WO 03/094019 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

13 November 2003 (13.11.2003) PCT WO 03/094019 A1l
(51) International Patent Classification”: GOG6F 15/16, Briargrove Way, Highlands Ranch, CO 80126 (US).
13/14 GOLDING, Christa; 407 W. English Sparrow Trail,
Littleton, CO 80129 (US).
(21) International Application Number: PCT/US03/13621 .
(74) Agent: MEYER, Sheldon R.; Fliesler Dubb Meyer &

(22) International Filing Date: 1 May 2003 (01.05.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/377,332
10/293,059

2 May 2002 (02.05.2002)
13 November 2002 (13.11.2002)

Us
Us

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventors: POTTER, Timothy; 4900 S. Ulster Street,
#8-106, Denver, CO 80237 (US). UPTON, Mitch; 10099

Lovejoy LLP, Four Embarcadero Center, Suite 400, San
Francisco, CA 94111-4156 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, 7ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: HIGH AVAILABILITY FOR ASYNCHRONOUS REQUESTS

Receive a service request from a client application
to a distributed request queue

]

Pull the service request from the request queue
to a service processor

!

It the service processor is unavailable, pull the
service request to another service processor
in the cluster

!

Invoke the service to an EIS using the
service processor

1

Receive the service response from the EIS to the service
processor and forward the service response to a
distributed response queue

N
=
(=)

N
N

206

208
Listen to the response queue for the service
response and notify the client application when
the service response is received 210

(57) Abstract: Highly-available processing of an asyn-
chronous request can be accomplished in a single transaction.
A distributed request queue receives a servuce request from
a client application (200). A service processor is deployed
on each node of a cluster containing the distributed request
queue. A service processor pulls the service request from the
request queue and invokes the service for the request (202).
If that service processor fails, another service processor in the
cluster can service the request (204). The service processor
receives a service response from the invoked service (206)
and forwards the service response to a distributed response
queue (208). The distributed response queue holds the service
response queue holds the service response until the response
is retrieved for the client application (210).

WO 03/094019 AT |/ NAIH 0 AOHROO 00 000 Y AR

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, For two-letter codes and other abbreviations, refer to the "Guid-
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, ance Notes on Codes and Abbreviations" appearing at the begin-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— with international search report

WO 03/094019 PCT/US03/13621

10

15

20

HIGH AVAILABILITY FOR ASYNCHRONOUS REQUESTS

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains

material which is subject to copyright protection. The copyright owner
has no objection to the facsimile reproduction by anyone of the
patent document of the patent disclosure, as it appears in the Patent
and Trademark Office patent file or records, but otherwise reserves
all copyright rights whatsoever.

CLAIM OF PRIORITY
This application claims priority to U.S. Provisional Patent
Application No. 60/377,332, filed May 2, 2002, entitled “HIGH
AVAILABILITY FOR ASYNCHRONOUS REQUESTS,” which is
hereby incorporated herein by reference.

CROSS-REFERENCED CASES
The following applications are cross-referenced and

incorporated herein by reference:

U.S. Patent Application No. 10/271,194 entitled “Application
View Component for System Integration,” by Mitch Upton, filed
October 15, 2002.

U.S. Patent Application No. 10/293,674 entitled “High
Availability Event Topic,” by Tim Potter et al., filed November 13,
2002.

U.S. Patent Application No. 10/293,655 entitled “High
Availability Application View Deployment,” by Tim Potter et al., filed
November 13, 2002.

10

15

20

25

WO 03/094019

U.S. Patent Application No. 10/293,656 entitled “High
Availability for Event Forwarding,” by Tim Potter et al., filed
November 13, 2002.

FIELD OF THE INVENTION

The present invention relates to the availability of services

such as JMS across a network or in a server cluster.

BACKGROUND
In present application integration (Al) systems, there can be

several single points of failure. These single points of failure can
include deployment or management facilities, event forwarding,
event topics, remote clients, event subscriptions, response listeners,
and response queues. Each of these features is tied to a single
server within a server cluster. If that single server crashes, the entire
Al application can become irreparably damaged and must be
rebooted via a server reboot.

Single points of failure such as request and response queue
are used for processing asynchronous requests. Current
implementations of asynchronous service request processing utilize
a single physical request queue and response queue per server
instance. In the event of a node failure, all asynchronous requests
and responses within a given JMS server, for example, become

unavailable until the JMS server is restarted.

BRIEF SUMMARY

Systems and methods in accordance with the present

invention can overcome deficiencies in prior art systems by allowing
for high-availability processing of asynchronous requests in a single

transaction. A distributed request queue can be used to receive and

PCT/US03/13621

10

15

20

25

WO 03/094019

store a service request, such as from a user or client application. A
service processor can pull the service request from the request
queue and invoke the service for the service request, such as to an
enterprise information system. The service processor can receive
the service response from the invoked service and forward the
service response to a distributed response queue. The distributed
response queue can hold the service response until the response is
retrieved for the user or client application. An application view client
can act on behalf of the user or client application, sending the
service request to the distributed request queue and retrieving the
service response from the distributed response queue. The
application view client can generate failure recovery semantics for
the client application in the event of a failure. The application view
can also determine whether any service responses are waiting in the
distributed response queue for the client application.

These systems and methods can be used in a server cluster.
There can be a service processor deployed on every node in the
cluster, each of which can listen to a given distributed request queue.
This allows a service to be migrated between nodes in the cluster in
the event of a node failure.

Other features, aspects, and objects of the invention can be
obtained from a review of the specification, the figures, and the

claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram of a system in accordance with one

embodiment of the present invention.
Figure 2 is flowchart for a method that can be used with the
system of Figure 1.

PCT/US03/13621

10

15

20

25

30

WO 03/094019

DETAILED DESCRIPTION

A system and method in accordance with one embodiment of

the present invention can overcome deficiencies in present
asynchronous messaging systems by taking advantage of
asynchronous request and response queues, as well as
asynchronous request and response processors. A client may wish
to invoke a service asynchronously in order to begin and/or continue
processing other matters, instead of simply waiting for the response.
For example, a long running process such as a batch process run
against an SAP system or database can take minutes or even hours.
Asynchronous requests can allow a client to send the request and
then move on to other business.

The use of server clustering allows an Al component to be
used in a scalable and highly available fashion. A highly available
component does not have any single points of failure, and can have
the ability to migrate services from failed nodes to live nodes in a
cluster. Any service offered by the Al component can be targeted to
several nodes in a cluster. In the event of a node failure in the
cluster, the services located on the failed node can be migrated to
another live node in the cluster.

In the event of a crash of a cluster or managed server, the Al
application can continue accepting new work. The acceptance of
new work can include deploying new and undeploying old application
views and connection factories, monitoring of old application views
and connection factories, delivering events from adapters, and
servicing both synchronous and asynchronoushronous service
invocations. An Al application can also support the manual migration
of services on the failed node to a live node, such as a singleton
message-driven Enterprise JavaBean (MDB) listening on a physical

destination managed by a failed JMS server. Application integration

PCT/US03/13621

10

15

20

25

30

WO 03/094019

can use a singleton MDB if a customer needs ordered event
processing, for example. An Al application can notify users in an
understandable and/or predictable way that in-flight transactions
have been cancelled or rolled-back, and should be retried.
Wherever possible, an Al application can retry the transaction after
reestablishing connections to make use of resources on another live
server. ‘

In the event of an administration (admin) server failure, an Al
application can do all the tasks mentioned with respect to a crash of
a cluster or managed server. The Al application can also notify
users that deployment or undeployment is unavailable while the
admin server is unavailable. The Al application can still boot or
reboot successfully using the previous domain and/or server
configuration.

A system and method in accordance with one embodiment of
the present invention allows asynchronous requests and responses
to be available within a given JMS server, even in the event of a
node failure. Request and response queues, such as
ASYNC REQUEST_QUEUE and ASYNC_RESPONSE_QUEUE,
can be deployed as distributed queues in a cluster. A request
processor, such as AsyncServiceRequestProcessor, can be
packaged as an MDB. Such a system allows the processing of
asynchronous requests and responses even if the JMS server that
accepted the requests crashes or becomes otherwise unavailable.

In the event that a physical queue fails before an
asynchronous service request is received by the appropriate MDB,
the request can be unavailable until the physical queue comes back
on line. This can hold true for asynchronous service responses.
Using a system in accordance with one embodiment of the present
invention, an asynchronous service processor MDB can be deployed

PCT/US03/13621

10

15

20

25

30

WO 03/094019

on a single distributed JMS queue, such as

ASYNC _REQUEST_QUEUE. This deployment removes the need to
maintain and manage a pool of asynchronous request processor
threads. An asynchronous service processor MDB can be last in the
deployment order for the Al application, and can be deployed from a
JAR file such as “ai-asyncprocessor-gjb.jar.”

Figure 1 shows an example of a high-availability
asynchronous service processing system in accordance with one
embodiment of the present invention. An application view client 100
has the ability to generate and deal with failure recovery semantics
without the user having any knowledge or input. For instance, a client
application that sends off a request might crash or otherwise become
unavailable at some point before the response is received. When
the response is ready to be returned, the response can sit in an
asynchronous response queue 112 until the client comes back.
When the client 100 is available again, the client will want to receive
the response. Since the system is utilizing distributed queues, the
client application would need to go out to the server and determine
whether there are any responses from previous requests that were
sent before the failure. The application view client 100 can take care
of this determination behind the scenes, such that the user or client
application does not need to do anything to find the response.

The user or client application making the request can register
a message listener 106, such that the user or client application can
be informed that a message is ready and waiting to be received. An
asynchronous service processor 110 can pull a request off the
asynchronous request queue 108, invoke the asynchronous service
against an Enterprise Information System (EIS) 118, and wait for the
response. When the asynchronous service response comes back,

the asynchronous service processor 110 can put the response onto

PCT/US03/13621

10

15

20

25

WO 03/094019

the response queue 112. In this embodiment, this processing is
accomplished as a single transaction.

The application view client 100 can instantiate an application
view instance 102. The client 100 can have the option of supplying a
durable client identifier at the time of construction. The durable client
identifier can be used as a correlation identifier for asynchronous
response messages. The client 100 can invoke an asynchronous
service method, such as “invokeServiceAsync”, and can pass a
request document and response listener 104, such as
AsyncServiceResponselistener, to handle the response.

An application view instance 102 can create a service request
object, such as AsyncServiceRequest, and can send the object to a
request queue 108, such as ASYNC_REQUEST_QUEUE. The
service request object can contain the name of the destination to
which the response listener is pinned. A service processor MDB 110
can use this information to determine the physical destination to
receive the response. If the request object does not contain the
name of a response destination, the service processor MBD 110 can
use the destination set on the JMS message via a call to a method
such as JMSReplyTo(). If a client only supplies a service response
listener 104 to the application view, such as:

invokeServiceAsync(String serviceName, IDocument
request, AsyncServiceResponselListener listener);

the application view can establish a JMS queue receiver to the JMS
queue bound at a JNDI location provided by an application view
Enterprise JavaBean (EJB) method, such as
getAsyncResponseQueueJNDIName(). The application view
instance 102 can use QueueReceiver::getQueue() to set the

ReplyTo destination on the request message.

PCT/US03/13621

10

15

20

25

30

WO 03/094019

In a cluster, an asynchronous request queue 108 can be
deployed as a distributed JMS queue. Each message can be sent to
a single physical queue, and not be forwarded or replicated in any
way. As such, the message is only available from the physical queue
to which it was sent. If that physical queue becomes unavailable
before a given message is received, the message or
AsyncServiceRequest can be unavailable until that physical queue
comes back on-line. It is not enough to send a message to a
distributed queue and expect the message to be received by a
receiver of that distributed queue. Since the message is sent to only
one physical queue, there must be a queue receiver receiving or
listening on that physical queue. Thus, an Al asynchronous service
processor MDB can be deployed on all nodes in a cluster.

An asynchronous service processor MDB can receive the
message from the queue in a first-in, first-out (FIFO) manner. The
service processor can use the asynchronous service request object
in a JMS ObjectMessage to determine the qualified name, service
name, request document, and response destination of the
application view. The asynchronous service processor 110 can use
an application view EJB 114 to invoke the service synchronously.
The service can be translated into a synchronous CCli-based request
and/or response to the resource adapter 116.

When an asynchronous service processor MDB 110 receives
the response, the response can be encapsulated into an
asynchronous service response object and sent to the response
destination provided in the asynchronous service request object. The
asynchronous service processor MDB 110 cannot just send the
response to the asynchronous response queue 112, the response
needs to be sent to a specific physical destination. This specific

physical destination, or queue, can have been established by the

PCT/US03/13621

10

15

20

25

30

WO 03/094019

application view instance 102 running on the client when, for
example, an application view EJB method such as
getAsyncResponseQueueJNDIName() was called.

If the client application fails and a new application view is
created with the same durable client identifier, there is a chance that
the new application view will be pinned to a different physical JMS
queue than the JMS queue that the client was using prior to the
failure. Consequently, the application view can use recover logic to
query the other members for responses that match the durable client
identifier once the client application restarts.

An application view message listener 106 instance, created
when the application view instance 102 was instantiated, can receive
the asynchronous service response message as a JMS
ObjectMessage, and can pass the message to the asynchronous
service response listener 104 supplied in the “invokeServiceAsync”
call.

Figure 2 shows the steps of a method that can be used with
the system of Figure 1. First, a service request is received to a
distributed request queue from a client application 200. The service
request is pulled from the request queue to a service processor 202.
If the service processor is down, another service processor in the
cluster pulls the service request 204. A service is invoked for the
service request, such as to an EIS 206. The service response is
retrieved by the service processor and forwarded to a distributed
response queue for storage until retrieval from a client application
208. A response listener listens to the response queue and notifies
the client application when the service response is received 210.

The foregoing description of preferred embodiments of the
present invention has been provided for the purposes of illustration

and description. It is not intended to be exhaustive or to limit the

PCT/US03/13621

WO 03/094019 PCT/US03/13621
10

invention to the precise forms disclosed. Many modifications and
variations will be apparent to one of ordinary skill in the art. The
embodiments were chosen and described in order to best explain the
principles of the invention and its practical application, thereby
enabling others skilled in the art to understand the invention for
various embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the scope of
the invention be defined by the following claims and their

equivalence.

10

15

20

25

WO 03/094019 PCT/US03/13621

11

What is claimed is:

1. A system for high-availability processing of asynchronous
requests in a single transaction, comprising:

a distributed request queue for receiving and storing a service
request;

a service processor for pulling the service request from the
request queue and invoking the service for the service request, the
service processor further receiving a service response for the service
request from the invoked service; and

a distributed response queue for receiving the service
response from the service processor and storing the service

response.

2. A system according to claim 1, further comprising:
an enterprise information system containing the service

invoked by the service processor.

3. A system according to claim 1, wherein:
said service processor is packaged as a message-driven

Enterprise JavaBean.

4. A system according to claim 1, further comprising:
an application view client for sending the service request to
the distributed request queue and retrieving the service response

from the distributed response queue on behalf of a client application.
5. A system according to claim 4, wherein:
said application view client can generate failure recovery

semantics for the client application.

6. A system according to claim 4, wherein:

WO 03/094019 PCT/US03/13621
12

the distributed response queue is adapted to store the service
response until the response is retrieved by the application view

client.

7. A system according to claim 4, wherein:
5 said application view is adapted to determine whether any
service responses are waiting in the distributed response queue for

the client application.

8. A system according to claim 4, further comprising:
a client identifier for identifying the client application, the client
10 identifier used to process the service request and service response

for the client application.

9. A system for according to claim 4, wherein:
said application view client passes the service request to the
distributed request queue in a request document.

15 10. A system according to claim 9, wherein:
said application view further passes a service response
listener with the request document, the service response listener
adapted to listen for the service response corresponding to the

service request document.

20 11. A system according to claim 1, wherein:

said service processor is deployed on a node in a cluster.

12. A system according to claim 11, further comprising:
additional service processors, each additional service

processor deployed on different node in the cluster.

10

15

20

25

WO 03/094019 PCT/US03/13621

13

13. A system according to claim 12, wherein:

the additional service processors are adapted to listen to the
distributed request queue for a service request, each of the
additional service processors capable of pulling the service request
from the distributed request queue and invoking the service for the

service request if the service processor is unavailable.

14. A system according to claim 1, wherein:
said service processor further encapsulates the service
response into a service response object that is sent to the distributed

response queue.

15. A method for high-availability processing of asynchronous
requests in a single transaction, comprising:

receiving a service request to a distributed request queue
from a client application;

pulling the service request from the request queue to a service
processor and invoking a service for the service request;

receiving the service response from the invoked service to a
distributed response queue and storing the service response until

retrieval from a client application.

16. A method according to claim 15, further comprising:
executing the invoked service using an enterprise information

system.
17. A method according to claim 15, further comprising:
deploying an additional service processor on each node of the

cluster containing the service processor.

18. A method according to claim 17, further comprising:

WO 03/094019 PCT/US03/13621
14

listening to the distributed request queue using with the

service processor and any additional service processors.

19. A method according to claim 15, further comprising:
packaging the service processor as a message-driven

5 Enterprise JavaBean.

20. A method according to claim 15, further comprising:
using an application view client to send service requests and

receive service responses on behalf of the client application.

21. A method according to claim 20, further comprising:
10 generating failure recovery semantics using the application

view client.

22. A method according to claim 15, further comprising:
assigning a client identifier to the service request to be used in

processing the service request and service response.

15 23. A method according to claim 15, wherein:
the step of sending a service request includes passing a

request document and response listener to the service processor.

24. A system for high-availability processing of asynchronous
requests in a single transaction, comprising:
20 a distributed request queue for receiving and storing a service
request;
an application view client for sending the service request to
the distributed request queue on behalf of a client application;
a service processor for pulling the service request from the

25 request queue and invoking the service for the service request, the

10

15

20

25

WO 03/094019 PCT/US03/13621

service processor further receiving a service response for the service
request from the invoked service; and

a distributed response queue for receiving the service
response from the service processor and storing the service
response until the service response is retrieved for the client
application by the application view client.

25. A system for high-availability processing of asynchronous
requests in a single transaction, comprising:

an application view client for generating a service request on
behalf of a client application, the service request comprising a
request document and a service response listener;

a distributed request queue for receiving the service request
from the application view client and storing the service request;

a service processor for pulling the service request from the
request queue and invoking the service specified in the request
document, the service processor further receiving a service response
for the request document from the invoked service; and

a distributed response queue for receiving the service
response from the service processor and storing the service
response until the service response is retrieved for the client
application by the application view client, the response listener
notifying the application view client when the service response is

received in the distributed response queue.

26. A computer-readable medium, comprising:

means for receiving a service request to a distributed request
queue from a client application;

means for pulling the service request from the request queue
to a service processor and invoking a service for the service request;
and

10

15

20

25

30

WO 03/094019 PCT/US03/13621

16

means for receiving the service response from the invoked
service to a distributed response queue and storingithe service

response until retrieval from a client application.

27. A computer program product for execution by a server
computer for high-availability processing of asynchronous requests
in a single transaction, comprising:

computer code for receiving a service request to a distributed
request queue from a client application;

computer code for pulling the service request from the request
queue to a service processor and invoking a service for the service
request; and

computer code for receiving the service response from the
invoked service to a distributed response queue and storing the

service response until retrieval from a client application.;

28. A system for high-availability processing of asynchronous
requests in a single transaction, comprising:

means for receiving a service request to a distributed request
queue from a client application;

means for pulling the service request from the request queue
to a service processor and invoking a service for the service request;
and

means for receiving the service response from the invoked
service to a distributed response queue and storing the service

response until retrieval from a client application.

29. A computer system comprising:
a processor;
object code executed by said processor, said object code

configured to:

10

15

WO 03/094019

17

receive a service request to a distributed request queue
from a client application;

pull the service request from the request queue to a
service processor and invoking a service for the service request; and

receive the service response from the invoked service
to a distributed response queue and storing the service response

until retrieval from a client application.

30. A computer data signal embodied in a transmission
medium, comprising:

a code segment including instructions to receive a service
request to a distributed request queue from a client application;

a code segment including instructions to pull the service
request from the request queue to a service processor and invoking
a service for the service request; and

a code segment including instructions to receive the service
response from the invoked service to a distributed response queue
and storing the service response until retrieval from a client

application.

PCT/US03/13621

PCT/US03/13621

WO 03/094019

1/2

(e o)
~
=

[anSL]

sSi3
asuodsoy
}senbay| oUAg
orr — _
ZIL 0l 70l
J9)depy onenp Jauajsi
92In0say
osuodsey | esuodsey MMMMMF cwuwmwmm
90INMeg ouhsy :
asuodsay jsenbay oufsy Amalp ddy
SUAS 10D 0L _ 0L
n ﬁmmwoo._n_ ° _‘03050 SouESyl JUBI[D MIIA
>>¢.w=. w d mo_zmw 92IAI9S _ }sonbay u\.wm:cmm_ Bo_\w_ :o_wmo__na.e.
IA ddy uojpeojddy
9)OAU| ouAsy ouhsy 90INIBg
JUAg SUASY

WO 03/094019 PCT/US03/13621
2/2

Receive a service request from a client application
to a distributed request queue

!

Pull the service request from the request queue
to a service processor

'

If the service processor is unavailable, pull the
service request to another service processor
in the cluster

!

Invoke the service to an EIS using the
service processor

!

Receive the service response from the EIS to the service
processor and forward the service response to a
distributed response queue

!

Listen to the response queue for the service
response and notify the client application when
the service response is received

N
[e=]
(@]

N
O
N

06

N
o
[o2]

N
—
o

|

Figure 2

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US08/13621

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 15/16, 13/14
US CL :709/ 200-203, 217-219, 227-29, 245; 707/8, 9-10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 709/ 200-208, 217-219, 227-29, 245; 707/3, 9-10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

seREeE:

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST

Search Terms—> asynchronous request, transaction, queue, distributed, service processor, invok$, java, client application

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y, P —|[US 6,553,425 B1 (SHAH et al) 22 April 2003. 1-30
abstract, column 2 line 42 to column 3 line 38, column 4 line 60 to
column 5 line 6, column 10 line 50 to column 11 line 40.
Y, P ~7US 6,442,611 B1 (NAVARRE et al) 27 August 2002. 1-30
abstract, figures 2-3, column 2 line 25 to column 3 line 64, column
7 line 26 to column 8 line 24,
Y <7 US 6,154,769 A (CHERKASOVA et al) 28 November 2000. 1-30
abstract, column 2 line 55 to column 3 line 18, column 4 lines 46-
63, column 6 lines 4-56.
Further documents are listed in the continuation of Box C. D See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document published on or after the international filing date

"L document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"o document referring to an oral disclosure, use, exhibition or other
means

"p* document published prior to the international filing date but later
than the priority date claimed

date and not in conflict with the application but cited to understanu
the principle or theory underlying the invention
X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

yn document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

07 JULY 2003

Date of mailing of the international search report

08 AUG 2003

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20281

Facsimile No. (708) 805-3230

Authorized officer

2
BHARAT BAROT K Notdetas
fanse K Methisze

Telephone No. (709 305

Form PCT/ISA/210 (second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/13621
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A —(US 6,012,094 A (LEYMANN et al) 04 January 2000. 1-30

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

