(12) 特許協力条約に基づいて公開された国際出願
(10) 国際公開番号
WO 2017/154957 A1
WO 2017/154957 A1

(19) 世界知的所有権機関
国際事務局

(43) 国際公開日

(51) 国際特許分野:
B23K 35/26 (2006.01)
C22C 13/00 (2006.01)

(21) 国際出願番号:
PCT/JP20 17/009 169

(22) 国際出願日:
2017年3月8日 (08.03.2017)

(41) 特許国:
日本

(54) 题名:
SOLDER ALLOY, SOLDER BALL, CHIP, SOLDER PASTE, AND SOLDER JOINT

(57) 抽象:
The purpose of the present invention is to provide a solder alloy, a solder ball, a chip solder, a solder paste, and a solder joint which discoloration is suppressed and the growth of an oxide film is suppressed in a high-temperature high-humidity environment. The solder alloy contains 0.005 mass% to 0.1 mass% of Mn, 0.001 mass% to 0.1 mass% of Ge, and over 0 mass% to 4 mass% of Ag, with the main component of the remaining being Sn. Having the solder alloy having Sn as the main component containing 0.005 mass% to 0.1 mass% of Mn and 0.001 mass% to 0.1 mass% of Ge results in oxides of Mn and Ge being distributed largely on the outermost surface side of an oxide film containing oxides of Sn, oxides of Mn, and oxides of Ge, making it possible to obtain a discoloration prevention effect in a high-humidity environment. In addition, Mn and O2 react, reactions between Sn and O2 are suppressed, and production of oxides of Sn is suppressed, and therefore an increase in the oxide film thickness is suppressed and fusion properties are improved.

(74) 代理人:
特許業務法人山口国際特許事務所
YAMAGUCHI INTERNATIONAL PATENT FIRM;
〒110-0005 東京都台東区上野3-3-8 ウイスカビル 2 F A号室 Tokyo (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能):

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能):

添付公開書類:
- 国際調査報告 (条約第21条(3))
明細書

発明の名称：
はんだ合金、はんだボール、チップソルダ、はんだペースト及びはんだ継手

技術分野

[0001] 本発明は、変色が抑制され、かつ、濡れ性の低下を抑制されたはんだ合金、このはんだ合金を用いたはんだボール、チップソルダ、はんだベースト及びはんだ継手に関する。

背景技術

[0002] 電子部品をプリント基板に接合するために用いられるはんだは、一般にSnを主成分とするために、使用される前の保管状況によっては、はんだ表面にSnと空気中のO₂が反応してSn化合物による酸化物が形成される。この傾向は、高温高湿な環境下で保管されている場合には、その表面に形成される酸化膜の膜厚を厚くなる傾向にあり、表面の光沢も無くなり、黄色の変色を引き起こす場合がある。はんだ表面に酸化膜が残っているとはんだ付け時にフラックスでの除去が困難になり、濡れ性が悪くなるため、その結果融合性が悪くなり、はんだ付け不良が発生する原因になる。

[0003] 一方、近来、情報機器の小型化により、情報機器に搭載される電子部品においても急速な薄型化が進行している。電子部品は、薄型化の要求により接続端子の狭小化や実装面積の縮小化に対応するため、裏面に電極が設置されたボールグリッドアレイ（以下、BGAと称す）が適用されている。

[0004] BGAを適用した電子部品には、例えば半導体パッケージがある。半導体パッケージの電極には、はんだバンプが形成されている。このはんだバンプは、はんだ合金を球状としたはんだボールを半導体パッケージの電極に接合することによって形成されている。

[0005] BGAを適用した半導体パッケージは、ソルダベーストが塗布された基板の電極に、各はんだバンプが位置を合わせて載置され、加熱により溶融した
ソルダベーストと、はんだバンプ及び基板の電極が接合することにより、半導体パッケージは基板に搭載される。

[0006] Snを主成分としたはんだボールでは、上述したようにボール表面にSnと空気中のO₂が反応してSn酸化物による酸化膜が形成される。はんだボールの表面に酸化膜が形成されると、はんだボールの光沢が無くなったり、黄色に変色したりする現象が起きる。はんだボールの外観検査として、はんだボール表面の変色を利用する場合があり、はんだボール表面の変色を抑制できないと、はんだボールが使用に適さないと判断される可能性が高くなる。

[0007] また、保管時等に生成された酸化膜を除去するため接合時に一般にフラックスが用いられるが、酸化膜が充分に除去されずにはんだボールの表面に残ると、濡れ性が悪くなるため、融着性が悪くなる。融着性が悪くなる結果、現象としてははんだ付け不良が発生する原因になる。

[0008] 保管状態を厳密に管理することにより、はんだボール表面の酸化膜の成長を抑制することも考えられるが、保管状態は様々であり、酸化膜の成長及びこれに伴う融着性の悪化という問題は常につきまとっている。これのために、様々な保管状態を想定して、はんだボール表面の酸化膜の成長を抑制できるようにする必要がある。はんだボールを例として説明したがこの問題ははんだボールに係わらずSnを主成分とするはんだ全体に共通した問題点である。

[0009] この問題点を解決するために、Snを主成分としたはんだ合金にGeを添加することが一般に行われている（例えば特許文献1）。この特許文献1には、はんだ付けによる接合性を向上させるため、Sn、Ag、Cuを含むはんだ合金に、Ge、Ni、P、Mn、Au、Pd、Pt、S、Bi、Sb、Inの1種または2種以上を合計で0.006〜0.1質量％で添加する技術が開示されており、Geは耐酸化性を向上させること、及び、Ni、P、Mn、Au、Pd、Pt、S、Bi、Sb、Inは融点を低下させる効果や接合強度を高める効果を有することが開示されている。

[0010] また、はんだ付けによる接合に求められる品質としては、接合が確実に行
われることの他に、外観性も重要である。Snを主成分としたはんだ合金では、Snと空気中のO₂が反応してSn酸化物が生成され、酸化膜となってはんだ合金の表面を覆う。Sn酸化物は黄色に変色するためはんだ合金の表面が黄色に変色し、外観検査で不良と判断される場合もある。

[0011]そこで、酸化膜表面の光学特性を変化させることを目的として、Snを主成分としたはんだ合金に、Li、Na、K、Ca、Be、Mg、Sc、Y、ランタノイド、Ti、Zr、Hf、Nb、Ta、Mo、Zn、Al、Ga、In、Si、Mnから選出される1種または2種以上を、合計で1質量ppm以上0.1質量％以下で添加する技術が提案されている（例えば、特許文献2参照）。

先行技術文献

特許文献

[0012]特許文献1 :特開2005－103645号公報
特許文献2 :特開2010－247167号公報

発明の概要

発明が解決しようとする課題

[0013]特許文献1に記載のように、Snを主成分としたはんだ合金にGeを添加すると、高温環境下でははんだ表面の変色を抑制することはできると考えられる。しかしながら、Ge添加によっても、高温高温環境下でのはんだ表面の変色を抑制することはできない。また、Snを主成分としMnが添加されたはんだ合金は、濡れ性が低下するため、特許文献1においても、GeとMnを組み合わせて添加した場合のそれぞれの添加量についての記載はなく、GeとMnの同時添加を想定していない。

[0014]また、特許文献2には、Snを主成分としたはんだ合金にMnを添加すると、酸化膜表面の光学特性が変化し、表面が同じ厚さに酸化されても、色調が変化して黄変に至らないとの記載はある。しかし、Snを主成分としMnが添加されたはんだ合金では、高温環境下及び高温高温環境下での変色を抑
制することができず、濡れ性も低下する。

[0015] 以上のように、特許文献１及び特許文献２の何れも、開示された元素の中で、変色を抑制し、かつ、濡れ性の低下を抑制するという作用効果を得る特定の元素（Ge、Mn）の組み合わせについての記載はなく、特に、高温高湿環境においては、このような作用効果を得ることはできない。

[0016] 本発明は、このような課題を解決するためなされたもので、変色が抑制され、かつ、濡れ性の低下が抑制されたはんだ合金、このはんだ合金を使用したはんだボール、チップソルダ、はんだペースト及びはんだ継手を提供することを目的とする。

課題を解決するための手段

[0017] 本発明は、特定の元素としてMnとGeを所定量複合添加することによて、濡れ性の低下の抑制及び変色の防止を可能としたものである。MnはSnと比較して酸化物を生成しやすく、Mn酸化物の生成でSn酸化物の経時変化による酸化膜の成長を抑制できること、Ge酸化物には変色防止効果があることを見出してなされたものである。

[0018] そこで、請求項１に記載の発明は、Mnを0.005質量％以上0.1質量％以下、Geを0.001質量％以上0.1質量％以下、Agを0質量％超4質量％以下で含み、残部をSnとしたはんだ合金である。

[0019] 請求項２に記載の発明は、請求項１に記載の発明を引用した発明で、Mnの量をGeの量以下としたはんだ合金である。

[0020] 請求項３に記載の発明は、請求項１または２に記載の発明を引用した発明で、更に、P、Gaからなる群から選択される少なくとも１種を合計で0.002質量％以上0.1質量％以下で含むはんだ合金である。

[0021] 請求項４に記載の発明は、請求項１～３のいずれか１項に記載の発明を引用した発明で、更に、Ni、Co、Feからなる群から選択される少なくとも１種を合計で0.005質量％以上0.3質量％以下で含むはんだ合金である。

[0022] 請求項５に記載の発明は、請求項１～４のいずれか１項に記載の発明を引
用した発明で、更に、Bi、In、Sbからなる群から選択される少なくとも1種を合計で0.1質量％以上10質量％以下で含むはんだ合金である。

[0023] 請求項6に記載の発明は、請求項1〜5のいずれか1項に記載のはんだ合金を使用して得たはんだボールである。

[0024] 請求項7に記載の発明は、請求項1〜5のいずれか1項に記載のはんだ合金を使用して得たチップソルダである。

[0025] 請求項8に記載の発明は、請求項1〜5のいずれか1項に記載のはんだ合金を使用して得たはんだベーストである。

[0026] 請求項9に記載の発明は、請求項1〜5のいずれか1項に記載のはんだ合金を使用して得たはんだ強手である。

[0027] 請求項10に記載の発明は、請求項6に記載のはんだボールを使用して得たはんだ強手である。

[0028] 請求項11に記載の発明は、請求項7に記載のチップソルダを使用して得たはんだ強手である。

[0029] 請求項12に記載の発明は、請求項8に記載のはんだベーストを使用して得たはんだ強手である。

発明の効果

[0030] 本発明では、Snを主成分としたはんだ合金において、Mnを0.005質量％以上0.1質量％以下、Geを0.001質量％以上0.1質量％以下、Agを0質量％超4質量％以下で含むことで、Sn酸化物、Mn酸化物及びGe酸化物を含む酸化膜において、Ge酸化物が酸化膜の最表面側に多く分布し、高温高湿環境でも変色防止効果が得られる。また、Mnを含むことでSn酸化物の生成が抑えられ、酸化膜厚の増加が抑制され、融和性を向上させることができる。

[0031] また、はんだ合金中に含まれる所定量のAgは、はんだ合金中に所定量のMn及びGeを含むことによる変色防止効果及び融和性向上の効果を阻害せず、はんだ合金中に含まれる所定量のMn及びGeは、はんだ合金中に所定量のAgを含むことによる温度サイクル特性を向上させる効果を阻害しない
図面の簡単な説明
[0032] [図1] Mn と Ge を含む Sn 系のはんだ合金における酸化物の分布を示すグラフである。
[図2] 本発明のはんだ合金の適用例を示す構成図である。
[図3] ... とを反応させることで Sn と O2 との反応を抑制して、Sn 酸化物の生成及び成長を抑制でき得る量として、Mn を 0.005 質量%以上 0.1 質量%以下で含む。また、酸化膜の最表面側に Ge 酸化物が残留し得る。
量として、Geを0.001質量%以上0.1質量%以下で含む。Snは、80質量%以上で含むことが好ましい。

Snを主成分とし、MnとGeを本発明の範囲内で含むはんだ合金では、Mn酸化物（MnₐOₙ）がSn酸化物の成長を抑制し、変色防止効果のあるGe酸化物（GeO₂）が表面側に残留する。これにより、高温高湿環境下であっても、変色が抑制できることに加えて、酸化物の成長を抑制でき、融
合性が向上する。この効果は、MnとGeが本発明の範囲内であれば、他の
元素を添加しても損なわれることはない。

そこで、使用目的に応じてCuまたはAgを含む。例えば、接合対象物に
Cuを含む場合にCuがはんだ合金中に溶け出す所謂Cu食われを抑制する
ことを目的として、〇りを0質量%超1質量%以下で含む。または、温度サ
イクル特性の向上を目的として、六9を0質量%超4質量%以下で含む。A
Agは、はんだマトリックス中にAg3Snの金属間化合物のネットワーク状
の化合物を析出させて、析出分散強化型の合金を作るため、温度サイクル特
性の更なる向上を図る効果がある。

更に、使用目的に応じて他の元素を任意に選択することができる。他の元
素については、次の元素を任意成分として含んでもよい。

(a) P、Gaからなる群から選択される少なくとも1種

P、Gaからなる群から選択される少なくとも1種の合計の含有量は、
これらの元素の群から選択される元素が1種であれば単体の含有量、2種で
あれば含有量の合計であり、0.002質量%以上0.1質量%以下とする。
より好ましくは0.003質量%以上0.1質量%以下である。

これらの元素は濡れ性を改善する効果がある。各々の元素の含有量につい
て、Pの含有量は好ましくは0.002質量%以上0.005質量%以下で
ある。Gaの含有量は好ましくは0.002質量%以上0.02質量%以下
である。

(b) Ni、Co、Feからなる群から選択される少なくとも1種

Ni、Co、Feからなる群から選択される少なくとも1種の合計の含有
量とは、これらの元素の群から選択される元素が1種であれば単体の含有量、2種以上であれば含有量の合計であり、0.005質量%以上0.3質量%以下とする。より好ましくは0.01質量%以上0.05質量%以下である。

これらの元素は、はんだ付け時に半導体素子や外部基板に施されためっき層の成分がはんだ合金中へ拡散することを抑制する。このため、これらの元素ははんだ維手を構成するはんだ合金の組織を維持し、また、接合界面に形成される金属間化合物層の膜厚を薄くする効果を有する。したがって、これらの元素ははんだ維手の接合強度が高めることができる。各々の元素の含有量について、Niの含有量は好ましくは0.02質量%以上0.07質量%以下であり、Coの含有量は好ましくは0.02質量%以上0.04質量%以下であり、Feの含有量は好ましくは0.005質量%以上0.02質量%以下である。これらの元素の中で、特にNiは前述のような効果を発揮する元素として好ましい元素である。

(c) Bi、In、Sbからなる群から選択される少なくとも1種

Bi、In、Sbからなる群から選択される少なくとも1種の合計の含有量とは、これらの元素の群から選択される元素が1種であれば単体の含有量、2種以上であれば含有量の合計であり、0.1質量%以上10質量%以下とする。より好ましくは0.5質量%以上5.0質量%以下であり、特に好ましくは0.8質量%以上4.5質量%以下である。

これらの元素は、はんだ強度を向上させ、接合部の信頼性確保に期待される。各々の元素の含有量について、Biの含有量は好ましくは0.5質量%以上5.0質量%以下であり、Inの含有量は好ましくは0.2質量%以上5.0質量%以下であり、Sbの含有量は好ましくは0.1質量%以上5.0質量%以下である。

以下に、酸化物の生成過程について現在想定される考察に基づいて以下に説明する。Snを主成分としたはんだ合金として、Sn_Ag系、Sn_Cu系等のSn系のはんだ合金を例に説明する。
MnとGeを含むSn系のはんだ合金については（実施例）

MnとGeを含むSn系のはんだ合金では、酸化物生成の初期状態において空気中のO₂とはんだ合金中のSn、Mn及びGeが反応して、はんだ合金の表面にSn酸化物（SnOₓ）とMn酸化物（MnₓOᵧ）及びGe酸化物（GeO₂）による酸化膜が生成される。

このように初期状態で酸化膜が形成されたはんだ合金が、H₂OやO₂が所定量以上存在する高温高湿下に置かれた場合、はんだ合金の最表面側に形成されているSn酸化物とMn酸化物及びGe酸化物による酸化膜の一部が、高いエネルギーを持つH₂Oにより破壊されると考えられる。

酸化膜の一部が破壊されると、Sn酸化物とMn酸化物の標準生成自由エネルギーの大きさの関係から、Sn酸化物の生成が抑制されてMn酸化物が生成され、Mn酸化物が酸化膜の厚さ方向に対してほぼ均等に分布する。

また、Snを主成分とし、所定量のMnとGeを含むはんだ合金では、酸化膜最表面側のSn酸化物は減少し、Ge酸化物が酸化膜の最表面側に偏って分布する。

これにより、MnとGeを含むSn系のはんだ合金では、Sn酸化物の生成が抑制され、かつ、Ge酸化物が酸化膜の最表面側に偏って分布するので、Ge酸化物の変色防止効果によって、変色が抑制できる。

（2）MnとGeを含まないSn系のはんだ合金（比較例）

MnとGeを含まないSn系のはんだ合金では、酸化物生成の初期状態においては、空気中のO₂とはんだ合金中のSnが反応して、はんだ合金の表面にSn酸化物（SnOₓ）による酸化膜が生成される。

このように初期状態で酸化膜が形成されたはんだ合金が、高温下あるいは高温高湿下に置かれた場合で、表面に形成された酸化膜の一部が破壊されると考えられる、はんだ合金中のSnとO₂が反応し、更にSn酸化物が生成されると考えられる。

これにより、MnとGeを含まないSn系のはんだ合金では、Sn酸化物が変色の要因となる。
（3）Mnを含みGeを含まないSn系のはんだ合金（比較例）

Mnを含みGeを含まないSn系のはんだ合金では、酸化物生成の初期状態においては、空気中のO₂とはんだ合金中のSn及びMnが反応して、はんだ合金の表面にSn酸化物（Sn Oₓ）とMn酸化物（Mnₓ Oᵧ）による酸化膜が生成される。

このように初期状態で酸化膜が形成されたはんだ合金が、高温下あるいは高温高湿下に曝されることにより、表面に形成された酸化膜の一部が破壊されると考えられる。

Sn酸化物とMn酸化物の標準生成自由エネルギーの大きさから、Sn酸化物の生成が抑制されてMn酸化物が生成される。

しかし、Mn酸化物には変色防止効果が無く、Mnを含みGeを含まないSn系のはんだ合金では、Mn酸化物がSn酸化物と同様に変色してしまい変色を抑制することができない。

（4）Geを含みMnを含まないSn系のはんだ合金（比較例）

Geを含みMnを含まないSn系のはんだ合金では、酸化物生成の初期状態においては、空気中のO₂とはんだ合金中のSn及びGeが反応して、はんだ合金の表面にSn酸化物（Sn Oₓ）とGe酸化物（Ge O₂）による酸化膜が生成される。

このように初期状態で酸化膜が形成されたはんだ合金が、高温下あるいは高温高湿下に曝されることにより、表面に形成された酸化膜の一部が破壊されると考えられる。

これにより、Geを含みMnを含まないSn系のはんだ合金では、Sn酸化物の成長による酸化膜の変色を抑制できない。

実施例

<変色防止効果の評価>

以下の表1に示す組成で実施例のはんだ合金を調合し、表2に示す組成で比較例のはんだ合金を調合し、表3に示す組成で参考例のはんだ合金を調合して、変色防止効果について検証した。なお、表1、表2及び表3における
組成率は質量%である。

[0064] 変色防止効果の評価は以下の手順で行った。

[0065] (1) 試料の作製
調合したはんだ合金を錶造、圧延して板材を作成した。この板材を小片状（2mm（縦）×2mm（横）×0.1mm（厚み））に打ち抜きして試料を作成した。

[0066] (2) 検証方法
以上のように作成された実施例と比較例及び参考例の各試料を高温環境及び高温高湿環境に保管して、変色の有無を確認した。保管条件は、高温高湿環境では、温度125℃、湿度100％R Hで試料を24時間置いた。高温放置では、温度150℃で試料を7日間放置した。変色の確認は、KEYENCE製DIGITAL MICROSCOPE VHX—500Fを使用して行った。確認の結果、変色が全く見られなかったものを◎、若干の光沢の変化が確認されたものを〇、やや変色が見られたものを△、変色したものをXと評価した。
<table>
<thead>
<tr>
<th></th>
<th>Sn</th>
<th>Ag</th>
<th>Cu</th>
<th>Ge</th>
<th>Mn</th>
<th>P</th>
<th>Ga</th>
<th>Ni</th>
<th>Co</th>
<th>Fe</th>
<th>Bi</th>
<th>In</th>
<th>Sb</th>
<th>初期状態</th>
<th>高温高湿</th>
<th>高温放置</th>
<th>露比性 (mm/7日)</th>
<th>焦和不良 (発生率[%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>比較例1</td>
<td>100</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>3.9</td>
<td>10.1</td>
</tr>
<tr>
<td>比較例2</td>
<td>1.0</td>
<td>0</td>
<td>0.7</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.2</td>
<td>10.8</td>
</tr>
<tr>
<td>比較例3</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0.005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.6</td>
<td>10.5</td>
</tr>
<tr>
<td>比較例4</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.5</td>
<td>10.5</td>
</tr>
<tr>
<td>比較例5</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.4</td>
<td>10.3</td>
</tr>
<tr>
<td>比較例6</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.1</td>
<td>10.6</td>
</tr>
<tr>
<td>比較例7</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>4.1</td>
<td>10.3</td>
</tr>
<tr>
<td>比較例8</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>△</td>
<td>4.3</td>
<td>10.4</td>
</tr>
<tr>
<td>比較例9</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>4.7</td>
<td>10.2</td>
</tr>
<tr>
<td>比較例10</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>4.4</td>
<td>10.8</td>
</tr>
<tr>
<td>比較例11</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.6</td>
<td>11.1</td>
</tr>
<tr>
<td>比較例12</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>4.5</td>
<td>10.9</td>
</tr>
<tr>
<td>比較例13</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.2</td>
<td>10.7</td>
</tr>
<tr>
<td>比較例14</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.2</td>
<td>10.8</td>
</tr>
<tr>
<td>比較例15</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.3</td>
<td>10.8</td>
</tr>
<tr>
<td>比較例16</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.3</td>
<td>10.3</td>
</tr>
<tr>
<td>比較例17</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.0</td>
<td>10.1</td>
</tr>
<tr>
<td>比較例18</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.4</td>
<td>10.6</td>
</tr>
<tr>
<td>比較例19</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>3.9</td>
<td>9.9</td>
</tr>
<tr>
<td>比較例20</td>
<td>1.0</td>
<td>0</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>4.3</td>
<td>13.1</td>
</tr>
</tbody>
</table>
表3

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>P</td>
<td>Cu</td>
<td>Fe</td>
<td>Si</td>
<td>S</td>
<td>Mg</td>
<td>Al</td>
<td>Cr</td>
<td>Ni</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.01</td>
</tr>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

[0070] 表1、表2及び表3に示すように、実施例と比較例及び参考例の何れも、初期状態では変色が見られなかった。0.005質量％以上0.1質量％以下のMnと0.001質量％以上0.1質量％以下のGeを含み、更に0質量％超1質量％以下のCu、または、0質量％超4質量％以下のAgを含み
残部をSnとした実施例において、MnとGeの含有量の比率が等量である実施例1、2、5〜6では、高温高湿環境でも高温放置環境でも変色が全く見られなかった。

MnとGeの含有量の比率が等量であり、かつ、Cuの含有量を所定の範囲で増やした実施例3でも同様に、高温高湿環境でも高温放置環境でも変色が全く見られず、Cuの含有量が1質量％以下であれば、変色防止効果が阻害されないことが判った。また、Agの含有量を所定の範囲で増やした実施例7でも同様に、高温高湿環境でも高温放置環境でも変色が全く見られず、Agの含有量が4質量％以下であれば、変色防止効果が阻害されないことが判った。MnとGeの含有量の比率Mn > Geである実施例4、8では、高温高湿環境及び高温放置で若干の光沢の変化が確認された。

上述した所定量のMnとGeを含み、残部をSnとした参考例において、MnとGeの含有量の比率が等量である参考例5、9では、高温高湿環境でも高温放置環境でも変色が全く見られなかった。一方、MnとGeの含有量の比率Mn > Geである参考例1〜3、6では、高温高湿環境及び高温放置で若干の光沢の変化が確認された。これに対し、MnとGeの含有量の比率Mn < Geである参考例4、7、8では、高温高湿環境でも高温放置環境でも変色が全く見られなかった。

また、所定量のMnとGeを含み、更にCu及びAgを含み、残部をSnとした参考例においても、MnとGeの含有量の比率Mn > Geである参考例10では、高温高湿環境及び高温放置で若干の光沢の変化が確認された。一方、MnとGeの含有量の比率がMnとGeで等量である参考例11、12では、高温高湿環境でも高温放置環境でも変色が全く見られなかった。

更に、MnとGeの含有量の比率が等量であり、かつ、Cu及びGeの含有量を所定の範囲で増やした比較例13でも同様に、高温高湿環境でも高温放置環境でも変色が全く見られず、AgとCuを含む場合においても、Agの含有量が4質量％以下及び、Cuの含有量が1質量％以下であれば、変色防止効果が阻害されないことが判った。
これにより、S n を主成分としたはんだ合金に、所定量のM n とG e を含む場合において、C u またはA g を含む場合、C u 及びA g を含まない場合、C u 及びA g を含む場合の何れも、変色抑制効果に同様に傾向を示すこと
が判った。特に、M n とG e の含有量の比率がM n ≤ G e の場合、高温高湿
環境でも高温放置環境でも変色防止効果が得られることが判つた。

所定量のM n とG e を含み、更にC u またはA g を含み、M n とG e の含
有量の比率が等量であり、更にP、Ga、Ni、Co、Fe、Bi、In、
S b の何れかあるいは全てを含み、残部をS n とした実施例9〜26では、
高温高湿環境でも高温放置環境でも変色が全く見られなかった。

また、所定量のM n とG e を含み、M n とG e の含有量の比率が等量であ
り、更にP、Ga、Ni、Co、Fe、Bi、In、S b の何れかあるいは全てを含み、残部をS n とした参考例14〜22も同様に、高温高湿環境で
も高温放置環境でも変色が全く見られなかった。

これに対し、M n 及びG e を含まないS n のみの比較例1、M n 及びG e
を含まず、A g 及びC u を含み、残部をS n とした比較例2では、高温高湿
環境でも高温放置環境でも変色が見られた。M n を含みG e を含まない比較
例3〜7でも同様に、高温高湿環境でも高温放置環境でも変色が見られた。
G e を含みM n を含まない比較例8、10、12では、G e の含有量を増や
すことで、高温放置では変色抑制効果が得られるが、高温高湿環境では変色
が見られた。M n 及びG e を含む比較例9、11、13〜20では、M n あ
るいはG e の何れか、または両方を本発明の範囲外で過剰に含む場合でも、
比較例9では若干の光沢の変化が確認されたものの、比較例11、13〜2
0では高温高湿環境でも高温放置環境でも変色が全く見られなかった。

以上の結果から、S n を主成分としたはんだ合金に、所定量のM n とG e
と、更にC u またはA g を含むことで、高温高湿環境でも高温放置環境でも
変色防止効果が得られることが判り、M n とG e の含有量の比率がM n ≤ G
e であれば、より良好な変色防止効果が得られることが判った。

＜酸化物の分布＞
次に、上述した表1に示す高温高湿環境及び高温放置環境での変色防止効果を検証した実施例のはんだ合金について、酸化膜中でのSn酸化物、Mn酸化物及びGe酸化物の分布について検証した。

[0081] 図1は、Snを主成分とし、MnとGeを含む場合の主たる元素の分布を示す。図1のグラフにおいて、縦軸に含有量、横軸に元素が分布する最表面からの深さを示す。なお、酸素、炭素等の他の含有元素については図示しない。

[0082] Snを主成分とし、MnとGeを含む参考例1では、Ge酸化物が酸化膜の最表面から10nm程度の範囲に多く分布していることが判り、Ge酸化物が酸化膜の最表面側に多く分布していることが判る。また、Mnが最表面から略均一に分布していることが判る。これに対し、最表面のSnが減少していることが判る。なお、Snを主成分とし、MnとGeを含み、更にAgまたはCuを含む実施例1～26の場合も、同様の分布を示す。

[0083] 図1に示す元素の分布から、Snを主成分とし、所定量のMnとGeを含むのはんだ合金では、Ge酸化物が、酸化膜の最表面側に偏って分布し、最表面にSn酸化物が生成されることが抑制されることが判る。

[0084] このように、変色防止効果のあるGe酸化物が最表面側に多く分布することで、変色が抑制される。また、Mn酸化物が酸化膜の厚さ方向に対してほぼ均等に分布するので、Sn酸化物の生成が抑制される。

[0085] <融合性の評価>

上述した表1、表2及び表3に示す高温高湿環境及び高温放置環境での変色防止効果を検証した各実施例と比較例及び参考例のはんだ合金について、融合性を検証した。検証方法は、各実施例と比較例及び参考例の組内で調合したはんだ合金を錆造、圧延したものを、打ち抜きして小片状の部材（2mm×2mm×1mm）を作成した。この小片を所定の大きさの板状に成形し、フラックスを塗布したOSP（水溶性プラスチック（Organic Solderability Preservative）処理を施されたCu板上に置き、リフローを行った後、表面を洗
浄し、温度125°C、湿度100%RHの環境に24時間置いた。さらに、
Agが3.0質量%、Cuが0.5質量%、残部がSnからなるはんだ合金
(Sn-3.0Ag-0.5Cu)を用いて作製したはんだボール（本例の
場合、直径300μm）を、小片部材と同様に温度125°C、湿度100%
RHの環境に24時間置いた。次に、実施例と比較例及び参考例のはんだ合金
からなる試料上にフラックスを塗布し、はんだボールを所定個数置いた。
本例では、はんだボールの数は9個とし、それぞれ5枚用意した。そして、
リフローを行った後、未融合のはんだボールの数を計数して、融合不良発生
率を算出した。未融合とは、Cu板とはんだボールが接合されていない状態
をいう。

[0086] 所定量のMnとGeを含み、更にCuまたはAgを含み、残部をSnとし
た実施例1〜8では、融合不良発生率は0であった。特に、Cuの含有量を
所定の範囲で増やした実施例3で、融合不良発生率は0であり、Cuの含
有量が1質量%以下であれば、融合率が阻害されないことが判った。また、
Agの含有量を所定の範囲で増やした実施例7でも、融合不良発生率は0で
あり、Agの含有量が4質量%以下であれば、融合性が阻害されないことが
判った。

[0087] また、所定量のMnとGeを含み、更にCuまたはAgを含み、更にP、
Ga、Ni、Co、Fe、Bi、In、Sbの何れかあるいは全てを含み、
残部をSnとした実施例9〜26でも、融合不良発生率は0であった。

[0088] 更に、所定量のMnとGeを含み、残部をSnとした参考例1〜9、所定
量のMnとGeを含み、更にCu及びAgを含み、残部をSnとした参考例
10〜13でも、融合不良発生率は0であった。

[0089] また、所定量のMnとGeを含み、更にP、Ga、Ni、Co、Fe、Bi、
In、Sbの何れかあるいは全てを含み、残部をSnとした参考例14
〜22でも、融合不良発生率は0であった。

[0090] Mn及びGeを含まないSnのみの比較例1、V、M及びGeを含まず、A
g及びCuを含み、残部をSnとした比較例2、Snを主成分とし、Mnを
含みGeを含まない比較例2〜7、Snを主成分とし、Geを含みMnを含まない比較例8、10、12では、何れも融合不良が発生した。なお、Mn及びGeを含む比較例9、11、13では、何れも融合不良が発生した。実施例3でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られず、Cuの含有量が1質量%以下であれば、濡れ性が阻害されないことが判った。

<濡れ性の評価>

上述した表1、表2及び表3に示す高温高湿環境及び高温放置環境での変色防止効果を検証した実施例と比較例及び参考例のはんだ合金について、濡れ性を検証した。検証方法は、各実施例と比較例及び参考例の組成で調合したはんだ合金を錫造、圧延したものを、打ち抜きして小片状の部材（2mm×2mm×0.1mm）を作成した。この小片を温度125℃、湿度100%RHの環境に24時間置いた。次に、OSP処理されたCu板と、Cu板にNiめっきし、このNiめっきにさらにAuめっきしたNi/Auめっき板の各板の上にフラックスを塗布し、高温高湿処理した小片を載せリフローを行った。はんだ合金の濡れ広がり基板面積を測定し、OSP処理されたCu板では5.0mm2、Ni/Auめっき板では11.0mm2以上に広がったものを合格とした。

所定量のMnとGeを含み、更にCuまたはAgを含み、残部をSnとした実施例1〜8では、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られなかった。

特に、Cuの含有量を所定の範囲で増やした実施例3でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られず、Cuの含有量が1質量%以下であれば、濡れ性が阻害されないことが判った。
また、Agの含有量を所定の範囲で増やした実施例7でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られず、Agの含有量が4質量%以下であれば、濡れ性が阻害されないことが判った。

更に、所定量のMnとGeを含み、更にCuまたはAgを含み、更にP、Ga、Ni、Co、Fe、Bi、In、Sbの何れかあるいは全てを含み、残部をSnとした実施例9〜26でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも低下は見られなかった。

また、所定量のMnとGeを含み、残部をSnとした参考例1〜9、所定量のMnとGeを含み、更にCu及びAgを含み、残部をSnとした参考例10〜13でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られなかった。

更に、所定量のMnとGeを含み、更にP、Ga、Ni、Co、Fe、Bi、In、Sbの何れかあるいは全てを含み、残部をSnとした参考例14〜22でも、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも、低下は見られなかった。

Mn及びGeを含まないSnのみの比較例1、Mn及びGeを含まず、Ag及びCuを含み、残部をSnとした比較例2では、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも低下した。

Mnを含みGeを含まない比較例3〜7では、Mnの含有量が増えると、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも低下した。Mn及びGeを含む比較例9、11、13〜18では、Mnを本発明の範囲外で過剰に含む比較例9、11、13、Ge、またはGeとMnの両方を本発明の範囲外で過剰に含む比較例14〜18の何れの場合も、OSP処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも低下した。

また、GeとMnの両方を本発明の範囲外で過剰に含み、更にCuを本発明の範囲外で過剰に含む比較例19、GeとMnの両方を本発明の範囲外で
過剰に含み、更にAgを本発明の範囲外で過剰に含む比較例20でも、○S
P処理されたCu板に対する濡れ性、Ni/Auめっき板に対する濡れ性とも低下した。Ge、Mnを本発明の範囲外で過剰に含む場合には、濡れ性が低下することが見て取れる。

[0101] 以上の結果から、Snを主成分とし、Mnを0.005質量%以上0.1
質量%以下、Geを0.001質量%以上0.1質量%以下、六価を0質量
%超4質量%以下で含むはんだ合金では、MnとO₂が反応してSnとO₂の
反応が抑制され、経時変化による酸化膜の最表面側へのSn酸化物の分布が
抑制され、変色防止効果を有するGe酸化物を含む酸化膜が最表面側に残存
することで、高温高湿環境でも変色防止効果が得られることが判った。好ま
しくは、MnとGeの含有量の比率をMn ≤ Geとするか、高温高湿環境で
も高温放置環境でもより良好な変色防止効果が得られることを判った。

[0102] また、Snを主成分とし、上述した所定量のMnとGe、更にAgを含む
はんだ合金では、MnとO₂が反応してSnとO₂の反応が抑制され、Sn酸
化物の成長が抑制されるので、酸化膜厚の増加を抑制できることが判った。
酸化膜厚の増加を抑制することで、はんだ付け時にフラックスで酸化物の除
去が十分に行え、融合性が向上する。

[0103] <はんだ合金の適用例>

図2は、本発明のはんだ合金の適用例を示す構成図である。Snを主成分
とし、Mnを0.005質量%以上0.1質量%以下、Geを0.001質量%
以上0.1質量%以下、Agを0質量%超4質量%以下で含むはんだ合
金は、球状のはんだボール10としても良い。はんだボール10の直径は、
1〜1000μmであることが好ましい。この範囲にあると、球状のはんだ
ボールを安定して製造でき、また、端子間が狭いビッチである場合の接続短絡
を抑制することができる。ここで、はんだボールの径が1〜5mm程度
である場合、「はんだバウダ」と称されてもよい。

[0104] 図3は、本発明のはんだ合金の他の適用例を示す構成図である。Snを主
成分とし、Mnを0.005質量%以上0.1質量%以下、Geを0.00
1質量%以上0.1質量%以下、Agを0質量%超4質量%以下で含むはんだ合金は、チップソルダ11としても良い。チップソルダ11は、例えば、直方体形状に構成される。

[01 05] 他の適用例としては、Snを主成分とし、Mnを0.005質量%以上0.1質量%以下、Geを0.001質量%以上0.1質量%以下、Agを0質量%超4質量%以下で含むはんだ合金を、所定の大きさの粉末状とし、フラックスと混合させたはんだベーストとしても良い。

[01 06] 本発明によるはんだ合金、はんだボール、チップソルダ、はんだベーストは、半導体チップとの接合や電子部品とプリント基板の接合に使用され形成されるはんだ接着となる。

[01 07] 本発明のα線量が0.0200cph/cm2以下であってもよい。α線量が0.0200cph/cm2以下の場合、電子機器のソフトエラーを防止できる。
請求の範囲

[請求項1] M n を 0.005 質量％以上 0.1 質量％以下、Ge を 0.001 質量％以上 0.1 質量％以下、A g を 0 質量％超 4 質量％以下で含み、残部を Sn とした

ことを特徴とするはんだ合金。

[請求項2] M n の量を Ge の量以下とした

ことを特徴とする請求項 1 に記載のはんだ合金。

[請求項3] 更に、P、Ga からなる群から選択される少なくとも 1 種を合計で 0.002 質量％以上 0.1 質量％以下で含む

ことを特徴とする請求項 1 または 2 に記載のはんだ合金。

[請求項4] 更に、Ni、Co、Fe からなる群から選択される少なくとも 1 種を合計で 0.005 質量％以上 0.3 質量％以下で含む

ことを特徴とする請求項 1 〜 3 のいずれか 1 項に記載のはんだ合金。

[請求項5] 更に、Bi、In、Sb からなる群から選択される少なくとも 1 種を合計で 0.1 質量％以上 1.0 質量％以下で含む

ことを特徴とする請求項 1 〜 4 のいずれか 1 項に記載のはんだ合金。

[請求項6] 請求項 1 〜 5 のいずれか 1 項に記載のはんだ合金を使用した

ことを特徴とするはんだボール。

[請求項7] 請求項 1 〜 5 のいずれか 1 項に記載のはんだ合金を使用した

ことを特徴とするチップソルダ。

[請求項8] 請求項 1 〜 5 のいずれか 1 項に記載のはんだ合金を使用した

ことを特徴とするはんだベースト。

[請求項9] 請求項 1 〜 5 のいずれか 1 項に記載のはんだ合金を使用した

ことを特徴とするはんだ継手。

[請求項10] 請求項 6 に記載のはんだボールを使用した

ことを特徴とするはんだ継手。
[請求項11] 請求項7に記載のチップソルダを使用したことを特徴とするはんだ継手。

[請求項12] 請求項8に記載のはんだペーストを使用したことを特徴とするはんだ継手。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B23K35/2 6 (2006.01) i. C22C1 3 / 00 (2006.01) i. H05K3 / 34 (2006.01) i.

According to International Patent Classification (IPC) or to both national classification and IPC

B. MINIMUM DOCUMENTATION SEARCHED

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of actual completion of the international search: 25 May 2017 (25.05.17)
Date of mailing of the international search report: 06 June 2017 (06.06.17)

Name and mailing address of the ISA/Japan Patent Office
Tokyo 100-8915, Japan

Authorized officer
Telephone No.

Form PCT/ISA/210 (second sheet) (January 2015)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2001-129682 A (Topy Industries Ltd.), 15 May 2001 (15.05.2001), (Family: none)</td>
<td>1-12</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（I P C））
Int.Cl. B23K35/26 (2006. 01) i, C22C13/00 (2006. 01) i, H05K3/34 (2006. 01) i

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（I P C））
Int.Cl. B23K35/26, C22C13/00, H05K3/34

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新型公報 1922-19
日本国公開実用新型公報 1971-20
日本国実用新型登録公報 1996-20
日本国登録実用新型公報 1994-20

国際調査で使用した電子データベース（データベースの名前，調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは，その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
</table>

C欄の続きにも文献が挙げられている。

「：パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー
A」特に関連のある文献ではなく，一般的な技術水準を示すもの
E」国際出願前の出願または特許であるが，国際出願日以前に公表されたもの
L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
R」口頭による開示，使用，展示等に及ぼす文献
P」国際出願日以前で，かつ優先権の主張の基礎となる出願

国際調査を完了した日
25. 05. 2017
国際調査報告の発送日
06. 06. 2017

国際調査機関の名称及びあて先
日本国特許庁（I S A ／J P）
郵便番号１００－８９１５
東京都千代田区霞が関三丁目４番３号

特許庁審査官（権限のある職員）
田口 裕雄
電話番号 ０３－３５８１－１１０１ 内線 ３４３５

様式PCT／ISA／210（第2ページ） (2015年1月)
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2001-129682 A (トピー工業株式会社) 2001. 05. 15, (ファミリーなし)</td>
<td>1-12</td>
</tr>
<tr>
<td>P, A</td>
<td>JP 5880766 BL (千住金属工業株式会社) 2016. 03. 09, & wo 2016/189900 A1</td>
<td>1-12</td>
</tr>
</tbody>
</table>