode = 1

MuteIfFirstSuperFrame = 1

AND this is the first super frame to decode following a decoder initialisation or reset.

The first 'muteFrame' frames of the current super frame are used for initialising the decoder states, and the decoding of samples can start at frame number ('muteFrames' +1).

35

WO 2009/146998 PCT/EP2009/055663

MuteIfFirstSuperFrame = 1

AND this is not the first decoded super frame AND the consistency check of the previous and current super frames has failed.

- For the consistency check the 'StreamingCheckSum' data field of the header is used. Its value is obtained from the data of the previous super frame and is written into the 'StreamingCheckSum' data field of the following super frame, so that successive super frames can be identified. For example,
- 10 a Cyclic Redundancy Check sum (CRC) or a hash value of frames, e.g. the last frame, of the previous super frame can be used. The decoder computes the CRC of the previous super frame and compares it with the value stored in the header of the current super frame. If this comparison fails the cur-
- rent decoder states are not valid for the decoding of the next super frame. Thus, the decoder states are to be reinitialised using the first 'muteFrames' number of frames of the next super frame. Decoding of samples starts at frame number ('muteFrames' +1).
- The 'StreamingCheckSum' data field is not used in the first super frame of a coherent streaming mode bit stream because previous frames are not required and therefore the consistency check is superfluous.

25 Decoding phase

FileMode = 1

MuteIfFirstSuperFrame = 1

AND a super frame was decoded before AND the consistency check is valid.

Thus, the decoder status of the previously decoded super frame can be used to decode the frames of the next super frame.

A typical streaming processing starts with an initialisation 35 phase followed by several decoding phases. In the decoding phase the 'muteFrame' information is not used because the WO 2009/146998 PCT/EP2009/055663

2.2.

decoder states are initialised correctly by corresponding data from the previous super frame, and the data to which the 'Main_Data_Begin_Pointer' is pointing is available in the previous super frame. The decoder will only return to the initialisation phase if a new coherent bit stream will start (MuteIfFirstSuperFrame =0) or the 'StreamingCheckSum' is incorrect. In both cases the decoder states become invalid and are to be re-initialised.

The following example shows how to create a streaming mode 10 bit stream from an already existing archival mode bit stream:

Given values

Number of decoded samples per frame L:

OFLoria: Total length of the input file in samples per chan-

nel

M: Number of super frames with $M \leq ceil(OFL_{orig}/L)$

Values to be determined

NumFrames: Total number of frames

Average number of frames per super frame M_{mean} :

Frame_{start}: First frame of a super frame Last frame of a super frame Frameend:

Number of frames for initialisation of muteFrames_{SF}:

the decoder states of the super frame

StreamingCheckSumgF: Value for consistency check of the super

frame

Number of currently written super frames m:

with $0 \le m < M$

Calculate total number of frames

NumFrames = $ceil(OFL_{orig}/L)$, wherein 'ceil' returns a value representing the smallest integer that is greater equal the argument of the ceil function.

Calculate number of frames per super frame

 $M_{\text{mean}} = \text{ceil}(OFL_{\text{oriq}}/(M*L))$

Create first super frame (m=0)

Establish the corresponding header:

Data field	Value
OFL	M _{mean} *L
FileMode	1
MuteIfFirstSuperFrame	0

Copy frames number '0' to $(M_{mean}-1)$.

Create following super frames (1≤m<M)

Compute 'StreamingCheckSum': compute the Cyclic Redundancy Check sum of a defined part of the previous super frame and store the result in data field 'StreamingCheckSum $_{\rm SF}$ '.

Establish the corresponding header:

Data field	Value
OFL	<pre>min((Mmean*L),(OFLorig - m*L*Mmean))</pre>
FileMode	1
MuteIfFirstSuperFrame	1
muteFrames	muteFrames _{SF}
muteSamples	0
StreamingCheckSum	${ t StreamingCheckSum}_{ t SF}$

Copy frames number $(m*M_{mean})$ to $min(((m+1)*M_{mean})$ -1, NumFrames -1), wherein the min function is required for the last super frame because the last super frame could carry a different number of frames and samples.

Decoding processing for the file or bit stream

The decoding processing flow chart of Fig. 5 describes the decoding process for archival mode files and for streaming mode bit streams. At the beginning of the decoding process the decoder states are set to their default values (e.g. a mapping buffer is set to zero and previously decoded values are set to zero). In step/stage 1 the input file or bit stream is available for reading the required data.

Step/stage 2 finds and reads the first header of the file or bit stream, i.e. the header information items of Table 1 are set, stored or loaded. Step/stage 3 sets the variable 'Sam-

plesToMute' to its default value zero.

10

In step/stage 4 the 'MuteIfFirstSuperFrame' data field of 15 the file or bit stream header is checked for deciding whether the decoder states are known (MuteIfFirstSuperFrame =0), or the decoder states must be re-initialised and a number of samples are to be ignored. The number of ignored (muted) samples is calculated in step/stage 5 as ToMute = muteFrames*L + muteSamples from the number 20 'muteFrames' of frames to mute and the number 'muteSamples' of samples to mute received from the file or bit stream header. 'L' is the number of samples that are decoded from one frame, which is a known decoder constant. Step/stage 6 decodes all received frames which includes also the first 25 'muteFrames' frames. Hence 'OFL' decoded samples are passed to the next step/stage. Although the first 'SamplesToMute' samples are invalid, they are used for initialising the decoder states.

Hence the following step/stage 7 removes the invalid 'SamplesToMute' samples and returns only the remaining samples to step/stage 8. The number of remaining samples is the difference between the value 'SamplesToMute' and the total number OFL of decoded samples. In case that 'SamplesToMute' is greater than OFL, zero samples are returned to step/stage 8. This can happen in the streaming-mode if the number of

WO 2009/146998 PCT/EP2009/055663

frames per super frame is less than the number of frames to mute.

Therefore the remaining delay is to be transferred to the next super frame. A corresponding variable MuteNextSF = SamplesToMute - OFL is calculated in step/stage 9 in order to store the number of samples to mute in the next super frame.

At step/stage 10 the decoding processing is finished 11 for an archival mode file or bit stream or a cut file bit stream 10 because all OFL samples of the file have been decoded. Thus, step/stage 10 checks the 'FileMode' and proceeds to END step 11 for stopping the archival mode decoding process. Otherwise, decoding of the streaming-mode bit stream is to be continued.

Therefore the 'StreamingCheckSum', for example a CRC, is computed from the frame data of the currently decoded frame in step/stage 12. The processing and the data used for the 'StreamingCheckSum' computation must produce identical results in the encoder and the decoder. Furthermore, the 'StreamingCheckSum' should represent a clear identification of the current frame because it is used for verifying the consistency of the decoder states of the next super frame. Therefore the used data should diversify from super frame to super frame and represent the coded data of the super frame.

25

30

5

Upon switching to the next super frame, step/stage 13 searches and reads the header of the next super frame. This step/stage re-initialises all bit stream header variables so that the former header information is lost. Upon reaching the end of the file, or in case no valid bit stream header has been found, the decoder will proceed to step 11 and stop the decoding.

Otherwise it is to be checked for decoding the next super frame whether the current decoder states are valid.

35 A streaming mode bit stream file can consists of two or more successive coherent bit streams. Therefore it is to be

checked whether the following super frame is the first super frame of a new coherent bit stream, because in such case the current decoder states belong to a different bit stream and are to be reset to the default values. The first super frame of a coherent bit stream has a 'MuteIfFirstSuperFrame' value of zero. Therefore the 'MuteIfFirstSuperFrame' value is inverted in step/stage 14 and is assigned to the variable 'FirstSuperFrame', i.e.

PCT/EP2009/055663

FirstSuperFrame = NOT(MuteIfFirstSuperFrame) .

10 Step/stage 15 checks variable 'FirstSuperFrame' whether a new coherent bit stream is starting. If true, step/stage 17 resets the decoder states and starts decoding of the next super frame at step/stage 3. This is identical to starting decoding of a new file, and is also identical to the decoder initialisation phase 1 of the streaming-mode section in this description. Otherwise the next super frame belongs to the same coherent bit stream and the processing continues in step/stage 16.

Here, the 'StreamingCheckSum' value of the current super frame bit stream header is compared with the 'Streaming-20 CheckSum' value computed from the previous super frame data in step/stage 12, i.e. is CRC == StreamingCRC ? This is necessary because a super frame of the current coherent bit stream might be missing, or a new coherent bit 25 stream is starting but not at its first super frame. In case the consistency-check of step/stage 16 fails, step/stage 17 is used to reset the decoder states and then decoding of the next super frame starts at step/stage 3. Therefore the processing is in the decoder initialisation phase 3 of the streaming-mode section in this description 30 and the decoding is started with default decoder states, which leads to the decoder initialisation phase 2 in step/stage 4.

Otherwise the current decoder states are valid for decoding of the current super frame and the current processing is in the decoding phase 1 of the streaming-mode section in this

WO 2009/146998 PCT/EP2009/055663

description. Consequently, the 'muteFrames' value of the current bit stream header needs not be evaluated. This is ensured by step/stage 18 which sets the 'MuteIfFirstSuper-Frame' variable to zero. Therefore step/stage 4 will not

27

lead to step/stage 8 and the 'muteFrames' value of the current super frame will not be used.

The decision of step/stage 19 is made for transferring a remaining delay of the previous super frame to the current super frame. If 'MuteNextSF' > 0, the number of samples to mute of the previous super frame was greater than the 'OFL' value of the previous super frame. Consequently the number 'SamplesToMute' of samples to mute of the current super frame is equal to the remaining number 'MuteNextSF' of samples to mute of the previous super frame. Therefore step/stage 20 sets SamplesToMute = MuteNextSF .

Accordingly, decoding of the current super frame must start at step/stage 4 in order to omit the re-initialisation of 'SamplesToMute' in step/stage 3.

If in step/stage 19 parameter MuteNextSF ≤ 0, there are no remaining samples to mute and the decoder states are correct and the decoding of the current super frame can start directly with the first frame. The number of samples to mute is set to zero in step/stage 3.

In Streaming mode the decoding of successive super frames is repeated until step/stage 13 does no more find a bit stream header, and the decoding processing is stopped in step 11.

Thus, the invention facilitates processing of a frame based bit stream format in archival mode bit stream or streaming mode bit stream, and enables a sample-exact cutting of the archival mode bit stream, even if decoding of one frame requires information from previous frames. As mentioned above, the inventive decoding processing is used in a hd3 decoder implementation and is tested successfully.

35

30

5

10

15

20

25

A HD3 file in it simplest format has three mandatory data

WO 2009/146998

sections shown in Fig. 6, and up to four optional data sections. The mandatory hd3ID data section provides file-mode, length, and CRC information. This hd3ID section is encapsulated in an ancillary data section (silence PCM) of an mp3 frame. Such ancillary data section of an mp3 frame may also contain a Xing- or VBRi-compliant variable bit rate header in front of the hd3ID information.

PCT/EP2009/055663

The mandatory mp3-data section encapsulates the mp3 data stream or parts thereof. The synchronisation words of the mp3 stream may be scrambled.

The mandatory cd-data section provides the lossless extension to the mp3 data for reconstructing a mathematically lossless copy of the original music with one or two audio channels having a temporal resolution corresponding to 32

15 kHz, 44.1 kHz or 48 kHz and an amplitude resolution of 16 bit/sample. An unsynchronisation scheme can be used that avoids the occurrence of mp3 sync headers.

An optional hd-data section (not depicted) enables lossless reconstruction of high-definition studio formats with up to 24 bit/sample and sampling rates of 192 kHz.

The optional ID3/ID3v2 data section stores metadata relating to the embedded mp3 encoded and the lossless reconstruction encoded music. There may also be an optional ID3v1 tag at the very end of the HD3 file (not depicted).

25

20

5

10

The invention can also be used for other codecs or bit streams like AAC, and in mp3 where the additional data (e.g. the headers) are arranged in mp3 ancillary data fields, which a corresponding mp3 decoder can evaluate.

Claims

30

35

- 1. Method for generating a frame based bit stream format file including at least one bit stream header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame₀, Frame_n) can be contained in one or more previous frames (Frame_{n-5}, Frame_{n-4}), characterised by arranging in said header information items representing:
 - total number of samples per channel (OFL) for said file;
 - an 'archival mode' or a 'streaming mode' (FileMode) for said file;
- if a decoding of said encoded signal data is not to start at said first frame of said file, the number of initial frames to mute (muteFrames) while decoding states are initialised, and optionally, for a sample-exact cutting feature, the number of samples to mute (muteSamples) in the corresponding frame;
- in said streaming mode, a value (StreamingCheckSum) for
 identifying a previous super frame for a consistency check,

wherein in said archival mode, said file includes a single bit stream header section (Header) and successive ones of said frames (Frame $_0$, Frame $_1$, ..., Frame $_n$), and a decoding of said encoded signal data is to start with the first one (Frame $_0$) of said frames,

and wherein in said streaming mode said bit stream contains more than one super frame, each one of said super frames starting with a single bit stream header section (Header) followed by several ones of said frames, and a decoding of said encoded signal data can be initialised

30

35

WO 2009/146998 PCT/EP2009/055663

at each one of said super frames,
and wherein said information item regarding the number of
initial frames to mute (muteFrames) signalises how many
ones of initial frames in a current super frame are required for establishing data for initialising states of a
decoding of said signal data before actually starting decoding of encoded signal data from the following frame or
frames of said current super frame, such initial frames
not being used for decoding the encoded signal data contained therein.

- 2. Data structure for a frame based bit stream format file including at least one bit stream header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame $_0$, Frame $_n$) can be contained in one or more previous frames (Frame $_{n-5}$, Frame $_{n-4}$), characterised by having in said header information items representing:
- 20 total number of samples per channel (OFL) for said
 file;
 - an 'archival mode' or a 'streaming mode' (FileMode) for said file;
- whether or not a decoding of said encoded signal data
 can start at the first frame of said file
 (MuteIfFirstSuperFrame);
 - if a decoding of said encoded signal data is not to start at said first frame of said file, the number of initial frames to mute (muteFrames) while decoding states are initialised, and optionally, for a sample-exact cutting feature, the number of samples to mute (muteSamples) in the corresponding frame;
 - in said streaming mode, a value (StreamingCheckSum) for identifying a previous super frame for a consistency check,

wherein in said archival mode, said file includes a sin-

WO 2009/146998

gle bit stream header section (Header) and successive ones of said frames (Frame₀, Frame₁, ..., Frame_n), and a decoding of said encoded signal data is to start with the first one (Frame₀) of said frames,

PCT/EP2009/055663

and wherein in said streaming mode said bit stream contains more than one super frame, each one of said super frames starting with a single bit stream header section (Header) followed by several ones of said frames, and a decoding of said encoded signal data can be initialised at each one of said super frames,

and wherein said information item regarding the number of initial frames to mute (muteFrames) signalises how many ones of initial frames in a current super frame are required for establishing data for initialising states of a decoding of said signal data before actually starting decoding of encoded signal data from the following frame or frames of said current super frame, such initial frames not being for use for decoding the encoded signal data

20

25

contained therein.

5

10

15

- 3. Method for cutting a section out of a frame based bit stream format file including a bit stream header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame $_0$, Frame $_n$) can be contained in one or more previous frames (Frame $_{n-5}$, Frame $_{n-4}$), and wherein said header includes information items representing:
- total number of samples per channel (OFL) for said
 file;
 - an 'archival mode' (FileMode) for said file;
- a decoding of said encoded signal data is to start at the first frame of said file (MuteIfFirstSuperFrame), wherein in said archival mode, said file includes a single bit stream header section (Header) and successive ones of said frames (Frame₀, Frame₁, ..., Frame_n),

said method including the step of forming a cutting file by taking the required frames data from said bit stream and arranging a cutting header in front of these frames data, wherein said cutting header is derived from said header and in said cutting header:

- said total number of samples per channel (OFL) for said file is replaced by the number of samples per channel (OFL $_{\rm Cult}$) for said cutting file;
- said archival mode (FileMode) is kept;

5

- 10 said information item (MuteIfFirstSuperFrame) regarding decoding of said encoded signal data is to start at the first frame of said file is changed to decoding of said encoded signal data is to start later in said file;
- an information item is added regarding the number of initial frames to mute (muteFrames) while decoding states are initialised.
- 4. Apparatus for cutting a section out of a frame based bit stream format file including a bit stream header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame $_0$, Frame $_n$) can be contained in one or more previous frames (Frame $_{n-5}$, Frame $_{n-4}$), and wherein said header includes information items representing:
 - total number of samples per channel (OFL) for said file;

an 'archival mode' (FileMode) for said file;
a decoding of said encoded signal data is to start at

the first frame of said file (MuteIfFirstSuperFrame),
wherein in said archival mode, said file includes a single bit stream header section (Header) and successive
ones of said frames (Frame₀, Frame₁, ..., Frame_n),
said apparatus including means being adapted for forming
a cutting file by taking the required frames data from
said bit stream and arranging a cutting header in front

WO 2009/146998 PCT/EP2009/055663

of these frames data, wherein said cutting header is derived from said header, and in said cutting header:

- said total number of samples per channel (OFL) for said file is replaced by the number of samples per channel (OFL_{Cut}) for said cutting file;
- said archival mode (FileMode) is kept;
- said information item (MuteIfFirstSuperFrame) regarding decoding of said encoded signal data is to start at the first frame of said file is changed to decoding of said encoded signal data is to start later in said file;
- an information item is added regarding the number of initial frames to mute (muteFrames) while decoding states are initialised.
- 5. Method according to claim 3, or apparatus according to claim 4, wherein said cutting header additionally includes an information item (muteSamples) regarding the number of samples to mute in the frame where decoding of said encoded signal data is to begin.

20

30

5

10

- 6. Method according to claim 3 or 5, or apparatus according to claim 4 or 5, wherein said information items in said cutting header are calculated as follows:
- Frame_valid = floor(X_{start}/L), wherein X_{start} is the number of the first encoded signal sample or coefficient of the archival file to be decoded for the cut file and L is the number of samples or coefficients per frame;
 - Get the number k_{mapping} of frames required for mapping status initialisation and a Main_Data_Begin_Pointer of the first decodable frame Frame_valid with known decoder states;
 - Set the number k_{mp3} of invalid frames equal to the number of frames to add in order to get a valid Main_Data_Begin_Pointer;
- 35 said information item regarding the number of frames to mute is muteFrames = $k_{mp3} + k_{mapping}$;

10

15

35

34

PCT/EP2009/055663

- said number of samples per channel for said cutting file is $OFL_{Cut} = X_{end} X_{start} + 1 + L*muteFrames, wherein <math>X_{end}$ is the number of the last encoded signal sample or coefficient of the archival file to be decoded for the cut file.
- 7. Method for changing a frame based bit stream file format, said bit stream including a header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame $_0$, Frame $_n$) can be contained in one or more previous frames (Frame $_{n-5}$, Frame $_{n-4}$), and wherein said header includes information items representing:
- total number of samples per channel (OFL) for said file;
 - an 'archival mode' (FileMode) for said file;
- a decoding of said encoded signal data is to start at the first frame of said file (MuteIfFirstSuperFrame), wherein in said archival mode, said file includes a single bit stream header section (Header) and successive 20 ones of said frames (Frame₀, Frame₁, ..., Frame_n), said method including the step of generating from said archival mode file a 'streaming mode' bit stream by forming from every successive group of frames of said archi-25 val mode file a super frame of said streaming mode bit stream by taking the required frame data from said archival mode file and arranging a super frame header at the beginning of each super frame, wherein these super frame headers are derived from said header and in the first one of said super frame headers: 30
 - said total number of samples per channel (OFL) for said file is replaced by a first adapted number of samples per channel;
 - an information item for 'streaming mode' instead of 'archival mode' is given;
 - said information item (MuteIfFirstSuperFrame) regarding

WO 2009/146998 PCT/EP2009/055663

decoding of said encoded signal data is to start at the first frame of said file is kept,

and in the following ones of said super frame headers:

- said total number of samples per channel (OFL) for said file is replaced by a second adapted number of samples per channel;
 - said information item for 'archival mode' (FileMode) is replaced by an information item for 'streaming mode';
- said information item (MuteIfFirstSuperFrame) regarding decoding of said encoded signal data is to start at the first frame of said file is replaced by an information item regarding decoding of said encoded signal data is not to start at said first frame;
- an information item is added regarding the number of initial frames to mute (muteFrames) while decoding states are initialised;

20

- optionally, an information item (muteSamples) is added regarding the number of samples to mute in the frame where decoding of said encoded signal data is to begin, which number is '0';
- an information item (StreamingCheckSum) is added regarding consistency check data, the value of which is derived from the data of the previous super frame.
- 8. Apparatus for changing a frame based bit stream file format, said bit stream including a header section (Header), said frames including encoded signal data, wherein data required for a decoding or an evaluation of data of a current frame (Frame $_0$, Frame $_n$) can be contained in one or more previous frames (Frame $_{n-5}$, Frame $_{n-4}$), and wherein said header includes information items representing:
 - total number of samples per channel (OFL) for said file;
 - an 'archival mode' (FileMode) for said file;
- 35 a decoding of said encoded signal data is to start at the first frame of said file (MuteIfFirstSuperFrame),

10

15

20

30

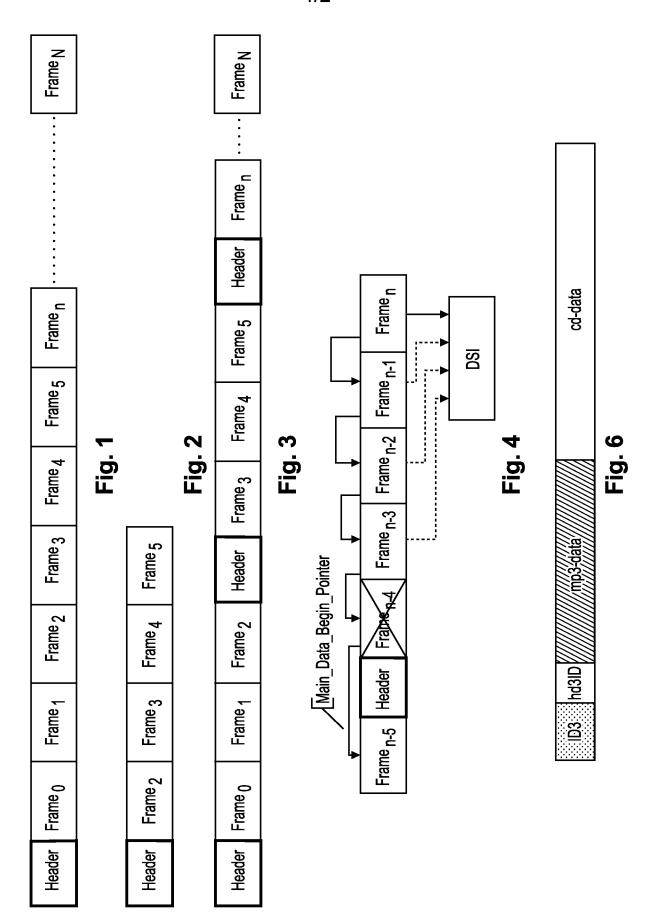
WO 2009/146998 PCT/EP2009/055663

wherein in said archival mode, said file includes a single bit stream header section (Header) and successive ones of said frames (Frame₀, Frame₁, ..., Frame_n), said apparatus including means being adapted for generating from said archival mode file a 'streaming mode' bit stream by forming from every successive group of frames of said archival mode file a super frame of said streaming mode bit stream by taking the required frame data from said archival mode file and arranging a super frame header at the beginning of each super frame, wherein these super frame headers are derived from said header and in the first one of said super frame headers:

- said total number of samples per channel (OFL) for said file is replaced by a first adapted number of samples per channel;
 - an information item for 'streaming mode' instead of 'archival mode' is given;
 - said information item (MuteIfFirstSuperFrame) regarding decoding of said encoded signal data is to start at the first frame of said file is kept,

and in the following ones of said super frame headers:

- said total number of samples per channel (OFL) for said file is replaced by a second adapted number of samples per channel;
- - said information item (MuteIfFirstSuperFrame) regarding decoding of said encoded signal data is to start at the first frame of said file is replaced by an information item regarding decoding of said encoded signal data is not to start at said first frame;
 - an information item is added regarding the number of initial frames to mute (muteFrames) while decoding states are initialised;
- optionally, an information item (muteSamples) is added regarding the number of samples to mute in the frame


5

10

- where decoding of said encoded signal data is to begin, which number is 0';
- an information item (StreamingCheckSum) is added regarding consistency check data, the value of which is derived from the data of the previous super frame.
- 9. Method according to claim 7, or apparatus according to claim 8, wherein said first adapted number of samples per channel is OFL = M_{mean} *L, wherein L is the number of decoded samples per frame, OFL_{Orig} is the total length of said file in samples per channel, M is the number of super frames with M \leq ceil(OFL_{Orig}/L), and M_{mean} = ceil(OFL_{Orig}/(M*L)).
- 20 11. Method or apparatus according to claim 10, wherein said information item (StreamingCheckSum) regarding consistency check data is the Cyclic Redundancy Check sum of a pre-defined section of the previous super frame.
- 12. Method or apparatus according to claim 10, wherein said information item (StreamingCheckSum) regarding consistency check data is the hash value of frames, e.g. the last frame, of the previous super frame.
- 30 13. Use of the method according to one of claims 7, 9 and 10 for decoding said streaming mode bit stream, further including the steps of:
- when starting decoding of said streaming mode bit stream at said first super frame, the decoding of the encoded
 signal data starts at the first frame of that super frame using default decoder states;

WO 2009/146998 PCT/EP2009/055663

- when not starting decoding of said streaming mode bit stream at said first super frame, following a decoding initialisation or reset, a number 'muteFrames' of frames corresponding to said information item regarding the number of initial frames to mute (muteFrames) is used for initialising the decoding states, and the decoding of encoded signal data starts at frame number muteFrames+1 of the current super frame using these decoding states;
- when not starting decoding of said streaming mode bit stream at said first super frame, and consistency check data that were calculated from the previous super frame data is not consistent with corresponding consistency check data calculated from the current super frame, using a number 'muteFrames' of frames of the following super frame for re-initialising the decoding states starting decoding of encoded signal data at frame number 'muteFrames'+1 of that following super frame using these decoding states;
- 20 when not starting decoding of said streaming mode bit stream at said first super frame, and a super frame was decoded before and said consistency check data are valid, using the decoder states of the previously decoded super frame to decode the encoded signal data of the frames of the current super frame.

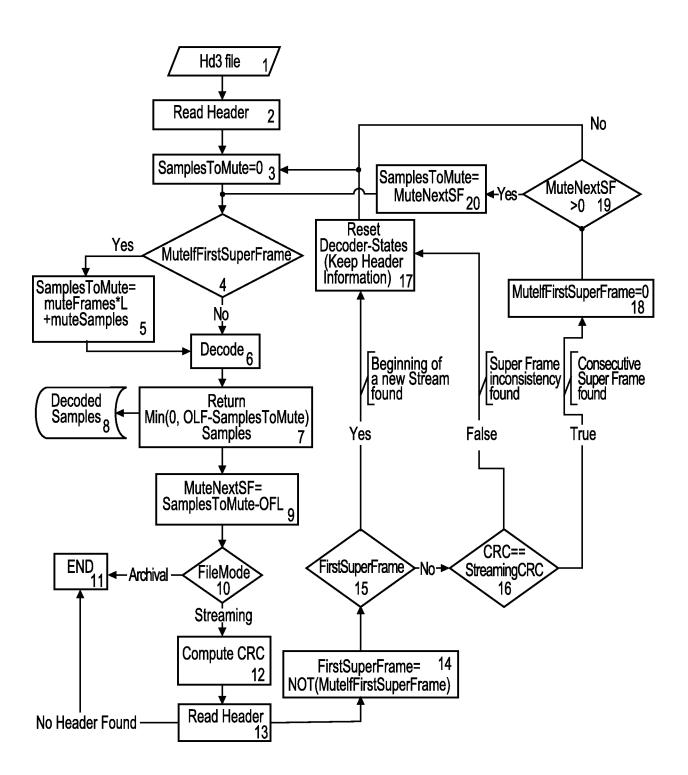


Fig. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2009/055663

A. CLASSIFICATION OF SUBJECT MATTER
INV. H04N7/24 G11B20/10 H04L29/06 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) HO4N G11B HO4L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 1 - 13US 2008/125891 A1 (SAKAKIBARA TOMOKO [JP] ET AL) 29 May 2008 (2008-05-29) the whole document 1-13 US 2007/280438 A1 (PRITCHETT JAMES W [US] Υ ET AL) 6 December 2007 (2007-12-06) the whole document US 2002/097272 A1 (TANAKA MITSUMASA [JP]) 25 July 2002 (2002-07-25) 1 - 13the whole document EP 1 830 575 A (SONY CORP [JP]) 1 - 13Υ 5 September 2007 (2007-09-05) the whole document See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23/07/2009 14 July 2009 Authorized officer Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Luckett, Paul Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2009/055663

ategory*	Citation of document, with Indication, where appropriate, of the relevant passages	jes Releva		evant to claim No.	
	WO 03/038814 A (THOMSON LICENSING SA [FR]; LIN SHU [US]; XIE JIANLEI JAMES [US]; SCHUL) 8 May 2003 (2003–05–08) the whole document		1-13		
·	·				
			·	•	
•					
	, in the second				
	·	ı			
				,	
				•	
	,				
				,	
		,			
				,	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2009/055663

Patent document cited in search report	-	Publication date		Patent family member(s)	Publication date
US 2008125891	A 1	29-05-2008	JP	2008135135 A	12-06-2008
US 2007280438	A1	06-12-2007	NON	E	
US 2002097272	A1	25-07-2002	JP JP	3932546 B2 2002218390 A	20-06-2007 02-08-2002
EP 1830575	Α	05-09-2007	CN JP KR US	101042914 A 2007235570 A 20070090104 A 2007206676 A1	26-09-2007 13-09-2007 05-09-2007 06-09-2007
WO 03038814	Α	08-05-2003	AU CN EP JP KR MX US	2002349386 A1 1579093 A 1440576 A2 2005508116 T 20050040848 A PA04004140 A 2003081940 A1	12-05-2003 09-02-2005 28-07-2004 24-03-2005 03-05-2005 25-01-2005 01-05-2003