
JP 5301554 B2 2013.9.25

10

20

(57)【特許請求の範囲】
【請求項１】
　パイプラインプロセッサの中のプロシージャから戻るときにリンクスタックからリター
ンアドレスを取り出すための方法であって、
　ソフトウェアスタックから情報を取り出すための検索命令を識別することと、
　前記検索命令に基づいて取り出された情報を分岐先アドレスとして用いて前記リターン
アドレスへと分岐するためのブランチ命令を識別することと、
　前記検索命令と前記ブランチ命令を識別することに応じて、前記リンクスタックから前
記リターンアドレスを取り出すことと、
　前記リターンアドレスを使用して第２の命令をフェッチすることと、
　を備える方法。
【請求項２】
　前記検索命令は、ＰＯＰ命令である、請求項１に記載の方法。
【請求項３】
　前記検索命令は、ロード命令である、請求項１に記載の方法。
【請求項４】
　前記ブランチ命令は、ＢＸ命令である、請求項１に記載の方法。
【請求項５】
　前記ブランチ命令は、ＭＯＶ命令である、請求項１に記載の方法。
【請求項６】



(2) JP 5301554 B2 2013.9.25

10

20

30

40

50

　前記の前記検索命令を識別することは、前記情報を格納するレジスタを識別することを
さらに備える、請求項１に記載の方法。
【請求項７】
　レジスタリストを保持することをさらに備え、前記レジスタリストは、前記情報を格納
するレジスタを識別するためのものである、請求項１に記載の方法。
【請求項８】
　前記レジスタリストを保持することは、前記レジスタリストで識別された第２のレジス
タの内容が上書きされたことを決定すること、および、
　前記レジスタリストから前記第２のレジスタを取り除くこと
を備える、請求項７に記載の方法。
【請求項９】
　前記ブランチ命令を識別することは、検出ロジック回路によって実行される、請求項１
に記載の方法。
【請求項１０】
　前記検出ロジック回路は、プリデコードロジック回路に含まれる、請求項９に記載の方
法。
【請求項１１】
　前記検出ロジック回路は、デコードロジック回路に含まれる、請求項９に記載の方法。
【請求項１２】
　前記ブランチ命令を識別することは、命令キャッシュの中の前記ブランチ命令にフラグ
付けすることをさらに備える、請求項１に記載の方法。
【請求項１３】
　命令キャッシュに結合されたラインバッファであって、前記ラインバッファから前記命
令キャッシュへ命令がロードされるものである、ラインバッファと；
　前記命令キャッシュに結合され、予測リターンアドレスを記憶するリンクスタックを有
するフェッチロジック回路とであって、前記命令キャッシュから命令を取り出すためのフ
ェッチロジック回路と；
　前記ラインバッファと通信するプリデコードロジック回路とであって、前記プリデコー
ドロジック回路は、プロシージャリターンシーケンスを識別するための検出ロジック回路
をさらに備えるものであり、前記プロシージャリターンシーケンスは、ソフトウェアスタ
ックから情報を取り出すための検索命令と、前記検索命令に基づいて取り出された情報を
分岐先アドレスとして用いて分岐するためのブランチ命令とを備えるものである、プリデ
コードロジック回路と；
　前記プロシージャリターンシーケンスの前記識別に応じて前記リンクスタックから前記
予測リターンアドレスの１つの予測されたリターンアドレスを取り出す手段と；
　を備えるパイプラインプロセッサ。
【請求項１４】
　前記検出ロジック回路は、前記ブランチ命令が、前記ラインバッファから前記命令キャ
ッシュへとロードされるときに、前記プロシージャリターンシーケンスの前記ブランチ命
令にフラグ付けする、請求項１３に記載のパイプラインプロセッサ。
【請求項１５】
　前記フェッチロジック回路は、前記ブランチ命令から前記プロシージャリターンシーケ
ンスを識別する、請求項１４に記載のパイプラインプロセッサ。
【請求項１６】
　前記フェッチロジック回路内のリターンセレクタロジック回路をさらに備え、前記リタ
ーンセレクタロジック回路は、前記ブランチ命令から前記プロシージャリターンシーケン
スを識別する、請求項１５に記載のパイプラインプロセッサ。
【請求項１７】
　前記検索命令は、ＰＯＰ命令である、請求項１３に記載のパイプラインプロセッサ。
【請求項１８】



(3) JP 5301554 B2 2013.9.25

10

20

30

40

50

　前記検索命令は、ロード命令である、請求項１３に記載のパイプラインプロセッサ。
【請求項１９】
　前記ブランチ命令は、ＢＸ命令である、請求項１３に記載のパイプラインプロセッサ。
【請求項２０】
　予測されたリターンアドレスを記憶するリンクスタックを有し、命令キャッシュから命
令をフェッチするように構成されたフェッチロジック回路と、
　前記フェッチロジック回路に結合されたデコードロジック回路と、
　を備え、前記フェッチされた命令は、前記デコードロジック回路によって復号可能であ
り、前記デコードロジック回路は、検出ロジック回路をさらに備え、前記検出ロジック回
路は、ソフトウェアスタックから情報を取り出すための検索命令と、前記検索命令に基づ
いて取り出された情報を分岐先アドレスとして用いて分岐するためのブランチ命令とを備
えるプロシージャリターンシーケンスを識別するように構成され、パイプラインプロセッ
サは、前記プロシージャリターンシーケンスの前記識別に応じて前記リンクスタックから
前記予測されたリターンアドレスのうちの１つの予測されたリターンアドレスを取り出す
ように構成される、パイプラインプロセッサ。
【請求項２１】
　前記フェッチロジック回路は、前記リンクスタックから取り出された前記予測されたリ
ターンアドレスを使用して命令をフェッチする、請求項２０に記載のパイプラインプロセ
ッサ。
【請求項２２】
　前記検索命令は、ＰＯＰ命令である、請求項２０に記載のパイプラインプロセッサ。
【請求項２３】
　前記検索命令は、ロード命令である、請求項２０に記載のパイプラインプロセッサ。
【請求項２４】
　前記ブランチ命令は、前記検索命令に基づいて識別されるアドレスへと分岐するための
ものである、請求項２０に記載のパイプラインプロセッサ。
【請求項２５】
　前記ブランチ命令は、移動命令である、請求項２０に記載のパイプラインプロセッサ。

【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、一般にコンピュータシステムに関し、そしてより詳細にはプロセッサ内のポ
ップブランチ命令シーケンスを識別することにより、リターンシーケンスを加速するため
の方法およびシステムに関する。
【背景技術】
【０００２】
　プロセッサによって実行される大部分のプログラムは、サブルーチンまたはプロシージ
ャを含んでいる。プロシージャは、プロシージャ呼び出しシーケンスによってアクセスさ
れるコードのモジュールである。ひとたびプロシージャが、完了された後には、命令実行
は、プロシージャリターンシーケンス(procedure return sequence)の実行によって呼び
出し側(caller)に戻される。
【０００３】
　いくつかのプロセッサアーキテクチャ内において、プロシージャのコールおよびリター
ンのシーケンスは、一連の命令へとコンパイルされることができる。例えば、プロシージ
ャ呼び出しシーケンスは、ブランチおよびリンクの命令によって追随されるＰＵＳＨ命令
から成ることができる。ＰＵＳＨ命令（単数または複数）は、プロシージャ内の命令によ
って使用されるパラメータをソフトウェアスタック(software stack)上に保存することが
できる。ＰＵＳＨ命令の後に、プロセッサは、ブランチおよびリンクの命令を実行するこ
とができる。ブランチおよびリンクの命令は、命令のフェッチおよび実行が、プロシージ
ャの開始アドレスにおいて開始するようにさせ、そしてリターンアドレスまたはリンクア



(4) JP 5301554 B2 2013.9.25

10

20

30

40

50

ドレスとして知られている、ブランチおよびリンクの命令に続く次の逐次命令のアドレス
をリンクレジスタ(link register)に保存する。リンクレジスタは、プロセッサによって
使用される専用レジスタ、あるいは汎用レジスタ(general purpose registers)（ＧＰＲ
）のうちの１つとすることができる。プロシージャ内において、リンクレジスタ内容は、
一般的にソフトウェアスタック上へとプッシュされ、その結果、その値は、別のプロシー
ジャが、元の呼び出し側に戻る前に呼び出される場合には、上書きされないようになる。
【０００４】
　プロシージャがそのファンクションを完了した後に、プロセッサは、リンクアドレス（
プロシージャ呼び出し命令に続く次の逐次命令アドレス）において命令実行を再開するた
めにプロシージャリターンシーケンスを実行する。リターンアドレスは、多くの場合にソ
フトウェアスタック上に保存されるので、プロシージャリターンシーケンスは、最初に、
フェッチされるべき次のグループの命令を決定するそのアドレスを使用するために、リタ
ーンアドレスをソフトウェアスタックから取り出す必要がある。
【０００５】
　プロシージャリターンシーケンスは、１つまたは複数の命令から成ることができる。い
くつかのプロセッサアーキテクチャにおいては、プロシージャリターンシーケンスは、次
のリターンアドレスをソフトウェアスタックから読み取り、そしてプログラムカウンタ(p
rogram counter)（ＰＣ）をアップデートすることができる、ＰＯＰ命令やロード命令な
どの単一命令とすることができる。あるいは、プロセッサは、プロシージャリターンシー
ケンスを完了するためにその値をプログラムカウンタへと移動する前に、ソフトウェアス
タックからＧＰＲなどの中間レジスタへとリンクアドレスを読み取るためにＰＯＰ命令ま
たはロード命令を使用することもできる。他の例示的な例においては、プロセッサは、プ
ロシージャからのリターンが、リンクレジスタ(link register)（ＬＲ）に保存される値
をＰＣへと移動する命令とすることができることを決定することができる。プロセッサが
、プロシージャコールの後にこれらのプロシージャリターンシーケンスのうちのどれかに
出合うときに、プロセッサは、ソフトウェアスタックから取り出されるリターンアドレス
値を使用してプロシージャ呼び出し命令に続く次の逐次命令へと後方にジャンプする。
【０００６】
　追加のロジックは、命令処理の効率を改善するためにプロセッサのハードウェアに追加
されることができる。例えば、リンクスタックは、命令フェッチを高速化するためにプロ
セッサのフェッチロジックに追加されることができる。当業者は、リンクスタックが、ソ
フトウェアスタック上にやはり存在することもできるリターンアドレスを含むことができ
ることを認識する。しかしながら、リンクスタックは、ソフトウェアスタックとは独立し
て動作する。リンクスタックに関連するハードウェアロジックは、プロシージャのコール
とリターンとを識別する。プロシージャコール命令が、実行に先立って識別されるときに
、関連するリターンアドレスは、リンクスタック上へとロードされる。逆に、プロシージ
ャリターンが、識別されるときには、関連するリターンアドレスは、リンクスタックから
取り出され、そして命令フェッチを再開するために使用される。実行すべき命令を待つこ
とと、ソフトウェアスタックからのリターンアドレスを取り出すこととの代わりに、プロ
セッサは、リンクスタックに記憶されるアドレスを使用して推測的に(speculatively)命
令をフェッチすることができる。
【０００７】
　プロセッサが進化するにつれて、プロシージャリターンシーケンスは、変化し続けてい
る。いくつかのプロセッサアーキテクチャにおいては、プロシージャリターンは、複数の
命令から成ることができる。リンクスタックをサポートするハードウェアロジックが、こ
れらの命令をプロシージャリターンシーケンスとして認識しない場合、リターンアドレス
は、リンクスタックから取り出されなくてもよく、そして結果としてリンクスタックは、
命令シーケンスと同期が合わなくなる可能性がある。リンクスタックが同期が合わなくな
るときに、リンクスタックは、複数のアドレス予測ミスを引き起こし得る誤ったリターン
アドレス情報を提供する可能性がある。



(5) JP 5301554 B2 2013.9.25

10

20

30

40

50

【発明の概要】
【０００８】
　したがって、ある種の命令シーケンス、より詳細にはＰＯＰ（またはロード）およびブ
ランチの命令シーケンスをプロシージャリターンシーケンスとして認識するプロセッサ回
路を有する必要性が、産業界において存在している。本開示は、この必要性を認識し、そ
して命令パイプラインの中で早期にプロシージャリターンに対応する命令を識別する回路
を有するプロセッサを開示している。プロシージャリターンを識別した後に、プロセッサ
は、リンクスタックからの次のリターンアドレスを使用することにより次のグループの命
令をフェッチする。ＰＯＰおよびブランチの命令シーケンスをプログラムリターンとして
認識することにより、プロセッサは、リンクスタックから取り出される正しいアドレスに
基づいて命令をフェッチすることを継続することができる。
【０００９】
　パイプラインプロセッサにおいてプロシージャから戻るときにリンクスタックからリタ
ーンアドレスを取り出すための方法が、開示される。本方法は、リンクスタックからリタ
ーンアドレスを取り出すように動作する検索命令(retrieve instruction)を識別する。本
方法は、リターンアドレスへと分岐するように動作するブランチ命令を識別する。本方法
は、識別される命令とブランチ命令との両方に応じてリンクスタックからリターンアドレ
スを取り出す。本方法は、リターンアドレスを使用して後続の命令をフェッチする。
【００１０】
　パイプラインプロセッサが、開示される。パイプラインプロセッサは、ラインバッファ
(line buffer)を有する。ラインバッファは、命令キャッシュに結合される。プロセッサ
は、命令キャッシュに結合されるフェッチロジック回路も有する。フェッチロジック回路
は、予測リターンアドレスを記憶するリンクスタックを有し、そこで命令は、ラインバッ
ファから命令キャッシュへとロードされる。フェッチロジック回路は、命令キャッシュか
ら命令を取り出す。パイプラインプロセッサは、ラインバッファと通信するプリデコード
ロジック回路(pre-decode logic circuitry)も有し、そこでプリデコードロジック回路は
、プロシージャリターンシーケンスを識別するための検出ロジック回路を有する。プロシ
ージャリターンシーケンスは、ソフトウェアスタックからリターンアドレスを取り出すよ
うに動作する検索命令と、取り出されたリターンアドレスへと分岐するブランチ命令とし
て識別される。パイプラインプロセッサは、プロシージャリターンシーケンスの識別に応
じてリンクスタックから予測されたリターンアドレスを取り出す。
【００１１】
　パイプラインプロセッサが、開示される。パイプラインプロセッサは、フェッチロジッ
ク回路を有する。フェッチロジック回路は、予測されたリターンアドレスを記憶するリン
クスタックを有する。フェッチロジック回路は、命令キャッシュから命令をフェッチする
。パイプラインプロセッサは、フェッチロジック回路に結合されるデコードロジック回路
も有し、そこでフェッチされた命令は、デコードロジック回路によって復号される。デコ
ードロジック回路は、さらに検出ロジック回路を有し、そこで検出ロジック回路は、プロ
シージャリターンシーケンスを識別する。プロシージャリターンシーケンスは、ソフトウ
ェアスタックからアドレスを取り出す検索命令と、取り出されたアドレスへと分岐するよ
うに動作するブランチ命令とである。パイプラインプロセッサは、プロシージャリターン
シーケンスの識別に応じてリンクスタックから予測されたリターンアドレスを取り出す。
パイプラインプロセッサは、プロシージャリターンの識別に応じてリンクスタックから予
測されたリターンアドレスを取り出す。
【００１２】
　本発明のより完全な理解、ならびに本発明のさらなる特徴および利点は、以下の詳細な
説明と、添付の図面とから明らかであろう。
【図面の簡単な説明】
【００１３】
【図１】図１は、本発明の一実施形態を使用したプロセッサのハイレベルのロジックハー



(6) JP 5301554 B2 2013.9.25

10

20

30

40

50

ドウェアブロック図を示している。
【図２】図２は、図１のプロセッサによって実行される１つの例示のグループの命令を示
している。
【図３】図３は、本発明の一実施形態に従って検出ロジック回路を組み込んだ、図１のＣ
ＰＵの上位パイプラインと下位パイプラインとのより詳細なブロック図を示している。
【図４】図４は、図３のフェッチロジック回路のより詳細な図を示している。
【図５】図５は、検出ロジック回路を利用した上位パイプラインと下位パイプラインとの
代替実施形態を示している。
【図６】図６は、プログラムリターンを認識して、そして命令をフェッチするためにリン
クスタックを使用して、図１のプロセッサによって実行される命令プロセスフローを示す
フローチャートを示している。
【図７】図７は、図４の上位パイプラインを使用してプロセッサによって実行される代替
命令プロセスフローを示すフローチャートを示している。
【詳細な説明】
【００１４】
　添付の図面に関連して以下で述べられる詳細な説明は、本発明の様々な例示の実施形態
の説明として意図され、そして本発明が実行されることができる唯一の実施形態を表すよ
うに意図されてはいない。詳細な説明は、本発明の完全な理解を提供する目的のための特
定の詳細を含んでいる。しかしながら、本発明が、これらの特定の詳細なしに実行される
ことができることは、当業者にとって明らかであろう。いくつかの例においては、よく知
られている構造およびコンポーネントは、本発明の概念をあいまいにすることを回避する
ためにブロック図形式で示される。頭字語と、他の説明的な専門用語とは、単に便宜上、
そして明快にするために使用されることができ、そして本発明の範囲を限定するように意
図されてはいない。
【００１５】
　図１は、以下に説明されるように本発明の一実施形態を利用したスーパースカラプロセ
ッサ(superscalar processor)１００のハイレベル図を示している。プロセッサ１００は
、制御信号１０４を経由して命令キャッシュ１０６に結合される中央演算処理装置(centr
al processing unit)（ＣＰＵ）１０２を有する。命令キャッシュ１０６はまた、ライン
バッファ１０７に、そして汎用バス１１０によってメモリ１０８にも結合される。ＣＰＵ
１０２は、ラインバッファ１０７を経由してメモリ１０８から命令キャッシュ１０６への
命令のローディング(loading)を制御する。ＣＰＵ１０２は、下位パイプライン１６０お
よび１６５に結合された上位パイプライン１５０を有する。下位パイプライン１６０およ
び１６５内には、実行ステージ２２０および２２５がある。実行ステージ２２０内には、
実行ユニット(execution units)（ＥＵ）１３０Ａがあり、そして実行ステージ２２５内
には、ＥＵ１３０Ｂがある。
【００１６】
　当業者が理解するように、命令キャッシュ１０６は、メモリ１０８と、プロセッサ１０
０との間の速度ギャップを埋めるように設計された専用メモリとすることができる。メモ
リ１０８からフェッチされる命令は、プロセッサのクロック速度で読み取られることがで
きるより高速な命令キャッシュ１０６に配置される。命令が、命令キャッシュ１０６の中
に存在しない場合、プロセッサ１００は、メモリ１０８から命令を取り出す。命令が、メ
モリ１０８から取り出されるときに、それは、最初にラインバッファ１０７にロードされ
、そして最終的には命令キャッシュ１０６へと書き込まれる。
【００１７】
　命令キャッシュ１０６が、命令でロードされた後に、ＣＰＵ１０２は、制御信号１０４
を経由してそれらにアクセスする。命令は、命令キャッシュ１０６から上位パイプライン
１５０へとロードされる。命令は、上位パイプライン１５０の中で処理され、次いでさら
なる処理のために下位パイプライン１６０または１６５へと送られる。図３～５の考察に
関連して説明されるように、プロセッサは、特定の命令シーケンスを検出するように設計



(7) JP 5301554 B2 2013.9.25

10

20

30

40

50

されたロジック回路を有することができる。これらの特定の命令シーケンスは、プロシー
ジャリターンに対応することができる。プロシージャリターン命令シーケンスが識別され
た後に、プロセッサ１００は、本発明の複数の実施形態に従ってこれらの命令に基づいて
ファンクションを実行することができる。
【００１８】
　上位パイプライン１５０の中の命令上で実行されるいくつかの例示の処理ファンクショ
ンは、命令をフェッチすることと、命令を位置合わせすること(aligning)と、命令を復号
することと、命令を下位パイプライン１６０または１６５に対して発行することなどとを
含むことができる。下位パイプライン１６０および１６５内において、命令は、実行ユニ
ット１３０Ａおよび１３０Ｂによって実行されることができ、それらの結果が、記録され
る。
【００１９】
　ＰＯＰおよびブランチの命令シーケンスを使用したプロシージャリターンを有する実例
のグループの命令２００が、図２に示される。命令２６０と、命令のオペレーション２７
０と、命令を実行するモジュール２８０とが、示されている。明確にする目的のために、
プロシージャそれら自体による使用のためにソフトウェアスタック上でパラメータをプッ
シュすることになるどのような命令も、このグループの命令２００から省略されている。
プロシージャが実行する実際のファンクションを構成することになるどのような命令もま
た、省略されている。図２に示される命令は、プロシージャを呼び出し、リターンアドレ
スをリンクレジスタ（この例においてはＧＰＲ　Ｒ１４）に保存し、リターンアドレスを
ソフトウェアスタック上に記憶し、ソフトウェアスタックからリターンアドレスを取り出
し、そしてリターンアドレスに位置する命令を処理することを継続する命令である。グル
ープの命令２００は、それらが命令実行のトレース中にそうであるようなプログラム順序
で図２に示されている。当業者は、トレースされた命令が、プロセッサがフェッチしてい
る可能性がある実際のコードのサブセットであり、それらが実行されるべきであるように
示されることを理解する。グループの命令２００は、３つのネストされたプロシージャか
ら成る。
【００２０】
　グループの命令２００内には、３つのプロシージャコールと、それらの関連するリター
ンとがある。最初のプロシージャコールは、命令Ａであり、この命令は、プロシージャＰ
ＲＯＣ１を呼び出す。命令Ｂは、プロシージャＰＲＯＣ１内の準備命令(preparatory ins
truction)であり、現在のリターンアドレスをソフトウェアスタック上へと保存する。命
令Ｃは、第２のプロシージャコール命令であり、プロシージャＰＲＯＣ２を呼び出す。命
令Ｄは、プロシージャＰＲＯＣ２内の別の準備命令であり、ＰＲＯＣ２に関連するリター
ンアドレスをソフトウェアスタック上へと保存する。最後のプロシージャコール命令は、
命令Ｅであり、この命令は、プロシージャＰＲＯＣ３を呼び出す。
【００２１】
　プロシージャコール命令に対応してプロシージャリターン命令がある。最初のプロシー
ジャリターン命令は、命令Ｆである。以前のプロセッサアーキテクチャにおいては、命令
Ｆは、プロシージャリターン命令として認識される。次の２つの命令、組み合わされた命
令ＧおよびＨは、別のプロシージャリターンを表す。一般に、以前のプロセッサアーキテ
クチャにおいては、ＰＯＰ命令とブランチ命令との命令の組合せは、ハードウェアリンク
スタックによる使用のためのプロシージャリターンとして適切に識別されない可能性があ
る。これらの以前のプロセッサにおける結果として、リンクスタック上の次のリターンア
ドレスは、命令ＧおよびＨが識別されるときに取り出されない可能性がある。一実施形態
を使用したプロセッサは、この可能なリンクスタック破損を軽減することができる。一実
施形態においては、命令Ｈが、プロシージャリターン命令として識別された後に、プロセ
ッサ１００は、リンクスタックから次のアドレスを取り出し、そして命令をフェッチする
ことを継続するために取り出されたアドレスを使用することができる。この例においては
、リンクスタック上の次のアドレスは、プロシージャＰＲＯＣ１を戻って指し示し、そし



(8) JP 5301554 B2 2013.9.25

10

20

30

40

50

てより詳細には、それは命令Ｃに続く次の逐次命令（命令Ｉ）を指し示す。命令Ｈは、暗
黙ブランチ命令(implicit branch instruction)と称されることもできる。
【００２２】
　次の２つの命令、命令ＩおよびＪはまた、プロシージャリターンシーケンスとしても解
釈される。命令Ｊが、プロセッサ１００によってプロシージャリターン命令として識別さ
れるときに、リンクスタック上の次のアドレスは、取り出され、そして命令フェッチを継
続するために使用される。命令Ｊは、明示ブランチ命令(explicit branch instruction)
である。この例においては、リンクスタックポイントを離れた次のアドレスは、プログラ
ム実行を主プログラムへと逆に戻す。以前のプロセッサアーキテクチャにおいては、命令
ＩとＪとの組合せは、ハードウェアリンクスタックによる使用のためのプロシージャリタ
ーンシーケンスとして適切に識別されていない可能性がある。図３～７の考察においても
っと詳細に説明されるように、本発明の様々な実施形態は、ＰＯＰとブランチとの命令の
組合せをプロシージャリターンシーケンスとして識別する。
【００２３】
　図３は、本発明の一実施形態を利用したＣＰＵ１０２のより詳細なブロック図を示して
いる。ＣＰＵ１０２内において、上位パイプライン１５０は、制御信号１０４によって命
令キャッシュ１０６に結合された、フェッチロジック回路２０２を含むフェッチステージ
２０３を有する。またＣＰＵ１０２の中には、検出ロジック回路２５０を有するプリデコ
ードロジック回路２０１がある。プリデコードロジック回路２０１は、命令キャッシュ１
０６に結合されたラインバッファ１０７に結合される。フェッチステージ２０３は、順に
発行ステージ２０７に結合されたデコードステージ２０５に結合される。デコードステー
ジ２０５に結合されて、命令についての特有の情報を復号するデコードロジック回路（説
明図を簡単にするために示されず）がある。発行ステージ２０７内には、下位パイプライ
ン１６０および１６５に対して発行される命令に先立って命令を保持するいくつかの命令
待ち行列（図示の容易のために図示せず）があってもよい。
【００２４】
　当業者が理解しうるように、パイプラインステージは、命令を保持するように設計され
たレジスタ、または１グループのレジスタを有することができる。命令が特定のステージ
に入ると、プロセッサ１００は、その命令をそのステージにリンクされたレジスタ、また
は１グループのレジスタにロードする。命令が、各ステージ内のレジスタまたは１グルー
プのレジスタに保持されるときに、ロジック回路は、命令に応じてある種のオペレーショ
ンを実行することができる。ロジック回路が、意図されたオペレーションを実行した後に
、次いで命令は、次の逐次ステージへと渡される。さらに、命令が、上位パイプライン１
５０の中にある間、それらは、様々なロジック回路によって「処理され」る。命令を処理
することは、命令をフェッチすることと、命令を復号することと、命令を位置合わせする
ことと、命令を発行することなどとを含むことができる。
【００２５】
　命令は、上位パイプライン１５０に入り、そしてフェッチステージ２０３から発行ステ
ージ２０７を通して移動する。命令は、フェッチステージ２０３中においてフェッチロジ
ック回路２０２によってフェッチされる。命令がフェッチされた後に、それらは、デコー
ドステージ２０５中においてデコードロジック回路によって復号される。デコードステー
ジ２０５の後に、命令は、発行ステージ２０７の中で処理される。命令が、発行ステージ
２０７を離れた後に、命令は、下位パイプライン１６０または下位パイプライン１６５の
いずれかの中で実行される。上記に論じられるように、下位パイプライン１６０内には、
実行ステージ２２０とＥＵ１３０Ａとがある。下位パイプライン１６５内には、実行ステ
ージ２２５とＥＵ１３０Ｂとがある。下位パイプライン１６０および１６５は、それぞれ
レジスタファイル２３０または２３５にアクセスする。
【００２６】
　プリデコードロジック回路２０１は、命令が命令キャッシュ１０６に保存されるのに先
立って命令についての情報を部分的に復号し、そして識別するためにプロセッサ１００に



(9) JP 5301554 B2 2013.9.25

10

20

30

40

50

よって使用されることができる。プリデコードされた情報は、命令が命令キャッシュ１０
６に記憶されるときに、命令と一緒に保存されることができる。プリデコードロジック回
路２０１内において、検出ロジック回路２５０は、命令の間の相互依存性を識別すること
ができる。例えば、検出ロジック回路２５０は、いつＰＯＰ命令とブランチ命令とが同じ
レジスタを利用するかを識別するように設計されることができる。図４の考察において説
明されるように、検出ロジック回路２５０が、ＰＯＰ命令とブランチ命令とから成る命令
シーケンスをプロシージャコールからのリターンとして識別した後に、フェッチロジック
回路２０２は、ブランチ命令が命令キャッシュ１０６からフェッチされるときに、この情
報を解釈する。
【００２７】
　プリデコードされた情報を命令に関連づけることは、命令が命令キャッシュ１０６にロ
ードされるときに、命令に関連する情報フィールド内の特定のロケーションの中の１ビッ
トを設定することによって遂行されることができる。プリデコードされた情報を命令キャ
ッシュ１０６に保存することはまた、命令にフラグ付けすること(flagging)と称されるこ
ともできる。例えば、命令がプロシージャリターン命令であることを決定した後に、命令
がプロシージャリターン命令であることを識別する命令ヘッダの中の１つのロケーション
の中で、１ビットが、設定されることができる。あるいは、プロセッサ１００は、プリデ
コードされた情報を識別された１つまたは複数の命令についての命令ヘッダへと符号化す
ることもできる。このようにして、プロセッサ１００は、選択された、またはあらかじめ
決定された判断基準に基づいて異なる命令についての異なる情報を符号化するために多ビ
ットを使用することができる。プリデコードされた情報は、命令が命令キャッシュ１０６
からフェッチされるときに、取り出されることができる。次いでプロセッサ１００は、識
別された情報に基づいてある種のファンクションを実行することができる。
【００２８】
　図４は、本発明の一実施形態によるフェッチロジック回路２０２を示している。フェッ
チロジック回路２０２は、アドレス選択ｍｕｘ（マルチプレクサ）３０２を制御するアド
レスセレクタロジック回路３２０を含んでいる。アドレスセレクタロジック回路３２０は
、リターンセレクタロジック回路３５０を含んでいる。アドレス選択ｍｕｘ３０２の入力
に結合されて、リンクスタック３０４に由来するリンクスタック出力３１６がある。リン
クスタックロジック回路３１０は、アドレスセレクタロジック回路３２０と通信し、そし
てリンクスタック３０４の入力と出力との両方を制御する。リンクスタック３０４は、プ
ロシージャコールが識別されるときに、アドレスバスからリターンアドレスを受け取る。
【００２９】
　リンクスタック３０４内に、予測リターンアドレスは、保存されることができる。リン
クスタック３０４は、プロシージャリターンに関連するリターンアドレスに対応する命令
アドレスを記憶するメモリの後入れ先出し(last in first out)（ＬＩＦＯ）部分とする
ことができる。リンクスタック３０４は、ソフトウェアスタックとは独立に動作する。命
令が、命令パイプラインの中で早期にプロシージャリターン命令として識別されるときに
、プロセッサ１００は、下位パイプライン１６０または１６５の中で実行すべきプロシー
ジャリターンを待つ代わりに、リンクスタック上に記憶されるリターンアドレスを使用し
て命令を先んじてフェッチすることができる。
【００３０】
　図４に示されるように、アドレス選択ｍｕｘ３０２は、次の逐次プログラムアドレスを
受け取ることができる。次の逐次プログラムアドレスは、８つのアドレスロケーションだ
け増分された現在のプログラムカウンタ（ＰＣ＋８）とすることができる。本実施形態に
おいては、命令は、各命令が４バイトの長さである場合の一度に２命令を命令キャッシュ
１０６からフェッチされる。他のプロセッサ実施形態において、次の逐次プログラムアド
レスは、異なる量だけ増分されたプログラムカウンタとすることができる。上述されるよ
うに、アドレス選択ｍｕｘ３０２は、リンクスタック３０４から予測アドレス情報を受け
取ることもできる。プロセッサ１００が、プロシージャリターンが起こっていることを決



(10) JP 5301554 B2 2013.9.25

10

20

30

40

50

定するときに、リンクスタック３０４の中の次のアドレスは、取り出され、そして次のグ
ループの命令をフェッチすべき開始ロケーションとして使用される。
【００３１】
　アドレス選択ｍｕｘ３０２は、他のソースからアドレス情報を受け取ることができる。
例えば、ブランチターゲットアドレスキャッシュ(branch target address cache)（ＢＴ
ＡＣ）は、命令をフェッチするために使用されるアドレスを提供することができる。ある
いは、割込みアドレス(interrupt address)が、命令をフェッチするために使用されるこ
ともできる。図示を容易にするために、アドレスのこれらの他のソースは、示されていな
い。
【００３２】
　アドレスセレクタロジック回路３２０は、その入力のうちのどれが、アドレス選択ｍｕ
ｘ３０２を通して渡され、そして次のグループの命令をフェッチするために使用されるこ
とになるかを決定する。アドレスセレクタロジック回路３２０が、フェッチされるべき次
のグループのアドレスが次の逐次アドレス（ＰＣ＋８）であることを決定する場合、ＰＣ
＋８の入力が、選択される。あるいは、アドレスセレクタロジック回路３２０内のリター
ンセレクタロジック回路３５０が、リンクスタック３０４が次のフェッチアドレスを含む
ことを決定する場合には、リンクスタック出力３１６が、選択される。
【００３３】
　リンクスタック３０４を利用するために、プロセッサ１００は、いつプロシージャコー
ルと対応するリターンとが、上位パイプライン１５０内の命令処理シーケンス中に識別さ
れるかを決定する必要がある。リンクスタック３０４が、予測的に命令をフェッチするた
めに使用されるので、プロセッサ１００は、後続の命令をフェッチする前に実行すべき命
令を待つことはない。その代わりに、プロセッサ１００が、上位パイプライン１５０の中
でプロシージャコール命令として識別した後に、プロセッサ１００は、プロシージャコー
ルに関連するリターンアドレスをアドレスバスを経由してリンクスタック３０４へとロー
ドする。次いで、プロセッサ１００は、プロシージャの命令をフェッチする。
【００３４】
　プロシージャの終わりに、プロセッサ１００は、プロシージャリターンシーケンスに出
合う。プロシージャリターンシーケンスの結果として、プロセッサは、対応するリターン
アドレスを取り出し、そして命令フェッチを再開するそのリターンアドレスへと分岐する
ように、リンクスタック３０４を「ポップする(pop)」ことになる。プロセッサ１００は
、プロシージャリターン命令を識別し、そしてリンクスタックから次のリターンアドレス
を取り出す。プロシージャリターン命令は、ソフトウェアスタックを読み取り、そしてＰ
Ｃを書き込むＰＯＰ命令またはロード命令とすることができる。リターンセレクタロジッ
ク回路３５０が、特定のＰＯＰ命令がプロシージャリターンであることを識別する場合、
そのときにはリターンセレクタロジック回路３５０は、アドレスセレクタロジック回路３
２０に、リンクスタック出力３１６が、アドレス選択ｍｕｘ３０２を通して方向づけられ
るようにするようにさせる。次いで、リンクスタック３０４から取られるリターンアドレ
スは、次の組の命令をフェッチするために使用される。
【００３５】
　上記に説明されたように、プロシージャリターンシーケンスは、１つまたは複数の命令
から成ることができる。例えば、いくつかのＡＲＭインプリメンテーションにおいては、
リンクレジスタ（Ｒ１４）に記憶される値に対するブランチ命令は、プロシージャリター
ンとして解釈されることができる。代わりに、リンクレジスタ（Ｒ１４）の値をプログラ
ムカウンタ（Ｒ１５）へと移動する移動命令は、プロシージャリターンとして解釈される
こともできる。プロセッサ１００が、正確にプロシージャリターンを識別することが、重
要である。プロセッサ１００が、正確にプロシージャリターンを識別しない場合には、リ
ンクスタック３０４は、プロシージャリターン命令に関して同期が合わなくなることにな
る。リンクスタック３０４が、同期が合わなくなる場合、プロセッサ１００は、ブランチ
補正シーケンスへと進む必要がある可能性があり、そして実行性能は、影響を受ける可能



(11) JP 5301554 B2 2013.9.25

10

20

30

40

50

性がある。
【００３６】
　プロセッサ命令セットが、進化しているので、代替命令シーケンスは、プロシージャリ
ターンシーケンスとして識別されることができる。例示の一実施形態においては、特定の
レジスタに記憶される値に対するブランチ命令によって追随される特定のレジスタに対す
るリターンアドレスをポップするＰＯＰ命令またはロード命令（ＰＣをアップデートしな
い）は、プロシージャリターンシーケンスとして解釈されることができる。ブランチ命令
は、ＰＯＰ命令に続く次の逐次命令であってもよく、あるいはそうでなくてもよい。
【００３７】
　ＰＯＰおよびブランチの命令から成るプロシージャリターンシーケンスの識別を容易に
するために、両方の命令に関連した情報が、集められる。プロシージャリターンのＰＯＰ
命令は、１つまたは複数のレジスタに関与する可能性がある。ＰＯＰ命令が識別されると
きに、ＰＯＰ命令のレジスタリストは、保存され、そして任意の後続の命令のレジスタタ
ーゲットと比較されることができる。レジスタリストの保存することと、比較することと
は、ＰＯＰ命令が、識別されていることを維持することと称されることもできる。非ブラ
ンチ命令が、そのレジスタに対するブランチが出合われる前に、ＰＯＰ命令に関連するレ
ジスタリストの中で識別されるレジスタを利用する場合、そのレジスタは、保存済みのレ
ジスタリスト(saved register list)から無視される(discounted)。保存済みのレジスタ
リストの中のレジスタを使用しないブランチ命令が、保存済みのレジスタリストの中のレ
ジスタを使用するブランチ命令の前に出合われる場合、以前のＰＯＰについてのＰＯＰ－
ブランチリターンシーケンスについての探索(search)は、終了される。レジスタリストの
中のレジスタを使用するブランチ命令が、出合われるときに、次いでプロセッサ１００は
、プロシージャリターンが、処理されていることを決定することができる。結果として、
次いで、リンクスタック３０４の最上部におけるアドレスが、取り出され、そして次のグ
ループの命令をフェッチするために使用されることができる。
【００３８】
　前述のように、プリデコードロジック回路２０１（図３）は、同じレジスタを利用する
ＰＯＰおよびブランチの命令シーケンスを識別している可能性があり、そして結果として
、ブランチ命令は、プロシージャリターン命令として識別される。プロセッサ１００は、
ブランチ命令が、命令キャッシュ１０６に記憶されたときに、この情報を命令ヘッダに保
存している可能性がある。フェッチロジック回路２０２が、ブランチ命令を用いて保存さ
れたプリデコードされた情報を取り出すときに、プロセッサ１００は、ブランチ命令がプ
ロシージャリターンであることを識別するためにリターンセレクタロジック回路３５０を
使用する。リターンセレクタロジック回路３５０が、ブランチ命令がプロシージャリター
ンであることを決定した後に、リターンセレクタロジック回路３５０は、アドレス選択ロ
ジック回路３２０が、アドレス選択ｍｕｘ３０２を通してリンクスタック出力３１６を方
向づけるようにする。リターンセレクタロジック回路３５０はまた、リンクスタックの中
の次の値が、戻されるようにするリンクスタックロジック回路３１０と通信する。結果と
して、リンクスタックアドレスは、次の組の命令をフェッチするために使用される。
【００３９】
　図５は、ＰＯＰ／ブランチ命令シーケンスから成るプロシージャリターンを検出するこ
とができるデコードロジック回路を有する代替実施形態に従って、上位パイプライン１５
１を有するＣＰＵ１０２を示している。より詳細には、ＣＰＵ１０２は、検出ロジック回
路４５０を有するデコードロジック回路４０６を含んでいる。命令が、デコードロジック
回路４０６によって復号されるので、命令に関連した情報は、識別される。検出ロジック
回路４５０は、いつプロシージャリターンが識別されるかを決定するために復号された命
令を監視することができる。以上で論じられるように、プロシージャリターンシーケンス
は、１つまたは複数の命令から成る。検出ロジック回路４５０は、ＰＯＰ命令と後続のブ
ランチ命令とが復号されるときに、プロシージャリターンシーケンスが起こることを決定
することができる。



(12) JP 5301554 B2 2013.9.25

10

20

30

40

50

【００４０】
　検出ロジック回路４５０が、プロシージャリターンが識別されていることを決定すると
きに、検出ロジック回路４５０は、この情報をリターンセレクタロジック回路３５０に対
して伝え、このリターンセレクタロジック回路は、次にこの情報をリンクスタックロジッ
ク回路３１０に対して伝える（図４）。次いでリターンセレクタロジック回路３５０は、
アドレスセレクタロジック回路３２０が、アドレス選択ｍｕｘ３０２を通してリンクスタ
ック出力３１６を方向づけるようにする。次いで、リンクスタック３０４から取られるリ
ターンアドレスは、次の組の命令をフェッチするために使用される。
【００４１】
　実施形態に関連する発明の概念は、図２の中のグループの命令２００を戻って参照する
ことにより、さらに説明されることができる。命令Ａは、プロシージャＰＲＯＣ１のコー
ルである。命令Ａが、ＰＲＯＣ１へと分岐するときに、プロセッサ１００は、次の逐次ア
ドレスをリンクレジスタ（Ｒ１４）に記憶する。次の逐次アドレスは、主プログラムに戻
ることに関連するリターンアドレスである。命令Ａが、プロシージャコールとして識別さ
れるときに、リンクスタックロジック回路３１０は、命令Ａに関連するリターンアドレス
が、リンクスタック３０４へとロードされるようにする。図２に示されるように、命令Ａ
は、主プログラムの一部分である。命令Ａは、ＰＲＯＣ１へと分岐し、そして次の処理さ
れた命令は、命令Ｂである。
【００４２】
　命令Ｂは、ＰＲＯＣ１内の最初の命令であり、そしてプロシージャＰＲＯＣ２のコール
のための準備命令である。命令Ｂは、Ｒ１４の値をソフトウェアスタック上へとプッシュ
することにより、現在のリターンアドレスを保存する。次に、命令Ｃが、処理される。命
令Ｃは、プロシージャＰＲＯＣ２のコールである。命令Ｃが、プロシージャコールとして
識別されるときに、リンクスタックロジック回路３１０は、命令Ｃに関連するリターンア
ドレスをリンクスタック３０４上へと保存する。命令Ｃは、プロシージャＰＲＯＣ２へと
分岐し、そして処理される次の命令は、命令Ｄである。
【００４３】
　命令Ｄは、プロシージャＰＲＯＣ２内の最初の命令であり、そしてＲ１４の値をソフト
ウェアスタック上へとプッシュすることにより現在のリターンアドレスを保存する。命令
Ｄは、別の準備命令であり、次のプロシージャコール命令（命令Ｅ）についての準備を行
う。命令Ｅが、プロシージャコールとして識別されるときに、リンクスタックロジック回
路３１０は、命令Ｅに関連するリターンアドレスが、リンクスタック３０４上へとロード
されるようにする。命令Ｅは、プロシージャＰＲＯＣ２内の２番目の命令であり、そして
プロシージャＰＲＯＣ３を呼び出す。命令Ｅは、命令Ｆ、プロシージャＰＲＯＣ３内の最
初の命令、に関連するアドレスへと分岐する。命令Ｆは、プロシージャＰＲＯＣ３内の唯
一の命令であり、そしてリターンである。特に、命令Ｆは、現在、リンクレジスタ（Ｒ１

４）の中の値へと分岐する。一般に、既存のプロセッサアーキテクチャにおいては、命令
Ｆは、命令リターンとして認識される。命令Ｆが処理されるときに、検出ロジック回路４
５０は、命令Ｆがプロシージャリターンであることを決定し、そしてリンクスタック３０
４上の次のリターンアドレスが、取り出されるようにする。プロセッサは、プロシージャ
ＰＲＯＣ２へと戻すためにリターンアドレスを使用する。
【００４４】
　プロシージャＰＲＯＣ２内において、処理されるべき次の命令は、ソフトウェアスタッ
クから現在の値を「ポップ」して出し、そしてそれをレジスタＲ１２に保存する命令Ｇで
ある。説明図を簡単にするために、命令Ｇは、単一のレジスタを「ポップ」する。しかし
ながら、代替実施形態においては、ＰＯＰ命令は、複数のレジスタについての複数の値を
戻すことができる。この代替実施形態においては、プロセッサ１００は、レジスタリスト
の中のこれらのレジスタのうちの１つをブランチターゲットアドレスとして使用して、レ
ジスタリストを後続のブランチ命令と比較するために、「ポップされた」レジスタのリス
トを保持することができる。一実施形態においては、検出ロジック回路４５０は、「ポッ



(13) JP 5301554 B2 2013.9.25

10

20

30

40

50

プされた」レジスタのリストを記憶することができる。
【００４５】
　命令Ｈは、今やＲ１２の中にある取り出されたアドレスへと分岐する。たとえ命令Ｈが
、明示ブランチ命令（ＢＸ）でないとしても、それは同等なブランチ命令である。当業者
が理解するように、ＭＯＶ、ＰＣ、ＲＮはまた、暗黙ブランチ命令として解釈されること
もできる。図６および７の命令フローチャート６００および７００の中で説明されるよう
に、検出ロジック回路２５０、４５０は、「ポップされた」レジスタ（命令ＨのＲ１２）
に対するブランチ命令と一緒にＰＯＰ命令（命令Ｇ）が、プロシージャリターンシーケン
スを構成することを決定する。結果として、プロセッサ１００は、次のフェッチアドレス
を提供するためにリンクスタック３０４を使用し、そして命令フェッチは、プロシージャ
ＰＲＯＣ１へと戻る。
【００４６】
　命令Ｈを処理した後に、命令フェッチは、プロシージャＰＲＯＣ１へと戻り、そして命
令Ｉを識別する。命令Ｉは、ソフトウェアスタックからの次の値をＲ２へとポップする。
依然としてプロシージャＰＲＯＣ１内において、命令Ｊは、Ｒ２に記憶されるアドレスへ
と分岐する。命令Ｈと同様に、命令Ｊは、以前に「ポップされた」レジスタに記憶される
アドレスへと分岐する。結果として、検出ロジック回路２５０、４５０は、命令Ｊがプロ
シージャリターン命令であることを決定し、そしてリンクスタック３０４からの次の値が
、次のグループの命令をフェッチするために使用される。この例においては、命令Ｊが処
理された後に、命令Ｋが、フェッチされる。命令Ｋは、図３に示されるように、主プログ
ラム内の任意の命令とすることができる。
【００４７】
　一実施形態においては、プロセッサ１００は、命令Ｆと、命令ＧおよびＨと、Ｉおよび
Ｊとのシーケンスが、プロシージャリターンとして解釈されるべきであることを識別する
ために検出ロジック回路２５０を使用する。結果として、１組の命令２００が、検出ロジ
ック回路２５０によってラインバッファ１０７の中で出合われるときに、命令Ｆ、Ｈ、お
よびＪは、命令キャッシュ１０６に保存されるプリデコードされた情報を用いてプロシー
ジャリターン命令であるものとしてプリデコードされる。したがって、命令Ｆ、Ｈ、およ
びＪが、フェッチロジック回路２０２によって命令キャッシュ１０６からフェッチされる
ときに、リターン選択ロジック回路３５０は、リターンアドレスが、次のグループの命令
をフェッチするために使用されるリンク３０４から取り出されるようにする。
【００４８】
　代替実施形態においては、検出ロジック回路４５０は、命令Ｆと、命令ＧおよびＨと、
ＩおよびＪとのシーケンスが、プロシージャリターンとして解釈されるべきであることを
識別するように設計されることもできる。この場合には、グループの命令２００が、デコ
ードステージ２０５において復号されるときに、検出ロジック回路４５０は、命令Ｆ、Ｈ
、およびＪが、プロシージャリターン命令であることを識別し、そしてこれをリターンセ
レクタロジック回路３５０に伝える。次いでリターンセレクタロジック回路３５０は、リ
ンクスタック３０４内の次のリターンアドレスが、次のフェッチアドレスを決定するため
に使用されるようにする。
【００４９】
　図６は、図３のＣＰＵ１０２内の検出ロジック回路２５０を有するプロセッサ１００に
よって実行されるステップを示す命令フロー６００を示している。図示を容易にするため
に、フローチャート６００は、ＣＰＵ１０２内のラインバッファ１０７が、単一の命令幅
にすぎず、そしてそれらの命令は、キャッシュラインアドレスの開始からのシーケンスの
中で戻されることを仮定している。当業者は、いくつかのプロセッサが、逐次順序を外れ
た複数の命令を処理することができるラインバッファを有することができることを理解す
る。ここにおいて説明されるような発明の概念は、いずれのタイプのプロセッサにも適用
されることができる。
【００５０】



(14) JP 5301554 B2 2013.9.25

10

20

30

40

50

　命令フロー６００は、開始ブロック６０２から開始される。ブロック６０２から、命令
フローは、ブロック６０４へと進み、ここでラインバッファ１０７の中の最初の命令は、
検出ロジック回路２５０によって処理される。次いで、命令フロー６００は、決定ブロッ
ク６０６へと進む。決定ブロック６０６において、検出ロジック回路２５０は、命令が知
られているプロシージャリターンであるかどうかを決定する。前述のように、知られてい
るプロシージャリターンは、ＰＯＰ／ブランチシーケンスを除外して先に識別されたプロ
シージャリターンのうちのどれにすることもできる。決定ブロック６０６において、検出
ロジック回路２５０が、命令が以上で知られているプロシージャリターンであることを決
定する場合、命令フロー６００は、ブロック６２６へと進み、ここで命令は、プロシージ
ャリターンとして識別され、あるいはフラグ付けされる。決定ブロック６０６において、
検出ロジック回路２５０が、命令が以上で知られているプロシージャリターンでないこと
を決定する場合には、命令フローは、決定ブロック６１０へと進む。
【００５１】
　決定ブロック６１０において、検出ロジック回路２５０は、命令が、ポップされたレジ
スタリストの中にプログラムカウンタ（ＰＣ）を有さないＰＯＰ命令であるかどうかを決
定する。命令が、レジスタリストの中にＰＣのないＰＯＰ命令でない場合、命令フロー６
００は、決定ブロック６２８へと進む。そうでなくて命令がレジスタリストの中にＰＣを
含まないＰＯＰ命令である場合には、命令フロー６００は、ブロック６１２へと進む。ブ
ロック６１２において、検出ロジック回路２５０は、任意の後続の命令を分析する際に使
用のためのＰＯＰ命令のレジスタリストをラインバッファ１０７に保存する。
【００５２】
　ブロック６１２から、命令フローは、ブロック６１４へと進む。ブロック６１４におい
て、検出ロジック回路２５０は、ラインバッファ１０７から次の命令を取り出す。プロセ
スフローは、ブロック６１４から決定ブロック６１６へと続く。決定ブロック６１６にお
いて、検出ロジック回路２５０は、ラインバッファ１０７の中の次の命令が、レジスタリ
ストに保存されるレジスタのうちのどれかに対するブランチ命令であるかどうかを決定す
る。命令が、レジスタリストの中のレジスタに対するブランチである場合、命令フローは
、ブロック６２６へと進み、ここで命令は、プロシージャリターン命令としてフラグ付け
される。決定ブロック６１６において、検出ロジック回路２５０が、命令が保存済みのレ
ジスタリストの中のブランチ命令でないことを決定する場合、命令フロー６００は、決定
ブロック６１７へと続く。
【００５３】
　決定ブロック６１７において、検出ロジック回路２５０は、命令が、ブランチ命令であ
るかどうかを決定する。命令が、ブランチ命令である場合、命令フローは、決定ブロック
６２８へと進む。決定ブロック６１７において、検出ロジック回路２５０が、命令がブラ
ンチ命令でないことを決定する場合、命令フローは、決定ブロック６１８へと進む。決定
ブロック６１８において、検出ロジック回路２５０は、命令が、保存済みのレジスタリス
トの中のレジスタのうちのどれかを上書きするかどうかを決定する。命令が、保存済みの
レジスタリストの中のレジスタのうちのどれかを上書きする場合、命令フロー６００は、
ブロック６２０へと続き、ここで上書きされたレジスタは、保存済みのレジスタリストか
ら取り除かれる。ブロック６２０から、命令フロー６００は、決定ブロック６２２へと続
く。
【００５４】
　決定ブロック６１８において、検出ロジック回路２５０は、命令が、保存済みのレジス
タリストの中の任意のレジスタを上書きしなかったことを決定する場合、命令フロー６０
０は、決定ブロック６２２へと進む。決定ブロック６２２において、検出ロジック回路２
５０は、ラインバッファ１０７について残っている任意の命令があるかどうかを決定する
。ラインバッファについて残っている命令がない場合、命令フロー６００は、ブロック６
２４で終了する。ラインバッファ１０７の中に残っている命令がある場合、命令フロー６
００は、ブロック６１４へと戻って進み、ここでラインバッファ１０７の中の次の命令が



(15) JP 5301554 B2 2013.9.25

10

20

30

40

50

処理される。
【００５５】
　ブロック６２６において、検出ロジック回路は、リターン命令として命令にタグを付け
る。前述のように、リターン命令にタグを付けることは、フェッチロジック回路２０２が
、命令が命令キャッシュ１０６からフェッチされるときにリターン命令を識別することを
可能にする。ブロック６２６から、命令フロー６００は、決定ブロック６２８へと進む。
決定ブロック６２８において、検出ロジック回路２５０は、ラインバッファ１０７の中に
処理されるように残っている任意の命令があるかどうかを決定する。ラインバッファ１０
７の中に処理されるように残っている命令がない場合、命令フロー６００は、ブロック６
２４において終了する。処理されるように残っている追加の命令がある場合には、命令フ
ロー６００は、ブロック６０４へと進み、ここで次の命令が、検出ロジック回路２５０に
よって処理される。
【００５６】
　図７は、図４の上位パイプライン１５１に結合されたデコードロジック回路４０６の中
に検出ロジック回路４５０を有するＣＰＵ１０２によって実行されるステップを示す命令
フロー７００を示している。図示を容易にするために、命令フロー７００の中で概説され
る命令の処理は、デコードロジック回路４０６が、プロセッササイクル当たりに単一の命
令を処理することを仮定している。当業者は、いくつかのプロセッサが、プロセッササイ
クル当たりに複数の命令を処理することができるデコードロジック回路を有することがで
きることを理解する。ここにおいて説明される発明の概念は、いずれのタイプのプロセッ
サにも適用されることができる。
【００５７】
　命令フロー７００は、開始ブロック７０２から開始される。ブロック７０２から、命令
フローは、ブロック７０４へと進み、ここで命令は、デコードロジック回路４０６によっ
てデコードステージ２０５の中で処理される。ブロック７０４から、命令フローは、決定
ブロック７０６へと続く。決定ブロック７０６において、検出ロジック回路４５０は、命
令がプロシージャリターンであるかどうかを決定する。この例においては、検出ロジック
回路４５０は、命令がＰＯＰ／ブランチシーケンス以外の前もって知られているプロシー
ジャリターンのうちのどれかである場合に、命令がプロシージャリターンであることを決
定する。検出ロジック回路４５０が、命令がプロシージャリターンであることを決定する
場合、命令フロー７００は、ブロック７０８へと続く。検出ロジック回路４５０が、命令
がプロシージャリターンでないことを決定する場合には、命令フローは、決定ブロック７
１０へと続く。
【００５８】
　決定ブロック７１０において、検出ロジック回路４５０は、命令が、レジスタリストの
中にプログラムカウンタ（ＰＣ）を有さないＰＯＰ命令であるかどうかを決定する。命令
が、そのレジスタリストの中にＰＣのないＰＯＰ命令でない場合、プロセスフローは、ブ
ロック７０４へと後方に戻る。決定ブロック７１０において、検出ロジック回路４５０が
、復号された命令が、そのレジスタリストの中にＰＣを含まないＰＯＰ命令であることを
決定する場合、命令フロー７００は、ブロック７１２へと続く。プロセッサ１００は、ソ
フトウェアスタックから複数のレジスタをポップすることができる可能性があるので、ブ
ロック７１２において、検出ロジック回路４５０は、ポップされたレジスタリストを保存
する。ブロック７１２から、命令フロー７００は、ブロック７１４へと進む。
【００５９】
　ブロック７１４において、プロセッサ１００は、次の命令をデコードステージ２０５へ
とロードし、そしてデコードロジック回路４０６は、その命令を処理する。命令が、ブロ
ック７１４においてロードされた後に、命令フロー７００は、決定ブロック７１６へと進
む。決定ブロック７１６において、検出ロジック回路４５０は、命令が、保存済みのレジ
スタリストの中のレジスタに対するブランチであるかどうかを決定する。検出ロジック回
路４５０が、命令が保存済みのレジスタリストの中のレジスタに対するブランチであるこ



(16) JP 5301554 B2 2013.9.25

10

20

30

40

50

とを決定する場合、プロセスフローは、ブロック７０８へと続く。検出ロジック回路４５
０が、命令が保存済みのレジスタリストの中のレジスタに対するブランチ命令でなかった
ことを決定する場合には、命令フロー７００は、決定ブロック７１８へと進む。
【００６０】
　決定ブロック７１８において、検出ロジック回路４５０は、命令が、ブランチ命令であ
るかどうかを決定する。命令が、ブランチ命令である場合、命令フローは、ブロック７０
４へと後方に戻り、ここで次の命令は、デコードステージ２０５へとロードされる。命令
が、決定ブロック７１８においてブランチ命令でない場合には、命令フロー７００は、決
定ブロック７２０へと進む。決定ブロック７２０において、検出ロジック回路４５０は、
命令が、保存済みのレジスタリストの中のレジスタを上書きするかどうかを決定する。
【００６１】
　命令が、保存済みのレジスタリストの中のレジスタを上書きしない場合、命令フロー７
００は、ブロック７１４へと戻り、ここで次の命令は、デコードステージ２０５へとロー
ドされ、そしてデコードロジック回路４０６によって処理される。命令が、決定ブロック
７２０において保存済みのレジスタリストの中のレジスタを上書きする場合、命令フロー
７００は、ブロック７２２へと続き、ここで上書きされたレジスタは、保存済みのレジス
タリストから取り除かれる。ブロック７２２から、命令フロー７００は、ブロック７１４
へと戻り、ここで次の命令は、デコードステージ２０５へとロードされ、そしてデコード
ロジック回路４０６によって処理される。
【００６２】
　ここにおいて開示される実施形態に関連して説明される様々な例示の論理ブロック、モ
ジュール、回路、要素、および／またはコンポーネントは、ここにおいて説明される機能
を実行するように設計された汎用プロセッサ、デジタル信号プロセッサ(digital signal 
processor)（ＤＳＰ）、特定用途向け集積回路(application specific integrated circu
it)（ＡＳＩＣ）、フィールドプログラマブルゲートアレイ(field programmable gate ar
ray)（ＦＰＧＡ）または他のプログラマブルロジックコンポーネント、ディスクリートゲ
ート(discrete gate)またはトランジスタロジック、ディスクリートハードウェアコンポ
ーネント(discrete hardware components)、あるいはそれらの任意の組合せを用いてイン
プリメントされ、または実行されることができる。汎用プロセッサは、マイクロプロセッ
サとすることができるが、代替案においてはプロセッサは、従来の任意のプロセッサ、コ
ントローラ、マイクロコントローラ、または状態機械とすることもできる。プロセッサは
、コンピューティングコンポーネントの組合せ、例えば、ＤＳＰとマイクロプロセッサと
の組合せ、複数のマイクロプロセッサ、ＤＳＰコアと組み合わされた１つまたは複数のマ
イクロプロセッサ、あるいは他のそのような任意のコンフィギュレーション、としてイン
プリメントされることもできる。
【００６３】
　特定の実施形態が、ここにおいて示され、そして説明されているが、当業者は、同じ目
的を達成するように予測される任意の構成が、示される特定の実施形態の代わりにされる
ことができることと、本発明が、他の環境において他のアプリケーションを有することと
を理解する。本願は、本発明の任意の適応または変形をカバーするように意図される。添
付の特許請求の範囲は、ここにおいて説明される特定の実施形態だけに本発明の範囲を限
定するようには決して意図されない。
　下記に出願時の請求項１－２５に対応する記載を付記１－２５として表記する。
付記１
　パイプラインプロセッサの中のプロシージャから戻るときにリンクスタックからリター
ンアドレスを取り出すための方法であって、
　ソフトウェアスタックからリターンアドレスを取り出すように動作可能な検索命令を識
別することと、
　前記リターンアドレスへと分岐するように動作可能なブランチ命令を識別することと、
　識別される前記命令と前記ブランチ命令との両方に応じて、前記リンクスタックから前



(17) JP 5301554 B2 2013.9.25

10

20

30

40

50

記リターンアドレスを取り出すことと、
　前記リターンアドレスを使用して後続の命令をフェッチすることと、
　を備える方法。
付記２
　前記検索命令は、ＰＯＰ命令である、付記１に記載の方法。
付記３
　前記検索命令は、ロード命令である、付記１に記載の方法。
付記４
　前記ブランチ命令は、ＢＸ命令である、付記１に記載の方法。
付記５
　前記ブランチ命令は、ＭＯＶ命令である、付記１に記載の方法。
付記６
　前記の前記検索命令を識別することは、前記リターンアドレスを含むレジスタを識別す
ることをさらに備える、付記１に記載の方法。
付記７
　前記検索命令を識別することは、レジスタリストを保持することをさらに備え、前記レ
ジスタリストは、複数のレジスタを有し、前記複数のレジスタの中の少なくとも１つのレ
ジスタは、前記リターンアドレスを含む、付記１に記載の方法。
付記８
　前記レジスタリストを保持することは、前記複数のレジスタのうちのどれかが、後続の
命令によって上書きされる場合に、前記レジスタリストからレジスタを取り除くことを備
える、付記７に記載の方法。
付記９
　前記ブランチ命令を識別することは、検出ロジック回路によって実行される、付記１に
記載の方法。
付記１０
　前記検出ロジック回路は、プリデコードロジック回路と共に含まれる、付記９に記載の
方法。
付記１１
　前記検出ロジック回路は、デコードロジック回路と共に含まれる、付記９に記載の方法
。
付記１２
　前記ブランチ命令を識別することは、命令キャッシュの中の前記ブランチ命令にフラグ
付けすることをさらに備える、付記１に記載の方法。
付記１３
　命令キャッシュに結合されたラインバッファと；
　前記命令キャッシュに結合され、予測リターンアドレスを記憶するリンクスタックを有
するフェッチロジック回路と、なお命令は、前記ラインバッファから前記命令キャッシュ
へとロードされ、前記フェッチロジック回路は、前記命令キャッシュから命令を取り出す
；
　前記ラインバッファと通信するプリデコードロジック回路と、なお前記プリデコードロ
ジック回路は、プロシージャリターンシーケンスを識別するための検出ロジック回路をさ
らに備え、前記プロシージャリターンシーケンスは、ソフトウェアスタックからリターン
アドレスを取り出すように動作可能な検索命令と前記取り出されたリターンアドレスに分
岐するブランチ命令とを備え、前記パイプラインプロセッサは、前記プロシージャリター
ンシーケンスの前記識別に応じて前記リンクスタックから前記予測されたリターンアドレ
スを取り出す；
　を備えるパイプラインプロセッサ。
付記１４
　前記検出ロジック回路は、前記ブランチ命令が、前記ラインバッファから前記命令キャ



(18) JP 5301554 B2 2013.9.25

10

20

30

ッシュへとロードされるときに、前記プロシージャリターンシーケンスの前記ブランチ命
令にフラグ付けする、付記１３に記載のパイプラインプロセッサ。
付記１５
　前記フェッチロジック回路は、前記フラグ付けされた情報から前記プロシージャリター
ンシーケンスを識別する、付記１４に記載のパイプラインプロセッサ。
付記１６
　前記フェッチロジック回路内のリターンセレクタロジック回路は、前記フラグ付けされ
た情報から前記リターンシーケンスを識別する、付記１５に記載のパイプラインプロセッ
サ。
付記１７
　前記検索命令は、ＰＯＰ命令である、付記１３に記載のパイプラインプロセッサ。
付記１８
　前記検索命令は、ロード命令である、付記１３に記載のパイプラインプロセッサ。
付記１９
　前記ブランチ命令は、ＢＸ命令である、付記１３に記載のパイプラインプロセッサ。
付記２０
　予測されたリターンアドレスを記憶するリンクスタックを有し、命令キャッシュから命
令をフェッチするフェッチロジック回路と、
　前記フェッチロジック回路に結合されたデコードロジック回路と、
　を備え、前記フェッチされた命令は、前記デコードロジック回路によって復号され、前
記デコードロジック回路は、検出ロジック回路をさらに備え、前記検出ロジック回路は、
ソフトウェアスタックからアドレスを取り出すように動作可能な検索命令と、前記取り出
されたアドレスに分岐するように動作可能なブランチ命令とを備えるプロシージャリター
ンシーケンスを識別し、パイプラインプロセッサは、前記プロシージャリターンシーケン
スの前記識別に応じて前記リンクスタックから前記予測されたリターンアドレスを取り出
す、パイプラインプロセッサ。
付記２１
　前記フェッチロジック回路は、前記取り出されたアドレスを使用して命令をフェッチす
る、付記２０に記載のパイプラインプロセッサ。
付記２２
　前記検索命令は、ＰＯＰ命令である、付記２０に記載のパイプラインプロセッサ。
付記２３
　前記検索命令は、ロード命令である、付記２０に記載のパイプラインプロセッサ。
付記２４
　前記ブランチ命令は、前記検索命令によって識別されるアドレスへと分岐する、付記２
０に記載のパイプラインプロセッサ。
付記２５
　前記ブランチ命令は、ＭＯＶ命令である、付記２０に記載のパイプラインプロセッサ。



(19) JP 5301554 B2 2013.9.25

【図１】 【図２】

【図３】 【図４】



(20) JP 5301554 B2 2013.9.25

【図５】 【図６】

【図７】



(21) JP 5301554 B2 2013.9.25

10

20

30

40

50

フロントページの続き

(74)代理人  100075672
            弁理士　峰　隆司
(74)代理人  100095441
            弁理士　白根　俊郎
(74)代理人  100084618
            弁理士　村松　貞男
(74)代理人  100103034
            弁理士　野河　信久
(74)代理人  100119976
            弁理士　幸長　保次郎
(74)代理人  100153051
            弁理士　河野　直樹
(74)代理人  100140176
            弁理士　砂川　克
(74)代理人  100101812
            弁理士　勝村　紘
(74)代理人  100124394
            弁理士　佐藤　立志
(74)代理人  100112807
            弁理士　岡田　貴志
(74)代理人  100111073
            弁理士　堀内　美保子
(74)代理人  100134290
            弁理士　竹内　将訓
(74)代理人  100127144
            弁理士　市原　卓三
(74)代理人  100141933
            弁理士　山下　元
(72)発明者  モロウ、マイケル・ウィリアム
            アメリカ合衆国、カリフォルニア州　９２１２１、サン・ディエゴ、モアハウス・ドライブ　５７
            ７５
(72)発明者  ディーフェンダーファー、ジェームズ・ノリス
            アメリカ合衆国、カリフォルニア州　９２１２１、サン・ディエゴ、モアハウス・ドライブ　５７
            ７５

    審査官  清木　泰

(56)参考文献  特開２００１－１００９９３（ＪＰ，Ａ）　　　
              特開平０７－２８１８９２（ＪＰ，Ａ）　　　
              特開平０７－２３９７８２（ＪＰ，Ａ）　　　
              特開２００３－２５６１９７（ＪＰ，Ａ）　　　
              米国特許第０５８１２８１３（ＵＳ，Ａ）　　　
              米国特許第０６３７４３５０（ＵＳ，Ｂ１）　　
              本永朝雄，6809アセンブリプログラミング，日本，株式会社サイエンス社，１９８６年１１月２
              ５日，Pages:62-68
              Stephen B. Fubber，VLSI RISC Architecture and Organization，米国，Marcel Dekker Inc.，
              １９８９年，Pages:231-233



(22) JP 5301554 B2 2013.9.25

(58)調査した分野(Int.Cl.，ＤＢ名)
              Ｇ０６Ｆ９／３０－９／４２


	biblio-graphic-data
	claims
	description
	drawings
	overflow

