TORSION-PROOF HOSE CONNECTION

In order to establish a connection that can be stressed by rotation between a nipple (3) and a hose (2), a connecting device (1) is used, said device comprising a compression sleeve (4). Said compression sleeve is compressed with the nipple (3) in a non-circular manner at least at one point, so that the compression sleeve (4) and the nipple (3) are secured and connected to each other in a torsion-proof positive-locking manner. In contrast, the section (15) of the compression sleeve (4) comprising the hose (2) is preferably compressed in a circular manner, so that the hose (2) is seated - with uniform compression along its circumference - on the hose-receiving section (9) of the nipple (3).
Torsion-proof Hose Connection

The invention relates to a connecting device for fluid-conveying systems, in particular, for the connection of a hose, as well as to a connecting method.

Fluid-conveying systems frequently use hoses having ends that are connected to other line or devices. These hose connections are subject to considerable mechanical stresses which must not compromise the seal between the hose and the nipple or any added lines. Frequently, connecting means are used that are based on the plastic deformation of a sleeve extending over the hose. To achieve this, for example, document DE 38 08 383 Al discloses a nipple and a hose-receiving section that has a conical, cylindrical or other profile and ribs, as well as a compression sleeve that at least extends over said ribs to achieve axial securing, and that clamps the hose in place on the hose-receiving section of the nipple, when said hose-receiving section is deformed, i.e., compressed, in axially inward direction.

Such a compression sleeve has also been known, for example, from document DE 101 04 448.

The connection of a nipple with a hose by means of a compression sleeve has also been known from document EP 0 057 920 Al. Again, the nipple has a cylindrical hose-receiving section and a rib that is provided adjoining said
hose-receiving section. The compression sleeve extends over the rib, thus securing said sleeve on the nipple in axial direction. The compression sleeve has several peripherally extending ribs on its inside peripheral surface. When the hose is slipped onto the nipple, said compression sleeve is compressed in radially inward direction, so that its ribs are pressed into the hose and thus tightly secure said hose in axial direction and in a fluid-tight manner on the nipple.

Such compression connections have been widely accepted. However, they can cause problems when the hose and the nipple are stressed relative to each other due to a torsional moment. Such torsional moments can occur due to movements of the components connected to each other by the hose, or even by vibrations, temperature changes during assembly, or as a result of assembly. It must be ensured that such torsional moments do not compromise the connection between the hose and the nipple. This problem is becomes more pronounced as the fluid pressures to be endured by the hose become greater. Increasing pressure requires an increasingly stiffer hose wall. A particularly stiff hose already generates a significant counter-torque when its ends are only slightly rotated relative to each other, this counter-torque stressing the connection site between the nipple and the hose. In the course of time, such stresses can cause the nipple to loosen or to impair its seal.

Considering this, it is the object of the invention to create a connection device for fluid-conveying systems which is insensitive to relative torsional moments. In addition, a corresponding method of connection is to be provided.
This object is achieved with the connecting device in accordance with Claim 1:

The connecting device in accordance with the invention comprises at least one nipple and a compression sleeve that are connected to each other in a non-twistable manner by positive-locking connection. The positive connection between the nipple and the compression sleeve is formed by an anti-twist section provided on the nipple and by a correspondingly formed section of the compression sleeve. The anti-twist section of the nipple preferably has a non-circular exterior form while the corresponding section of the compression sleeve has preferably a non-circular interior form. The exterior form of the anti-twist section and the interior form of the corresponding section of the compression sleeve are complementary to each other and create a torsion-proof toothing between the nipple and the compression sleeve. The toothing is preferably created in that the nipple has a first radius R_1 at least at one point, said radius R_1 being smaller than a second radius R_2 at a second point at a distance in circumferential direction. The compression sleeve and the nipple are in contact with each other at least at the first point. In so doing, the torsional moment acting on the hose cannot lead to a twisting of the hose, including the compression sleeve on the nipple.

The non-circular form of the anti-twist section and the corresponding form of the compression sleeve are preferably created by a plastic reformation, are preferably rotation-symmetrical prior to the assembly of the hose. The positive-locking connection by fitting engagement of the non-circular sections of the compression sleeve and the nipple is thus created only at the time of assembly of the hose. The advantage of this measure is that the hose may be
installed on the nipple in any desired position of rotation. No rotary alignment is required between nipple and hose or compression sleeve. In addition, the assembly occurs without requiring that the nipple and the compression sleeve be turned in opposite directions relative to each other. Thus, assembly may be achieved without problems even if the relative positions of rotation of the nipple and the hose prior to compressing the compression sleeve are fixed, for example, because the respective ends of the hose and the nipple have already been fixed with respect to their position of rotation.

In the present document, the "position of rotation" is understood to mean a rotation of the nipple or hose about its respective longitudinal axis.

Preferably, the positive engagement between the nipple and the compression sleeve is achieved on an originally round annular bead of the nipple, said bead extending radially outward from the otherwise at least approximately cylindrical outside surface of the nipple. This annular bead may have been produced by upsetting the nipple. When the compression sleeve and the nipple are compressed, the compression sleeve is deformed inward at several points at a distance from each other in circumferential direction, so that said compression sleeve is imparted with, for example, a polygonal inside cross-section in this region. In so doing, said compression sleeve deforms the annular bead which thus takes on a non-circular, for example, tetragonal form, with potentially rounded edges. Other forms, for example, pentagonal or hexagonal forms, or forms having one or more locally radial inward-directed deformations to produce the desired toothing between the nipple and the compression sleeve, are possible.
Preferably, the compression sleeve comprises at least one inward-directed rib that extends between two annular beads of the nipple when the compression sleeve has been compressed in radial direction. The two annular beads of the nipple may have different outside diameters. The diameters of the annular beads and the inward-directed rib on the compression sleeve may be adapted to each other, so that - already in non-compressed state - a desired axial positioning is achieved, for example, in that one of the annular beads forms an abutment for the rib of the compression sleeve. Preferably, this is the annular bead that is to be deformed so as to be non-circular during the compression operation.

Referring to the method of the invention, the hose is slipped onto a hose-receiving section of the nipple, and the compression sleeve is situated in such a manner that its hose-securing section extends over the hose and that its anti-twist part extends over an anti-twist section of the nipple. Subsequently, the compression sleeve is deformed radially inward in such a manner that a non-circular joint is formed between the compression sleeve and the nipple. This joint forms a positive-locking toothing between the compression sleeve and the nipple.

Additional details of advantageous embodiments of the invention result from the drawings, the description or the claims. The description is restricted to essential aspects of the invention or other miscellaneous situations. The drawings disclose additional details. To this extent, they should be considered supplementary. The drawings show an exemplary embodiment of the invention.

They show in
Figure 1 a nipple with the hose and the compression sleeve prior to compression;

Figure 2 a frontal view of the nipple and the compression sleeve in accordance with Figure 1, illustrated in a different size;

Figure 3 a perspective view of the nipple, the hose and the compression sleeve after compression;

Figure 4 a frontal view of the nipple and the compression sleeve in accordance with Figure 3, on a different scale;

Figure 5 a view, longitudinally in section, of the nipple, the hose and the compression sleeve prior to compression; and,

Figure 6 a longitudinal section of the nipple, the hose and the compression sleeve after compression.
Figure 3 shows a connecting device 1 which is used to create a connection between the hose 2 and a nipple 3. The nipple 3 is part of the connecting device 1 that additionally includes a compression sleeve 4. While Figure 3 shows the connecting device 1 in assembled state, i.e., following the attachment of the hose 2 to the nipple 3, Figure 1 is used to illustrate the connecting device 1 prior to the connection of the hose 2 to the nipple 3. As is shown, in particular, by the comparison of Figures 2 and 4, the connection is achieved by a plastic deformation of the compression sleeve 4 and, in part, of the nipple 3. As is obvious from Figure 5, the nipple 3 is provided with at least one, but preferably more, e.g., two annular beads 6, 7, which may have the same or also different outside diameters. The nipple 3 has an anti-twist section 8 that, for example, can be created in the region of the annular bead 6. In addition, the nipple 3 has a hose-receiving section 9 having, for example, a conical and/or cylindrical outside circumference. If necessary, this outside circumference may have additional, not illustrated, contours in order to secure the hose 2 in axial direction. In addition, the hose-receiving section 9 may be provided with one or more annular grooves 10, which, e.g., are disposed to accommodate an O-ring 11 or another sealing means.

On its other side, i.e., the side opposite the hose-connecting section 9, the nipple 3 may terminate in a pipeline that is provided with a threaded section of other connecting means or have other means that permit said nipple's connection with other fluid channels.

The hose to be received by the nipple 3 is preferably a plastic hose that may be reinforced, for example, with a woven fabric. Preferably, said hose is provided on its
inside, as well as on its outside, with a plastic material surface 12, 13, for example, an elastomer layer.

In its original state in accordance with Figures 1 and 2 or also Figure 5, the compression sleeve 4 is configured in a rotation-symmetrical manner. It has a part 14 that extends over the anti-twist section 8. In addition, it has another section 15 that extends over the hose-receiving section 9 and is disposed to secure the hose 2 on the nipple 3. The section 15 is provided on the inside with projections, for example, having the configuration of teeth or ribs 16, 17, 18, 9 that project in radially inward direction toward the hose 2 and that have an inside diameter in non-compressed state, said inside diameter being greater than the outside diameter of the hose 2.

In the region of part 14, or between part 14 and section 15, the compression sleeve 4 may be provided with an additional radially inward-projecting rib 20 that, in assembled stated, extends between the annular beads 6, 7. Figure 5 shows an example of the dimensions of the diameter. For example, the rib 20 has an inside diameter that is greater than the outside diameter of the annular bead 7 but is smaller than the outside diameter of the annular bead 6. Consequently, the assembly of the connecting device 1 is facilitated. This is accomplished as follows:

First, the compression sleeve 4, in its state in accordance with Figures 1, 2 and 5, as well as the hose 2, are slid onto the nipple 3. The front end of the hose 2 abuts against the annular bead 7. The axial movement of the compression sleeve 4 is limited, on the one hand, by the front end 21 of the hose 2 and, on the other hand, by the annular bear 6. Said compression sleeve can be brought in
any desired position of rotation, whereby the expression "position of rotation" is to be understood with reference to a joint central longitudinal axis 22.

Now, a compression operation is performed in that the compression sleeve 4 is converted from its form in accordance with Figures 1 and 2 into a form in accordance with Figures 3 and 4. To do so, the compression sleeve is deformed differently in part 14 and section 15. In section 15, the previously rotation-symmetrical compression sleeve 4 is deformed radially inward in a largely uniform manner, so that said compression sleeve remains largely rotation-symmetrical. As indicated by Figure 3, said compression sleeve may have several longitudinally extending ribs 23, 24, and so on. However, such minimal deviations from the rotational symmetry do not lead to a non-circular deformation of the hose-receiving section 9 of the nipple 3. Therefore, the section 15 – even though its cross-section exhibits minimal deviations from the circular form – is viewed as being rotation-symmetrical.

In contrast, the part 14 is compressed in radially inward direction, for example, at several points 25, 26, 37, 28 that are at a distance from each other in circumferential direction, whereby minimal or no pressure is applied to other points 29, 30, 31, 32, so that these points 29 through 30 are not deformed inward or may even be able to yield in outward direction. As is shown by Figure 4, the originally essentially cylindrical inside wall 33 of the part 14 thus substantially deviates from the circular form. In that case, the wall 33 has received a square form. The square form is delimited by approximately planar surfaces or edges. However, these edges may also have another form, for example, they may dip toward the longitudinal central axis 22.
The non-circular deformation of the part 14 results in a deformation of the annular bead 6, so that said bead is imparted with several surface sections 34, 35, 36, 37 that clearly deviate from the circular form. Said surface sections are in firm abutment with the wall 35 and form a square profile that is tightly enclosed by the opening delimited by the wall 33, said opening also being square. In this manner, a torsion-proof positive-locking engagement between the nipple 3 and the compression sleeve 4 is established.

The described deformation may be restricted to the annular bead 6 or may also comprise adjacent parts of the nipple 3. Likewise, the rib 20 may also be affected by said non-circular deformation.

Referring to the compressed state as in Figure 6, the ribs 16, 17, 18 displace material of the hose 2, pressing said hose tightly against the hose-receiving section 9. This produces a seal and secures the hose 2 on the nipple 3 in axial direction. In addition, the rib 20, which now has a reduced diameter, extends between the annular beads 6, 7 and thus secures the compression sleeve 4 on the nipple 3 in axial direction. The part 14 of the compression sleeve 4 that has been compressed in a non-circular manner is now in a torsion-proof engagement with the equally non-circularly compressed annular bead 6 and thus forms an anti-rotation means that is effective between the nipple 3 and the compression sleeve 4. In this manner, a mechanically particularly stable compression connection, which can be stressed in particular by the torsional moment, is provided, said compression connection permanently securing the hose 2 on the nipple 3. It is pointed out that the inventive device and the inventive method may be modified.
For example, the compression sleeve 4 - in uncompressed state - may already be non-circular, e.g., square, in its region extending over the anti-twist section 8. During compression, the cross-section is reduced, whereby the initially round bead 6 is impressed with the non-circular form by said compression sleeve. It is also possible to make the anti-twist section 8 of the nipple 3 non-circular from the start, so that said nipple forms a positive-locking twist-proof connection with a circular or non-circular compression sleeve 4 following compression. The nipple 3 and the compression sleeve 4 may be made of steel or of other metals.

In order to establish a connection that can be stressed by torsional moments (i.e., can be stressed by rotation) between a nipple 3 and a hose 2, a connecting device 1 is used, said device comprising a compression sleeve 4. Said compression sleeve is compressed with the nipple 3 in a non-circular manner at least at one point, so that the compression sleeve 4 and the nipple 3 are secured and connected to each other in a torsion-proof positive-locking manner. In contrast, the section 15 of the compression sleeve 4 comprising the hose 2 is preferably compressed in a circular manner, so that the hose 2 is seated - with uniform compression along its circumference - on the hose-receiving section 9 of the nipple 3. This results in a constructive separation of the region intended for sealing from the region intended for transmitting the torsional moment.
Reference numbers:

1 Connecting device
2 Hose
3 Nipple
4 Compression sleeve
6, 7 Annular beads
8 Anti-twist section
9 Hose-receiving section
10 Annular groove
11 O-ring
12, 13 Surface of plastic material
14 Part for anti-twist feature
15 Section for securing the hose
16, 17, 18, 19 Ribs for axially securing the hose
20 Rib for axially securing the compression sleeve
21 End side
22 Longitudinal central axis
23, 24 Ribs
25, 26, 27, 28 Points
29, 30, 31, 32 Points
33 Wall
34, 35, 36, 37 Surfaces
Patent Claims:

1. Connecting device (1) for fluid-conveying systems, in particular for connecting a hose (2), comprising a nipple (3) having a rotation-symmetrical hose-receiving section (9) and, at a distance therefrom, an anti-twist section (8) is configured in a non-circular manner, at least after a connection has been established between the hose (2) and the nipple (3), and a compression sleeve (4) that extends over the hose-receiving section (9), as well as over the anti-twist section (8), and said compression sleeve is in positive-locking engagement with respect to a relative rotation in the anti-twist section (8).

2. Connecting device in accordance with Claim 1, characterized in that the anti-twist section (8) is plastically deformed - starting with a rotation-symmetrical form - in order to achieve the non-circular form.

3. Connecting device in accordance with Claim 1, characterized in that the compression sleeve (4) is plastically deformed in a part (14) extending over the anti-twist section (8) - starting with a rotation symmetrical form - in order to achieve a non-circular form.

4. Connecting device in accordance with Claim 3, characterized in that the part (14) extending over the anti-twist section (8) is deformed in radially outward
direction at several points (25, 26, 27, 28) that are spaced apart in circumferential direction.

5. Connecting device in accordance with Claim 1, characterized in that the anti-twist section (8) is configured as an annular bead (6) provided on the nipple (3).

6. Connecting device in accordance with Claim 1, characterized in that the compression sleeve (4) has a radially inward-projecting annular rib (20) that extends between two annular beads (6, 7) of the nipple (3).

7. Connecting device in accordance with Claim 6, characterized in that, in its original state, the rib (20) has an inside diameter which is greater than the outside diameter of one of the annular beads (7) and is smaller than the outside diameter of the other annular bead (6).

8. Connecting device in accordance with Claim 1, characterized in that the annular bead (6) having the greater diameter is part of, or represents, the anti-twist section (8).

9. Connecting device in accordance with Claim 1, characterized in that the compression sleeve (4) is plastically deformed on section (15) which extends over the hose (2).

10. Connecting device in accordance with Claim 9, characterized in that the section (15) extending over the hose (2) is essentially configured in a rotation-symmetrical manner.
11. Method for establishing an anti-twist connection between a nipple (3) and a hose (2) by means of a compression sleeve (4),

whereby:

the hose (2) is slid onto a hose-receiving section (9) of the nipple (3) and the compression sleeve (4) is situated in such a manner that a hose-securing section (15) extends over the hose (2) and an anti-twist section (14) extends over an anti-twist section (8) of the nipple (3), and

the compression sleeve (4) is radially deformed in inward direction in such a manner that a non-circular joint is formed between the compression sleeve (4) and the nipple (3).
INTERNATIONAL SEARCH REPORT

PCT Article 18 and Rules 43 and 44

<table>
<thead>
<tr>
<th>Applicant's or agent's file reference</th>
<th>FOR FURTHER ACTION</th>
<th>see Form PCT/ISA/220 as well as, where applicable, item 5 below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAFL P063WoG</td>
<td>International filing date (day/month/year)</td>
<td>(Earliest) Priority Date (day/month/year)</td>
</tr>
<tr>
<td>PCT/EP 08/0043.70</td>
<td>02/06/2008</td>
<td>06/06/2007</td>
</tr>
</tbody>
</table>

Applicant

EATON FLUID POWER GMBH

This international search report has been prepared by this International Searching Authority and is transmitted to the applicant according to Article 18. A copy is being transmitted to the International Bureau.

This international search report consists of a total of 4 sheets.

| [x] | It is also accompanied by a copy of each prior art document cited in this report. |

1. **Basis of the report**

 a. With regard to the **language**, the international search was carried out on the basis of:

 | [x] | the international application in the language in which it was filed |
 | [] | a translation of the international application into __________________, which is the language of a translation furnished for the purposes of international search (Rules 12.3(a) and 23.1(b)) |

b. [] This international search report has been established taking into account the **rectification of an obvious mistake** authorized by or notified to this Authority under Rule s 1 (Rule 43.6b/s(a)).

c. [] With regard to any **nucleotide and/or amino acid sequence** disclosed in the international application, see Box No. I.

2. [] **Certain claims were found unsearchable** (See Box No. II)

3. [] **Unity of invention is lacking** (see Box No III)

4. With regard to the **title**,

 | [x] | the text is approved as submitted by the applicant |
 | [] | the text has been established by this Authority to read as follows: |

5. With regard to the **abstract**,

 | [x] | the text is approved as submitted by the applicant |
 | [] | the text has been established, according to Rule 38.2(b), by this Authority as it appears in Box No. IV. The applicant may, within one month from the date of mailing of this international search report, submit comments to this Authority |

6. With regard to the **drawings**,

 a. the figure of the **drawings** to be published with the abstract is Figure No. _S__________|

 | [x] | as suggested by the applicant |
 | [] | as selected by this Authority, because the applicant failed to suggest a figure |
 | [] | as selected by this Authority, because this figure better characterizes the invention |

b. [] none of the figures is to be published with the abstract
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. F16L33/207
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
F16L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 4 817 997 A (INGRAM THOMAS L [US]) 4 April 1989 (1989-04-04) column 3, line 59 - column 5, line 33; figures 1-5</td>
<td>1-11</td>
</tr>
<tr>
<td>X</td>
<td>US 2 314 002 A (LUSHER ALBERT C ET AL) 16 March 1943 (1943-03-16) page 2, line 17 - page 3, line 52; figures 1-13</td>
<td>1-5, 9-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex.

Date of the actual completion of the international search 10 November 2008

Date of mailing of the international search report 19/11/2008

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer

Ceuca, Antonio
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 366 841 A (CURRIE WILLIAM E ET AL) column 2, line 36 - column 5, line 13; figures</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>GB 2 091 832 A (DUNLOP LTD) page 1, line 82 - line 130; figures</td>
<td>1-11</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4817997</td>
<td>04-04-1989</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2314002</td>
<td>16-03-1943</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2004032124</td>
<td>19-02-2004</td>
<td>AU 2003251097 A1 03-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0313766 A 21-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2496012 A1 26-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1540232 A1 15-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UO 2004016979 A1 26-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006516159 T 22-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA05001745 A 25-04-2005</td>
</tr>
<tr>
<td>US 4366841</td>
<td>04-01-1983</td>
<td>NONE</td>
</tr>
<tr>
<td>GB 2091832</td>
<td>04-08-1982</td>
<td>NONE</td>
</tr>
</tbody>
</table>